
An Efficient Derivative-Free Method for
Solving Nonlinear Equations

D. LE
University of New South Wales, Australia

An algorithm is presented for finding a root of a real function. The algorithm combines bisection
with second and third order methods using derivatives estimated from objective function values.
Global convergence is ensured and the number of function evaluations is bounded by four times the
number needed by bisection. Numerical comparisons with existing algorithms indicate the superiority
of the new algorithm in all classes of problems.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations-
convergence

General Terms: Algorithms

Key Words and Phrases: Root finding

1. INTRODUCTION

One of the most frequently occurring problems in scientific work is to locate a
real root (Y of a nonlinear equation

f(x) = 0. (1)
In rare cases, it may be possible to express the root in closed form or to obtain

the exact value of a! such as in factorable polynominal. In general, however, we
can hope to obtain only approximate solutions by relying on iterative methods.
The function f(r), may not be given explicitly, may not be differentiable or the
derivatives may be difficult to compute, so a method which uses only computed
values off is generally more desirable.

Some of the more classical numerical methods for solving nonlinear equations
without using derivatives include bisection, secant, and regula falsi (see [13] for
a good survey). Many of these methods, such as the secant method, are fast in
general but can be extremely slow for certain classes of functions and are likely
to fail if the starting value is not sufficiently close to CL On the other hand,
bisection is a safe method and in fact is optimal in a minimax sense, but its rate
of convergence is relatively slow. The difficulty is to devise an algorithm that has

Author’s address: Energy Systems Analysis Group, CSIRO Division of Energy Technology, Lucas
Heights Research Laboratories, Private Mail Bag 7, Sutherland, New South Wales, 2232, Australia.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0098-3500/85/0900-0250 $00.75

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985, Pages 250-262.

A Derivative-Free Method for Nonlinear Equations l 251

a high rate of convergence for well-behaved functions, yet can still guarantee to
converge in a small number of function evaluations for all arbitrary functions.

Over the past few years, several authors have published efficient derivative-
free algorithms which are based on the use of a method with superlinear
convergence, but using the bisection method when necessary to retain the
bracketing property. Some successful algorithms developed along this line include
those of Dekker [6], Brent [2], and Bus and Dekker [4]. Various attempts have
also been made at modifying the regula falsi method to improve its order of
convergence, for example see [l], [7], and [B]. All of the above mentioned
algorithms guarantee global convergence as well as having high asymptotic order
of convergence. Among these algorithms, the two published by Bus and Dekker
have the lowest upper bounds on the number of function evaluations required,
namely 4nb and 5nb respectively, where nb is the number of function evaluations
needed by bisection. Brent’s algorithm can require up to (nb + 1)2 - 2 function
evaluations while those of Dekker [6], Dowel1 and Jarratt, [7] and Anderson and
Bjorck [l] may require a prohibitively large number of function evaluations for
certain classes of functions.

In a recent paper, Le [lo] proposed three different algorithms, called LZl, LZ2
and LZ3, for approximating a zero of an arbitrary function. Two completely new
approaches were introduced in these algorithms. The first approach is based on
the concept of cushion interpolation while the second involves bisecting the
reduced interval limited by two most recent secants. The principal advantage of
these algorithms is their extremely small upper bounds on the number of function
evaluations required. Numerical results seem to indicate that LZl-LZ3 could
outperform existing methods for functions with multiple zeros while remaining
comparable for general functions. However, no definite conclusions could be
drawn because the stopping criteria used for LZl-LZ3 were different from those
used by various authors for other methods. In this paper we present a new
algorithm, called LZ4, based on the combination of bisection with second and
third order methods employing derivatives estimated from objective function
values. The approach used in this algorithm is entirely different from those
employed in LZl-LZ3. The algorithm has a very high rate of convergence yet
only requires at most 4nb function evaluations. This bound is only slightly higher
than those of LZl-LZ3, is equal to that of Bus and Dekker [4], and compares
favorably with all other existing methods. Section 2 contains a detailed discussion
of this algorithm and a numerical comparison with existing algorithms is given
in Section 3.

2. ALGORITHM LZ4

The new algorithm LZ4 uses a high-order method as its basic process but
occasionally resorts to bisection to retain the bracketing property or to speed up
convergence when the root appears to be multiple.

One way of obtaining a high-order iterative method for solving (1) is to use an
approximating function based on Taylor polynomials. Assume that in a neigh-
borhood of (Y, the function y = f(x) has a unique inverse x = 4(y). If 4 is
sufficiently differentiable, the Taylor series expansion of 4(y) about a point yn

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

252 l D. Le

is given by

where xn is the nth iterate, 7 E [y, Y,,] and &)(y,,) is the jth derivative of 4 at Y,,.
By replacing x = cr = @J(O) and dropping the error term, we arrive at the iteration
formula

x,+1 = %I
+ mi’ (-l)j j (j)

j=l
jlY" 4 (YJ.

By expressing c#P in terms of the derivatives of f, we have for m = 0 the
Newton-Raphson iteration

For m = 1, the resulting iterative method

fbd f “(~“)[fbJ12 x,+1 = x, - - -
f ‘h2) 2[f’(GJ13 ’ (3)

is of at least third order provided f’(a) # 0.
Alternatively we can construct a Taylor polynomial of f(x) at x,,,

pj(X) = f(X,) + (’ ytxn) . f’(x,) + . . . + (x jxn) f”‘(x,).

Now let x,+~ be a root of pi(X) = 0. For j = 1 we again have the familiar
Newton-Raphson method. For j = 2, the following approximation formula is
obtained.

Gl+1 = &l +
-f ‘(%I) + [f ‘(GJ2 - 2f bnY(Gzw2

f”(X”) I

where the + or - sign is taken according to whether f ‘(x,) is positive or negative.
This formula is at least third order if f’(a) # 0 and f “(a) # 0.

Although iteration formulas (3) and (4) are of the same order 3, it seems that
(4) is more difficult to use because of the need to calculate a square root and to
choose between positive and negative signs at each iteration. Furthermore,
numerical study also shows that the algorithm LZ4 using equation (4) as its basic
process is slightly inferior to that with equation (3), (except for quadratic
functions) and accordingly the iteration formula (3) is preferable. It should be
noted that in LZ4, all derivative terms required by the formulas developed above
are replaced by their divided difference approximations using only objective
function values (see step 4.3 in the description of the algorithm).

The description of the algorithm LZ4 is given below.
Let f be a real continuous function of one real variable, defined on the interval

[a, b] with f(a) . f(b) I 0. The purpose of the algorithm LZ4 is to find an
approximation & to a zero (Y off to within the required precision by using only
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

A Derivative-Free Method for Nonlinear Equations l 253

function evaluations. Depending on the context, an approximate solution may
then mean either a point 6 for which (1) is approximately satisfied, i.e., for which
] f(h)] is small, or a point 4 which is close to the solution cr of (1). Thus there
are two possible stopping criteria, the first relates to the objective function value
while the second to the argument value. In LZ4, for any given small constant
er L 0, the first stopping criterion is satisfied if a point 6 is found with

If(4I 5 3 (5)

The second stopping criterion can be precisely stated by defining a positive
tolerance function 6(x) = ti]x] + c2 where Q represents a relative tolerance for
large IX) and t2 an absolute tolerance. The algorithm LZ4 then terminates via
the second stopping criterion when two distinct real numbers xl and x2 are found
satisfying

f(X1) * f(x2) 50 and 1 Xl - X2] 5 2 * 6(S), (6)

where & here is chosen to be whichever of xl or x2 corresponds to the smaller
objective function value. Since f is continuous, the first condition of (6) ensures
that there exists a zero in the closed interval [xl, x2] while the second condition
yields 5 as the current best approximation of CY and that the required tolerance
has been reached. It should be noted that LZ4 will stop iterating if either one of
the above stopping criteria is satisfied. Thus it is possible to set ey = 0 so that
.only the second criterion comes into play.

At the beginning of a typical iteration of algorithm LZ4, three distinct points
xl, x2, and x3 are available such that

fbl) - fb4 = 0, f(x2) . f(x3) 2 0, x2 E [xl, x3]. (7)

These conditions state that there exists a zero a of f in the closed interval
[xl, x2], and that x2 and x3 lie on the same side of CX. The points xl, x2, and x3
change from iteration to iteration, but there should be no confusion if we omit
iterative subscripts. From the given interval [a, b], the first set of points satisfying
(7) is obtained as follows: Let xl = a, ~2 = (a + b)/2; if f(x1) . f(x2) > 0 then
x3 = xl, xl = 6 otherwise let x3 = b. Other necessary initializations are: Let
int=l,d=2.]a-b],dl=2. d,andd2=2. dl.

An iteration of LZ4 consists of the following steps:

(1) Let 2 = xl + (x2 - x1)/2 and d = I xl - x2 I. Let dl be the last value of d,
d2 the last value of dl and d3 the last value of d2. Moreover, let

u = xl,
= x2,

if IfW I< IfW) I,
otherwise.

(This condition yields u as the current best approximation of a).
(2) Test for convergence. If] f(u) I 5 tr or d 5 26(u) then the algorithm

terminates with & = u. When high order convergence has set in, the current best
estimate u may be much better than the bisection point of the remaining interval
[xl, x2], thus we prefer to return u as the approximation to LY.

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1986.

254 l D. Le

(3) Estimating derivatives
Let

c = Xl, if int = 1 (interpolation),
= previous value of x3, if int = 0 (extrapolation),

where int is set equal to 1 initially and is defined clearly in step 4.5. It is thus
seen that (Y E [x2, x3, c] when int = 1, and as a consequence an interpolation is
required to estimate (Y. An extrapolation using x2, x3 and c is necessary when
int = 0. The three distinct points x2, x3 and c are then used to give estimates of
the first and second derivatives off at u.
Let

e = x2 + (c - x2)/2

and

ge = fllx2, cl = (fW) - f(c))W - 4,
where f [x2, c] denotes the first divided difference off at x2 and c.

Define

h = 2(f[x2, x3] - ge)/(x3 - c), (8)

so that h is twice the second divided difference of f at x2, x3 and c,
and approximates the second derivative of the function at the point p =
(c + 2 . x2 + x3)/4. If h can be assumed constant in the neighborhood of p, then
the derivative at any point x in this region can be estimated by

. g(x) = ge + h(x - e). (9)

(It is noted here that this method can obviously be expanded to include more
points to estimate higher divided difference derivatives for higher order approx-
imation formulas. However, in general there seems to be little gain in using data
at more than two or three points.)

(4) Determine a new point w for function evaluation. The general strategy
applied in LZ4 is that w is first calculated by formula (3); if w 4 [z, U] then
the Newton-Raphson method is employed to obtain a new value of w, if again
w B [z, u] then we use bisection.

(4.1) If d > 0.595 . d3 or (g(x1) . g(x3) 5 0 and int = 1) then bisection is used,
that is let w = z. The first condition determines the upper bound on the
number of function evaluations while the second speeds up convergence
for ill-behaved problems.

(4.2) If] 2 . f(u) . (g(u))* + h . (f(u))*] I] d . (g(~))~] then go to 4.3;
otherwise let w = u -f (u)/g(u) - h(f (u))2/(2(g(u))3) which is the estimate
given by formula (3).
If (w - U) . sign (w - z) 5 0 then go to step 4.4; else execute 4.3.

(4.3) If I f(u) I 2 I cl . g(u)/2 I, th en use bisection; otherwise let w =
u - f (u)/g(u), which is the Newton-Raphson step (formula(2)), and go
to 4.4.

(4.4) If] w - u] < 6(u) then let w = u + 6(u) . sign (z - u). It is seen that
care is taken to avoid overflow or division by zero when computing the

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

A Derivative-Free Method for Nonlinear Equations l 255

new point w by formulas (2) and (3). Although the first condition of step
4.2 already restricts] w - u] <] z - u] , there is no guarantee that w
must lie in the interval [z, u]. If] g(u)] is small and] h] large, then the
second derivative of the inverse function] $I(‘)] =] h/(g(u))3 I becomes
very large resulting in an exceptionally strong curvature at u which in
turn causes w to fall outside [z, u]. This explains the need to include the
test at the end of step 4.2. The problem does not exist for formulas (2)
and (4) since] w - u] <] z - u] also means w E [z, u] in these cases.

(5) Reduce the search interval. Let the interpolation indicator int = 1.
(5.1) If f(w) . sign (f(x1)) < 0 then go to 5.2; otherwise if cl I] x3 - w] then

let x3 = nl, rl = x2 and x2 = w; else let xl = w; go to 4.1.
(5.2) If d %] 23 - w] then let x3 = x2, x2 = w; otherwise let c = x3,

x3 = x2, x2 = w and int = 0; go to 4.1.

It is obvious from the definition of the algorithm, particularly step (4.4), that
the new argument value w in each iteration is distinct from any existing point
with the mutual distance bounded below by 6(u). Let Ii, for iteration i = 1, 2, . . . ,
n denotes the closed interval whose endpoints are xii and x2i. Then from the
relation f(xli) . f(x2i) 5 0 and the operations of steps (4) and (5), it follows
immediately that 1i contains a zero (Y off and I1 > I2 > 13. . . > 1i. This shows
that LZ4 will converge to a zero (Y off as i + co.

The maximum number of function evaluations needed by LZ4 is dictated by
the first condition of step (4.1). With di denoting the length of li, the first
condition of (4.1) can be presented in a general form as: “If di > t . di-k then do
bisection,” where k can be any positive integer. Assume for the moment that t =
0.5, then it is clear that the length of 1i is smaller than half the length of li-k-1.
It follows therefore, that the number of function evaluations is bounded above
by (k + l)n*. However, as that upper bound is based on the worst case, there is
no requirement that t must be kept at 0.5 for other cases. In fact, t should be
increased as much as possible to reduce the chance of performing bisection
unnecessarily. In order to still guarantee the above bound of (k + l)nb, it can be
shown that t must be limited by

(t)k+’ 5 (o.5)k.

Therefore, the value of t can be as high as 0.595 if the required maximum number
of function evaluations is 4nb. It should be mentioned that the performance of
the algorithm is substantially reduced when decreasing this bound to 3nb as
bisection seems to be performed excessively, while no gain can be achieved by
increasing the bound to 5nb.

The most complicated step in the new algorithm is step (4.2) which is itself
hardly more complicated than the interpolation steps used in the algorithms of
Brent [3] or of Bus and Dekker [4]. Moreover, slight differences in the complex-
ities between the algorithms should be negligible in terms of computation time
since only problems with expensive function-evaluations would normally neces-
sitate a proper selection of algorithms. This is one of the reasons why the number
of function evaluations, instead of computation time, is often used as the criterion
for comparison as it is less dependent on the computer and compiler systems or
the programmer’s coding ability.

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

256 l 0. Le

It should be stressed here that LZ4 is not of third order because of the use of
finite-difference approximated derivatives and also due to the involvement of the
bisection as well as the finite-difference Newton-Raphson steps.

3. NUMERICAL STUDIES

It would be interesting to see the rate of convergence of the basic idea underlying
the algorithm, namely the use of a third order method (formula (3)) with
derivatives replaced by divided difference estimates. A test function obtained
from Ralston and Rabinowitz [ll] is used for this purpose

f(x) = sin(x) - x
2’

which is strictly concave in t.he interval under study [7r/2, n]. The root is computed
to five correct decimals and the sequences of estimates produced by three methods
are shown in Table I. It should be noted that the values listed under LZ4 are not
produced by the entire algorithm LZ4 as described in Section 2 above, but are
the results of only formula (3) with approximated derivatives. As LZ4 requires 3
points to start with, the third point is chosen to be the midpoint of the interval
[r/2, rl.

Although the total number of function evaluations required by the Newton-
Raphson method is 5 compared to 6 by LZ4, of particular interest is the number
of iterations which directly relate to the rate of convergence. It is seen that LZ4
requires one less iteration than the Newton-Raphson method which in turn needs
one less iteration than the secant method. However, it is difficult to compare
these three methods directly as they require different numbers of starting points.

Furthermore, as the performance of an iterative method depends greatly on
the position(s) of the starting point(s), it might be expected that the rates of
convergence of the three methods would be different for different values or
orderings of the starting points. Surprisingly, in the following sensitivity analysis
it turns out that the relative performance of these methods on this particular
function seem to remain constant for all combinations of starting points tested
so far. The number of iterations required by the Newton-Raphson method
remains 4 when the starting point is altered to 3a/4 and K. Similarly, the ordering
of the starting points of the secant method has no effect on the number of
iterations required by that method although the sequence of estimates is different.
LZ4 also converges in 3 iterations when the third starting point is changed from
37r/4 to the linear interpolation point using 7r/2 and ?r.

It should be mentioned that in this exercise the estimates h and g (u) given by
(8) and (9) converge to the real values of f”(u) and f’(u) as u approaches CY
although at a slower rate than that of u. Thus we can see that it is only necessary
to estimate f” and f’ to very few significant digits to compute CY to full single-
precision accuracy.

Below are the results of a series of numerical comparisons between seven
algorithms for solving nonlinear equations:

Algorithm LZ4, defined in Section 2;
Algorithm B, published by Brent [2];
Algorithms A, M and R, described in Bus and Dekker [4];
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

A Derivative-Free Method for Nonlinear Equations l 257

Table I. Sequences of Estimates to the Root of f(r) = sin(x) - r/2

Starting
point(s)

Secant Newton-Raphson LZ4 Iteration
h/2, K) (r/2) (n/2,3d4, *) number

1.75960 2.00000 1.85467 1

1.84420 1.90100 1.89587 2
1.90011 1.89551 1.89549 3
1.89535 1.89549 4
1.89549 5

Algorithm C, published by Anderson and Bjorck [l];
Algorithm D, a modified Davidenko-Broyden continuation method published by
Swift and Lindfield [12].

All calculations have been carried out in single precision with 48 bits accuracy
on the CDC Cyber 171 at the University of New South Wales. It should be
mentioned that some exponent underflows have inevitably occurred during
evaluations of function 11 for n = 25 and function 12.

As most of the performance data of other algorithms have been compiled from
other authors’ works (except those of algorithm B for function 2 and 3 where
they have been obtained by the author), it is essential to use the same stopping
criteria for LZ4 in order to achieve a fair and direct comparison. The following
list shows all stopping criteria used; the governing criterion is basically equation
(6), but different tolerance functions 6(x) have been chosen by different authors:

(a) 6(x) = 2 X 16-’]x] + 10-l’; see [2].
(b) 6(r) = lo-‘(2] x] + 1); see [lo].
(c) 6(x) = lo-'(2 Ix I + 1); see [lo].
(d) 6(x) = lo-14(] x] + 1); see [4].
(e) 6(x) = 3 X 10-Y] x] + 1); see [l].
(f) 6(X) = 0.5 x lo-a(] X] + 1); see [12].

The test functions chosen for this numerical study are of varying difficulty
and characteristics. They are the same as those used in [lo] and many of them
are obtained from various authors’ works [2], [71, and [121.
The first set of test functions is supplied with an interval containing the zero:

(1) f(X) = -2 C;$ (2i - 5)2/(X - i2)3
in the interval [n” + lo-‘, (n + l)* - lo-‘1 for n = l(l)19

(2) f(x) = axebX in the interval C-9, 311, where
(i) u= -40 and b=-1

(ii) a= -100 and b = -2
(iii) a = -200 and b = -3

(3) f(x) = X” - a, where
(i) a = 0.2 and n = 4, 6, 8, 10, 12 in the interval [0, 51

(ii) a = 1 and n = 4, 6, 8, 10, 12 in the interval [0,5]
(iii) a = 1 and n = 8, 10, 12, 14 in the interval [-0.95,4.05]

(4) f(x) = sin(x) - 0.5 in the interval [0, 1.51
(5) f(x) = 2xe-" - 2e-" + 1

in the interval [0, l] and n = 1, 2, 3, 4, 5, 15, 20
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

258 l D. Le

(6) f(x) = (1 + (1 - n)‘)~ .- (1 - n~.)~
in the interval [0, l] and n = 1, 2, 5, 10, 15, 20

(7) f(x) = x2 - (1 - X)”
in the interval [0, l] and n = 1, 2, 5, 10, 15, 20

(8) f(x) = (1 + (1 - n)4)x .- (1 - nX)4
in the interval [0, l] and n = 1, 2, 4, 5, 8, 15, 20

(9) f(x) = (x - l)e-“’ + X”
in the interval [0, l] and n = 1, 5, 10, 15, 20

(10) f(x) = (nx: - l)l((n - 1)~)
in the interval [O.Ol, l] and n = 2, 5, 15, 20

(11) f(x) = X? in the interval [-1, lo] and n = 3, 5, 7, 9, 19, 25
(12) f(x) = 0, if x=0

=x. exp(-xm2), otherwise in the interval [-1, 41.

The second set of test functions is supplied with only a single starting point.
These sample problems were taken from [12] and are listed below for clarity:

(13) f(x) = 2xe-” - 2ebnX + 1 with starting value 0. and n = 5
(14) f(X) = (1 + (1 - n)“)x - (1 - nX)4

with starting value 0. and n = 5
(15) fcx) = Xn with starting value -1. and n = 3, 5, 7
(16) f(x) = (emM - x - 0.5)/Y with starting value 0.1185 and n = 5
(17) f(x) = x-li2 - 2 log&zx’/2) + 0.8

with starting value 0.001 and n = 5 x 103, 5 X 10’.

A simple interval locating procedure given by Swift and Lindfield has been
used to supply an interval bracketing the zero for both algorithms B and LZ4.
The initial stepsize for this procedure was set at 0.001 which is the same as that
used by Swift and Lindfield. It has been noted in [lo] that this interval locating
procedure may diverge or fail to find an interval with end points of opposite sign
function values. However, such a problem fortunately does not exist for the above
test functions with the corresponding starting points.

The results for the first set of test functions are given in Tables II to VII while
those for the second set are shown in Table VIII. The tables list the number of
function evaluations needed by the various algorithms to find a root of the given
function within the required precision.

It can be seen from all tables that the new algorithm LZ4 is markedly superior
to all existing algorithms for a wide range of test functions. The saving on the
number of function evaluations made by LZ4 compared to other algorithms can
be as high as 5 function evaluations for simple zero functions and up to several
hundreds for multiple zero functions. Although the theoretical maximum number
of function evaluations for convergence required by LZ4 can be as high as 4na, it
has always been only slightly slower than bisection in practice. From the second
part of Table V, Algorithm C appears to perform better than LZ4 and in fact
better than all other algorithms on function 10. However, the rapid convergence
of Algorithm C on this particular function can be explained by its relation to
hyperbolic interpolation and thus cannot be seen to represent the general trend.

Because of the use of different stopping criteria, the results of LZl-LZ3 were
not included in the comparison study above. Although a direct comparison
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

Table II. Number of Function
Evaluations for Function 1

Stopping criterion (a)

n B LZ4

1 14 10
2 8 10
3 14 9
4 12 9
5 12 9
6 11 9
7 11 9
8 11 9
9 10 9

10 10 9
11 10 9
12 10 9
13 10 9
14 10 9
15 10 9
16 10 9
17 10 9
18 9 9
19 9 9

Total 201 173

Table III. Number of Function Evaluations for
Function 2

Stopping
criterion (b)

Interval a b B LZ4

I-9,311 - 40 -1 16 12
-100 -2 18 14
-200 -3 19 14

Total 53 40

Table IV. Number of Function Evaluations for
Function 3

Interval a n

Stopping
criterion (c)

B LZ4

[OS 51 0.2 4 13 10
6 15 10
8 16 12

10 16 11
12 16 11

LO, 51 1. 4 14 9
6 14 11
8 13 11

10 15 11
12 16 11

[-0.95,4.05] 1. 8 14 10
10 14 10
12 15 11
14 16 11

Total 207 149

260 l D. Le

Table V. Number of Function Evaluations for Functions 4-10

Stopping criterion (d) Stopping criterion (e)

FunctionInterval n A M R B C LZ4 B C LZ4

4 [O, 1.51
5 [O, 11

6 IO>11

I [O> 11

8 109 11

9 D 11

10 [O.Ol, l]

-
1
2
3
4
5

15
20

1
2
5

10
15
20

1
2
5

10
15
20

1
2
4
5
8

15
20

1
5

10
15
20

2
5

15
20

10
9

10
11
12

10

10
9

9

10
11

10

9

7

9
9

10

10
9

10
11
12

9

10
9

10

10
11

10

9

7

9
9

10

9 8 9 7
7 8 7 I
8 9 8 I
9 10 9 8

10 10 10 9

8 8 9 7

9 9 8 8
9 9 8 5

8 9 9 8

9 9 10 9
11 10 11 9

8 9 9 8

9 8 8 8

8 7 8 I

8 9 9 9
9 9 9 9

10 9 10 10

8 7 7
7 6 I

10 10 8
11 12 10
11 12 10

9 8 6
8 8 6

I 7 6
I 6 6

3 3 2
8 8 8

10
12

11
11

9
10

10 9 8

7 8 I

6 I 6
6 6 6
8 7 7
8 8 8
8 9 9

11 9 9
12 10 10

5 6 8
12 7 9
11 6 11
13 6 11

Total 165 165 149 150 151 135 228 207 204

Table VI. Number of Function Evaluations for Function 11

Stopping criterion (d)

Interval n A M R B C LZ4

I-1, lo] 3 117 151 91 147 118 57
5 206 149 163 122 201 79
7 293 161 206 138 294 50
9 380 160 196 137 381 50

19 802 179 206 141 759 50
25 1320 159 174 123 961 41

Total 3118 959 1036 808 2720 327

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

A Derivative-Free Method for Nonlinear Equations l 261

Table VII. Number of Function Evaluations for
Function 12

Stopping criterion (d)

Interval A M R B C LZ4

l-1941 >5000 27 23 18 969 11

Table VIII. Number of Function Evaluations for Problems
with 1 Starting Point

Starting
Stopping criterion (f)

Function value n D B LZ4

13 0.
14 0.
15 -1.

-1.
-1.

16 0.1185
17 0.001

0.001
Total

5
5
3
5
7
5

5 x lo3
5 x lo7

12 14 13
8 7 6

130 126 40
141 86 21
146 67 21
20 13 11
18 13 12
13 10 9

488 336 133

could not be made, it appears that the new algorithm should be preferrable to
LZl-LZ3 for general functions due to its high rate of convergence. However when
multiple zeros may exist, the algorithms LZl-LZ3 could be chosen because of
their smaller bounds on the number of function evaluations required, although
numerical results show that LZ4 also performs extremely well for this class of
functions.

It remains to be seen how LZ4 performs in cases where the function is hard to
evaluate and subjected to rounding or other errors, for example, when the
solutions of differential equations are involved. However, one might expect that
the new algorithm would also perform well on those functions judging from its
outstanding performance on functions with multiple zeros where rounding errors
in evaluating f are quite severe.

4. CONCLUSIONS

A new algorithm for solving nonlinear equations has been presented. The algo-
rithm features a combination of bisection with second and third order methods
using derivatives estimated from objective function values. The maximum num-
ber of function evaluations required by the algorithm is bounded by four times
the number needed by bisection. Numerical comparisons indicate that this
algorithm is much faster than existing algorithms on both well- and ill-behaved
functions and for both simple zeros as well as zeros with high multiplicity.

ACKNOWLEDGMENTS

The author wishes to thank Dr. G. Smith for his encouragement and stimulating
discussions. Constructive comments made by the referees are also gratefully
acknowledged.

ACM Transactions on Mathematical S&ware, Vol. 11, No. 3, September 1985.

262 l D. Le

REFERENCES
1. ANDERSON, N., AND BJORCK, A. A new high order method of regula falsi type for computing a

root of an equation. BIT 13 (1973), 253-264.
2. BRENT, R. P. An algorithm with guaranteed convergence for finding a zero of a function.

Comput. J. 14 (1971), 422-425.
3. BRENT, R. P. Algorithms for Minimisation Without Derivatives. Prentice Hall, Englewood Cliffs,

N.J. 1973.
4. BUS, J. C. P., AND DEKKER, ‘T. J. Two efficient algorithms with guaranteed convergence for

finding a zero of a function, Trans. Math. Softw. 4 (Dec. 1975), 330-345.
5. DAHLQUIST, G., AND BJORCK, A. Numerical Methods. Prentice Hall, Englewood Cliffs, N.J.,

1974.
6. DEKKER, T. J. Finding a zero by means of successive linear interpolation. In Constructive

Aspects of the Fundamental Theorem ofAlgebra, B. Dejon and P. Henrici, Eds. Wiley Interscience,
New York, (1969), 37-48.

7. DOWELL, M., AND JARRAW, P. A modified regula falsi method for computing the root of an
equation. BIT II (1971), 168-174.

8. DOWELL, M., AND JARRAIT, P. The ‘Pegasus’ method for computing the root of an equation.
BIT 12 (1972), 503-508.

9. GONNET, G. H. On the structure of zero finders. BIT 17 (1977), 170-183.
10. LE, D. Three new rapidly convergent algorithms for finding a zero of a function. SIAM J. Sci.

Stat. Comp. 6, 1 (1985), 193-208.
11. RALSTON, A., AND RABINOWITZ, P., First Course in Numerical Analysis. McGraw-Hill, New

York, (1978).
12. SWIFT, A., AND LINDFIELD, G. R. Comparison of a continuation method with Brent’s method

for the numerical solution of a single nonlinear equation. Comput. J. 21 (1978) 359-362.
13. TRAUB, J. F. Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs,

N. J., (1964).

Received September 1983; revised July 1984; accepted May 1985

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

