
Tribler: A social-based Peer-to-Peer system

J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker1, J. Yang, A. Iosup,
D.H.J. Epema, M. Reinders, M. van Steen1, H.J. Sips

Department of Computer Science, Delft University of Technology, the Netherlands
1Department of Computer Science, Vrije Universiteit, the Netherlands

ABSTRACT
Most current P2P file sharing systems treat their users as anony-
mous, unrelated entities, and completely disregard any social re-
lationships between them. However, social phenomena such as
friendship and the existence of communities of users with similar
tastes may be well exploited in such systems, to increase their usabil-
ity and performance. In this paper we present a novel social-based
P2P file-sharing paradigm that exploits social phenomena bymain-
taining social networks and using these in content discovery, con-
tent recommendation, and downloading. Based on this paradigm’s
first class concepts such as taste groups, friends, and friends-of-
friends, we have designed and implemented the TRIBLER P2P file-
sharing system as a set of extensions to Bittorrent. We present
and discuss the design of TRIBLER, and we show evidence that
TRIBLER enables fast, trusted content discovery and recommenda-
tion at a low additional overhead, and a significant improvement in
download performance.

1. INTRODUCTION
TraditionalP2Pfile-sharing systems focus exclusively on

technical issues, and are therefore unable to leverage the
power of social phenomena. We believe that social phenom-
ena such as friendship, trust, and a sense of community may
be at least as important as technical issues, and may indeed
have a large positive impact on the usability and performance
of P2Pfile-sharing systems. For example, viewing users as
social partners, rather then solitaryrational agents[11], could
alleviate the problem of freeriding [3], by exploiting the fact
that people tend not to steal (bandwidth) from the social
group they belong to.

To address this belief, we propose in this work a novel
social-basedP2Pfile-sharing paradigm, which facilitates the
formation and maintenance of social networks, and exploits
their social phenomena for improved content discovery, rec-
ommendation, and sharing. Our contribution is threefold.
First, we relate the social-basedP2Pfile-sharing paradigm
to the current research challenges inP2Presearch (Section
2). Second, we present the design and implementation of
TRIBLER, which materializes the social-based paradigm by
adding social-based functionality to the widely popular Bit-
torrent system (Sections 3-6). To facilitate the formationand
maintenance of social networks,TRIBLER imports existing
user contacts from other social networks, e.g., MSN, and in-
troduces permanent user identifiers (Section 4). Rather than
using direct content-based searching,TRIBLER performs con-
tent discovery and recommendation based on the notion of
taste buddies, that is, users with the same taste or interests
(Section 5).Third, we show evidence thatTRIBLER achieves a
significant improvement in download performance,by invok-
ing the joint effort of social peer groups (Section 6). The full
TRIBLER documentation and source code is available from
http://Tribler.org.

2. RESEARCH CHALLENGES
With currentP2Pfile-sharing systems continuously having

more than 1,000,000 users, their hidden performance and be-
havioral issues can be revealed only under special scrutiny.
Starting in 2003, we have studied the performance of Bit-
torrent [14], which has been for a number of years the most
popularP2Pfile-sharing system. Based on our, and on related
studies, we formulate the following five grand research chal-
lenges forP2Pfile sharing, and we argue for the importance
of the social-based paradigm in solving these challenges. In
particular, our social-basedP2Pnetwork,TRIBLER, addresses
all five grand challenges.

The most difficult research challenge is thedecentralization
of the functionality of aP2Psystem across the various peers.
Full decentralization eliminates the need for central elements
in the system, which must be set up and maintained by some
party and which may form serious bottlenecks, point of fail-
ures, or security threats. In particular, connecting to the
network and validating accounts are difficult to implement
without any central element. To date, noP2Pfile-sharing
system exists which fully decentralizes all functionalityef-
ficiently and without loss of integrity. Social groups form a
natural method to efficiently decentralizeP2Psystems, due
to the fact that communication is mostly localized amongst
group members.

The second challenge is to guarantee theavailability of
a P2Psystem as a whole. The operation of such a system
should not depend on the availability of any particular partic-
ipating peer, or of any central component, if the latter exists.
Given the short availability of peers (in [14] we found less
than 4% of the peers to have an uptime of over 10 hours),
the availability problem is critical. Proven social incentives
such as awards and social recognition could stimulate users
to leave theirP2Psoftware running for longer periods, thus
improving the overall availability of the network.

The third challenge is to maintain theintegrityof the system
and to achievetrust amongst peers. By definition,P2Psys-
tems use donated resources. However, donors cannot always
be trusted, and maintaining system integrity has proven to be
difficult in operational systems [7]. Data can be attacked at
several levels in aP2Psystem, namely system information
(e.g., pointers to content), meta data, and the actual content
itself. This significant problem, often ignored byP2Psys-
tem designers, can be solved with a social-based network,
in which users actively help to clean polluted data and users
can select trustworthy representatives.

The performance of aP2Psystem highly depends on peers
donating resources. Even though the resource economy is
by definition balanced (e.g., every MByte downloaded corre-
sponds to a MByte uploaded), autonomous peers are free to
decide whether to donate resources or not. Hence,providing
proper incentivesis vital to induce cooperation and to achieve

Files I LikeMap

Peer
Geo-Location

Engine

Geo-Location
Engine

Taste BuddiesDownloads

Social
Networking

Friends
List

Cooperative
Downloader

Metadata
Cache

BitTorrent Engine (Super) Peer
Cache

Peer
Similarity
Evaluator

Buddycast

Recommendation
Engine

Preference
Cache

User Interface

My Friends

Figure 1: The system architecture ofTRIBLER.

good performance [3]. Again, social recognition can help to
alleviate this problem.

The fifth challenge inP2Psystems is to achievenetwork
transparencyby solving the problems caused by dynamic IP
addresses, NAT boxes, and firewalls. The fundamentals of
the Internet have changed due to the wide-spread use of these
three technologies. Peers no longer have the freedom to send
anything anywhere, without the help of another peer acting
as a mediator between them. Social networks enable com-
municating peers to automatically select trusted mediators
from the members of their social proximity, who are still
online; hence, the need for fixed mediators is eliminated.

3. ARCHITECTURE OF TRIBLER
In this section we present the architecture of ourTRIBLER social-

basedP2Pfile-sharing system, which is built on top of the
Bittorrent protocol. Figure 1 depicts the architecture of the
TRIBLER’s network client. Rectangles represent client mod-
ules. The extrusions representmake-use-ofrelationships. To
achieve backwards compatibility with the existing Bittorrent
network, while offering our users extended functionality,we
only made modifications and extensions to the Bittorrent
client software. Our system is based on the ABC open-
source Bittorrent client [1]. By extending this popular client
we aim to have a large users base in a relative short time,
besides having a tested code base for our implementation.

Social groupsThe prime social phenomenonthat we exploit
in TRIBLER is that “kinship fosters cooperation” [12]. In other
words, similar taste for content can form a foundation for an
online community with altruistic behavior. In order to imple-
ment effective social groups inTRIBLER, we use an approach
borrowed from evolutionary biology (see for instance [12]):
we implement the ability to distinguish friend, foe, and new-
comer. For this, we de-anonymize peers and facilitate social
groups formation. De-anonymization is achieved by having
every user choose a nickname;TRIBLER transfers user nick-
names between users automatically. TheSocial Networking
module in Figure 1 is responsible for storing and providing
information regarding social groups (the group members,
their recently used IP numbers, etc.).

MegacachesVirtually all currentP2Pfile-sharing systems
lack a persistent “memory” about previous activity in the net-
work; peers usually exchange queries for files and file data,
and completely ignore other types of information. Thecontext
informationthat needs to be saved in order to improve future
performance consists of information on: social relations,al-
truism levels, peer uptimes, taste similarity, etc. InTRIBLER,
every piece of context information is stored locally at every
peer inmegacaches, and is exchanged within social groups
using epidemic protocols [9]. The small database icons in
Figure 1 identify the four megacaches: theFriends Listwith
information on social networks, the(Super) Peer Cachewith
information on superpeers and peers in general, theMata-
data Cachewith file metadata, and thePreference Cachewith
preference lists of other peers.

The main problem concerning megacaches is the amount
of overhead traffic required to keep them up-to-date. For
Friends Listand (Super) Peer Cache, the cache size is below
10MB, at any given time. For theMetadata Cache, we have
observed that in Bittorrent the number of newly injected files
per day is limited to roughly 1500 [14], whencontent pollu-
tion [7] is kept to a minimum. Then, we reduced the average
size of the metadata for each file to just 400 bytes using
Merkle hashes [10], yielding an overhead of approximately
600 KBytes/day. For this amount of overhead, all metadata
can be replicated among all peers, moving content discov-
ery from network-based keyword searching to local metadata
browsing. ThePreference Cacheis designed to store at most
10MB of data, enough for preference lists of thousands of
buddies (see also Section 4).

Taste buddy-based-content discoveryLocating content is
critical for P2Psystems. Current solutions are based on one
or a combination of: query flooding, distributed hash-tables,
and semantic clustering. We take a next step by connect-
ing peoplewith similar tastes calledtaste buddiesinstead of
focusing onfiles, and by using full metadata replication.

Using theFiles I like module (see Figure 1), each peer
indicates its preference for certain files. By default, the pref-
erence list of a peer is filled with its most recent downloads.
We have developed an algorithm calledBuddycastwhich uses
an epidemic protocol to exchange preference lists using the

overlay swarm (see Bootstrapping) and which can efficiently
discover a user’s taste buddies (see Section 5). ThePeer
Similarity Evaluatormodule in Figure 1 is able to compare
preference lists and determine the amount of difference in
taste.

The Recommendation Enginemodule is able to compile a
list of files a user most likely wants. First, each file has
a metadata description containing various items. Then, a
user-item rating matrix is built from the preference lists [5],
and an user-based recommendation is issued byTRIBLER,
based on standard collaborative filtering techniques. Last,
the user interface enhances the metadata browsing experience
by augmenting each file entry with the estimated interest to
the user.

DownloadingTheBittorrent Enginemodule in Figure 1 down-
loads files using a Bittorrent-compatible protocol. This mod-
ule can also use theCooperative Downloadermodule’s capabil-
ities to achieve a significant increase in file download speed,
by exploiting idle upload capacity of online friends (see Sec-
tion 6).

User interfaceThe user interface is key to making a social-
based network usable and, as such, a critical part of the
TRIBLER architecture. TheUser Interfacemodule from Fig-
ure 1 is split in five main components:Map, Downloads, My
Friends, Files I like, andTaste Buddies. We have previously de-
tailed the use of theDownloads, Files I like, andTaste Buddies
modules. The main goal of the interface is to facilitate the
formation of social groups. For this purpose, theMy Friends
module clearly displays the friends, the friends-of-friends,
and the taste buddies. Thisvisual proximitygives the user a
more personal contact with his peers, and may help reduce
asocial behavior.

Another goal of the user interface design was to ease the
process of visual identification of potential collaborators.
When a user is downloading a file, observed IP addresses of
members of the same swarm are geo-located, then displayed
on the world map, using theMap module. We have built a
Peer Geo-Location Enginemodule on top of an freely available
Geo-Location Engine(http://hostip.info).

The user interface also facilitates the use of theCooperative
Downloadermodule. The user can see which friends helped
him in the past, which friends he donated bandwidth to, and
friends currently online which can speedup new downloads.

Bootstrapping Finding other peers in aP2Psystems after
software installation is called bootstrapping. In Bittorrent,
peers have to repeatedly connect to a tracker in order to
discover other peers. Furthermore, the original Bittorrent
protocol restricts communication to the swarm of peers that
download the same file, making the bootstrapping process
unnecessarily repetitive. To alleviate the bootstrappingprob-
lem, we use two mechanisms. First, aTRIBLER peer automat-
ically uses a set of pre-knownsuperpeersto bootstrap into the
network, immediately after installation. The peer contacts
one of the superpeers only once, upon entering the network,
in order to obtain an initial list of neighbors. Second, we de-
fine a specialoverlay swarm. The overlay swarm is a swarm
with no tracker, and can be used for initial bootstrapping,
content discovery, and other information exchange.

Overhead analysisTable 1 shows the performance results
of theTRIBLER implementation. The first test determines the
number of geo-lookups a powerful test computer that acts as
a superpeer can handle per second. The second test shows
the performance of joining the overlay swarm. The third test

Test description Performance [ops/s]
Geo-lookup 1730
Overlay swarm join 7045
Join+challenge/response 865
Join+challenge+pref exch 844

Table 1: Performance of theTRIBLER system.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 10 100 1000 10000 100000
0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

F
ri
e
n
d
s
 p

ro
b
a
b
ili

ty

F
o
F

s
 p

ro
b
a
b
ili

ty

Number of friends/FoFs

number of friends
number of FoFs

Figure 2: PDF of friends and FoFs inFriendster.com.

is joining an overlay and validating the public key of that
peer using a challenge/response algorithm. The fourth test
adds the exchange of a preference list with 100 files to the
third test workload. These tests show that a single peer or
superpeer can handle a significant workload and that little
overhead is added to the Bittorrent protocol.

4. SOCIAL NETWORKING
A fundamental limitation in most file-sharing systems is

the session boundary—all context information is lost when
a user disconnects from the network. Due to dynamic IP
numbers, it is difficult to store context information about
peers across sessions. Storing long-term context informa-
tion in databases like our megacaches enables the existence
of trust-based social groups, but only if the identities are
stable. To solve this problem, we have introduced perma-
nent, unique, and secure peer identifiers (PermIDs), based on
a public key scheme using elliptic-curve cryptography. To
prevent peers faking the ownership of a PermID (spoofing)
we also implemented a challenge-response mechanism for
validating PermIDs. Social network creation inTRIBLER is
greatly facilitated by the ability to import contacts from other
social networks in which the peer is a member, e.g., MSN or
GMail.

We use Bloom filters [6] for distributing and pairwise
comparing the contents of the Megacaches. A Bloom fil-
ter is a very dense hash-table-like data structure for storing
and (probabilistically) testing set membership. Because of
their reduced size, Bloom filters can significantly reduce the
bandwidth requirements of epidemic information distribu-
tion, which is the basis of our solution for content discovery
and social networking.

The size of a Bloom filter depends on the number of ex-
pected connections. With theTRIBLER system not yet in

full operation, we resort to analyzing another existing so-
cial network: Friendster.com. We have created a crawler
for this network, and we have obtained 3.3 million rela-
tions between 27,000 people. Figure 2 shows the probability
density of the numbers of friends and friends-of-friends in
Friendster.com. For this data set, a person has on aver-
age 243 friends and 9,147 friends-of-friends. These figures
are within an order of magnitude similar to the figures re-
ported in [13] for severalP2Pfile-sharing networks. Based
on these numbers, we computed that 260 bytes are needed
to discover the common friends-of-friends of two peers us-
ing a Bloom filter. This very low bandwidth requirement
enablesTRIBLER peers to exchange information simultane-
ously with thousandsof other peers, which is a significant
improvement over traditional epidemic protocols, and offer
sufficient leverage for large-scaleP2Pnetworks.

5. BUDDYCAST ALGORITHM
In order to do content discovery and recommendation, we

create inTRIBLER an overlay consisting of peers with similar
tastes (taste buddies). We use the Buddycast algorithm to
discover these taste buddies.

The Buddycast algorithm is based on an epidemic pro-
tocol and works as follows. Each peer maintains a list of
its top-N most similar peers along with their current pref-
erence lists. Periodically, a peer connects to either (a) one
of its buddies to exchange social networks and preference
lists (exploitation), or (b) to a new peer, randomly chosen,
to exchange this information (exploration). To maximize the
exploration of the social network, every peer also maintains
a list with theK most recently visited random peers, and
avoids reconnecting to a peer already present in the list. In
contrast to other epidemic protocols such as Newscast [9],
we use both exploitation and exploration branches, we limit
the randomness of peer selection during the exploration, and
we implicitly cluster peers into (trusted) social groups. This
is very similar with the approach proposed in [15].

To find a good balance between exploitation and explo-
ration, the following procedure is adopted. First,⌈λ · N⌉
random peers are chosen, whereλ ≥ 0 is the exploitation-to-
exploration ratio. Then, these random peers are joined with
theN buddies in a single ranked list, with the random peers
being assigned the lowest ranks. Then, one peer is randomly
chosen from this ranked list according to a roulette wheel ap-
proach (probabilities proportional to the ranks), which gives
taste buddies a higher probability of being selected than the
random peers. Once a peer has selected some other peer,
the buddy lists of the two peers are joined. The first peer
then ranks the composite list according to the preference list
similarities with its own preference list, and retains onlythe
top-N best ranked peers. Similarities between preference
lists are measured using the Pearson correlation among the
binary rating vector for all the known items [5].

To experimentally validate our Buddycast algorithm, we
run a network of 480 peers on our DAS 400-processors sys-
tem (http://www.cs.vu.nl/das2). We used a data set of TV
watching habits of 480 users from the SKO foundation [2] as
rating data (users watched or did not watch TV programs).
Each peer maintained a list of 10 taste buddies (N = 10)
and the 10 last visited peers (K = 10). The exploitation-
to-exploration ratioλ was set to1. Figure 3 compares the
convergence of Buddycast to that of Newscast, which ran-
domly selects peers to connect to, i.e., which corresponds to

Iterations

F
ra

c
ti
o

n
 o

f
o

v
e

rl
a

p

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0

0.8

0.9

Buddycast

Newscast

Figure 3: Convergence of our Buddycast algorithm.

λ → ∞. After each update we compare the list of top-N

taste buddies with a pre-compiled list of top-N taste buddies
generated using all data, which would be possible with a
centralized approach. Figure 3 shows the fraction of overlap
as a function of time (represented by the number of updates).
The convergence of Buddycast is much faster than that of
Newscast, and similar to the one proposed in [15]. We be-
lieve that Buddycast will perform even better for a network
with millions of peers, but this kind of setup is difficult to
emulate even on a large-scale system like the DAS.

6. COOPERATIVE DOWNLOADING
In this section we present the protocol based on social

grouping and cooperation, which improves download effi-
ciency. Early downloading protocols (e.g., Gnutella) have
no incentives for donating upload bandwidth. This approach
has serious limitations in real environments, because un-
constrained bandwidth sharing is sensitive to freeriding [3].
The Bittorrent tit-for-tat mechanism was the first system
which offered an incentive for uploading. The current Bittor-
rent mechanism also has its disadvantages, because without
enough seeding peers, the download speed of a peer depends
on its actual contribution to the community. In real systems
this is overly restrictive, as Bittorrent’s tit-for-tat bartering
protocol limits a peer’s effective download bandwidth to its
upload link capacity. Hence, peers with asymmetric Internet
access, such as ADSL or ADSL-2, cannot fully use their
download capacity.

We have developed a newcooperative downloading protocol
which makes use of social groups, where members who trust
each other cooperate to improve their download performance
(See Figure 4). The idea of download with the help of
others was first introduced in [16], where altruistic peers
contribute their bandwidth by joining a swarm even if they
are not interested in the content being distributed in this
swarm. The inherent assumption of sufficient altruism in the
network without any incentives makes this simple approach
impractical in real-world environments. Our cooperative
downloading protocol solves this problem by introducing
social groups incentives.

Peers from a social group that decide to participate in a
cooperative download take one of two roles: they are either
collectors orhelpers. A collector is the peer that is interested
in obtaining a complete copy of a particular file, and a helper
is a peer that is recruited by a collector to assist in download-
ing that file. Both collector and helpers start downloading the

Helper

Collector

Helper

Helper

Helper

Non-cooperative DownloadCooperative Download

Download completed Downloading
BitTorrent swarm

Figure 4: Overview of cooperative downloading.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

S
p

e
e

d
u

p

Number of helpers

ADSL, 512:128 Kbps, real
ADSL, 2048:512 Kbps, real

ADSL2, 8:1 Mbps, real

ADSL, 512:128 Kbps and 2048:512, theoretical

ADSL2, 8:1 Mbps, theoretical

Figure 5: Helpers’ influence on the download speedup.

file using the classical Bittorrent tit-for-tat and cooperative
download extensions. Before downloading, a helper asks the
collector what chunk it should download. After download-
ing a file chunk, the helper sends the chunk to the collector
without requesting anything in return. In addition to receiv-
ing file chunks from its helpers, the collector also optimizes
its download performance by dynamically selecting the best
available data source from the set of helpers and other peers
in the Bittorrent network. Helpers give priority to collector
requests and are therefore preferred as data sources.

We have implemented and tested our cooperative down-
load extension to the Bittorrent protocol in a real environ-
ment. For this we have selected a middle-sized swarm of
around 1,900 peers with only 6% seeds, distributing a 1.2
GB file. These numbers remained almost unchanged during
our experiments. We performed our tests for three down-
load:upload bandwidth ratios, from standard Internet pack-
age offerings: low-end ADSL with a ratio of 512:128 Kbps,
high-end ADSL with a ratio of 2048:512 Kbps, and ADSL-2
with a ratio of 8:1 Mbps.

As a performance metric of our system, we use the ratio
between the download time achieved by a peer obtaining a
file all by itself versus the corresponding time for a coop-
erative group (speedup). The theoretical maximum speedup,
assuming that a peer’s download bandwidth equals its upload
bandwidth (tit-for-tat holds), is limited to the ratio between
download and upload link capacities. Thus, for ADSL and
ADSL-2 the maximum achievable speedup is 4 and 8, re-
spectively.

Figure 5 shows the obtained speedups for a numbers of

helpers in range from 0 to 32. The total download time was
decreased with a factor of almost 2 for low-end ADSL, more
than 3 for high-end ADSL and almost 6 for ADSL-2. The
difference between the theoretical and achieved speedups is
mainly due to influence of seeders and delays for helpers
when requesting unique file chunks from peers. The more
helpers are involved, the more restrictive the unique file
chunk selection criterion, and consequently the longer the
time needed to obtain such a chunk. This time is further
increased in the case of low-end ADSL by the fact that low-
end ADSL users are discriminated as those who have upload
bandwidth below average [14].

7. RELATED WORK
The idea of exploiting natural connections between hu-

mans in large-scale social networks is starting to become
a major research topic. To date, methods based on social
clustering were applied inP2Pnetworks to limited aspects
of content distribution [8], user communities formation [4],
and collaborative service provisioning [5].

In [8] a system which uses knowledge discovery techniques
for overlay network creation is presented. By automatically
clustering users based on their preferences, the system en-
ables the content location and improves the performance of
content sharing. In [4], a simple general-purpose system is
proposed. The system groups peers based on the similarity
of their keyword searches. Authors give evidence on how
their system can be used to form and maintain communi-
ties of users. An extensive experimental analysis of several
collaborative filtering methods is given in [5].

TRIBLER is the first system which exploits social phenom-
ena to address all aforementioned research challenges in
P2Pfile sharing networks.

8. CONCLUSION AND FUTURE WORK
In this paper we have presented a novel paradigm for the de-

sign ofP2Pfile-sharing networks based on social phenomena
such as friendship and trust. Following the paradigm’s first-
class concepts, e.g., friends, friends-of-friends,and taste bud-
dies, we have designed and implemented theTRIBLER P2Pfile-
sharing system. We have described howTRIBLER can help
to automatically build a robust semantic and social overlay
on top of Bittorrent, one of the most popularP2Pfile-sharing
systems. We have shown how variousTRIBLER components
can yield good performance with respect to existing solu-
tions. In particular, we have presented evidence that coop-

erative downloading can achieve double, triple, or even sex-
tuple download speed when used in a real Bittorrent swarm.
Last, but not least, we have shown howTRIBLER addresses
the five majorP2Presearch challenges.

In the mid-term future we will expandTRIBLER with a
reputation system and tag-based content navigation, while
in the long-term future we will incorporate application-level
multicasting for video streaming.

REFERENCES
[1] http://sf.net/projects/pingpong-abc.
[2] http://www.kijkonderzoek.nl.
[3] E. Adar and B. A. Huberman. Free riding on gnutella.

Technical report, Xerox PARC, August 2000.
[4] N. Borch. Social peer-to-peer for social people. InThe

Int’l Conf. on Internet Technologies and Applications, Sep
2005.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. of UAI, 1998.

[6] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. In40th
Conference on Communication, Control, and Computing,
2002.

[7] N. Christin, A.S. Weigand, and J. Chuang. Content
availibility, pollution and poisoning. InACM
E-Commerce Conference. ACM, June 2005.

[8] A. Fast, D. Jensen, and B. N. Levine. Creating social
networks to improve peer-to-peer networking. In11th
ACM SIGKDD, Aug 2005.

[9] M. Jelasity and M. van Steen. Large-scale newscast
computing on the Internet. Technical Report IR-503,
2002.

[10] Ralph C. Merkle. A digital signature based on a
conventional encryption function. InCRYPTO ’87,
pages 369–378. Springer-Verlag, 1988.

[11] S. J. Nielson, S. A. Crosby, and D. S. Wallach. A
taxonomy of rational attacks. In4th Int’l Workshop on
Peer-to-Peer Systems (IPTPS), Feb 2005.

[12] E. Pennisi. How did cooperative behavior evolve?
Science, 309(5731):93+, July 2005.

[13] L. Plissonneau, J.-L. Costeux, and P. Brown. Analysis
of Peer-to-Peer Traffic on ADSL. In Constantinos
Dovrolis, editor,PAM, volume 3431 ofLNCS, pages
69–82. Springer, 2005.

[14] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J.
Sips. The Bittorrent P2P file-sharing system:
Measurements and analysis. In4th Int’l Workshop on
Peer-to-Peer Systems (IPTPS), Feb 2005.

[15] S. Voulgaris and M. van Steen. Epidemic-style
management of semantic overlays for content-based
searching. InEuroPar, Lisbon, Portugal, Aug 2005.

[16] J. Wong. Enhancing collaborative content delivery
with helpers. Master’s thesis, The University of British
Columbia, Nov 2004.

