

An interval of high salinity in ancient Gale crater lake on Mars

W. Rapin, B. Ehlmann, G. Dromart, J. Schieber, N. Thomas, W. Fischer, V. Fox, N. Stein, M. Nachon, B. Clark, et al.

► To cite this version:

W. Rapin, B. Ehlmann, G. Dromart, J. Schieber, N. Thomas, et al.. An interval of high salinity in ancient Gale crater lake on Mars. Nature Geoscience, Nature Publishing Group, 2019, 12 (11), pp.889-895. 10.1038/s41561-019-0458-8 . hal-02344302

HAL Id: hal-02344302 https://hal.archives-ouvertes.fr/hal-02344302

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 **Title:** An interval of high salinity in ancient Gale crater lake, Mars

Authors: W. Rapin¹, B. L. Ehlmann^{1,2}, G. Dromart³, J. Schieber⁴, N. H. Thomas¹, W. W. Fischer¹, V. K. 2 Fox¹, N. T. Stein¹, M. Nachon⁵, B. C. Clark⁶, L. C. Kah⁷, L. Thompson⁸, H. A. Meyer¹, T. S. J. Gabriel⁹, 3 C. Hardgrove⁹, N. Mangold¹⁰, F. Rivera Hernandez¹¹, R. C. Wiens¹², A. R. Vasavada² 4 ¹California Institute of Technology, Pasadena, CA; ²Jet Propulsion Laboratory, California Institute of 5 6 Technology, Pasadena, CA; ³Laboratoire de Géologie de Lyon, Université de Lyon, France; ⁴Indiana 7 University, Bloomington, IN: ⁵Texas A&M University, College Station, TX: ⁶Space Science Institute, 8 Boulder, CO; ⁷University of Tennessee, Knoxville, TN; ⁸University of New Brunswick, Canada; 9 ⁹School of Earth and Space Exploration, Arizona State University, Tempe, AZ; ¹⁰Laboratoire de 10 Planétologie et Géodynamique, UMR6112, CNRS, Université Nantes, Université Angers, France; ¹¹Dartmouth College, Hanover, NH; ¹²Los Alamos National Laboratory, Los Alamos, NM. 11

12

13 Abstract/First Parag.

14 Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry 15 in lake basins. Ongoing in situ exploration by the Curiosity rover of a thick section of Hesperian (~3.3-16 3.7 Ga) sedimentary rocks within Gale crater has revealed clay-bearing fluvio-lacustrine deposits with 17 sporadic sulfate occurrences primarily as late-stage diagenetic veins and concretions. Here, we report the 18 discovery of bulk enrichments, disseminated in the bedrock, of Ca-sulfate (30-50 wt%) that occur 19 intermittently over ~150 m of stratigraphy and hydrated Mg-sulfate (26-36 wt%) within a thinner section 20 of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown 21 spectrometer (LIBS) and combined with results from other rover instruments, to characterize the 22 enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction, salt precipitation from brines concentrated by evaporation, including Mg-sulfate rich brines indicating extreme evaporative concentration. This saline interval represents a significant hydrologic perturbation affecting the lake basin, and possibly reflecting variations in obliquity and orbital parameters of the planet. Our findings support a stepwise change in Mars' Hesperian climate towards more arid and sulfate-dominated environments inferred from orbital observations.

28

29 Carbonate, chloride, and sulfate salts provide geochemical fingerprints of the past chemistry of terrestrial 30 lake basins. On Mars, such chemical sediments reflect systematic differences in dissolved ions that lead 31 to distinctive chemical divides and mineral assemblages¹. For example, in situ, widespread Mg/Ca/Fe-32 sulfate enrichments within aeolian and interdune playa sediments at Meridiani Planum have been interpreted to have formed from acidic and saline early diagenetic brines². Low CO₃²⁻, high SO₄²⁻, and 33 low pH waters enriched in Fe(II) formed a unique assemblage of hydrated sulfate minerals, jarosite, silica, 34 35 and chloride minerals³. Under less acidic conditions, iron is relatively immobile, Ca/Mg-sulfate and chloride assemblages are favored, and carbonate minerals can form under sufficiently elevated CO₃²⁻ 36 37 concentrations¹.

From orbit, a diversity of sulfate, carbonate, and chloride salts is observed on Mars, reflecting fluid 38 39 chemistries that varied both spatially and temporally⁴. Thick layered sulfate deposits are observed at a 40 number of late Noachian to late Hesperian locations (~3.5 Ga). Their apparent absence in the older stratigraphic record is hypothesized to reflect the diminishing availability of liquid water on Mars⁵. Gale 41 42 crater provides an exemplary sedimentary succession dated to the Hesperian⁶ that contains clay minerals transitioning to sulfate minerals over ~ 300 m of stratigraphy^{7,8}. Understanding the reason for this transition 43 44 is one of the primary objectives of the MSL/Curiosity rover investigation. So far, the rover has explored 45 clay-bearing fluvio-lacustrine sedimentary record in the lowermost stratigraphy which is dominated by

the formation of mineral assemblages that include authigenic or detrital clay minerals and iron oxides^{9–12}, with a potentially punctuated transition in redox state¹⁰. Sulfates have been observed mostly as abundant late diagenetic Ca-sulfate fracture-fills^{13,14}, and inferred from crystal pseudomorphs after gypsum that occur locally in the lowermost Murray formation¹⁵. Mg-sulfate were also observed, but primarily associated with sparse diagenetic features, such as concretions and dendrites^{10,16,17}.

Here we detail the chemistry of lacustrine deposits from the upper Murray formation heterolithic facies which consists of interbedded sandstone and mudstone with exposures dominated by broken, tilted blocks with diverse resistance to erosion. This change in sedimentary facies in the Murray formation correlates with a gradual transition in the bedrock alteration index defined by major element compositions¹⁸. It also coincides with an increase in the prevalence of S, Cl and associated salts which suggest the presence of distinctively saline waters.

57 **Ca-sulfate bedrock enrichment**

58 Starting at the base of the Sutton Island member (Figure 1-a), enrichment of Ca-sulfate is observed within 59 the bulk sedimentary bedrock, distinct from prior occurrences in fracture fills and merely sporadic 60 detections (targets with <50% of points enriched). Bulk enrichments are characterized by ChemCam 61 analyses of bedrock, where the majority of sampled points exhibit compositions that correspond to binary 62 mixtures of typical Murray bedrock (i.e. average sulfate-free bedrock dominated by silicate minerals, with 63 an average CaO content ~1.6 wt%) with 30 to 50 wt% of a Ca-sulfate end-member (Figure 2-a; see also Figure S1 and Table S1). For such concentrations, the S signal is clearly expressed in emission spectra by 64 3 peaks at 543 nm, 545 nm, and 564 nm, leading to a ~0.2 nm shift in the location of peak centroids at 65 543 nm and 545 nm, combined with an increase in the magnitude of the 564-nm peak emission (Figure 66 S2), as is observed in laboratory experiments¹⁹. Independent measurement by the Alpha Particle X-ray 67

Spectrometer (APXS) at the centimeter-scale also record bulk CaO enrichments of the Murray bedrock
that are correlated with SO₃ content, toward the CaSO₄ end-member (Figure S3).

70 Ca-sulfate corresponding to bedrock enrichment excludes contribution from mineralized veins identified 71 from images taken at <0.5mm/pixel using the ChemCam Remote Micro Imager (RMI). In the absence of 72 vein contribution, the repeated enrichment in the majority of observation points within both sandstone and 73 mudstone targets indicates that the enrichment is disseminated within the bulk rock (Table S1; Figure 3). In general, the mudstone is laminated²⁰; however, intervals with Ca-sulfate enrichment are commonly 74 75 more resistant to erosion and display nodular or massive textures (Figure 3, S4 and S5). Where close-up 76 images (< 100 µm/pixel) are available, these intervals do not show veins (Figure 3-e), although in some cases, submillimeter white grains (Figure 3-f) or elongate euhedral crystals associated with crystal molds 77 78 (Figure 3-g) were observed. Bulk enrichment occurs at several discrete elevations between -4370 m and -79 4200 m in the stratigraphy of the upper Murray formation, contrasting with only sporadic enrichment 80 detected elsewhere in the formation (Figure 1-b).

The association of calcium with carbonate, which neither ChemCam or APXS can directly detect, cannot be entirely ruled out (Figure 2-a shows that bedrock CaO content increases up to ~8 wt% while sulfur remains below detection limit which could allow for up to ~12 wt% calcite). Yet X-ray diffraction analyses on Murray bedrock drill samples confirmed the absence of carbonates (<1 wt%) and the presence of clay and Ca-sulfate¹². An association between CaO and sulfate is also clearly observed (Figure S3), suggesting no significant calcite is present in the Murray formation.

87 An interval with Mg-sulfates

In addition to Ca-sulfate, Mg-sulfate bedrock enrichments occur in a relatively thin (<10 m) stratigraphic
interval within the heterolithic Sutton Island member (Figure 1-d; purple bar). On sol 1690 (elevation, -

90 4287 m), ChemCam analysis of unusual, brown-colored bedrock fragments within the Murray mudstone 91 showed a distinct enhancement of Mg, S, and H. The estimated composition is interpreted as a binary 92 mixture between a hydrated Mg-sulfate end-member and typical bedrock of the Murray formation (Figure 93 2-b,c and S1). The analyzed fragments have a bulk water content of 8.6 \pm 1.9 wt%, estimated from the 94 hydrogen signal²¹, which is significantly higher than typical Murray bedrock (1.6 wt%). The lack of Ca-95 sulfate enrichment in these rocks is reflected in a very low CaO content (Figure S1). The magnitude of the sulfur signal is consistent with $18.4^{+4.0}_{-4.8}$ wt% average sulfate content based on measurements of the 96 97 Norwood Cove fragment (Figure S6) with 1-sigma uncertainty, corresponding to a bulk content of 33 wt% 98 hydrated Mg-sulfate (1-sigma lower bound is 26 wt%; Table S2).

99 Mg-sulfate enriched lithologies occur in planar exposures of relatively erosion-resistant rocks. The 100 outcrop is poorly preserved, and consists of broken, meter-scale blocks separated by unconsolidated fines. 101 Relative to surrounding lithologies, strata with Mg-sulfate enrichment have a reddish-brown color, are 102 variably fractured, show a typical nodular to massive texture (Figure S7), and weather into centimeter-103 sized angular fragments (such as the Norwood Cove and Beach Cliff targets, see Figure S6). The grain 104 size of these Mg-sulfate enriched rocks is silt-sized or smaller, on the basis of compositional homogeneity 105 of the ChemCam data (Figure S8), and is similar to grain sizes estimated for surrounding Murray bedrock²². At several locations, this lithology is exposed in large contiguous blocks and confined to cm-106 107 thick planar exposures that are evenly interbedded with finely-laminated Murray mudstone (Figure 3-a). 108 The lateral extent of Mg-sulfate-enriched exposures is uncertain because of the lack of high-resolution 109 image coverage and the scattered nature of bedrock exposures (Figure S7). The maximum lateral distance 110 observed in images is 4 m. Sporadic Mg-sulfate detections were also observed over 30 meters of thickness 111 of heterolithic facies above (Figure 1-d).

112 The Mg-sulfate enriched rocks were not examined by the Alpha Particle X-ray Spectrometer (APXS), but 113 high epithermal neutron count rates, recorded by the Dynamic Albedo of Neutrons (DAN) instrument in 114 the same area (Figure S9), support the presence of elevated bedrock hydration within this stratigraphic 115 interval. A signature consistent with a hydrated sulfate phase is also recorded on the site from orbit: 116 hydration and hydrated sulfate spectral indices are enhanced in the portion of the Murray formation where 117 Mg-sulfate enriched lithologies were observed *in situ*, and the signature was less clear or absent in bedrock 118 exposures below that interval (Figure S11). The hydrated sulfate signature also extends laterally at similar 119 elevation to either side of the rover traverse.

120 Timing of enrichment and formation scenario

Understanding the timing of bedrock sulfate enrichment is crucial to deciphering its environmental implication. Enrichments have not been observed in the form of large continuous beds of nearly pure salt, as could be expected for evaporite minerals formed as cumulates or as lake bottom-growth deposits. In available images of bedrock, no features were observed that clearly indicate primary salts, their dissolution, or the presence of disruptive fabrics common to terrestrial evaporitic settings²³.

Although a late diagenetic origin for Ca and Mg-sulfate enrichments cannot be uniquely discounted, we believe that such an origin is unlikely. Local bedrock does not appear to show a greater abundance of mineralized fractures (Figure 3, S4 and S5), and sulfate enrichments are disseminated in the host rock and do not correlate with the late-diagenetic fractures mineralized by Ca-sulfate¹³ (Figure S5). Additionally, the presence of mineralized veins within typically sulfate-poor Murray bedrock suggests that bedrock porosity was sufficiently reduced that later diagenetic fluids were confined to fracture systems.

Early diagenetic precipitation from saline brines, followed by recrystallization during burial andexhumation, is in line with the observed geochemistry and textures. In particular, the disseminated sulfate

134 enrichments are restricted to a specific stratigraphic interval, where they occur as repetitive discrete 135 horizons (Figure 3). In this scenario, episodic saturation of sulfate-rich brines resulted in the early 136 diagenetic precipitation of sulfate salts within shallow sediments (Figure 4). Such subsurface 137 crystallization can occur either during subaerial exposure resulting in evaporative enrichment in the 138 capillary fringe, or subaqueously as dense supersaturated brines diffuse downward into the sediment pore 139 space²⁴. The estimated 30-50 wt% of Ca-sulfate enrichment is consistent with intrasediment crystallization in poorly compacted sediment²⁵. Similar deposition could have occurred with Mg-sulfates where brines 140 141 became much more concentrated by evaporation (Figure 4). The estimated proportion of 26-36 wt% Mg-142 sulfate initially represents 38-50% by volume, assuming precipitation of epsomite (MgSO₄·7H₂O) in pores 143 of siliciclastic sediment with grains of approximately basalt density ($\sim 3.0 \text{ g.cm}^{-3}$), again implying growth 144 in poorly compacted sediments.

145 Sulfate enrichment within discrete beds of limited lateral extent in the heterolithic mudstone-sandstone 146 facies indicate that salts were likely deposited along shallow lake margins, possibly within multiple ponds 147 fed by distributive channel systems and groundwaters (Figure 4). Mg-sulfate enrichment, which is 148 confined to relatively small stratigraphic intervals, occurs in horizons discretely separate from Ca-sulfate 149 suggesting that Mg-sulfate rich brines were physically fractionated from the fluid that formed Ca-sulfates 150 as the brine concentrated downstream. Changes in seasonal temperature and humidity cycling during post-151 depositional exposure of such hydrated sulfate salts would have exposed these materials to repeated 152 changes in hydration state and dissolution. In the absence of complete dissolution, volumetric changes associated with changes in hydration state are expected to disrupt initial depositional textures^{26,27}. 153

After deposition, the Murray formation was likely buried to $\sim 1 \text{ km}^9$, which itself may have triggered a change in Ca-sulfate hydration state^{28,29}. Following compaction and lithification, late-stage fluids deposited Ca-sulfate within fractures. Horizontal and subhorizontal veins occur specifically in the 157 stratigraphic interval with the enrichments (Figure 1-c), a setting similar to terrestrial satin spar veins associated to primary Ca-sulfate deposits³⁰. These late Ca-sulfate fluids were likely to have partially 158 159 mobilized highly soluble salts within the bedrock such as halite. Indeed enhanced Na-chloride detections 160 occur at specific stratigraphic intervals (Figure 1-e, Figure S10), and their sporadic distribution in bedrock 161 and occasionally in association with fracture-filling Ca-sulfates indicate remobilization³¹. Locally, lateral 162 variation and possible cross-cutting of Mg-sulfate enrichment occurs at a cm-dm scale (Figure S7), as well 163 as sporadic detections of Mg-sulfate nearby the stratigraphic succession (Figure 1-d), may also reflect 164 localized dissolution and reprecipitation of initial deposits. (Figure 1-d). Yet, while Ca-sulfate-enriched 165 fluids would easily mobilize halite, Mg-sulfate-enriched bedrock could persist even though Mg-sulfate is soluble, because SO₄²⁻ ions released during dissolution would immediately trigger the formation of less-166 167 soluble Ca-sulfate, which could shield Mg-sulfates from further dissolution.

Upon exhumation and exposure of the Murray formation to temperatures and relative humidity of modern Mars, hydrated Mg-sulfate minerals turn to amorphous phases of various hydration states. The calculated 21 wt% water associated with the Mg-sulfate phase (Figure 2-c; Table S2) corresponds to a hydration state of 1.8 H₂O per MgSO₄, and is consistent with the predicted amorphous desiccation products of epsomite or hexahydrite^{26,32}. The intensely fractured and broken nature of Mg-sulfate enriched rocks may reflect diurnal and seasonal cycles of dehydration-rehydration³³.

Overall, geochemical and textural data are consistent with sulfate enrichment in this interval by early diagenetic precipitation from saline waters although unambiguous sedimentary structures (e.g., nodular displacive fabrics) are not observed. This may result from the scarcity of high-resolution images acquired in this interval or to the post-depositional alteration of primary depositional textures. Importantly, however, features other than sulfate enrichments indicate lowering of lake levels and intermittent evaporative conditions in this part of the Murray formation. First, desiccation cracks are identified in the

stratigraphy at Old Soaker³⁴ and possibly at several other locations (Figure 11) in close proximity to the 180 181 strata containing sulfate enrichment (Figure 1-d). At Old Soaker, Ca-sulfate enrichment occurs in sandstone adjacent to the mudcracks (Figure 3-d). Second, elevated concentration of Na-chloride in the 182 bedrock is also observed, relative to stratigraphically lower strata³¹. Na-chloride occurrences in specific 183 184 intervals, close to sulfate enrichments suggests remobilization from layers potentially enriched in halite (Figure 1-e). Third, the first occurrence of Ca-sulfate enrichment coincides with a previously reported 185 change in clay mineralogy, consistent with episodic wetting and drying of lake environments¹² and 186 increased chemical weathering of the bedrock detrital component¹⁸ (Figure 1). In Gale's closed-basin 187 hydrology, leached ions would accumulate in waters and upon evaporation create brines that precipitate 188 189 salts, such as Ca and Mg-sulfates.

190 Climatic variability

191 The observed Ca-/Mg-sulfate and chloride assemblages are predicted to result from alteration of Martian basalts to produce sulfate- and chloride-rich but iron-poor brines¹. The relatively low solubility of Ca-192 193 sulfate minerals results in their widespread production during evaporation, while less common Mg-sulfate 194 and chloride minerals represent terminal evaporation. Iron oxides are observed in visible/near-infrared spectral data and x-ray diffraction of Murray bedrock samples^{28,35}, yet there is no evidence for Fe-sulfate 195 196 enrichments in this interval, likely because Fe was not mobile in solution, indicating that saline waters 197 were either oxidizing or not acidic. While Ca-sulfate enrichment is observed, calcite is absent from the 198 stratigraphy, i.e. not detected by CheMin at its threshold of 1 wt.%. This could result from either low 199 alkalinity or low atmospheric CO₂, or an environment where precipitation of calcite was otherwise inhibited³⁶. Besides, the presence of Ca-sulfate means prior CaCO₃ formation (if any) was insufficient to 200 201 deplete Ca from solution. Our findings do not compromise the search for life in Gale crater; terrestrial Mg sulfate-rich hypersaline lakes are known to accommodate halotolerant biota^{37–39} and crystallization of sulfate salts may also aid preservation of biosignatures⁴⁰.

Previous observations suggest different lake depths were recorded in the lower Murray formation¹⁰. In the 204 205 upper part of the formation, where clear rock exposures are more scarce, sedimentary structures suggest deposition in lake-margin environment with potential episodes of desiccation^{34,41,42}. Our discovery of 206 207 sulfate deposits is consistent with episodic dessication. The limited lateral extent of sulfate-enriched beds 208 also suggests the potential for segmentation of the Gale lake into discrete ponds, including those where 209 extremely evapo-concentrated brines might form (Figure 4). Changes in lake level are an anticipated 210 response within closed basin lakes to variation in the regional hydrological budget. In addition, over time 211 intervals for lacustrine deposition of ~1 Ma or less, based on plausible sedimentary deposition rates⁹, Mars 212 experiences significant changes in obliquity and orbital eccentricity driving cyclical climate fluctuations⁴³. 213 Alternatively, a drier lake Gale might be a sign of long-term, secular global drying of Mars, posited based 214 on orbital observations⁵.

215 The interval discussed here preserves the first occurrence of significant sulfate-enriched bedrock (>30 216 wt% sulfate with siliciclastics) in Gale crater's sedimentary record. As the rover continues to traverse 217 upsection toward successively younger rocks, key questions include the prevalence of similar bedrock 218 sulfate enrichments. If thin stratigraphic intervals with salt enrichments or sedimentological evidence for 219 aridity continue to occur, cyclical or episodic processes are a plausible underlying cause. If, on the other 220 hand, sulfate enriched intervals increase in frequency and thickness, perhaps incorporating observable 221 displacive fabrics and pure sulfate beds, the enrichments investigated here may be a harbinger of the long term, secular drying of Mars. This has been hypothesized for the Mt. Sharp sulfate unit observed from 222 223 orbit further upsection⁸ and deposits elsewhere on Mars⁵. As the rover continues its traverse towards this 224 sulfate unit, it will be therefore crucial to recognize sulfate-enriched bedrock in reconnaissance

observations, so as to obtain accompanying high resolution stereo images of textures and drill samples for
 x-ray diffraction, evolved gas, and isotopic analyses.

227

247

228 **References**

- Tosca, N. J. & McLennan, S. M. Chemical divides and evaporite assemblages on Mars. *Earth Planet*.
 Sci. Lett. 241, 21–31 (2006).
- Clark, B. C. *et al.* Chemistry and mineralogy of outcrops at Meridiani Planum. *Earth Planet. Sci. Lett.* 240, 73–94 (2005).
- 3. Tosca, N. J. *et al.* Geochemical modeling of evaporation processes on Mars: Insight from the
 sedimentary record at Meridiani Planum. *Earth Planet. Sci. Lett.* 240, 122–148 (2005).
- 4. Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian Surface. *Annu. Rev. Earth Planet. Sci.*42, 291–315 (2014).
- 5. Bibring, J.-P. *et al.* Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars
 Express Data. *Science* 312, 400–404 (2006).
- 6. Le Deit, L. *et al.* Sequence of infilling events in Gale Crater, Mars: Results from morphology,
 stratigraphy, and mineralogy. *J. Geophys. Res. Planets* 118, 2439–2473 (2013).
- 7. Fraeman, A. A. *et al.* The stratigraphy and evolution of lower Mount Sharp from spectral,
 morphological, and thermophysical orbital data sets. *J. Geophys. Res. Planets* 121, 1713–1736 (2016).
- 8. Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the
 stratigraphic record in Gale Crater. *Geophys. Res. Lett.* 37, @CitationL04201-@CitationL04201
 (2010).
- 246 9. Grotzinger, J. P. *et al.* Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale

crater, Mars. Science 350, aac7575 (2015).

- 10. Hurowitz, J. A. *et al.* Redox stratification of an ancient lake in Gale crater, Mars. *Science* 356,
 eaah6849 (2017).
- 11. McLennan, S. M. *et al.* Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale
 Crater, Mars. *Science* 343, 1244734 (2014).
- 252 12. Bristow, T. F. *et al.* Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.
 253 *Sci. Adv.* 4, eaar3330 (2018).
- 13. Nachon, M. *et al.* Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. *J. Geophys. Res. Planets* 119, 2013JE004588 (2014).
- 14. Rapin, W. *et al.* Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite
 veins. *Earth Planet. Sci. Lett.* 452, 197–205 (2016).
- 15. Kah, L. C., Stack, K. M., Eigenbrode, J. L., Yingst, R. A. & Edgett, K. S. Syndepositional precipitation
 of calcium sulfate in Gale Crater, Mars. *Terra Nova* 30, 431–439 (2018).
- 16. Nachon, M. *et al.* Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale
 crater, Mars. *Icarus* 281, 121–136 (2017).
- 262 17. VanBommel, S. J. et al. Deconvolution of distinct lithology chemistry through oversampling with the
- 263 Mars Science Laboratory Alpha Particle X-Ray Spectrometer. *X-Ray Spectrom.* **45**, 155–161 (2016).
- 18. Mangold, N. *et al.* Chemical alteration of fine-grained sedimentary rocks at Gale crater. *Icarus* 321,
 619–631 (2019).
- 266 19. Anderson, D. E. et al. Characterization of LIBS emission lines for the identification of chlorides,
- 267 carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data. J. Geophys.
- 268 *Res. Planets* **122**, 744–770 (2017).
- 269 20. Stack, K. M. *et al.* Evidence for plunging river plume deposits in the Pahrump Hills member of the
- 270 Murray formation, Gale crater, Mars. *Sedimentology* **0**, (2018).

- 271 21. Rapin, W. *et al.* Quantification of water content by laser induced breakdown spectroscopy on Mars.
 272 *Spectrochim. Acta Part B At. Spectrosc.* 130, 82–100 (2017).
- 273 22. Rivera-Hernández, F. et al. Using ChemCam LIBS data to constrain grain size in rocks on Mars: Proof
- of concept and application to rocks at Yellowknife Bay and Pahrump Hills, Gale crater. *Icarus* **321**,
- 275 82–98 (2019).
- 276 23. Warren, J. K. *Evaporites:Sediments, Resources and Hydrocarbons*. (Springer Science & Business
 277 Media, 2006).
- 278 24. Handford, C. R. Chaper 1 Marginal Marine Halite: Sabkhas and Salinas. in *Developments in Sedimentology* (ed. Melvin, J. L.) 50, 1–66 (Elsevier, 1991).
- 280 25. Giles, M. R. Diagenesis: A quantitative perspective: Implications for basin modelling and rock
 281 property prediction. (Kluwer Academic Pub, 1997).
- 26. Chipera, S. J. & Vaniman, D. T. Experimental stability of magnesium sulfate hydrates that may be
 present on Mars. *Geochim. Cosmochim. Acta* **71**, 241–250 (2007).
- 284 27. Holliday, D. W. The petrology of secondary gypsum rocks; a review. *J. Sediment. Res.* 40, 734–744
 285 (1970).
- 28. Vaniman, D. T. *et al.* Gypsum, bassanite, and anhydrite at Gale crater, Mars. *Am. Mineral. J. Earth Planet. Mater.* 103, 1011–1020 (2018).
- 288 29. Schieber, J. *et al.* Encounters with an unearthly mudstone: Understanding the first mudstone found on
 289 Mars. *Sedimentology* 64, 311–358 (2017).
- 30. Gustavson, T. C., Hovorka, S. D. & Dutton, A. R. Origin of satin spar veins in evaporite basins. J.
 Sediment. Res. 64, 88–94 (1994).
- 31. Thomas, N. H. *et al.* MSL ChemCam Observations of Chloride Salts in Gale Crater, Mars. in 49, 2876
 (2018).

- 32. Wang, A., Freeman, J. J. & Jolliff, B. L. Phase transition pathways of the hydrates of magnesium
 sulfate in the temperature range 50°C to 5°C: Implication for sulfates on Mars. *J. Geophys. Res. Planets* 114, E04010 (2009).
- 33. Vaniman, D. T. & Chipera, S. J. Transformations of Mg- and Ca-sulfate hydrates in Mars regolith. *Am. Mineral.* 91, 1628–1642 (2006).
- 34. Stein, N. *et al.* Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member,
 Murray formation, Gale Crater. *Geology* 46, 515–518 (2018).
- 301 35. Johnson, J. R. *et al.* Chemcam Passive Reflectance Spectroscopy of Recent Drill Tailings, Hematite302 Bearing Rocks, and Dune Sands. in 47, 1155 (2016).
- 303 36. Tosca, N. J., Ahmed, I. A. M., Tutolo, B. M., Ashpitel, A. & Hurowitz, J. A. Magnetite authigenesis
 304 and the warming of early Mars. *Nat. Geosci.* 11, 635 (2018).
- 305 37. Cabestrero, Ó., del Buey, P. & Sanz-Montero, M. E. Biosedimentary and geochemical constraints on
 306 the precipitation of mineral crusts in shallow sulphate lakes. *Sediment. Geol.* 366, 32–46 (2018).
- 307 38. Kilmer, B. R. *et al.* Molecular and Phenetic Characterization of the Bacterial Assemblage of Hot Lake,
- 308 WA, an Environment with High Concentrations of Magnesium Sulfate, and Its Relevance to Mars.
- 309 Int. J. Astrobiol. 13, 69–80 (2014).
- 310 39. Pontefract, A. *et al.* Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of
 311 Ancient Mars. *Front. Microbiol.* 8, 1819 (2017).
- 40. Aubrey, A. *et al.* Sulfate minerals and organic compounds on Mars. *Geology* **34**, 357–360 (2006).
- 41. Fedo, C. *et al.* Sedimentology and Stratigraphy of the Murray Formation, Gale Crater, Mars. in 49,
 2078 (2018).
- 42. Schieber, J. *et al.* A Sand-Lens in the Upper Murray Formation at Gale Crater, Mars: A Likely
 Lowstand Deposit of a Dynamic Ancient Lake. in 48, 2311 (2017).

- 43. Laskar, J. *et al.* Long term evolution and chaotic diffusion of the insolation quantities of Mars. *Icarus*170, 343–364 (2004).
- 319
- 320 Corresponding author: <u>wrapin@caltech.edu</u>
- 321

322 Acknowledgements: Thanks to the MSL operations team for their dedication in generating this dataset 323 and to the LANL team for collection of data to support sulfur calibration. Thanks to John Grotzinger, 324 Chris Fedo, Kirsten Siebach, Lauren Edgar, and other members of the informal MSL Sed-Strat group for 325 discussions which helped improve this work. The authors also thank Sam Clegg and other members of the 326 ChemCam team for discussions on the sulfur signal calibration. We also thank Nick Tosca and two 327 anonymous reviewers for their helpful comments. W.R. and B.L.E. were funded by a MSL Participating 328 Scientist grant to B.L.E. The work of G.D. was supported by the CNES through the ChemCam Program. 329 This work and the MSL project is supported by the NASA Mars Exploration Program.

330

Author contributions: W.R. analyzed data, conceived and wrote the manuscript; B.L.E. and G.D. conceived and revised the manuscript; J.S., W.W.F., B.C.C., L.C.K., N.M., R.C.W. and A.R.V., contributed to the interpretation of the data and revisions of the manuscript; N.H.T. provided Cl peak analysis; V.K.F. analyzed CRISM signatures of hydrated sulfates; N.T.S. and F.R.H. provided grain size estimates from MAHLI images of Murray bedrock; M.N. and H.A.M. identified and mapped sulfate veins occurrences; L.T. analyzed APXS data of Murray bedrock; T.S.J.G and C.H. provided DAN data analysis.

Figure 1: Stratigraphic context on bedrock composition. a, Overview of the ~350 m of stratigraphy 338 explored *in situ* at Gale crater including dominant facies observed⁴¹ and sections highlighting evidence 339 for: I, fluvio-lacustrine environment⁹; II, lake redox stratification¹⁰; III, increase of bedrock chemical 340 weathering upsection due to leaching of Ca-bearing mafic minerals¹⁸. **b**, Bedrock CaO content with bulk 341 (crosses), or sporadic (dots) enrichments. Grey crosses represent bulk enriched targets but which 342 343 distinction to fracture-fill veins remains ambiguous from available images. Vertical grey lines highlight 344 average bedrock composition (1.6 wt% CaO), with 30% and 50% Ca-sulfate (bassanite) enrichments, c. 345 Occurrence of fracture-fill veins for vertical and horizontal orientations as percent of the number of workspace images with bedrock (Figure S12). Light-grey indicates at least a vein is visible and dark grey 346 347 correspond to higher density of veins; horizontal bars represent the uncertainty of the average. **d**, Bedrock MgO/SiO₂ content ratio (same data as Figure 2-b,c). Error bars represent RMSE for the ratio of MgO and 348 349 SiO₂ content. The purple horizontal bar represents the elevation range where Mg-sulfate enriched

- 350 lithology is observed (Figure S7). Location of Old Soaker³⁴ and other candidate desiccation cracks (Figure
- 351 S13). **e**, Average normalized Cl peak area associated with halite detections (Figure S10)³¹, error bar
- 352 represents the uncertainty of the average.

353

Figure 2: ChemCam oxide and elemental data of Ca- and Mg-sulfate enrichments. Sulfur signal as a 354 355 function of CaO (a) and MgO content (b), and hydrogen signal as a function of MgO content, for typical 356 Murray bedrock with CaO < 2.5 wt% (blue) and for sulfate enrichments. **a**, For Ca-sulfates (red), sulfur 357 signal above the limit of detection (dashed line, $SO_3 > 10.6$ wt%) and CaO>5wt%. Mixtures at 30% and 358 50% (diamonds) of Ca-sulfate with average typical bedrock (circle) are shown with the binary mixing 359 trend (dotted line) and end-members (black crosses). b-c, Mg-sulfate enrichments (purple), defined by 360 sulfur signal above the limit of detection and MgO > 10 wt%, found disseminated in the Norwood Cove 361 (crosses) and Beach Cliff (triangle) bedrock fragments (Figure S6), and compared to 33% hydrated Mg-362 sulfate mixture (diamond) with average bedrock (Table S2). c, Dashed line represents Mg-sulfate with varying water content. Vertical error bars on end-members represent sulfate (**a**,**b**) and water content (**c**) 363 364 calibration uncertainties.

365

366 Figure 3: Lithology of the sulfate enrichments. a, Mg-sulfate enriched lithology within multiple parallel 367 horizons (red arrows) on a large block of bedrock (mcam08715). b, Ca-sulfate enrichments as erosion-368 resistant horizons (red arrows) in mudstone (mcam08669; Figure S4-a). c, Multiple horizons (red arrows) 369 where euhedral white crystals (Figure S4-g) and heterogeneous Ca-sulfate and Mg-sulfate enrichments were observed (mcam08733). d, Exposed blocks at Old Soaker with desiccation cracks³⁴ (Figure S13-a) 370 371 (mcam07752); circles represent the locations of ChemCam targets with Ca-sulfate enrichments (red) and 372 without (blue). Close-up MAHLI images of a mudstone (e, Lookout Point, Figure S5-a) and a sandstone 373 enriched in Ca-sulfate (f, 1710MH0001220010604335C00; White Ledge, Figure S5-c). g, Close-up 374 MAHLI image of bedrock with white euhedral crystals along with empty casts/molds (1679MH0001930000603555R00; Figure S4-d). 375

376

377 Figure 4: Evaporation of surface brines and early diagenetic deposition. Left, Evaporation of basaltic 378 weathering-derived fluids leads to major precipitation of Ca-sulfates first like gypsum (red) and then Mg-379 sulfates like epsomite (purple) within the shaded ranges of evaporation, after Tosca et al. $(2005)^3$. The 380 evolution of Fe species, which are dependent on pH, does not significantly change the result on Ca- and 381 Mg-sulfate precipitation³ and are not shown here because Fe is relatively immobile (found in iron oxides, 382 clays, and amorphous phases). Right, Deposition scenario in the margin of the Gale lake basin, possibly 383 forming several over-filled or evaporative ponds fed by distributive fluvial systems consistent with the 384 heterolithic mudstone-sandstone facies observed in the upper Murray formation⁴¹. Brine crystallizes in the 385 shallow sediment pore space either by subaqueous infiltration, or within capillary fringes where occasional 386 subaerial exposure occurs.

387

388 Methods

389 Rover-based geochemical datasets and data processing. MSL has 5 instruments that can measure geochemistry and mineralogy⁴⁴. Because of the rover traverse path and rate at the time, APXS, CheMin, 390 391 and SAM data were not acquired of the Mg-S-H enriched strata so ChemCam is the primary source of 392 chemical data used along with hydration of the upper ~ 0.5 m of the surface probed by the DAN instrument. 393 The latter is a neutron spectrometer, sensitive to thermal and epithermal neutrons, which is regularly 394 operated in active and passive modes throughout the traverse. The count rate of thermal neutrons in passive 395 mode (data shown in Figure S9) can be elevated either due to the presence of neutron scatterers 396 (predominantly H) or the paucity of neutron absorbers (predominantly Cl and Fe)⁴⁵. On the other end, 397 ChemCam is a laser-induced breakdown spectrometer (LIBS) that provides chemical analyses at a 398 submillimeter scale and detailed images with the Remote Micro Imager (RMI)^{46,47}. Major-element 399 contents were obtained using the current calibration model⁴⁸. Water and sulfate contents were estimated using dedicated calibration models, see Rapin et al. (2017)²¹ for water content quantification using the 400 401 hydrogen signal, and see below a description of the sulfur signal calibration used in this study.

402 The ChemCam dataset used here includes bedrock targets of the Murray formation. A subset of bedrock 403 observations was selected from all ChemCam observations based on: 1) image classification to select only 404 bedrock analyses and remove potential contribution from soils or diagenetic features such as light-toned 405 fracture-fill veins, 2) signal strength to keep points above a minimum total spectral intensity (more than 1.6 10¹⁴ photons) for which noise level is acceptable for sulfur peak analyses. An additional selection is 406 407 made based on major-element oxide contents to separate points that indicate contributions from Ca-408 sulfate-, silica- or iron-rich features in order to represent typical bedrock composition (Figure 2, Figure 409 S1). The threshold for rejection due to Ca-sulfate enrichment was defined at 2.5 wt% CaO from the 410 distribution of bedrock observations which shows that measurements group tightly around 1.6 wt% CaO

411 with sporadic enrichments above 2.5 wt% (Figure S3) related to increased S signal (Figure S2). The APXS 412 instrument independently measures centimeter-scale bulk compositions and demonstrates the association 413 of calcium and sulfur in Murray bedrock observations. The CaO content measured by APXS ranges from 414 2 wt% to 25 wt% and is correlated with SO₃ content along the 1:1 stoichiometric ratio of Ca-sulfate (Figure 415 S3). Given the correlation observed on APXS data down to 2 wt% CaO, the slightly lower CaO abundance 416 of the cluster defined by ChemCam data is most likely related to its ability to examine bedrock free of 417 dust and without Ca-sulfate enrichments with its 0.3-0.5 mm analytical footprint compared to the 17 mm 418 footprint of APXS.

419 Estimation of sulfate content from ChemCam data. SO₃ content is estimated from the sulfur signal 420 observed in ChemCam spectra. The challenge with the measurement of the signal is that the sulfur 421 emission peaks present in ChemCam spectra are relatively weak in comparison to nearby interfering iron 422 emission peaks¹³, necessitating a distinct method for their quantification compared to the major oxides. Others have investigated the calibration of S with LIBS^{49–51}, here we used a distinct approach dedicated 423 424 to data collected in situ on sulfates within the Murray bedrock. The approach is first to show from 425 laboratory data that spectral parameters can be defined to identify and differentiate the sulfur signal from 426 other interfering spectral features, including identification of the threshold of S wt. % at which it becomes 427 apparent. Second, the sulfur signal identified on Mars is calibrated *in situ* using a large set of Murray 428 bedrock measurements containing Ca-sulfate enrichments.

429 *Collection of laboratory reference spectra*. The ChemCam testbed at Los Alamos National Laboratory 430 was used to collect data from pelletized mixtures of Ca-sulfates and Mg-sulfate with basalt as described 431 in Anderson et al. (2017)¹⁹. Additional Mg-sulfate pressed pellets were also prepared to resolve sulfur 432 signal variation closer to the limit of detection and compositional range observed in the enrichments at 433 Gale crater. The same basalt as Anderson et al. (2017)¹⁹ was used –K1919 basalt sieved powder (< 45 μ m)– but it was doped with 7 wt% sieved hematite powder (< 45 μ m) so that the mixture had a total iron content of 19 wt%, closer to the bedrock composition of the Murray formation at Gale crater. The Mgsulfate powder was synthetic reagent, the same as used in ¹⁹ from Macron Chemicals (CAS 7487-88-9), and was mixed in various proportions with the basalt-hematite powder (Table S3). The powder mixture pellets were each analyzed with 8 observation points of 30 laser shots each.

439 Processing and measurement of S emission peaks. Iron peaks interfere significantly with the sulfur 440 emission peaks at ~543 nm (S II at 543.02 nm and S II at 543.43 nm forming a single peak in ChemCam 441 spectra) and 545.53 nm, but the sulfur still produces specific spectral peak features when present. The 442 sulfur signal can be distinguished using the position of the spectral peak centroid computed from, respectively, 10 and 11 spectral bins on the two specific locations after baseline correction (Figure S14). 443 444 The sulfur emission peak area at ~564 nm (multiple S II peaks forming a single peak in ChemCam spectra), 445 with minor Si and Fe emission peaks interferences, is then used to evaluate sulfur signal intensity. It is 446 normalized to the oxygen emission peak area at ~778 nm (O I at 777.41 nm, 777.63 nm and 777.75 nm 447 forming a single peak). Sulfur and oxygen peak areas are obtained by integrating the spectral bins after 448 baseline correction. As shown on figure 2 the increase of sulfate abundance and associated decrease of 449 emission of other peaks from breakdown of the basalt matrix produces a specific shift to longer 450 wavelengths for the spectral centroids at \sim 543 nm and \sim 545 nm, while simultaneously the normalized 451 peak area at ~564 nm increases. Using this approach, laboratory data suggest a threshold of sulfate 452 detectability around 10 wt% sulfate with the possibility of obtaining a still lower threshold by more refined 453 fitting and/or multivariate spectral fitting procedures.

Calibration of the S signal. The S abundance estimates based on 564 nm peak area are calibrated with *in situ* sulfate data collected on Mars. Indeed, bedrock of the upper Murray formation has a rather low bulk
CaO content, but a large number of CaO enrichments were observed at the LIBS scale, related to Ca-

457 sulfates. The S association with Ca is observed as the data from Murray bedrock, after removal of other 458 Fe and Mg-rich diagenetic features, follows the same trend of peak area increase at ~564 nm and centroid 459 shifts observed in the laboratory. Additionally, measurements from the APXS instrument independently 460 confirm the correlation of CaO with SO₃ content in the upper Murray formation (Figure S3). The SO₃ 461 content calibration curve for the normalized peak area at ~564 nm (Figure 2-f) is obtained by attributing 462 CaO enrichments from average bedrock above 2.5 wt% CaO to Ca-sulfate.

463 This in situ calibration curve obtained using Ca-sulfate data can then be used to predict sulfate content 464 related to Mg-sulfates because tests in the laboratory have shown that for both Mg-sulfates and Ca-sulfates 465 the normalized peak area increases along the same calibration curve and up to the same normalized peak 466 area value for the pure sulfate pellets (Figure 2-c). The limit of detection on sulfate content using this 467 approach is calculated from the 95% confidence bound of the calibration curve. Its intercept has a 468 normalized peak area which corresponds to a predicted 10.6 wt% SO₃ content. Data from upper Murray 469 shows that MgO enrichments are correlated with the normalized S peak area at ~ 564 nm, as well as 470 centroid shifts (Figure 2), which confirm the presence of sulfate from the signal. The current calibration model to estimate major oxide contents⁴⁸ is not optimized yet to include Mg-sulfate bearing basaltic 471 472 mixtures, and consequently, the total amount of oxides predicted exceeds 100% after water and sulfate 473 contents are included. This was also found to be the case when laboratory Mg-sulfate bearing basaltic 474 mixture major elements were calculated using the current calibration model. Consequently, assuming the 475 proportions predicted for the major oxides are correct, the oxide amounts are then renormalized to account 476 for water and sulfate content, so that totals equal 100%.

Identification of the Mg-sulfate enriched lithology. A correlation was identified between the occurrence
of Mg sulfates in LIBS data on sol 1680 (Figure 5) and the specific lithology observed on Murray bedrock
in color image data (Figure S7). MastCam images of bedrock or blocks of bedrock were analyzed to

identify the Mg-sulfate enriched lithology with characteristics defined by its 1) texture: nodular or massive, erosion resistant, forming centimeter-thick layers in some cases, 2) weathering style: cracking in poorly rounded centimeter-sized chunks which remain more resistant to erosion than typical Murray bedrock, 3) color: brown relative to typical Murray bedrock. The specific color was identified and mapped on MastCam images to verify the same color was observed on the lithology at the different visited sites.

485 *Color identification.* RGB pixel values of the radiometrically corrected MastCam images were converted 486 into CIE L*a*b* color space, with L* lightness, and a* and b* color parameters (Figure S15). This 487 determined the color and lightness parameters interval for the fragments of bedrock where the Mg-sulfate 488 enrichments were analyzed with LIBS. The interval then was used as a guide to map areas of the bedrock 489 not measured by LIBS, with color and lightness parameters characteristic of the Mg-sulfate enrichments. 490 The lithology is also identified from texture, morphology and weathering style in addition to this color-491 mapping technique.

492 Orbital data analysis. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard 493 the Mars Reconnaissance Orbiter collects targeted hyperspectral images of the surface with spatial 494 resolution between 12 and 18 m/pixel. Absorption features due to atmospheric carbon dioxide are removed using the Volcano scan method⁵². The Discrete Ordinate Radiative Transfer model⁵³ is used to account 495 496 for effects due to temporally and spatially variable atmospheric dust and ice aerosols. The observations 497 shown on Figure S11 are map-projected and spectrally smoothed using an iterative log likelihood 498 algorithm to incorporate the instrument's spatial and spectral transfer functions to retrieve the best estimate of the surface albedo in the presence of Poisson-distributed noise and spatial blur⁵⁴. A Spectral absorption 499 500 at 1.9 μ m is indicative of H₂O within a hydrated mineral and convexity at 2.29 μ m measures the dual 501 presence of the broad hydration absorption and the S-O bending or mineral H₂O overtone commonly observed in hydrated sulfates⁵⁵. Spectra are extracted from spatial regions of interest as determined by 502

the spatial parameterization, and spectral features are compared to those of laboratory standards to confirm
 mineral identifications.

505 **Mapping of vein distribution.** The presence of veins was mapped along the traverse using MastCam 506 end-of-drive imaging of the surface in front of the rover. The area covered by the images is divided into 507 typically 4 areas covering $\sim 4 \text{ m}^2$ of Martian surface. In each area covering bedrock, the presence of veins 508 is reported in vertical and horizontal categories depending on their apparent orientation being either close 509 to vertical or horizontal. In addition, reference cases of dense vein networks are used to report qualitatively 510 the presence of higher density for veins either vertical or horizontal (Figure S12).

511

512 Data availability: All *in situ* and orbital data used in this study are available in the NASA Planetary Data 513 System (<u>pds-geosciences.wustl.edu</u>). All other supplementary data that support the findings of this study 514 are available from the corresponding author upon request.

515

516 Methods references

- 517 44. Grotzinger, J. P. *et al.* Mars Science Laboratory Mission and Science Investigation. *Space Sci. Rev.*518 170, 5–56 (2012).
- 45. Mitrofanov, I. *et al.* Studying of water consent in Mars' gale crater: The first results of the DAN
 experiment on the NASA curiosity rover. *Dokl. Phys.* 59, 126–128 (2014).
- 46. Maurice, S. *et al.* The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover:
 Science Objectives and Mast Unit Description. *Space Sci. Rev.* 170, 95–166 (2012).
- 523 47. Wiens, R. C. et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover:
- 524 Body Unit and Combined System Tests. *Space Sci. Rev.* **170**, 167–227 (2012).

525	48. Clegg, S. M. et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an
526	expanded geochemical database. Spectrochim. Acta Part B At. Spectrosc. 129, 64-85 (2017).
527	49. Dyar, M. D. et al. Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of
528	sulfur in geological samples. Spectrochim. Acta Part B At. Spectrosc. 66, 39–56 (2011).
529	50. Schröder, S., Pavlov, S. G., Rauschenbach, I., Jessberger, E. K. & Hübers, HW. Detection and
530	identification of salts and frozen salt solutions combining laser-induced breakdown spectroscopy and
531	multivariate analysis methods: A study for future martian exploration. <i>Icarus</i> 223, 61–73 (2013).
532	51. Sobron, P., Wang, A. & Sobron, F. Extraction of compositional and hydration information of sulfates
533	from laser-induced plasma spectra recorded under Mars atmospheric conditions — Implications for
534	ChemCam investigations on Curiosity rover. Spectrochim. Acta Part B At. Spectrosc. 68, 1–16 (2012).
535	52. McGuire, P. C. et al. An improvement to the volcano-scan algorithm for atmospheric correction of
536	CRISM and OMEGA spectral data. Planet. Space Sci. 57, 809-815 (2009).
537	53. Stamnes, K., Tsay, SC., Wiscombe, W. & Laszlo, I. DISORT, a general-purpose Fortran program
538	for discrete-ordinate-method radiative transfer in scattering and emitting layered media:
539	documentation of methodology. (2000).
540	54. He, L., O'Sullivan, J., Politte, D. & Arvidson, R. Resolution Analysis of Regularized Maximum Log-
541	likelihood Reconstruction Method for CRISM Hyperspectral Data. in Propagation Through and
542	Characterization of Atmospheric and Oceanic Phenomena JTu5A-16 (Optical Society of America,
543	2017).
544	55. Cloutis, E. A. et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy.
545	Icarus 184, 121–157 (2006).