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In recent years, with the continuous improvement of urban public transportation capacity, citizens’ travel has become more and
more convenient, but there are still some potential problems, such as morning and evening peak congestion, imbalance between
the supply and demand of vehicles and passenger flow, emergencies, and social local passenger flow surged due to special
circumstances such as activities and inclement weather. If you want to properly guide the local passenger flow and make a
reasonable deployment of operating buses, it is necessary to grasp the changing law of public transportation short-term passenger
flow. This paper builds a short-term passenger flow prediction model for urban public transportation based on the idea of
integrated learning. The goal is to use the integrated model to accurately predict the short-term passenger flow of urban public
transportation, using Multivariable Linear Regression (MLR), K-Nearest Neighbor (KNN), eXtreme Gradient Boosting
(XGBoost), and Gated Recurrent Unit (GRU) as the four seed models, and then use regression algorithm to integrate the model
and predict the passenger flow, station boarding and landing, and cross-sectional passenger flow data of the typical representative
line 428 in the “Huitian Area” of Beijing from January 1, 2020, to May 31, 2020. Finally, the prediction results of the submodels are
compared with those of the integrated model to verify the superiority of the integrated model. The research results of this paper
can enrich the short-term passenger flow forecasting system of urban public transportation and provide effective data support and

scientific basis for the passenger flow, vehicle management, and dispatch of urban public transportation.

1. Introduction

According to the annual report on Beijing’s Transport
Development in 2020, by the end of 2019, the Beijing Public
Transport Group has 28,271 buses and 1,620 routes in op-
eration. The annual passenger volume of electric buses
reached 3.564 billion, with an average daily passenger vol-
ume of 9.7377 million, providing great convenience for
Beijing residents to travel, and it is the main undertaker of
Beijing’s surface public transportation.

In recent years, the characteristics of public transport
network operation have become increasingly obvious; also,
some potential problems gradually emerged, such as traffic
jams during rush hours, traffic supply and demand not
matching, a large number of passengers commuting security
hidden danger in passenger flow gathering in a certain space,

and some large activities, bad weather, and bus fault under
the special operating environment urgent need for rapid
evacuation etc. At the same time, with the increasing de-
velopment of urban public transportation informatization,
the Advanced Public Transportation System (APTS) has
become an indispensable part of the construction of a “Smart
City” as a result of the accumulation of massive public
transport IC card data assets. At present, Beijing has built a
bus GPS data acquisition system, line network management
system, and other basic data such as BUS IC card, BUS GPS,
and bus network. Thanks to the rapid development of
computer technology, the methods of machine learning and
deep learning display advantages such as high computational
efficiency and strong data processing ability. Applications
based on big data prediction technology, comprehensive and
accurate projections for short bus traffic, are to promote
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effective shuttle buses and other public traffic modes; to
improve the utilization rate of public transport vehicles,
optimization of vehicle dispatching, and the important
measures to enhance the level of public transportation
system management and operation; and also are the core of
the realization of the intelligent transport system.

At present, the public transportation enterprises are in
the process of actual operation, and the vehicle operation
dispatching scheme formulation depends largely on his-
torical experience. The forecasting ability for short-time
bus passenger flow of each station, line and period is
insufficient. It will inevitably lead to public transport
vehicles not being able to get reasonable scheduling, affect
the passengers, and impact on the effective running of the
bus system. Therefore, it is of great importance to use big
data situation analysis technology to accurately predict
short-time bus passenger flow based on traffic IC card data
and external weather data to analyze and master the
transport demand and passenger flow rule of public
transportation. Forecasting traffic demand is a core issue
in any transportation system organization, and the future
demand provided by predictive algorithms means that a
reasonable supply can be planned in advance. Bus pas-
senger flow related indicators reflect the passenger travel
demand and regularity; can, for the operators in time
according to the current system resource, adjust operation
plans such as temporary or reduce extra trains and other
transportation emergency cases combined effective dis-
posal; and provide a scientific basis for narrowing the
scope of the influence of the incident. As a result, it is
necessary for public transportation to study the short-
term passenger flow forecast, build higher prediction
accuracy of the model, and obtain more reliable short-
term passenger flow distribution, so as to solve the above
problems effectively.

In this paper, the integrated learning method is intro-
duced into the model of short-term bus passenger flow
prediction, which significantly improves the accuracy of bus
passenger flow prediction and provides a new modeling
method for the quantitative research of public trans-
portation, which has the dual significance of theoretical
guidance and method innovation.

2. Literature Review

Short-term passenger flow prediction is an important part of
the intelligent transportation system, which can be used to
assist the adjustment of travel behavior, reduce passenger
flow congestion, and improve the service quality of the
transportation system. The evolution of the passenger flow
prediction method is a process of continuous development
and expansion, from the initial linear estimation model to
the current model of machine learning and deep learning,
gradually towards maturity. Generally speaking, short-term
passenger flow prediction methods can be divided into two
categories: parametric method and nonparametric method.
The main difference between these two types of methods lies
in the assumed functional dependence between independent
variables and dependent variables [1].
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In the traditional parametric methods, there are mainly
Autoregressive Models (AR), Exponential Smoothing (ES)
[2], Autoregressive Integrated Moving Average (ARIMA)
model [3], and so on. ARIMA model is a linear combination
of time-delay variables and error terms. Since the 1970s, the
ARIMA model has become one of the commonly used
parameter prediction methods and has been widely applied
to the prediction of short-term traffic data such as traffic
flow, travel time, and speed. Based on the historical pas-
senger flow data collected by the urban rail transit automatic
ticketing system, Cai et al. [4] used the ARIMA model to
predict the passenger flow of Guangzhou metro. In addition,
due to the seasonal and trend characteristics of passenger
flow time series data, some researchers have applied Seasonal
Autoregressive Integrated Moving Average (SARIMA)
model to predict passenger flow. In order to deal with the
strong seasonal autocorrelation of the time series of pas-
senger flow of Serbian railway, Milenkovic¢ et al. [5] used the
SARIMA model to predict the passenger flow of Serbian
railway, which shows good prediction performance. Wang
et al. [6] analyzed the rule of passenger flow in and out of
Beijing subway station with time change, and the SARIMA
model is used for modeling. The results show that the
predicted results can accurately reflect the time change rule
of passenger flow in and out of Beijing subway station.
Because these parametric models assume linear relationships
between variables with time delay, it is difficult to capture
nonlinear relationships between variables, so the use of
traditional parametric methods is limited [7, 8].

In order to better deal with the nonlinear characteristics
of passenger flow data, the nonparametric method is in-
troduced. Different from the parametric method, the non-
parametric method is to establish the nonlinear relationship
between input variables and output variables without prior
knowledge. Therefore, it is more flexible and widely used in
passenger flow prediction. Guo et al. [9] used 15 minutes of
time interval summary of real traffic flow data compared,
and the experiment shows that the adaptive Kalman filtering
method can get a feasible prediction accuracy, especially
under the condition of traffic high volatility, shows how to
improve the adaptability of this method and, finally, puts
forward the suggestions to improve the short-term traffic
flow prediction performance. According to the character-
istics of bus passenger flow and the law of changing with
time, Deng et al. [10] proposed a prediction model of
multicore least-squares support vector machine. The model
fully considers the influence of historical data on bus pas-
senger flow. Zhao et al. studied the passenger flow distri-
bution in each period of the bus line by using the method of
combining wavelet analysis and neural network and pre-
dicted the passenger flow of the short-time bus line, so as to
realize the dynamic control and reasonable scheduling of the
bus. Zhang and Yang [11] combined the main factors af-
tecting passenger flow with the neural network self-learning
method and established a subway passenger flow prediction
model based on the neural network of spline weight func-
tion. Wang et al. [12] used a correlation analysis method to
analyze the relationship between pedestrian flow and its
influencing factors, extracted 11 important influencing
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factors, and established a prediction model of pedestrian
flow using the modular neural network. Among these
nonparametric methods, neural networks are widely used
because of their good adaptability, nonlinearity, and ability
to map arbitrary functions [13, 14].

In the era of big data, the data processing capacity and
prediction accuracy of the model have higher require-
ments. Researchers have made efforts to increase network
density, and Hinton et al. [15] first proposed the concept of
deep learning in 2006. Compared with the traditional
neural network and other shallow learning models, deep
learning is equivalent to a deeper neural network; that is,
there are more hidden layers, which enable it to express
more abstract and higher-level nonlinear features and more
accurately capture the “deep” features of short-term pas-
senger flow. Bai et al. [16], aiming at the short-term pre-
diction of bus passenger flow, used the Deep Belief Network
(DBN) to establish a prediction model. Compared with the
classical parametric method and nonparametric method,
this model shows a good predictive advantage. Li Bang-
peng, respectively, used the convolutional neural network
and the time-length neural network prediction model in
deep learning to predict the future indoor spatial and
temporal passenger flow distribution based on the real
spatial and temporal passenger flow data and made a model
comparison.

At present, integrated learning is a widely used method
in machine learning, which integrates different learner sets
so as to improve the accuracy of prediction [17]. In order to
facilitate the collection, the mainstream of the current re-
search is the design algorithm which promotes the weak
learner to the strong learner and integrates multiple learners
generated by the same algorithm. Freund and Schapire [18]
proposed the Adaptive Boosting (AdaBoost) algorithm,
which uses sequence sampling and has high operational
efficiency and practical application value. The Bagging al-
gorithm proposed by Breiman [19], which uses self-sampling
to combine the base learner, was subsequently improved
into Random Forest (RF) in 2001 [20] and had become the
most classic algorithm in Bagging integration. In 1992,
Wolpert [21] proposed the stacked generalization (stacked
generalization) model, but the stacking algorithm only
provides the integrated idea, for its selection of learning has
certain subjectivity and then the selection of some scholars
to study the certain research, such as Ledezma et al. [22] and
Xu Huili, to use the genetic algorithm in the metamodel and
the selection of the base model is optimized. The stacking
algorithm has difficulty in obtaining the correct base learner
assembly. Integrated learning, due to the combination of
multiple learners, greatly improves the prediction accuracy
and generally performs better than each component model,
which benefits from the diversity among models, reduces the
risk of using isolated models, and compensates for the
shortcomings of each model [23, 24]. In addition, its models
can solve many problems that a single model cannot solve.
The passenger flow of urban public transport is dynamic and
random, so it is difficult for a single model to fit its trend
well, and integrated learning can better make up for this
deficiency.

In conclusion, due to the complexity and randomness of
bus passenger flow, as well as the higher requirements of big
data on the data processing capacity and prediction accuracy
of the prediction model, the use of traditional parameter
methods and shallow neural network methods is limited.
The application of deep learning, integrated learning, and
other methods provides a new opportunity for accurately
capturing the nonlinear characteristics of STW passenger
flow and processing large quantities of multisource data.

3. Materials and Methods

3.1. Data Selection and Processing. This paper selects the
card-swiping passenger volume, station boarding and
landing volume, and section passenger volume data of the
typical representative bus line 428 in the “Huitian area”
from January 1, 2020, to May 31, 2020, for the key index
prediction. The data source is the IC card data of Beijing
Public Transport Group, with a total amount of about
107,000 pieces of data. Based on the basic analysis of the
card-swiping data, it can be known that most of the bus
operation time period is from 05:00 to 24:00, and the
number of card-swiping times within 15 minutes during
this time period is counted; that is, each indicator should
get 76 data based on the granularity of 15 minutes a day.
The processing of time series data first needs to be con-
verted into a supervised sequence according to the set time
step; that is, for certain data, it is considered that the data of
its previous time step bar has obtained this data (time step
is the number of time steps). In this process, the daily
supervised sequence length is the original daily time series
length minus the time step.

3.2. Analysis of the Key Indexes of Urban Bus Network
Monitoring in “Huitian Area”. This part monitors and an-
alyzes the three key indicators related to the passenger
volume of route 428, namely, the card-swiping passenger
volume, station boarding and landing volume, and section
passenger volume. The time frame is from January 1, 2020, to
May 31, 2020.

Route 428 is metro Longze Station-Tiantong Beiyuan
Station, including 32 stations. The operating mileage of the
line is 13.9 km, the average one-way running time is 47.73
minutes, and the average running speed is 17.74 km/h. There
are 20 vehicles in operation. There are 100 trains per day and
19 in peak hours. The average daily passenger throughput is
3,474.

3.2.1. Card-Swiping Passenger Volume. As shown in Fig-
ure 1, due to the impact of the epidemic, the passenger
volume of card swiping during the Spring Festival and the
epidemic prevention and control period after the festival was
significantly lower than the normal situation before the
festival, while the passenger volume of card swiping during
the epidemic prevention and control period after the festival
was generally low and slowly picked up, with a weekly
increase.
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FIGURE 1: Passenger volume of the No. 428 bus.

3.2.2. Boarding and Landing Volume. The boarding and
landing volume of bus number 428 is shown in Figure 2, in
the direction of Metro Longze Station to Tiantong Beiyuan
Station, the average daily volume for the largest station is
1036 (Banjieta Village North Station), and the average daily
volume for the smallest station is 14 (the north gate of
District 1, Harmony Garden). In the direction of Tiantong
Beiyuan Station to Metro Longze Station, the average daily
volume for the largest station is (Longjinyuan Area 4) and
the minimum is 33 (Longxiyuan 3" District Intersection
West).

3.2.3. Sectional Passenger Volume. The average daily section
passenger volume of bus number 428 is shown in Figure 3.
The stations with the largest passenger volume in the di-
rection of Longze Station and Tiantong Beiyuan Station are
Banjieta Village North Station and Banjieta Village East
Station. Tiantong Beiyuan Station-Metro Longze Station
direction section passenger volume is the largest station for
Xiaoxinzhuang East Station.

3.3. Model Selection. Bus passenger volume is affected by
more external environment, and it is difficult for a single
model to learn its complicated rules. Short-term prediction
is essentially a question of time sequence, to the problem of
the prediction which is usually not a model that can be
applied to all scenarios, and integrated thinking is through a
combination of several single models to reduce the risk of
the error model, by giving full play to the information of the
prediction results of each submodel to make up for the
shortcoming of single model that the prediction error is large

due to the influence of random factors, thus improving the
prediction performance. This paper constructs four seed
models of Multivariable Linear Regression (MLR),
K-Nearest Neighbor (KNN), eXtreme Gradient Boosting
(XGBoost), and Gated Recurrent Unit (GRU) and also
constructs the regression integration model.

3.3.1. MLR. In this paper, we study the influence of many
factors and so the selection of the most commonly used
multiple linear regression, the simple model principle as
shown in Figure 4.

3.3.2. KNN. KNN is a model based on distance. Figure 5
shows the algorithm principles of the classification model,
according to the K value selection near the element, the
element near the largest number of categories.

3.3.3. XGBoost. XGBoost is a boosting tree model based on
ensemble learning boosting, which is based on regression
tree. Once proposed, this method has been widely used in
much research and many enterprises because of its high
efficiency and accuracy. Some studies have shown that the
prediction accuracy of this method can be comparable to the
neural network and deep learning in dealing with time series
problems.

3.3.4. GRU. GRU combines the forget gate and the input
gate into one and mixes the cell state C and the hidden state.
The final model is simpler than the standard LSTM, as
shown in Figure 6.
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3.4. Build the Regression Integration Model. Integrated  multiple models called weak learners into a more accurate
learning is an idea rather than a specific algorithm in ma- ~ model. The integrated model uses different sampled data to
chine learning. The core of this method is to combine  train these weak learners continuously, adjusts the weak
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FIGURE 5: Schematic diagram of the KNN algorithm.

FiGURE 6: Internal structure of GRU.

learners through errors, and effectively combines the pre-
dicted results of the weak learners to a certain extent.

3.4.1. The Advantages of Integrated Learning. If the individual
model is compared to a decision-maker, the integrated learning
approach is equivalent to multiple decision-makers working
together to make a decision. The advantages of ensemble
learning are as follows: (1) overall, ensemble learning has a high
accuracy rate; (2) the introduction of randomness makes it not
easy to overfit, has good antinoise ability, is not sensitive to
outliers of abnormal points, and can handle high-dimensional
data without making feature selection; and (3) it can process
both discrete data and continuous data. In addition, the data set
does not need normalization, so the overall training speed is
considerable.
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3.4.2. The Regression Integration Model Based on GBDT.
In this part, we combine the prediction results of the four-
seed model with the regression model. This paper selected
the regression model is Gradient Boosting Decision Tree
(GBDT); this algorithm is based on the integration of
learning. The passenger flow results predicted by each
submodel are input into the GBDT model as an inde-
pendent variable and the real value of passenger flow as a
dependent variable for a new round of learning. Some
nonlinear relations between the predicted results of the
submodels and the real values can be learned through
regression models, and the advantages of different sub-
models can be brought into play to make up for the
disadvantages of different models. The model is shown in
Figure 7.

3.5. Set Evaluation Index. In order to more comprehensively
compare the different prediction results caused by the se-
lection of different parameters in the same model, this paper
selects Root Mean Square Error (RMSE) as the objective
function of the optimization model and selects Mean Ab-
solute Error (MAE) as the index of the evaluation model. Its
definitions are as follows:

z

1
ﬁ y (ytrue _ypred)z’ (1)

1

RMSE =

Il
—_

, (2)

1 N
MAE = N2|ytrue ~ Vpred
i1

Yirue Tepresents the actual value, y,..4 represents the pre-
dicted value, and N represents the predicted sample number.
Both indicators reflect the size of the error between the
predicted value and the actual value, but the former is more
able to amplify the error, while the latter reflects the true
error. The smaller the values of RMSE and MAE, the closer
the predicted value to the actual value and the higher the
prediction accuracy of the model.

4. Results

The passenger flow of swiping card and the boarding and
landing volume reflects the passenger flow of a certain line or
a certain station, and the passenger flow of section reflects
the passenger flow between two adjacent stations on the line.
The three indexes correspond to the essential basic data for
optimizing the design of the route network and deploying
vehicles in the public transport system, as well as the im-
portant basis for planning the bus dispatching frequency and
considering whether to set interregional buses. Therefore,
this paper selects three basic indicators of passenger flow-
—section passenger flow, card-swiping passenger flow, and
boarding and landing volume for short-term prediction,
providing the basis for rational planning of bus network,
allocation of bus station facilities, and preparation of its
operation plan.

4.1. The Prediction of Section Passenger Volume. This part
selects the passenger volume data of the section with a grain
size of 15 minutes from January 1, 2020, to May 31, 2020, in
the upward direction of Xiaoxinzhuang East Station of
number 428 bus in the “Huitian Area”. Excluding the data
not in the bus operation time, there are a total of 76 pieces of
data in a day, with a total of 11,552 pieces of data. The time
step was selected as a comparison of 15 minutes, 30 minutes,
1 hour, 2 hours, 3 hours, and 6 hours. In other words, time
step values were 1, 2, 4, 8, 12, and 24. In addition, the data
ratio of the training set, verification set, and test setis 7:1:2,
with 8086, 1156, and 2310 pieces of data, respectively.

It can be seen from the comparison of MAE and RMSE
precision in Tables 1 and 2 that the regression integration
prediction effect is the best in all different time steps. The
prediction effect of different time steps is shown in
Figures 8-13.

4.2. The Prediction of Card-Swiping Passenger Volume.
This part selects the card-swiping passenger volume data
with a grain size of 15 minutes from January 1, 2020, to May
31, 2020, in the upward direction of number 428 bus in the
“Huitian Area.” The time step was also selected to compare
15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, and 6
hours. The data ratio of the training set, verification set, and
test set was 6:2:2, with 8812, 2938, and 2938 pieces of data,
respectively.

It can be seen from the comparison of MAE and RMSE
precision in Tables 3 and 4 that the regression integration
prediction effect is the best in all different time steps. The
prediction effect of different time steps is shown in
Figures 14-19.

4.3. The Prediction of Boarding and Landing Volume. In
terms of the boarding and landing volume, 81,400 pieces of
data have been collected from the North Station of Banjieta
Village from the 15-minute ascending direction of bus
number 428 from January 1, 2020, to May 31, 2020. In the
same way, the data was converted into a supervised sequence
according to the set time step; the time step was 15 minutes,
30 minutes, 1 hour, 2 hours, 3 hours, and 6 hours, re-
spectively, and the data ratio of the training set, verification
set, and test set was 6:2: 2, with 48,840, 16280, and pieces of
16280 data, respectively.

It can be seen from the comparison of MAE and RMSE
precision in Tables 5 and 6 that the regression integration
prediction effect is the best in all different time steps. The
prediction effect of different time steps is shown in
Figures 20-25.

5. Discussion

According to the “no free lunch” theorem in machine
learning theory, there is no algorithm that can solve all
problems perfectly. Many factors such as the size and
structure of the data set will affect the final result. For specific
data sets and actual needs, we should consider how to choose
a suitable algorithm. This paper proposes a method for
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TaBLE 1: Multimodel MAE comparison table for different step
sizes.

Models 15 min 30 min 1h 2h 3h 6h
LR 5.00 4.71 4,71 4.65 4.62 4.68
KNN 5.27 5.21 497 4.95 4.96 5.22
XGBoost 5.11 5.30 5.10 4.83 4.78 4.68
GRU 4,97 4.71 4.70 4.78 4.62 4.67
REG 4.94 4.61 4.70 4.62 4.57 4.67

TaBLE 2: Multimodel RMSE comparison table for different step
sizes.

Models 15 min 30 min 1h 2h 3h 6h
LR 7.40 6.69 6.72 6.66 6.65 6.81
KNN 7.68 7.52 7.14 6.99 7.05 7.45
XGBoost 7.51 7.77 7.33 6.91 6.84 6.72
GRU 7.33 6.89 6.75 6.75 6.54 6.65
REG 7.30 6.64 6.71 6.59 6.50 6.64
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FIGURE 8: Regression integration prediction results when the time
step is 15 min.

selecting the optimal model in regression prediction. The
focus of this method is not the final specific model, but the
selection process of the optimal model. Therefore, it is not
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FIGURE 9: Regression integration prediction results when the time
step is 30 min.
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FIGURE 10: Regression integration prediction results when the time
step is 2 h.

limited to being used on a given data set. This is exactly the
innovation of this article. The integrated model selection
part is the focus of this article. Realize regression prediction
for boarding and landing volume, cross section passenger
flow, and card-swiping passenger flow. The same regression
integration algorithm can be used to predict all MAE and
RMSE. The submodels can also be divided into several
categories, and different algorithms can be selected for
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FIGURE 12: Regression integration prediction results when the time
step is 3 h.
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FIGURE 13: Regression integration prediction results when the time
step is 6 h.

different types of indicator data sets. If different indicators
are classified and predicted, there are problems of how to
classify and which algorithm to choose. The method pro-
posed in this paper is to use multiple algorithms to predict each
index separately, select the optimal integrated model, and
propose a comparative model to verify whether the selected

TaBLE 3: Multimodel MAE comparison table for different step
sizes.

Models 15min 30 min 1h 2h 3h 6h

LR 17.87 17.67 16.85 16.93 17.53  20.74
KNN 19.84 18.84 18.93  21.37 18.24 18.71
XGBoost 19.91 20.47 18.72 18.75 17.45 17.51
GRU 18.05 18.04 16.81 19.39 18.34 18.64
REG 17.71 17.56 16.80 16.09 16.31 17.03

TaBLE 4: Multimodel RMSE comparison table for different step
sizes.

Models 30 min 1h 2h 3h 6h
LR 17.87 17.67 16.85 16.93 17.44 19.42

15 min

KNN 19.84 18.84 18.93 21.37 17.82 18.09
XGBoost 19.91 20.47 18.72 18.75 18.43  18.47
GRU 18.05 18.04 16.81 19.39 17.25 17.53
REG 17.71 17.56 16.80 16.09 1690 17.22
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FIGURE 14: Regression integration prediction results when the time
step is 15 min.
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FIGURE 15: Regression integration prediction results when the time
step is 30 min.

optimal integrated model performs best. In the empirical study,
four machine learning algorithms of KNN, LR, XGBoost, and
GRU were used to predict boarding and landing volume, cross
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FIGURE 16: Regression integration prediction results when the time
step is 1h.
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FIGURE 17: Regression integration prediction results when the time
step is 2 h.
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FIGURE 18: Regression integration prediction results when the time
step is 3 h.

section passenger flow, and card-swiping passenger flow, re-
spectively, finally comparing the prediction results of linear
regression integration algorithms.

By comparison, in the cross section passenger flow pre-
diction, the prediction results of LR and GRU at each step in
the four submodels have lower MAE and RMSE values; the

Complexity
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FI1GURE 19: Regression integration prediction results when the time
step is 6 h.

TaBLE 5: Multimodel MAE comparison table for different step
sizes.

Models 15 min 30 min 1h 2h 3h 6h
LR 5.79 5.19 5.04 5.05 5.05 5.04
KNN 5.95 5.65 5.44 5.05 4,96 5.00
XGBoost 5.71 5.37 5.41 5.06 491 4.86
GRU 5.70 5.04 4,94 473 4.82 472
REG 5.32 495 4.81 4.70 4.68 4.67

TaBLE 6: Multimodel RMSE comparison table for different step
sizes.

Models 15 min 30 min 1h 2h 3h 6h
LR 9.51 8.56 8.46 8.36 8.33 8.31
KNN 9.86 9.70 9.12 8.53 8.28 8.32
XGBoost 9.41 9.47 9.18 8.37 7.91 7.81
GRU 9.43 8.56 8.40 8.10 7.80 7.80
REG 9.37 8.54 8.37 7.95 7.70 7.78
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FIGURE 20: Regression integration prediction results when the time
step is 15 min.

prediction results are more accurate; each submodel when the
step length is 8 and 12 has relatively low MAE and RMSE
values; and the results are more accurate. In comparison with
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FI1GURE 21: Regression integration prediction results when the time
step is 30 min.
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FIGURE 22: Regression integration prediction results when the time
step is 1h.
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FIGURE 23: Regression integration prediction results when the time
step is 2 h.

the prediction results of the regression integrated model, the
integrated model has the lowest MAE and RMSE values at each
step, indicating the result of using the regression integrated
model to predict the most accurate. When the step size of the
regression ensemble model is 12, the MAE value is 4.57 and the
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FIGURE 24: Regression integration prediction results when the time
step is 3 h.
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FIGURE 25: Regression integration prediction results when the time
step is 6 h.

RMSE is 6.50, which are both the lowest values at each step size,
indicating that the regression ensemble model has good pre-
diction accuracy when the step size is 12.

In the prediction of passenger flow by swiping cards, the
prediction results of LR in the four submodels at each step
have lower MAE and RMSE values, and the prediction
results are more accurate. When the step is 4, each submodel
has relatively low MAE and the RMSE value is more ac-
curate. In comparison with the prediction results of the
regression ensemble model, the ensemble model has the
lowest MAE and RMSE values at each step, indicating that
the prediction results of the regression ensemble model are
the most accurate. When the step size of the regression
ensemble model is 8, the MAE value is 16.09, and the RMSE
is 16.09, both of which are the lowest values at each step size.
It shows that the regression ensemble model has good
prediction accuracy when the step size is 8.

In the prediction of landing volume, the prediction
results of GRU under each step size in the four submodels
have lower MAE and RMSE values, and the prediction
results are more accurate. When the step size is 12, each
submodel has relatively low MAE and RMSE. The results are
more accurate. In comparison with the prediction results of
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the regression integrated model, the integrated model has
the lowest MAE and RMSE values at each step, indicating
that the prediction results using the regression integrated
model are the most accurate. When the step size of the
regression ensemble model is 8, the MAE value is 4.68 and
the RMSE is 7.70, which are the lowest values at each step
size. It shows that the regression ensemble model has good
prediction accuracy when the step size is 8.

6. Conclusions

The core of urban bus network operation management is to
effectively allocate and use system resources according to
changes in the bus network passenger flow, adjust operation
strategies in time, and ensure that the bus network safely
completes transportation service tasks. Short-term passen-
ger flow prediction and analysis is the basis of operation
management. It can provide a basis for emergency man-
agement and response and is also an important decision-
making index for public transportation service level and
system operation status evaluation. Short-term passenger
flow prediction is an important decision data for urban
public transportation operation and management, and its
prediction accuracy will directly affect urban public trans-
portation decision-making, adjusting the scientificity and
accuracy of the operation plan.

This paper analyzes the operational monitoring data of
428, a typical line in the Huitian area, from the perspective of
the urban public transport network in the Huitian area,
including traffic capacity, as well as the boarding and landing
volume and cross-sectional passenger flow of each station.
At the same time, based on objective bus operation data, the
Ir, KNN, Xgboost, and GRU four-seed models and the re-
gression integration model based on the four-seed model
were used to predict three different passenger flow indica-
tors. From the prediction results, it can be seen that the
regression integration is compared with the other four
submodels and the model has a higher degree of fit. For
passenger flow prediction, the result of this integrated model
has a high degree of credibility.

The reliability of the prediction results reflects the
availability and effectiveness of the prediction methods and
models to a certain extent and also ensures the availability
of the final short-term passenger flow prediction results.
According to the reliable prediction results, once the
passenger flow prediction value is greater than the preset
threshold, decision-makers can activate emergency man-
agement plans. Secondly, operational planning can be
dynamically adjusted based on passenger flow fluctuations.
Managers can effectively control short-term passenger flow
changes, adjust network operation strategies in a timely
manner, rationalize the use of public transportation re-
sources, and reduce operating costs. At the same time, the
result of the short-term passenger flow forecast is used as a
positive feedback of the line network monitoring, which
can assist the manager in obtaining more effective infor-
mation from the daily bus line network monitoring, so as to
improve the control and management of the bus line
network.

Complexity

Since the research in this paper focuses on the con-
struction and verification of the basic model, there are still
certain shortcomings and limitations. Based on these
shortcomings and limitations, the following prospects and
suggestions can be provided for future related work:

(1) The impact of traffic policies on individual travel
characteristics is a long-term impact. At the same
time, traffic data can accurately record the long-term
travel activities of each individual; therefore, urban
big data such as traffic card data is very suitable for
analyzing the impact of changes in urban traffic
policies, the influence of individual travel charac-
teristics. In the later period, we can use the data over
a long period of time to analyze the impact of urban
traffic policy changes on individual travel charac-
teristics from a longitudinal perspective.

(2) The addition of more source data and the im-
provement of richer individual attribute informa-
tion: the addition of mobile phone data and other
data including complete travel chain data can sig-
nificantly improve the identification of passenger
activity locations. This will improve the analysis of
the generation mechanism of rail transit passenger
flow and enrich individual attribute information
more accurately. In addition, the data including the
complete travel chain is also of great help to the
research on the route selection of individual pas-
sengers in the rail transit network.

(3) Joint analysis of multicity data to improve the uni-
versality and robustness of the model: this paper takes
Beijing as an example to check and verify the pa-
rameters of each model. From the results, it can be seen
that the model framework has ideal prediction accu-
racy. However, the applicability of the model param-
eters to other cities and the robustness of the model’s
prediction accuracy to other cities cannot be estimated.
Therefore, in order to improve the universality and
robustness of the model and make it more suitable for
engineering practice, later studies can use data from
multiple cities to conduct spatial and horizontal joint
analysis and verify the model parameters.
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