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Connected bin packing problem on
traceable graphs
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Abstract

We consider a new extension of the bin packing problem in which a set of
connectivity constraints should be satisfied. An undirected graph with a
weight function on the nodes is given. The objective is to pack all the nodes
in the minimum number of unit-capacity bins, such that the induced sub-
graph on the set of nodes packed in each bin is connected. After analyzing
some structural properties of the problem, we present a linear time approx-
imation algorithm for this problem when the underlying graph is traceable.
We show that the approximation factor of this algorithm is 2 and this fac-
tor is tight. Finally, concerning the investigated structural properties, we
extend the algorithm for more general graphs. This extended algorithm
also has a tight approximation factor of 2.
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1 Introduction

The bin packing problem (BPP) has been studied extensively in the literature
due to its numerous applications and its intriguing combinatorial structure.
The BPP consists of packing a given set of items with different weights into
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a minimum number of same bins so that the total weight packed in any bin
does not exceed the capacity. The BPP is known to be NP-hard [9].

Various extensions of the BPP have been studied in the literature. In the
BPP with conflicts [12], any two conflict items must not be packed in a same
bin. The BPP with precedence constraints [6] requires that the set of given
precedences among the items is satisfied. The aim in BPP with fragile objects
[2] is to pack the given weighted fragile items into the minimum number of
bins, such that the total weights of each bin do not exceed the fragility of
the most fragile item in the bin. Böhm et al. [3] introduced the colored
BPP in which each item has a color. As additional condition to the capacity
constraint, we require that no two items of the same color are packed into a
bin consecutively.

There are huge number of algorithms for the BPP in the literature.
Among these methods, some basic and simple algorithms were mostly con-
sidered by many researchers.

• The next fit (NF) algorithm. Consider the items sorted in any prede-
fined order. In each round, if an item fits inside the current bin, then
the item is packed inside it. Otherwise, the current bin is closed, a new
bin is opened, and the current item is packed inside the new current
bin. The running time can be bounded by O(n log(n)), where n is the
number of items. The NF algorithm is a 2-approximation algorithm;
see [13].

• The first fit (FF) algorithm. Suppose that the items are sorted in any
order. In this order, the next item is always packed into the first bin,
where it fits. The running time can be bounded by O(n log(n)), where
n is the number of items. The FF algorithm is a 1.7-approximation
algorithm; see [8].

• The first fit decreasing (FFD) algorithm. Sort the items in non-
increasing order of their sizes and then apply the first fit algorithm.
Same as FF, the running time is bounded by O(n log(n)), where n is the
number of items. Dosa [7] showed that FFD(I) ≤ 11/9OPT (I) + 6/9
and that this bound is tight.

In the connected variant of BPP, connected bin packing problem (CBPP),
we consider the items as the nodes of a graph. For each instance of the CBPP,
a graph G = (V,E) and a set of infinite number of unit capacity bins are
given. Each node v ∈ V is characterized by the weight w(v). Like BPP, the
total weight packed in any bin could not exceed the unit. In this extension
of BPP, each pair of nodes belonging to the same bin must be connected. In
other words, the induced subgraph on the set of nodes packed in each bin is
connected. The aim is to pack of the nodes in a minimum number of bins.

The CBPP arises in many real-world applications. When we need to pack
a large number of spatial objects into a small number of contiguous regions
[1], we have a CBPP.
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Clearly, the basic BPP is a special case of the CBPP, in which the graph
G is a complete graph. Since the BPP is strongly NP-hard, by restriction,
the CBPP is also strongly NP-hard. By similar conclusions, the CBPP does
not admit an approximation algorithm with a ratio smaller than 3

2 .
In other view, the CBPP is related to the balanced connected partition-

ing problem [4]. Then the CBPP can be seen as a variant of problem of
partitioning a weighted graph to connected subgraphs of almost uniform size
[11]. In this problem, the aim is to partition a given node weighted graph
with integer weights in a minimum (or maximum) number of connected com-
ponents. When the underlying graph is a tree, then the problem could be
handled by the O(n6) time algorithm [10].

The “covering problem with capacitated subtrees” [5] is another related
problem, in which vertices of a graph have to be covered by rooted subtrees.

The rest of the paper is organized as follows. In Section 2, we give a
formal definition of the CBPP and some complexity issues. In Section 3, we
present some approximation algorithms for the CBPP on traceable graphs
and some general graphs.

2 Preliminaries and approximation

In this Section, after a formal definition of the CBPP and preliminaries, we
give some structural properties of the problem.

Definition 1. Let G = (V,E) be an undirected graph with a weight function
w : V → [0, 1] on its nodes. The aim is to pack all the nodes in the minimum
number of unit capacity bins, such that the set of nodes packed in each bin
induces a connected subgraph (see Figure 1, for example).

For a given CBPP (i.e., a graph G = (V,E) with a weight function w :
V → [0, 1]) and any partition of nodes S = {S1, S2, . . . , Sm}, we define
the merged graph GS = (VS , ES) associated with S as follows: We merge
elements of each subset Si in the single node vSi

after deleting edges among
them and merge the resulting multiple parallel edges in a single edge. The
weight of each merged nodes, denoted by WS(·), is the sum of weights of
nodes merged in it (i.e., for all Si ∈ S, WS(vSi) =

∑
v∈Si

w(v)).

Theorem 1. Suppose that a graph G = (V,E) with a weight function w :
V → [0, 1] is given. Let B = {B1, B2, . . . , Bm} be a feasible solution and
let GB = (VB, EB) be the corresponding merged graph. If for each edge
(vi, vj) ∈ EB, WB(vi) +WB(vj) ≥ 1 and GB has a maximal matching of size
⌊m

2 ⌋, then m ≤ 2m∗ − 1, where m∗ is the size of optimal packing.

Proof. Suppose that M is such matching. Then

for all (i, j) ∈ M, WB(vi) +WB(vj) ≥ 1.
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Figure 1: A CBBP example: Feasible and infeasible solutions

We have two cases:

• If m is an even number, then M is a maximum matching and

m∗ Trivial Upper Bound
≥ ⌈

∑
k∈V

WB(vk)⌉ ≥
∑

(i,j)∈M

(WB(vi) +WB(vj)) >
m

2
.

• If m is an odd number, then M is a matching of size m−1
2 and covers

m− 1 nodes. If we denote the uncovered node by v, then at least m−1
2

bins are needed for packing G− v. Also,

m∗ >
m− 1

2
→ m∗ ≥ m− 1

2
+ 1 → m ≤ 2m∗ − 1.

Now, we investigate a trivial feasible solution to a CBPP instance that
the underling graph is union of two disjoint subgraphs and a cutting edge.
Suppose that two corresponding feasible solutions to CBPP’s on this sub-
graphs are given. A trivial feasible solution to the CBPP on a hole graph is
the union of the given subsolutions. In the following theorem, we prove some
results for this solution.
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Theorem 2. Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two disjoint
connected graphs with weight functions w1 and w2 in [0, 1] and that B∗

1 and
B∗

2 are optimal packings for them, respectively. Let G = (V,E) be a graph
with V = V1 ∪ V2 and E = E1 ∪E2 ∪ {(x, y)}, where x ∈ V1 and y ∈ V2. Let
B∗ be an optimal packing for G. Then

|B∗| ≥ |B∗
1 |+ |B∗

2 | − 1.

Proof. If x and y are packed separately in B∗, then the proof is trivial.
Hence we suppose that they are packed in Be, where e = (x, y). Let |B∗| =
k1+k2+1, where k1 and k2 are the number of bins used for packing G1−Be

and G2 −Be, respectively. Therefore,

k1 ≥ |B∗
1 | − 1,

k2 ≥ |B∗
2 | − 1,

so
|B∗| = k1 + k2 + 1 ≥ |B∗

1 |+ |B∗
2 | − 1

This result can be extended as the following theorem.

Theorem 3. Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two disjoint
connected graphs with weight functions w1 and w2 in [0, 1] and that B1

and B2 are feasible packings with approximation factor of α1 and α2 for
them, respectively. Let G = (V,E) be any graph with V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ {(x, y)}, where x ∈ V1 and y ∈ V2. Then B = B1 ∪ B2 is a
feasible packing with approximation factor of αmax = max{α1, α2}.

Proof. Let B∗, B∗
1 , B

∗
2 are optimal packings of G,G1, G2, respectively. By

Theorem 2,
|B∗| ≥ |B∗

1 |+ |B∗
2 | − 1.

On the other hand, |B1| ≤ α1|B∗
1 | and |B2| ≤ α2|B∗

2 |. Without loss of
generality, suppose that α1 ≥ α2. Then we have

α1|B∗| ≥ α1|B∗
1 |+

α1

α2
α2|B∗

2 | − 1.

Thus
α1|B∗| ≥ |B1|+

α1

α2
|B2| − 1 ≥ |B1|+ |B2| − 1.

Corollary 1. The complete graph G0 = (V0, E0) and the tree T = (VT , ET )
with weight functions w0 and wT in [0, 1] are given. Let B0 is a packing for
the corresponding BPP with weight function w1 obtained from the decreasing
first fit algorithm. Let BT be an optimal packing for a CBPP on T and let
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G = (V,E) be any graph with V = V0 ∪ VT and E = E0 ∪ ET ∪ {(x, y)},
where x ∈ V0 and y ∈ VT . Then B = B0 ∪ BT is a feasible packing with
approximation factor of α = 3

2 .

Above theorems can be extended to any constant number of subgraphs.

Theorem 4. Suppose that for i = 1, . . . , k, a connected graph Gi = (Vi, Ei)
with a weight function wi in [0, 1] and an optimal packing B∗

i are given. Let
G = (V,E) be a graph with V =

∪k
i=1 Vi and E =

∪k
i=1 Ei ∪ {ET }, where

G < ET > is any subtree of G with exactly one node form each Vi. Let B∗

be an optimal packing for G. Then

|B∗| ≥
k∑

i=1

|B∗
i | − k + 1.

Theorem 5. Suppose that for i = 1, . . . , k, a connected graph Gi = (Vi, Ei)
with a weight function wi in [0, 1] and a feasible packing Bi with approxima-
tion factor of αi are given. Let G = (V,E) be a graph with V =

∪k
i=1 Vi and

E =
∪k

i=1 Ei∪{ET }, where G < ET > is a subtree of G with exactly one node
form each Vi. Then B =

∪k
i=1 Bi is a feasible packing with approximation

factor of αmax = maxki=1 αi.

3 CBPP on traceable graphs

A Hamiltonian path is a path that visits each node of the graph exactly once.
A traceable graph is a graph possessing a Hamiltonian path. In this section,
we consider a CBPP on traceable graphs.

Lemma 1. Let G = (V,E) be a weighted traceable graph with weight func-
tions w in [0, 1] and a Hamiltonian path P = {v1, v2, . . . , vn}. We use the
next fit algorithm for the BPP with items {v1, v2, . . . , vn} in this order. The
obtained packing B is a feasible packing for G with approximation factor 2.
This approximation factor is tight.

Proof. Obviously, GB has a Hamiltonian path and so a maximal matching
of size ⌊ |B|

2 ⌋. By Theorem 1, the obtained packing B is a feasible packing
for G with approximation factor 2. Figure 2 shows a tight example in which
the Hamiltonian path {1, 2, . . . , 2k + 1} is given, where ϵ > 0 is a very small
number.

Corollary 2. The traceable graph G0 = (V0, E0) and the tree T = (VT , ET )
with weight functions w0 and wT in [0, 1] are given. Let B0 be a packing for
the CBPP obtained from next fit algorithm. Let BT be an optimal packing
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Figure 2: Tight-Example

for the CBPP on T and let G = (V,E) be a graph with V = V0 ∪ VT and
E = E0 ∪ ET ∪ {(x, y)}, where x ∈ V0 and y ∈ VT . Then B = B1 ∪ B2 is
a feasible packing with approximation factor of α = 2. This approximation
factor is tight.

Proof. The proof is clear.

Figure 3: Tight-Example

Lemma 2. Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two disjoint
connected traceable graphs with weight functions w1 and w2 in [0, 1]. Let B1

and B2 be two feasible packings obtained by the next fit algorithm for G1 and
G2 on their Hamiltonian path, respectively. Let G = (V,E) be a graph with
V = V1∪V2 and E = E1∪E2∪{(x, y)}, where x ∈ V1 and y ∈ V2. If B∗ is an
optimal packing for the CBPP on G and B = B1 ∪B2, then |B∗| ≥ ⌊ |B|

2 ⌋+1.

Proof. Let B∗
1 and B∗

2 be optimal packings for G1 and G2, respectively. With
a justification like Theorem 1, we could show that

|B∗
1 | ≥ ⌊ |B1|

2 ⌋+ 1,

IJNAO, Vol. 12, No. 1, (2022), pp 163-171
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|B∗
2 | ≥ ⌊ |B2|

2 ⌋+ 1.
So by Theorem 2, we have
|B∗| ≥ |B∗

1 |+ |B∗
2 | − 1 ≥ ⌊ |B1|

2 ⌋+ ⌊ |B2|
2 ⌋+ 1 ≥ ⌊ |B|

2 ⌋+ 1.

Theorem 6. Suppose that a sequence of pair-wise disjoint connected trace-
able graphs {Gi = (Vi, Ei)}mi=1 is given. For each i = 1, . . . ,m, a weight
function wi : Vi → [0, 1] associated with graph Gi and a Hamiltonian path Pi

is given. We assume that BPi
is a feasible packing obtained by the next fit

algorithm for Gi on its Hamiltonian path Pi. Let G = (V,E) be any graph
with V =

∪m
i=1 Vi, for all i Ei ⊂ E and let the merged graph GS = (VS , ES)

be a tree, where S = {V1, V2, . . . , Vm}. If B∗ is an optimal packing for the
CBPP on G and B =

∪m
i=1 BPi , then |B∗| ≥ ⌊ |B|

2 ⌋+ 1.

4 Conclusion and future works

In this paper, we considered a generalization of the classical BPP, CBPP, in
which, in addition to capacity constraints, a set of connectivity constraints
has to be satisfied. The CBPP is a strongly NP-hard problem.

Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two disjoint node
weighted graphs and that G = G1 ∪ G2 ∪ (x, y), where x ∈ V1 and y ∈ V2.
In this paper, we introduced a trivial feasible solution to the CBPP on G
from solutions to CBPP’s on G1 and G2 and proved some good results for
the approximation factor of this solution, and we extended them. Then we
presented a linear time approximation algorithm for this type of problems
with approximation factor 2, when this disjoint graphs are traceable.

In perspective, our findings can be a starting point to tackle the CBPP.
It would be interesting to try to design some approximation algorithms and
lower bounds for the CBPP. Finally conclusion and some suggestions for more
researches are given in this section.
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