Two-Electron Wave Functions

Electrons are indistinguishable, so are photons and other fundamental particles.
Interchanging particle 1 and 2 should give the same combined probability density
lw(1,2)* = |y(2,1) in quantum mechanics. That can be achieved in two ways by
combining two single-particle wave functions (1), yg(2) into a two-particle wave

function y(1,2):

v>(1,2) = [ wa(1) - wp(2) + Wa(2) - wp(1) ] /N2 Symmetric for integer spin:
~ Bosons, e.g. photons, ‘He

U} A1,2) = [wa(1) Wp(2) — wa(2) - wp(1) ]/ \2 Antisymmetric for half-integer spin:
| Fermions, e.g. electrons
12

o, B are the quantum numbers of the two particles (for example n, /, m;).
The one-electron wave functions consists of a spatial part and a spin part (quantum

notes p. 17):

Va(1) = ya(ri) - 11 X1 =[ 1] =T for me=+% = [0] =1 form=-Y%
0 1

In the two-electron wave function either the spatial or the spin part can be

antisymmetric, the other is symmetric:

vi(rr) - 1 (1,2)
yi(rLr) - x°(1,2)

vi(1,2) = {

e
spatial part: W (r,r2) = [ Wa(r)-Wp(r2) + Wa(r2)-yp(r) 1/32

yArLr2) = [ Wa(r)wa(r2) — wa(r2)wp(r) 1/32

spin part: y*(1,2) = [T 4, —T:_fl]/\/2 m~ 0  S=0, singlet
R my=+1

v’(1,2) = [T, + o172 me= 0 p S=I, triplet
~L1 »Lz my=—1

The spin part is an explicit example of angular momentum addition (quantum notes p. 18):

mge=-=S, ... S = 0

0
S1:1/2, S2:1/2, S:|S1—S2|,...,S1+S2:{1

mg=-=S, ... S -1,0,+1




Helium

Helium, the prototype of a two-electron system, has two distinct sets of levels where the
two electrons have “antiparallel” / “parallel” spins: singlet / triplet = para- / ortho-He.
All optical transitions between them are dipole-forbidden by the AS=0 rule (quantum
notes p. 21). The ground state 1s” does not exist in ortho-He (“parallel” spins) because
the antisymmetric spatial wave function y*(r},r,) vanishes if electrons 1 and 2 have the
same quantum numbers o= 3 = 1s. This is an example of Pauli’s exclusion principle
for Fermions, which forbids identical quantum numbers for both electrons. It is a

consequence of the antisymmetric wave function.

Level structure of He:

(For the terminology see quantum notes p. 20)

1s2p 'P
P : 1S2p 3P0,1,2
1s2s 1So
1s2s °S;
Hel line (21.2 eV)
1s’
para-He = singlet= " T ” ortho-He = triplet= " 11"
Two-Electron Schrodinger Equation in He
h22me [ (9/0r) + (8lor)* Tyt (1,2) + V-y®(1,2) = E, y*y(1,2)
2¢’ 2¢? e?
V - o — -
Iri|  raf  frirg

——— Attraction of each electron to the nucleus

---------- Repulsion between the two electrons



Exchange Interaction

The average (= expectation value) of the Coulomb interaction between the two electrons
is obtained by taking the integral over the antisymmetric two-electron function (only the
spatial part is shown):

2
Ve = [ yi(rir)* c ’ yA(ry,r,) drdr,

ri—r>
o2
= +é’f Yo (r)wa(r) — yp¥(r2)yp(ra) dridr; Coulomb integral
1—T2
—e ] Yo (r)ye(rz) yp*(r2)yp(ry) dridr; Exchange integral

N A

Coulomb repulsion between electrons is often reduced by exchange attraction, due to
the minus sign in the antisymmetrized wave function. The exchange interaction is

responsible for magnetism.

Many-Electron Wave Functions

The antisymmetrized wave function for N electrons is the Slater determinant

(Wa(1) yp(1) = ye(1))
1 Val(2) '
v, ... N) = (N)™” -det| .
W(X(N) ........... WC(N)
- J

An infinite number of particles is described by quantum field theory, for example an
infinite number of virtual electrons and photons by quantum electrodynamics, or a huge
number of 10> electrons in a solid. In that case it is often sufficient to use an effective
single-electron wave function in the average potential of all other electrons and to

populate the energy levels according to the average occupancy <n> :

Bose-Einstein statistics (Bosons): Fermi-Dirac statistics (Fermions)
_ 1 B 1
exp[ E/ksT ] - 1 0> = “exp[ (E-Er) / ksT ] + |

kg = Boltzmann constant Er = Fermi level = chemical potential
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