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It has previously been shown from the collective behavior of a network of observed climate
indices that this network synchronized several times in the period 1900-2000. Further, it has
been found that in those cases where the synchronous state was followed by a steady increase
in the coupling strength between the indices, the synchronous state was destroyed, after which
a new climate state emerged. These shifts are associated with significant changes in global
temperature trend and in El Nifio/Southern Oscillation variability. Subsequently, the evidence
for such type of behavior has been found to occur in three climate simulations using state-
of-the-art models as well as in the observed data in the 21st century. This was the first time
that this mechanism, which appears consistent with the theory of synchronized chaos, has been
discovered in a physical system of the size and complexity of the climate system. Here we extend
this approach to consider proxy data for climate modes going back several centuries. While noise
in the proxy data in some cases masks the mechanism, we find significant coherence between both
synchronization and coupling and global temperature. These results provide further support that

the above mechanism for climate shifts is a robust feature of the climate system.
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1. Introduction

One of the most important and mysterious events in
recent climate history is the climate shift in the mid-
1970s [Graham, 1994]. In the northern hemisphere
500-hPa atmospheric flow the shift manifested itself
as a collapse of a persistent wave-3 anomaly pattern
and the emergence of a strong wave-2 pattern. The
shift was accompanied by sea-surface temperature
(SST) cooling in the central Pacific and warming
off the coast of western North America [Miller
et al., 1994]. The shift brought sweeping long-range
changes in the climate of northern hemisphere.
Incidentally, after “the dust settled”, a new long
era of frequent El Nino events superimposed on

a sharp global temperature increase began. While
several possible triggers for the shift have been
suggested and investigated [Graham, 1994; Miller
et al., 1994; Graham et al., 1994], the actual phys-
ical mechanism that led to this shift is not known.
Understanding the dynamics of such phenomena
is essential for our ability to make useful predic-
tion of climate change. A major obstacle to this
understanding is the extreme complexity of the
climate system, which makes it difficult to disen-
tangle causal connections leading to the observed
climate behavior. Here, we extend the analysis
which has revealed an important new mechanism
in climate dynamics and explained several aspects
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of the observed climate variability in the late
20th century.

2. Methods and Results From
Observations

First, a network consisting of four major climate
indices was constructed. The network approach to
complex systems is a rapidly developing method-
ology, which has proven to be useful in analyzing
such systems behavior [Albert & Barabasi, 2002;
Strogatz, 2001]. In this approach, a complex system
is presented as a set of connected nodes. The collec-
tive behavior of all the nodes and links (the topol-
ogy of the network) describes the dynamics of the
system and offers new ways to investigate its prop-
erties. The indices represent the Pacific Decadal
Oscillation (PDO), the North Atlantic Oscillation
(NAO), the El Nino/Southern Oscillation (ENSO),
and the North Pacific Index (NPI) [Barnston &
Livezey, 1987; Hurell, 1995; Mantua et al., 1997;
Trenberth & Hurrell, 1994]. These indices repre-
sent regional but dominant modes of climate vari-
ability, with time scales ranging from months to
decades. NAO and NPI are the leading modes of
surface pressure variability in northern Atlantic and
Pacific Oceans, respectively, the PDO is the lead-
ing mode of SST variability in the northern Pacific
and ENSO is a major signal in the tropics. Together
these four modes capture the essence of climate vari-
ability in the northern hemisphere. Each of these
modes involves different mechanisms over different
geographical regions. Thus, these modes are treated
as nonlinear subsystems of the grand climate sys-
tem exhibiting complex dynamics. Indeed, some
of their dynamics have been adequately explored
and explained by simplified models, which repre-
sent subsets of the complete climate system and
which are governed by their own dynamics [Elsner &
Tsonis, 1993; Schneider et al., 2002; Marshall et al.,
2001; Suarez & Schopf, 1998]. For example, ENSO
has been modeled by a simplified delayed oscil-
lator in which the slower adjustment time-scales
of the ocean supply the system with the memory
essential to oscillation. Monthly-mean values in
the interval 1900-2000 are available for all indices
(http://jisao.washington.edu/datasets, for NAO,
PDO and El Nino, http://www.cgd.ucar.edu/cas.
jhurrell/indices.html for NPT).

These four climate indices are assumed to form
a network of interacting nodes [Tsonis et al., 2007].
A commonly used measure to describe variations

in the network’s topology is the mean distance d(t)
[Onnela et al., 2005]
d(t)

> d. (1)
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Here t denotes the time in the middle of a slid-
ing window of width At, N = 4; 4,7 = 1,..., N,
and dfj =
correlation coefficient between nodes 7 and j in the
interval [t — (At —1)/2,t + (At — 1)/2], and D! is
the N x N distance matrix. The sum is taken over
the upper triangular part (or the distinct elements
of D). The above formula uses the absolute value of
the correlation coefficient because the choice of sign
of indices is arbitrary. The distance can be thought
as the average correlation between all possible pairs
of nodes and is interpreted as a measure of the
synchronization of the network’s components. Syn-
chronization between nonlinear (chaotic) oscillators
occurs when their corresponding signals converge
to a common, albeit irregular, signal. In this case,
the signals are identical and their cross-correlation
is maximized. Thus, a distance of zero corresponds
to a complete synchronization and a distance of v/2
signifies a set of uncorrelated nodes.

Figure 1(a) shows the distance as a function of
time for a window length of At = 11 years, with tick
marks corresponding to the year in the middle of the
window. The correlations (and thus distance values
for each year) were computed based on the annual-
mean indices constructed by averaging the monthly
indices over the period of November—March. The
dashed line parallel to the time axis in Fig. 1(a) rep-
resents the 95% significance level associated with
the null hypothesis that the observed indices are
sampled from a population of a four-dimensional
AR-1 process driven by a spatially (cross-index)
correlated Gaussian noise; the parameters of the
AR-1 model and the covariance matrix of the noise
are derived from the full time series of the observed
indices. This test assumes that the variations of the
distance with time seen in Fig. 1(a) are due to sam-
pling associated with a finite-length (11-yr) sliding
window used to compute the local distance values.
Retaining overall cross-correlations in constructing
the surrogates makes this test very stringent (it is
more likely that more synchronization events will
be found if the surrogates were white noise, for
example). It is found that five times (1910’s, 1920’s,
1930’s, 1950’s and 1970’s) distance variations fall
below the 95% significance level (which corresponds

2(1 - ’Pfj\), where pfj is the cross-
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Fig. 1. (a) The distance (see definition in text) of a network
consisting of four observed major climate modes as a func-
tion of time. This distance is an indication of synchronization
between the modes with smaller distance implying stronger
synchronization. The parallel dashed line represents the 95%
significance level associated with a null hypothesis of spatially
correlated red noise. (b) Coupling strength between the four
modes as a function of time. (¢) The global surface tempera-
ture record. (d) Global-SST ENSO index. The vertical lines
indicate the time when the network goes out of synchroniza-
tion for those cases where synchronization is followed by a
coupling strength increase.
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to an average correlation between all pairs of indices
of 0.5 or greater; see Eq. (1)). It is therefore con-
cluded that these features are not likely to be due
to sampling limitations but they represent statis-
tically significant synchronization events. Note that
the window length used in Fig. 1(a) is a compromise
between being long enough to estimate correlations
but not too long to dilute transitions. Nevertheless,
the observed synchronizations are insensitive to the
window size in a wide range of 7yr < At < 15yr.

An important aspect in the theory of syn-
chronization between coupled nonlinear oscillators
is coupling strength. It is vital to note that syn-
chronization and coupling are not interchangeable;
for example, it is trivial to construct a pair of
coupled simple harmonic oscillators whose displace-
ments are in quadrature (and hence perfectly uncor-
related), but whose phases are strongly coupled
[Vanassche et al., 2003]. As such, coupling is best
measured by how strongly the phases of differ-
ent modes of variability are linked. The theory of
synchronized chaos predicts that in many cases
when such systems synchronize, an increase in
coupling between the oscillators may destroy the
synchronous state and alter the systems behavior
[Heagy et al., 1995; Pecora et al., 1997]. In view
of the results above, the question thus arises as to
how the synchronization events in Fig. 1(a) relate
to coupling strength between the nodes. It should
be noted that in this study we are interested in the
complete synchronization among the nodes, rather
than weaker types of synchronization, such as phase
synchronization [Boccaletti et al., 2002; Maraun &
Kurths, 2005] or clustered synchronization [Zhou &
Kurths, 2006], which are also important in climate
interactions.

For our purposes here, if future changes in the
phase between pairs of climate modes can be readily
predicted using only information about the current
phase, those modes may be considered strongly cou-
pled [Smirnov & Bezruchko, 2003]. Here coupling
is studied using symbolic dynamics. For any given
time series value, we can define a symbolic phase
by examining the relationship between that value
and its nearest two neighbors in time. As shown in
Fig. 2, if the three values are sequentially increas-
ing, we can assign to the middle point a phase
of 0, while if they are sequentially decreasing, a
phase of 7. Intermediate values then follow. Notice
that this procedure is totally nonparametric, as it
does not compare the actual values of the points
aside from whether a point is larger or smaller than
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Fig. 2. The six states for the symbolic phase construction.
The points in each triplet correspond to three consecutive
points in a time series, and their relative vertical positions to
each other indicate their respective values.

its neighbors. The advantage of this approach is
that it is blind to ultra-low frequency variability, i.e.
decadal scale and longer. Use of symbolic dynam-
ics is appropriate in this case, as we are primar-
ily interested in changes in the synchronization and
coupling of climate modes over decadal time scales.
The symbolic phase ¢7, is constructed separately for
the four climate indices, where j denotes the index
and n the year. The phases for a given year n are
represented by the complex phase vector Z with
elements Z;, = exp(i¢7,). The predictability of this
phase vector from year to year provides a measure
of the coupling and is determined using the least
squares estimator

Z%S-T-l = MZ, (2)

where M = [Z,Z"][ZZ"]7! is the least squares
predictor. Here Z and Z, are the matrices whose
columns are the vectors Z,, and Z, 1, respectively,
constructed using all years. A measure of the cou-
pling then is simply ||Z%t, — Zy,41[|%, where strong
coupling is associated with small values of this
quantity, i.e. good phase prediction. Note that only
three values are used to define phases rather than
four or five or any other number. The reason is that
the possible number of permutations of m values is
m!. Thus, if m > 3 there are at least 24 possible
permutations, which will not result in large sam-
ple sizes to evaluate the predictability of the phase
vector.

This quantity is plotted in Fig. 1(b). Fig-
ures 1(c) and 1(d) show the global surface tem-
perature (http://data.giss.nasa.gov/gistemp/) and
El Nino index in our period. Figure 1 tells a
remarkable story. First let us consider the event in
1910’s. The network synchronizes at about 1910. At
that time, the coupling strength begins to increase.
Eventually, the network comes out of the syn-
chronous state sometime in late 1912 early 1913
(marked by the left vertical line). The destruction
of the synchronous state coincides with the begin-
ning of a sharp global temperature increase and

a tendency for more frequent and strong El Nino
events. The network enters a new synchroniza-
tion state in the early 1920’s but this is not fol-
lowed by an increase in coupling strength. In this
case, no major shifts are observed in the behav-
ior of global temperature and ENSO. Then the
system enters a new synchronization state in the
early 1930’s. Initially this state was followed by a
decrease in coupling strength and again no major
shifts are observed. However, in the early 1940’s,
the still present synchronous state is subjected to an
increase in coupling strength, which soon destroys
it (at the time indicated by the middle vertical
line). As the synchronous state is destroyed, a new
shift in both temperature trend and ENSO vari-
ability is observed. The global temperature enters
a cooling regime and El Nino events become much
less frequent and weaker. The network synchronizes
again in the early 1950’s. This state is followed by a
decrease in coupling strength and, as was the case in
1920’s, no major shifts occur. Finally, the network
synchronizes again in the mid 1970’s. This state is
followed by an increase in coupling strength and
incredibly, as in the cases of 1910 and 1940, syn-
chronization is destroyed (at the time marked by
the right vertical line) and then climate shifts again.
The global temperature enters a warming regime
and El Nino events become frequent and strong.
The fact that around 1910, 1940 and in the late
1970s climate shifted to a completely new state indi-
cates that synchronization followed by an increase
in coupling between the modes leads to the destruc-
tion of the synchronous state and the emergence of
a new state.

The above mechanism was also found in three
climate simulations. The first two are from the
GFDL CM2.1 coupled ocean/atmosphere model
[GFDL CM2.1 development team, 2006]. The
first simulation is an 1860 pre-industrial condi-
tions 500-year control run and the second is the
SRESA1B, which is a business as usual scenario
with COs levels stabilizing at 720 ppmv at the close
of the 21st century [IPCC, 2001]. The third simu-
lation is a control run from the ECHAMS5 model
[Wang et al., 2009]. From these model outputs the
same indices were constructed (in the periods of
100-200 years, 21st century, and years 240-340,
respectively) and the above procedure was repeated
in order to study synchronization and coupling in
the corresponding networks. In all, seven synchro-
nization events in the model simulations occurred.
Without an exception, in all cases when the major



modes of variability in the northern hemisphere are
synchronized, an increase in the coupling strength
destroys the synchronous state and causes climate
to shift to a new state. Importantly the mecha-
nism is found in both forced and unforced simu-
lations indicating that the mechanism is a result of
the natural variability of the climate system. Lately
Swanson and Tsonis [2009] extended the analysis
to the updated observations in the 21st century
and discovered yet another consistent event signal-
ing a new climate shift in the beginning of the 21st
century.

The shifts described above are based on care-
ful visual examination of the results. Once shifts
have been visually identified, one can statistically
test their significance. From the above results it was
observed [Tsonis et al., 2007; Wang et al., 2009]
that most often a shift in global temperature can
manifest itself as a trend change but in a couple of
cases it shows as a jump. Changes in ENSO vari-
ability on the other hand can come in more ways. In
this case, the possible regimes are five. A regime of
more frequent El Nifio events, a regime of more fre-
quent La Nina events, a regime of alternating strong
El Nino and La Nina events, a regime of no activity
or alternating weak El Nino and La Nina events,
and a regime where the spacing between El Nino
and La Nina events is irregular. In all those regimes
the distribution of ENSO index is different and as
such the Mann—Whitney rank sum test can be used
to test for differences before and during a shift or
between shifts. The same test can be used to test
differences in global temperature tendency before
and after a jump. In cases when a temperature ten-
dency shift manifests itself as a trend change the
t-test can be used. In all, 12 synchronization events
and eight shifts occurred in observations and model
simulations (not including the suspected shift in the
21st century observations). For all shifts (three in
observations and five in the models), it was found
that the change in ENSO variability is significant
at the 90% or higher confidence level whereas the
change in temperature tendency is significant at the
95% or higher confidence level [Wang et al., 2009,
supplementary material].

3. Results From Proxy Data

It is desirable to investigate whether this mecha-
nism can be found in data before the 20th century.
In order to do this we need to resort to proxy
data. Unfortunately, data for the NPI index do
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not exist before the 20th century. Thus, the net-
work of the other three modes (NAO, PDO, and
ENSO) will be considered. The PDO proxy covers
the period 993-1995 AD [MacDonald & Case, 2005],
the NAO proxy covers the period 1049-1995 AD
[Trouet et al., 2009], and the ENSO proxy is [Cook
et al., 2009] 3.4 index in the period 1300-2005 AD.
As a global temperature proxy we considered the
northern hemisphere temperature reconstruction of
Crowley [2000] covering the period 1000-1993 AD.

First, the overlapping period 1300-1900 AD is
considered (here the period 1900-2007 AD where
instrumental measurement exist and have been
analyzed previously is not considered). Then the
network is constructed and as previously the syn-
chronization measure and coupling are computed.
The results are shown in Fig. 3. In the top panel,
the synchronization measure is shown. This mea-
sure is a simplified version of Eq. (1) (it is the
root mean square of the cross-correlation coefficient
between all unique pairs of the three indices; in this
way, unlike in Fig. 1(a), higher values indicate syn-
chronization). The window over which the correla-
tions are estimated is 21 years (rather than 11 used
in the previous studies). A wider window compen-
sates for the increased uncertainty in proxy records.
According to a similar surrogate data analysis, a
value above 0.31 indicates a statistically significant
synchronization event. The middle panel shows the
coupling measure as modified in [Swanson & Tso-
nis, 2009]. As before when this measures decreases,
coupling strength increases. We find that the mech-
anism of synchronization + increase (decrease) in
coupling — climate shift (no climate shift) is again
present, but it is not as robust as in the previ-
ous results. It is observed in 17 out of the total
23 synchronization events in that period (a 75%
success rate). In three synchronization events the
coupling was increasing but no shift occurred and
in three other events the coupling was decreasing
but a shift did occur. This “departure” from the
robustness of the mechanism observed in the mod-
ern data and in model simulations may be due to
the fact that the proxy data are not as reliable
as actual measurements and/or because this net-
work has three of the four modes used in the pre-
vious studies. Sensitivity analysis using a network
constructed from the observations in the 20th cen-
tury but without the NPI lowers the success rate in
that period from five out of five to four out of five.
Thus, not having NPI may be part of the problem.
However, the small sample size of synchronization
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The top panel shows the synchronization measure. This measure is a simplified version of Eq. (1) [it is the root mean

square of the cross-correlation coefficient between all unique pairs of the three indices; in this way, unlike in Fig. 1(a), higher
values indicate synchronization]. The window over which the correlations are estimated is 21 years. According to surrogate
data analysis a value above 0.31 (horizontal solid line) indicates a statistically significant synchronization event. Twenty three
synchronization events are observed in the period 1300-1900. The middle panel shows the coupling measure as modified in
[Swanson & Tsonis, 2009]. Here again, when this measures decreases, coupling strength increases. The bottom panel is the

NH temperature proxy used in this study.

events inhibits us from making concrete conclu-
sions on this issue. It is nevertheless encouraging
that the mechanism is observed in 17 out of 23
synchronization events. In order to further support
the statistical significance of the existence of the
mechanism in the proxy data we adopted a differ-
ent approach. More specifically we examined the
coherence between synchronization measure, cou-
pling measure, and NH temperature.

Coherence measures the linear dependence of
the oscillatory components in the two detrended
signals. While it does not indicate cause and effect,
significant coherence suggests that changes in one
signal relate to changes in the other signal. When
the squared coherency is transformed by the inverse
hyperbolic tangent, the resulting values have a nor-
mal distribution centered on zero and with a vari-
ance proportional to the sum of squares of the
smoothing weights [Kuo et al., 1990]. This allows
us to make a correspondence between the values of

squared coherency and confidence levels. For exam-
ple, for a given frequency, squared coherency val-
ues of 0.2, 0.25 and 0.31 define the approximate
90%, 95% and 99% confidence levels, respectively,
for incoherent series.

Estimation of the magnitude square coherence
is based on Matlab’s program mscohere. The pro-
grams computes the magnitude squared coherence
estimate Cy, of the input signals x and y using
Welch’s averaged, modified periodogram method
[Welch, 1967]. The magnitude squared coherence
estimate is a function of frequency with values
between 0 and 1 that indicates how well = cor-
responds to y at each frequency. The magnitude
squared coherence is a function of the power spec-
tral densities (P,,(f) and Py, (f)) of x and y and
the cross power spectral density (Pyy,(f)) of  and v,

| Pay ()12

Cull) = B (1B

(3)
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where z and y must be the same length. For real
x and y, the program returns a one-sided coher-
ence estimate and for complex z or y, it returns a
two-sided estimate.

Figure 4 shows the magnitude square coher-
ence between coupling and temperature (top) and
between distance and NH temperature (bottom).
Both figures indicate significant coherence at sev-
eral frequencies. More specifically, the top panel
shows significant coherence between coupling and
NHT over a range of frequencies centered at about
0.15 cycles/year (corresponding to a time scale
of 7-8 years) and a range of frequencies cen-
tered at about 0.33 cycles/year (corresponding to
a time scale of 3 years). The bottom panel shows
significant coherence between distance and NHT
over a range of frequencies centered at about
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0.1 cycles/year (corresponding to a time scale of
10 years) and a range of frequencies centered at
about 0.4 cycles/year (corresponding to a time
scale of 2.5 years). Phase estimates are not clear
because the duration of both synchronization and
coupling strength increase varies from case to case,
but it appears that both distance and coupling lead
NHT. These results are consistent with the pro-
posed mechanism for major climate shifts. In the
low frequency domain the time scale in the coher-
ence between distance and NHT is longer than that
between coupling and NHT. This is a direct result
of the fact that according to the mechanism for a
shift to take place the modes must first synchro-
nize and then coupling must increase. In this case,
coupling increase acts for a shorter time period com-
pared to the length of synchronization. The oppo-
site is observed over the higher frequency ranges.
As is shown in Fig. 3 the synchronization mea-
sure exhibits more high frequency variability than
the coupling measure. Thus, in some cases synchro-
nization may begin while coupling is increasing and
the event may not last sufficiently long to change
the climate state. Nevertheless, this is not incon-
sistent with synchronization + coupling increase
(decrease) — climate shift (no climate shift).

4. Conclusions

According to the Tsonis-Swanson-Kravtsov (TSK)
mechanism for major climate shifts [Tsonis et al.,
2007] major climate modes tend to synchronize at
some coupling strength. When this synchronous
state is followed by an increase in the cou-
pling strength, the networks’ synchronous state is
destroyed and after that climate emerges in a new
state. The whole event marks a significant shift
in climate. Here, we have performed an analysis
of proxy climate data in order to further investi-
gate the validity of the TSK mechanism beyond the
time of the actual instrumental records. Again, we
find strong evidence of the mechanism as well as
significant coherence between both synchronization
and coupling and global temperature. These results
provide further support that the above mechanism
for climate shifts is a robust feature of the climate
system.
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