Two-Electron Wave Functions

Electrons are indistinguishable, so are photons and other fundamental particles. Interchanging particle $\mathbf{1}$ and 2 should give the same combined probability density $|\psi(\mathbf{1}, \mathbf{2})|^{2}=|\psi(\mathbf{2}, \mathbf{1})|^{2}$ in quantum mechanics. That can be achieved in two ways by combining two single-particle wave functions $\psi_{\alpha}(\mathbf{1}), \psi_{\beta}(\mathbf{2})$ into a two-particle wave function $\psi(\mathbf{1 , 2})$:

$\psi^{\mathrm{S}}(\mathbf{1 , 2})=\left[\psi_{\alpha}(\mathbf{1}) \cdot \psi_{\beta}(\mathbf{2})+\psi_{\alpha}(\mathbf{2}) \cdot \psi_{\beta}(\mathbf{1})\right] / \sqrt{ } 2$	Symmetric for integer spin: Bosons, e.g. photons, ${ }^{4} \mathbf{H e}$
$\psi^{\mathrm{A}(\mathbf{1 , 2})=\left[\psi_{\alpha}(\mathbf{1}) \cdot \psi_{\beta}(\mathbf{2})-\psi_{\alpha}(\mathbf{2}) \cdot \psi_{\beta}(\mathbf{1})\right] / \sqrt{ } 2}$	Antisymmetric for half-integer spin: $1 \leftrightarrow 2$
Fermions, e.g. electrons	

α, β are the quantum numbers of the two particles (for example n, l, m_{l}).
The one-electron wave functions consists of a spatial part and a spin part (quantum notes p. 17):
$\psi_{\alpha}(\mathbf{1})=\psi_{\alpha}\left(\mathbf{r}_{1}\right) \cdot \chi_{1} \quad \chi_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]=\uparrow$ for $m_{s}=+1 / 2 \quad \chi_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]=\downarrow \quad$ for $m_{s}=-1 / 2$
In the two-electron wave function either the spatial or the spin part can be antisymmetric, the other is symmetric:

$$
\psi^{\mathrm{A}}(\mathbf{1}, \mathbf{2})=\left\{\begin{array}{l}
\psi^{\mathrm{S}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \cdot \chi^{\mathrm{A}}(\mathbf{1 , 2}) \\
\psi^{\mathrm{A}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \cdot \chi^{\mathrm{S}}(\mathbf{1 , 2})
\end{array}\right.
$$

spatial part: $\quad \psi^{\mathrm{S}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\left[\psi_{\alpha}\left(\mathbf{r}_{1}\right) \cdot \psi_{\beta}\left(\mathbf{r}_{2}\right)+\psi_{\alpha}\left(\mathbf{r}_{2}\right) \cdot \psi_{\beta}\left(\mathbf{r}_{1}\right)\right] / \sqrt{ } 2$

$$
\psi^{\mathrm{A}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\left[\psi_{\alpha}\left(\mathbf{r}_{1}\right) \cdot \psi_{\beta}\left(\mathbf{r}_{2}\right)-\psi_{\alpha}\left(\mathbf{r}_{2}\right) \cdot \psi_{\beta}\left(\mathbf{r}_{1}\right)\right] / \sqrt{ } 2
$$

spin part:

$$
\begin{aligned}
& m_{s}=0 \quad S=0 \text {, singlet } \\
& \left.\begin{array}{l}
m_{s}=+1 \\
m_{s}=0 \\
m_{s}=-1
\end{array}\right\} S=1, \text { triplet }
\end{aligned}
$$

The spin part is an explicit example of angular momentum addition (quantum notes p. 18):

$$
s_{1}=1 / 2, \quad s_{2}=1 / 2, \quad S=\left|s_{1}-s_{2}\right|, \ldots, s_{1}+s_{2}= \begin{cases}0 & m_{s}=-S, \ldots,+S=0 \\ 1 & m_{s}=-S, \ldots,+S=-1,0,+1\end{cases}
$$

Helium

Helium, the prototype of a two-electron system, has two distinct sets of levels where the two electrons have "antiparallel" / "parallel" spins: singlet / triplet = para- / ortho-He. All optical transitions between them are dipole-forbidden by the $\Delta S=0$ rule (quantum notes p. 21). The ground state $1 s^{2}$ does not exist in ortho-He ("parallel" spins) because the antisymmetric spatial wave function $\psi^{A}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ vanishes if electrons 1 and 2 have the same quantum numbers $\alpha=\beta=1 \mathrm{~s}$. This is an example of Pauli's exclusion principle for Fermions, which forbids identical quantum numbers for both electrons. It is a consequence of the antisymmetric wave function.

Level structure of He :

(For the terminology see quantum notes p. 20)

para-He $=$ singlet $=" \uparrow \downarrow " \quad$ ortho- $\mathrm{He}=$ triplet $=" \uparrow \uparrow "$

$$
\text { ortho- } \mathrm{He}=\text { triplet }=" \uparrow \uparrow "
$$

$$
\begin{aligned}
& -\hbar^{2} / 2 m_{e}\left[\left(\partial / \partial \mathbf{r}_{1}\right)^{2}+\left(\partial / \partial \mathbf{r}_{2}\right)^{2}\right] \psi^{\mathrm{A}}{ }_{\mathrm{n}}(\mathbf{1}, \mathbf{2})+\mathrm{V} \cdot \psi^{\mathrm{A}}{ }_{\mathrm{n}}(\mathbf{1}, \mathbf{2})=\mathrm{E}_{\mathrm{n}} \cdot \psi^{\mathrm{A}}{ }_{\mathrm{n}}(\mathbf{1}, \mathbf{2}) \\
& \mathrm{V}=-\frac{2 \mathrm{e}^{2}}{\left|\mathbf{r}_{1}\right|}-\frac{2 \mathrm{e}^{2}}{\left|\mathbf{r}_{2}\right|}+\frac{\mathrm{e}^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \\
& \text { __ Attraction of each electron to the nucleus } \\
& \text {.......... Repulsion between the two electrons }
\end{aligned}
$$

Exchange Interaction

The average (= expectation value) of the Coulomb interaction between the two electrons is obtained by taking the integral over the antisymmetric two-electron function (only the spatial part is shown):

$$
\begin{aligned}
& <\mathrm{V}_{\mathrm{ee}}>=\iint \psi^{\mathrm{A}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)^{*} \frac{\mathrm{e}^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi^{\mathrm{A}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \\
& =+\mathrm{e}^{2} \iint \psi_{\alpha} *\left(\mathbf{r}_{1}\right) \psi_{\alpha}\left(\mathbf{r}_{1}\right) \frac{\mathrm{e}^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{\beta}^{*}\left(\mathbf{r}_{2}\right) \psi_{\beta}\left(\mathbf{r}_{2}\right) \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \\
& \text { Coulomb integral } \\
& \quad-\mathrm{e}^{2} \iint \psi_{\alpha} *\left(\mathbf{r}_{1}\right) \psi_{\alpha}\left(\mathbf{r}_{2}\right) \frac{\mathrm{e}^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \psi_{\beta}^{*}\left(\mathbf{r}_{2}\right) \psi_{\beta}\left(\mathbf{r}_{1}\right) \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \\
& \text { Exchange integral }
\end{aligned}
$$

Coulomb repulsion between electrons is often reduced by exchange attraction, due to the minus sign in the antisymmetrized wave function. The exchange interaction is responsible for magnetism.

Many-Electron Wave Functions

The antisymmetrized wave function for N electrons is the Slater determinant
$\psi(\mathbf{1}, \ldots, \mathbf{N})=(\mathrm{N}!)^{-1 / 2} \cdot \operatorname{det}\left(\begin{array}{cccc}\psi_{\alpha}(\mathbf{1}) & \psi_{\beta}(\mathbf{1}) & \cdots \cdots & \psi_{\zeta}(\mathbf{1}) \\ \psi_{\alpha}(\mathbf{2}) & & & \vdots \\ \vdots & & & \vdots \\ \vdots & & \\ \psi_{\alpha}(\mathbf{N}) & \cdots \cdots \cdots \cdots & \psi_{\zeta}(\mathbf{N})\end{array}\right)$
An infinite number of particles is described by quantum field theory, for example an infinite number of virtual electrons and photons by quantum electrodynamics, or a huge number of 10^{23} electrons in a solid. In that case it is often sufficient to use an effective single-electron wave function in the average potential of all other electrons and to populate the energy levels according to the average occupancy $<\mathrm{n}>$:

Bose-Einstein statistics (Bosons):

$$
<\mathrm{n}>=\frac{1}{\exp \left[\mathrm{E} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right]-1}
$$

$\mathrm{k}_{\mathrm{B}}=$ Boltzmann constant

Fermi-Dirac statistics (Fermions)

$$
<\mathrm{n}>=\frac{1}{\exp \left[\left(\mathrm{E}-\mathrm{E}_{\mathrm{F}}\right) / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right]+1}
$$

$$
\mathrm{E}_{\mathrm{F}}=\text { Fermi level }=\text { chemical potential }
$$

