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Emergencies have a significant impact on the passenger flow of urban rail transit. It is of great practical significance to accurately
predict the urban rail transit passenger flow and carry out research on its temporal and spatial distributions under emergency
conditions. Urban rail transit operating units currently use video surveillance information mainly to process emergencies and
rarely use computer vision technology to analyze passenger flow information collected. Accordingly, this paper proposes a
passenger flow-based temporal and spatial distribution model for urban rail transit emergencies based on the CPT. First, this
paper clarifies the categories and classification of urban rail transit emergencies, analyzes the factors affecting passenger route
selection, and establishes a generalized travel cost model for passengers under emergencies. Second, this paper establishes a
passenger route choice behavior model for urban rail transit based on the cumulative prospect theory. Finally, taking Beijing as an
example, this paper analyzes passenger travel behavior under emergencies based on multiple logistic regression models and
analyzes the impact of emergencies on rail transit travel behavior. The research results show that the cumulative prospect theory
can better describe the route choice behavior of rail transit passengers under emergencies than the existing models, and this model
is of great significance for handling urban rail transit emergencies. The model proposed in this paper can provide a theoretical

basis for the government and relevant departments to formulate traffic management measures.

1. Introduction

Urban rail transit, which is intensifying, is characterized by
fast speed, large capacity, high efficiency, and low energy
consumption and has become the main form of urban public
transportation. With the development of urban rail transit
networks, urban rail transit has become the first choice for
commuter passengers, with concentrated passenger flows
during the morning and evening travel peaks. The stability
and reliability of rail transit operation are of great signifi-
cance to the stable development of urban transportation.
However, with an increasing number of lines, the strictness
of equipment standards, the aging of equipment and other
reasons, and the types of emergencies that occur are
gradually diversifying, their frequency of occurrence is in-
creasing, and the spatial scope is expanding [1]. Once an

emergency occurs, the normal operation of the train will be
affected. If emergencies are not dealt with in a timely
manner, the transportation capacity of urban rail transit will
be reduced, and traffic paralysis may occur. In the case of
urban rail transit network operation, research is carried out
on the real-time prediction and early warning of the tem-
poral and spatial distributions of passenger flow in the case
of rail transit emergencies to accurately grasp the temporal
and spatial distributions of passenger flow in the rail transit
network. The impact of the incident, the improvement of
real-time passenger flow monitoring capabilities and pas-
senger travel information service levels, the effective orga-
nization of subway passenger flow, and the strengthening of
subway passenger flow control are all of great significance.

To predict the temporal and spatial distributions of
urban rail transit under normal operating conditions and to
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provide an early warning of large passenger flows, many
studies have been carried out both at home and abroad
[2-5]. At present, forecasting the temporal and spatial
distributions of passenger flow is mainly aimed at high-
density areas such as major event venues and transportation
hubs. When investigating the route choice behavior of urban
rail transit passengers under normal operating conditions,
researchers generally combine historical data and traditional
model methods. However, it is difficult to predict the se-
lection behavior of urban rail transit passengers under
emergency conditions, and it is difficult to conduct in-depth
research with traditional models and methods. Research on
rail transit passenger flow under emergencies mostly focuses
on the prediction, propagation, evacuation, etc., of emergent
passenger flow [6-13]. Current research mostly analyzes the
impact of sudden passenger flow on urban rail operation
from the perspective of train operation and passenger
transportation organization, whereas relatively few studies
have been conducted on the prediction and early warning of
the temporal and spatial distributions of passenger flow in
rail transit emergencies.

Preston et al. [14] analyzed the impact of train delays on
passenger travel. Barron et al. [15] and Pnevmatikou et al.
[16] considered the characteristics of passenger travel choice
behavior under emergency situations. Tsuchiya et al. [17]
developed a passenger support system to inform passengers
of the best route to their destination in the event of an
emergency. Sun et al. [18] established a model to evaluate the
impacts of urban rail transit interruptions on travel times
and delays based on a Bayesian method. Hong et al. [19]
established a model to evaluate local interruptions in urban
rail transit networks. Li and Liang [20] analyzed the impact
of operating interruptions and proposed a quantitative
calculation method for the scale of affected passengers.
Huang et al. [21] studied the route selection of urban rail
transit passengers under conditions of bounded rationality.
Wang and Wu [22] analyzed the impact of emergencies on
rail transit travel behavior. Wang [23], Luo [24], Qiao [25],
and Wu [26] studied methods to calculate the affected
passenger flows of basically unaffected passengers, bypass
passengers, and passengers who are unable to reach their
destination. Yu [27] proposed a passenger flow assignment
method under interruption based on the MNL model. Liu
[28] established a mathematical model to estimate the af-
fected passenger flow under the interruption of urban rail
transit. Xu et al. [29] established a passenger travel path
selection model under urban rail transit emergencies based
on the normal distribution probability model. Wang et al.
[30] built an emergency logistics path selection model based
on CPT, and the results showed that the parameter setting of
the model has an important impact on the path selection
model. Wang et al. [31] established a cumulative prospect
model and concluded that travelers’ attitudes toward risk are
different under different decision-making behaviors.

In this paper, on the basis of defining the scope of
emergency research, with the help of AFC data, historical
emergency information, and questionnaire survey data, this
paper uses historical emergency passenger selection be-
havior information to carry out data mining. At the same
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time, considering the limited rationality of passengers, based
on the path selection model of cumulative prospect theory,
this paper studies the spatial and temporal distributions of
urban rail transit passenger flow under emergencies, carries
out passenger flow guidance information release and early-
warning research, and verifies the effectiveness of the
technology combined with specific cases to provide a ref-
erence for passenger flow organization and evacuation.

2. Establishment of a Generalized Travel
Cost Model

2.1. Definition and Classification of Emergencies. An urban
rail transit emergency refers to an event that occurs suddenly
within the operating scope of urban rail transit that may
damage the personal property and health of passengers or
employees and requires the urban rail transit operation unit
to make responsible decisions to minimize losses.

Different types of urban rail transit emergencies have
different impacts on train operation. Passengers will choose
different routes according to their own conditions, thus
forming different temporal and spatial distributions of
passenger flow in the urban rail transit network. The scope of
this study is defined as follows: peak hours in the morning
and evening under the occurrence of natural disasters,
equipment failure, passenger transport organization and
management scenarios, and other sudden, temporary large
passenger flow events. In this paper, the types of urban rail
transit emergencies are divided into three categories, as
shown in Table 1.

2.2. Establishment of a Generalized Travel Cost Model

2.2.1. Analysis of Factors Affecting the Passenger Route
Choice. In the urban rail transit network, when passengers
choose a route, they are not only affected by individual
subjective factors, such as individual comfort sensitivity
requirements and familiarity with rail transit networks, but
also by objective factors such as travel time, cost, and dis-
tance. The final passenger’s route choice is a result of a
comprehensive consideration. When any one attribute
changes, the path selection may change. The influencing
factors of passenger route selection are shown in Table 2.

2.2.2. Establishment of a Generalized Travel Cost Model.
The urban rail transit network path refers to the connecting
path between any two stations in a transportation network.
The generalized passenger travel path includes the inbound
channel from the inbound gate to the platform, the starting
station platform, the section, the transfer channel of the
transfer station, the terminating station, the outbound
channel to the outbound gate, and the paths between all
connections. The generalized travel cost of passengers refers
to the total cost of travel time and money for passengers
using rail transit, reflecting the comprehensive cost of
passengers choosing a certain route.

This paper establishes a generalized travel cost model
based on different weights of influencing factors on
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TaBLE 1: Types of urban rail transit emergencies.

Types Examples

Natural disasters Heavy rain, blizzard, strong wind, thunder and lightning, heavy fog, and low temperature
Equipment failure Signal failure, power supply failure, line failure, and vehicle failure

Passenger transport organization and People caught in the door, passengers falling off the platform, passenger conflicts, terrorist
management incidents, and transfer channels closed

TaBLE 2: Influencing factors affecting the passenger route choice.

Type Name Description
Comfort Passengers will choose a more comfortable route to travel.
Subjective Network Passengers who are more familiar with the network will trust their own experience information more
factors familiarit and choose new routes to travel. Passengers who are not familiar with the network will only choose the
Y more familiar route to travel.
Objiective Time Passengers will choose a route with a short travel time.
J Cost Passengers will choose a less expensive route to travel.
factors . .
Distance Passengers will choose a shorter route to travel.

passengers. The urban rail transit network route travel time
is the main judgment parameter for route searching in the
simulation model. To search for the path set between any
two stations in the urban rail transit network, this paper
establishes a generalized passenger travel cost model based
on time. In an emergency, the model will dynamically
update the interval of the period and the impedance on the
node before each route search or passenger flow distribution.

o—d o—d 0o—d 0o—d

OD
Ck = Z Cblock *y+ Z Cnode + z Ctransfer + z Cdelay'
k k k k

(1)

In formula (1), C? is the comprehensive impedance
cost function of the k-th path between the OD pair; Cy .y is
the impedance cost of all sections of the path; C, 4. is the
node impedance cost of all intermediate stations; Ci,,pser 15
the node impedance cost of all transfer stations; y is the
congestion impedance function of the road section passing
through; and Cgg,, is the revised cost function under
emergencies.

Each impedance fee can be expressed as follows:

(1) Section impedance cost Cyj,

Chiock = Tblock * Chlock: (2)

1, w<w,

L+¢,(p) * (0 —wy), wy<w<ws;

L+ ¢y (p) * (@) = @) + 6, (p) * (w, — w);

(3) Node impedance cost of the transfer station C

In formula (2), ty),« is the travel time of the section,
and ¢y is the travel cost per unit time, RMB/s.

(2) Node impedance cost of the intermediate station

C

node*

Cnode = tnode * Chode* (3)

In formula (3), t,4. is the stop time of the inter-
mediate station, and ¢, 4. is the stop cost per unit
time, RMB/s.

node

transfer*

Ctransfer = (ttransfer +0.5 % E(h)) * f(T’ p) * CPh' (4)

In formula (4), tyansfer 1S the travel time of the
transfer station; E (h) is the expected time between
rail transit arrivals; f (7, p) is the magnification
penalty function on the crowded people and the
number of transfers; 7 is the transfer penalty coef-
ficient; p is the number of transfers; and c,, is the
transfer fee for passengers at transfer stations per
unit time, RMB/s.

(4) Congestion impedance function y:

(5)

w; <w<w,

1+¢, (p) * (w0 — wp) + ¢, (p) * (wy —w)) +d5(p) * (W~ w,); Wy <wW<w;

In formula (5), ¢ (p) is the congestion penalty am-
plification function, and w is the critical perception

threshold of the full load rate, which can be adjusted
according to the actual situation.



(5) Amendment fees for emergencies Y5 ¢ Coelay’

According to statistics, the delay time of emergen-
cies obeys a similar discrete probability distribution.
The occurrence of emergencies will have certain
impacts on the corresponding lines, stations, and
sections, such as slower trains and delays caused by
congested transfers, which will increase the travel
time of passengers who choose that route.

3. Prediction and Early Warning of the
Temporal and Spatial Distributions of
Passenger Flow

3.1. Passenger Route Choice Model Based on Cumulative
Prospect Theory. Tversky and Kahneman [32] proposed
cumulative prospect theory based on hierarchy-dependent
utility theory. Cumulative prospect theory focuses on per-
sonal, psychological, and behavioral characteristics and
replaces the decision weight in the prospect theory with a
cumulative decision weight to better solve the problem of
random dominance and the processing of multiple results.

Cumulative prospect theory divides the decision maker’s
risk selection process into two stages: editing and evaluation.
The editing stage can be divided into setting reference points,
establishing value functions, determining personal subjec-
tive probabilities, and establishing decision weight func-
tions. In the evaluation stage, cumulative prospect theory
considers the sort dependence of the probability of various
possible outcomes of the alternatives and calculates and
compares the prospects of the alternatives.

The prospect value is an index on which decision makers
rely, as shown in the following formula:

V =v(x)n(p). (6)
In formula (6), v (x) is the value function, and 7 (p) is the
decision weight function.

(1) Value function:

The specific expression of the value function v(x) is
as follows:

a(x, —x)%,
v(x) = s
=b(x—xy)", x5<x,b6>0,>0

xXg2x,a>0,a>0

(7)

In formula (7), x is the random event result, x,, is the
reference point, a is the profit pursuit coefficient, b is
the loss avoidance coefficient, and 0<a<b.

o and p reflect the risk appetite level of the decision
maker. The larger the values of « and f3 are, the more
likely the decision maker is to take risks, and
O<a,f<1.

(2) Decision weight function:

According to cumulative prospect theory, a prospect
event result set (x;,x,,...,x,) corresponds to a
probability set (py, p, - - ., p,,), the probability of the
result x; is p;, the result set is arranged in the
descending order as (x;2x,>---2x,), w'
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represents the probability weight of the return, and
w~ represents the probability weight of loss.

The expression of the probability weight function is

(Y E—
w'(p.) = J .
Tl (- )
2
) §
[Pj +(1-pj) ]
The cumulative decision weight function 7(p) is

generated by the probability weight function, and the
expression is as follows:

(8)

w(p;) =

1/6°

=W (Pt ) =W (Pra ot ),

T =w (Pt 4 p) —w (ot

The prospect value of the alternative can be expressed
as

V= Zn;/f (pi)v(x:) +ZH:I7T_ (Pj)"(xj)- (10)

(3) Reference point setting:

As a single individual passenger is affected by many
factors, such as personal experience and environ-
ment, different passengers have different feelings
about the same event. According to research, when
the reference point is set to the average value of the
generalized cost of each route, it is more in line with
the passengers’ travel psychology. Therefore, this
paper proposes using the average value of the gen-
eralized cost as the reference point. The calculation
formula of the reference point is as follows:

1& op
T =— E Cc . 11
refer k = i ( )

3.2. Construction of the Multipath Probability Allocation
Model Based on User Equilibrium. In this paper, based on the
prospect value of each scheme calculated by the afore-
mentioned cumulative prospect theory, the allocated pas-
senger flow of each route is calculated according to the
following calculation formula:

op _ oD exp(—G*VkOD)

. =q , (12)
Zlekpathexp(_e * VIOD)

In formula (12), 6 is the randomness of the description
model; g°P is the passenger flow between OD pairs; f2 is
the distribution flow of the k-path between OD pairs; and
VP is the cumulative prospect value of the k-path between

OD pairs.
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This paper uses the MSA algorithm, and the algorithm
steps are as follows:

Step 1: initialization.

Step 2: calculation of impedance based on the gener-
alized travel cost of passengers, use of the logic dis-
tribution method to distribute the passenger flow, and

calculation of the route passenger flow and section
passenger flow.

Step 3: iterative calculation.

Step 4: judge whether the convergence is based on the
convergence function, convergence value, and number
of convergence steps. Step 2 is repeated if the re-
quirements are not met.

3.3. Owverall Process of Simulating the Passenger Flow
Deduction. The overall process of predicting the passenger
flow within an urban rail transit network in real time is
shown in Figure 1. The specific steps are as follows:

Step 1: predict the initial stage

The data are prepared and connected to the database
before being read into all the infrastructure tables and
parameter tables in the simulation process.

Step 2: prediction phase

The current state of passenger flow is determined
(normal passenger flow prediction or emergency pas-
senger flow prediction). The prediction stage includes
the inbound volume prediction, passenger flow OD
prediction, and the passenger flow multipath distri-
bution prediction. This paper employs real-time AFC
statistical data and emergency line and length estimates
by connecting to the database.

Inbound traffic forecast: at the beginning of each
forecast time, based on the historical passenger flow
inbound data table, the inbound traffic at each station is
forecast within each forecasting period.

Passenger flow OD prediction: according to the his-
torical passenger flow OD matrix, the inbound pas-
senger flow is allocated according to the destination,
and the passenger flow of each station’s inbound
passenger flow to the remaining stations, that is, the
predicted passenger flow OD, is predicted in each
forecast period.

Passenger flow multipath distribution prediction: the
proportion of passenger flow that may be allocated for
each route according to the cumulative prospect theory
model is calculated, and the proportion of OD traffic to
each route is allocated.

Step 3: simulation phase

A simulation multiagent model is constructed
according to the interaction among the overall road
network scene, station, and passengers and other agents
with their respective behavior rules, and accurate
simulations are conducted considering the time, dy-
namic deduction, and loading of passenger flow data

according to the time, statistics, and output according
to the demand simulation calculation results within a
certain time range.

Step 4: index calculation and storage of the result stage

After the simulation calculation is completed, the
calculation result data are quickly written into the
database, and a report is generated.

Step 5: forecast end data update phase

In the data update stage, the corrected AFC data and
OD input data are updated in the same period.

3.4. Passenger Flow Impact Index System and Calculation of
Emergencies. After the dynamic passenger flow allocation
and simulation, it is necessary to identify the impact of the
emergency passenger flow and perform an early warning of
passenger flow based on the magnitude of the impact. Based
on the detection of passenger flow anomalies, this paper
establishes an urban rail transit emergency passenger flow
impact index calculation model and then conducts a dy-
namic evaluation of the impacts of different types and levels
of emergency events on passenger flow.

The index includes three aspects: degree of influence,
scope of influence, and duration of influence. From the
perspective of the severity of passenger congestion, the index
is divided into different levels of congestion, namely,
comfortable, general, and congested; from the perspective of
the scope of influence, the index is divided into three levels,
namely, station, line, and network; and from a time point of
view, the index is divided into real time, short term, long
term, and other levels. The influencing factors of the pas-
senger flow impact index of emergencies are shown in
Figure 2.

There are four passenger flow data sources for the
emergency passenger flow impact index: inbound passenger
flow, outbound passenger flow, interval passenger flow, and
interchange passenger flow. The index calculation method
proposed in this paper is based on the original passenger
flow data. Compared with step-by-step recursive calculation
methods such as the “station-line-network” approach, using
the original flow data avoids an accumulation of errors due
to step-by-step merging and is therefore more accurate. The
passenger flow impact index system and calculation process
of urban rail transit emergencies are shown in Figure 3.

4. Case Analysis of Emergencies Based on the
Beijing Rail Transit Network

4.1. Data and Preliminary Processing. Urban rail transit AFC
data include the inbound number, outbound number, line
number, inbound time, and outbound time. This paper
extracts and analyzes AFC data to extract the inbound and
outbound passenger flow, sectional flow, and other data.
This paper selects the three-day normal daily passenger
flow data before and after the emergency day (excluding
special times, such as national statutory holidays and large-
scale events), and the track passenger flow time period is 15
minutes. To ensure the accuracy of the identification of
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FIGURE 1: Overall process of the real-time prediction of passenger flow in an urban rail transit network.
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FIGURE 2: Factors affecting the passenger flow impact index under emergencies.

emergencies, based on previous experience and research,  day follow a normal distribution. This paper cleans the
within a given period of time (excluding special times, such ~ passenger flow data according to the 3¢ principle and
as national statutory holidays and large-scale events), the  removes the abnormal passenger flow data from the nor-
passenger flow data for a certain period on the same working ~ mally distributed historical passenger flow data.
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FIGURE 3: Passenger flow impact index system and calculation process of urban rail transit emergencies.

4.2. Analysis of Passenger Travel Behavior under Emergencies
Based on a Multiple Logistic Regression Model. During an
emergency, the travel choice behavior of passengers in the
rail transit system will change. Based on questionnaire
survey data and AFC passenger flow data, the study of
passengers’ travel choice behaviors provides basic support
for OD passenger flow analysis and travel delay time esti-
mation. This paper considers only the situation when pas-
sengers are already inside the rail transit system when an
emergency occurs.

4.2.1. Multinomial Logistic Travel Choice Behavior Regression
Modeling Principle. The choice behavior of passengers after
an emergency is selected as the dependent variable, and the
conditional probability of choosing the i-th choice behavior
isP,ie (1,2,...,7-1,j+1,...,m). The choice of the first
passenger choice behavior is selected as the reference level,
and the corresponding choice probability is P,
j€(1,2,...,m). Then, the multiclass logistic regression
model is as follows:

P\ P(y=1ilx| _ L
ln(Pj) = ln[P(y - j)|x] =+ w; BiwXer (13)

In formula (13), x,, is the independent variable; # is the
number of independent variables; m is the number of de-
pendent variables; a;,f3;,, are the independent variable

regression coefficient vectors; and ln(Pl-/Pj) is the occur-
rence ratio of choice to choice.

4.2.2. Design of the Dependent and Independent Variables.
According to the analysis, for the urban rail transit system,
the travel choice behavior of passengers after an emergency
occurs is divided into the following: leaving the station and
changing to a bus, taxi, etc., to reach the destination; leaving
the station and taking the rail transit from other rail stations
but not leaving the station; changing the travel route and
waiting for the incident to resume; and continuing to take
the four types of rail transit travel. These behaviors are coded
as shown in Table 3. This paper selects 15 candidate inde-
pendent variables and encodes the categorical variables as
shown in Table 4.

4.2.3. Selection Behavior Analysis. According to the pas-
senger choice behavior survey questionnaire, a logistic re-
gression model was used to analyze the travel behavior of
urban rail transit passengers, and the following conclusions
were obtained:

(1) The social and economic attributes of passengers
have certain impacts on passengers’ behavior choices
when facing emergencies, but these impacts are
relatively small and can be ignored.



Journal of Advanced Transportation

TaBLE 3: Description of dependent variables.

Chosen behavior Code
Exit the station and change to a bus, taxi, etc., to reach the destination 1
Exit the station and take the rail transit from other rail stations 2
Do not leave the station and change the travel route 3
Wait for the emergency to end and continue to take the rail transit 4

TABLE 4: Description of independent variables.

Continuous variable

Travel distance

Passenger socioeconomic attributes

Passenger travel attributes

Categorical variables , . .
Passenger’s perception of emergencies

Emergency attributes

Information interference factors

Gender
Age
Job
Monthly income
Travel purpose
Network familiarity
Have you encountered an emergency?
The longest tolerable event
The remaining travel time of passengers after the emergency
Time of the occurrence
Location of the occurrence
Influential impact
Influencing station information
Detour information

(2) When an emergency occurs, passengers who are
familiar with the urban rail transit network tend to
choose to detour inside the rail transit system. In
contrast, passengers who occasionally take urban rail
transit travel tend to stay and wait for the emergency
to end because the urban rail transit network is
relatively unfamiliar; these passengers are more
flustered during emergencies, and there is a phe-
nomenon of herding.

(3) The occurrence time, location, and impact of
emergencies have important impacts on the choice of
passengers. When predicting and guiding the pas-
senger flow of emergencies, priority should be given
to the selection of passengers under different oc-
currence times, locations, and impacts.

(4) In the case of giving passengers a certain amount of
information to consider, most passengers will choose
to change their initial choice behavior, and external
information interference has an important influence
on the choice of passengers.

4.3. Case Analysis of Emergencies Based on the Beijing Rail
Transit Network. This article takes the Beijing urban rail
transit network as an example with Tiantandongmen Station

as the starting point and Zhangzizhonglu Station as the end
point to analyze the route. The route contains three possible
pathways, as shown in Figure 4.

When no emergencies occur, the attributes of the three
alternative paths are shown in Table 5. It can be seen that the
travel times of paths 2 and 3 are longer than the travel time of
path 1 by 12 minutes, and both have three transfers, which
are time-consuming. The probability of choosing path 1 is
100%.

This article assumes that an emergency occurs in the
section from Chongwenmen Station to Dongdan Station,
and the time to resume traffic cannot be determined. At this
time, path 1 is not accessible, paths 2 and 3 are affected by
emergencies, and the path travel events are delayed to a
certain extent. The delay time of each path caused by the
emergencies is set to follow the distribution shown in
Table 6.

According to the calculation of cumulative prospect
theory, the selection probability of path 2 is 54.63%, and the
selection probability of path 3 is 45.37%, which are closer to
the results of the questionnaire survey. According to this
analysis, passengers are more sensitive to losses, and the
occurrence of emergencies makes path 2 lose fewer pas-
sengers than path 3, which leads to different choices of travel
routes for passengers.
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ZhangzizhongLu O

Line 6

Line 1

QianMen

Line 2

ChongWenMen
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O) DongShiSiTiao

ChaoYangMen

DongDaQiao

JianGuoMen
O

YongAnLi

O Beijing railway station

O CiQiKou

O TiantanDongMen

FIGURE 4: Travel route diagram.

TaBLE 5: Path attribute table when no emergencies occur.

ID Path

Travel time (s) Number of transfers Transfer time (s) Selection ratio

Tiantandongmen-Ciqgikou-Chongwenmen-Dongdan-
Dengshikou-Dongsi-Zhangzizhonglu
Tiantandongmen-Ciqikou-Chongwenmen-Beijing railway

2 station-Jianguomen-Chaoyangmen-Dongsi-
Zhangzizhonglu
Tiantandongmen-Ciqikou-Chongwenmen-Beijing railway
3 station-Jianguomen-Dongdan-Dengshikou-Dongsi-
Zhangzizhonglu

730 0 0

100%

860 3 1030 0

924 3 840 0

TABLE 6: Probability distribution of delay time.

Path Delay time (s) Probability of delay (%)
) 300 80

600 20
3 600 80

900 20

5. Conclusions

To study the travel choice behavior of rail transit passengers
under emergencies in depth, this paper proposes a predic-
tion and early-warning model for the temporal and spatial
distributions of rail transit passenger flow based on a cu-
mulative prospect theory model, which makes up for the
deficiencies of previous studies. Compared with the existing
prediction methods, this method better simulates the travel
decision-making process of rail transit passengers under
emergencies, is closer to reality, and provides strong support
for the accurate prediction of passenger flow between rail
transit stations under emergencies. The model provides a
theoretical basis for the government and related depart-
ments to formulate traffic management measures.

Specifically, this paper introduces cumulative prospect
theory to study the route choice of urban rail transit pas-
sengers and performs the following work:

(1) The passenger’s route choice preferences are analyzed
p g p y
under different influencing factors, and a generalized
passenger travel cost model is established.

(2) The principle of establishing the reference point in
the cumulative prospect theory model is analyzed,
and a prediction and early-warning model for the
temporal and spatial distributions of passenger flow
during rail transit emergencies is constructed based
on the cumulative prospect theory.

(3) According to the proposed prediction and early-
warning model for the temporal and spatial
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distributions of passenger flow during rail transit
emergencies based on the cumulative prospect
theory, a logistic regression model is used to analyze
the travel behavior of urban rail transit passengers,
and the Beijing urban rail transit network is taken as
an example. The results show that the cumulative
prospect theory can more accurately describe the
decision-making behavior of passengers in route
selection and can better reflect the needs of pas-
sengers traveling by rail transit under emergencies.

How to further update the data in the model to obtain
more accurate results, study the changes in passenger be-
havior from day to day after short-term incidents, and
develop a passenger flow organization method of subway
stations when short-term incidents occur are all directions of
future research.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest in
this paper.

Acknowledgments

This work was jointly supported by the National Natural
Science Foundation of China (no. U1834211), Postdoctoral
Innovative Talent Project (no. BX20190029), and the State
Key Laboratory of Rail Traffic Control and Safety (Contract
no. RCS2020ZZ002).

References

[1] M. Zhou, H. Dong, B. Ning, and F. Wang, “Parallel urban rail
transit stations for passenger emergency management,” IEEE
Intelligent Systems, 2019, In press.

[2] S.Liu, E. Yao, B. Li, and Y. Tang, “Forecasting passenger flow
distribution between urban rail transit stations based on
behavior analysis under emergent events,” Journal of the
China Railway Society, vol. 40, no. 9, pp. 22-29, 2018.

[3] X. Zhang, X. Li, J. Mehaffey, and G. Hadjisophocleous, “A
probability-based Monte Carlo life-risk analysis model for fire
emergencies,” Fire Safety Journal, vol. 89, pp. 51-62, 2017.

[4] N. Zarboutis and N. Marmaras, “Searching efficient plans for
emergency rescue through simulation: the case of a metro
fire,” Cognition, Technology & Work, vol. 6, no. 2, pp. 117-126,
2004.

[5] S. Seer, D. Bauer, N. Brandle, and M. Ray, “Estimating pe-
destrian movement characteristics for crowd control at public
transport facilities,” in Proceedings of the 2008 11th Inter-
national IEEE Conference on Intelligent Transportation Sys-
tems, pp. 742-747, Beijing, China, October 2008.

[6] H. Wang, L. Hong, and R. Xu, “Analysis of the emergency
evacuation guide at metro station,” Urban Mass Transit,
vol. 15, no. 1, pp. 70-74, 2012.

Journal of Advanced Transportation

[7] W. Zhu, “Mass passenger flows at rail transit stations: for-
mation, impacts, and countermeasures,” Urban Transport of
China, vol. 11, no. 3, pp. 55-61, 2013.

[8] X. Li, "Research on forecast passenger flow bursted in urban
rail station on data mining," Ph.D. thesis, Beijing Jiaotong
University, Beijing, China, 2017.

[9] Y. Zhang and Z. Li, “Subway passenger transport organization
under the condition of large passenger flow,” Journal of
Transportation Engineering and Information, vol. 15, no. 2,
pp. 58-63, 2017.

[10] L. Zhang and F. Chen, “On large passenger flow operating
organizations at metro station,” Urban Mass Transit, vol. 14,
no. 5, pp. 87-90, 2011.

[11] M. Zhou, H. Dong, Y. Zhao, P. A. Ioannou, and F.-Y. Wang,
“Optimization of crowd evacuation with leaders in urban rail
transit stations,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 20, no. 12, pp. 4476-4487, 2019.

[12] M. Zhou, H. Dong, P. A. Ioannou, Y. Zhao, and F.-Y. Wang,
“Guided crowd evacuation: approaches and challenges,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 5,
pp. 1081-1094, 2019.

[13] F. Li, R. Xu, and W. Zhu, “Generation of emergency scheme
for urban rail transit by case-based reasoning,” in Proceedings
of the 12th International Conference on Computer System
Design and Operation in Railways and Other Transit Systems,
pp- 529-536, Beijing, China, August 2010.

[14] J. Preston, G. Wall, R. Batley, J. N. Ibafiez, and J. Shires,
“Impact of delays on passenger train services,” Transportation
Research Record: Journal of the Transportation Research
Board, vol. 2117, no. 1, pp. 14-23, 2009.

[15] A. Barron, P. C. Melo, J. M. Cohen, and R. J. Anderson,
“Passenger-focused management approach to measurement
of train delay impacts,” Transportation Research Record,
vol. 2351, no. 1, pp. 46-53, 2018.

[16] A. M. Pnevmatikou, M. G. Karlaftis, and K. Kepaptsoglou,
“Metro service disruptions: how do people choose to travel?,”
Transportation, vol. 42, no. 6, pp. 933-949, 2015.

[17] R. Tsuchiya, Y. Sugiyama, K. Yamauchi, K. Fujinami, and
T. Nakagawa, “Route-choice support system for passengers in
the face of unexpected disturbance of train operations,” in
Proceedings of the Computers in Railways X the Tenth Inter-
national Conference, Prague, Czech Republic, July 2006.

[18] H. Sun, J. Wu, L. Wu, X. Yan, and Z. Gao, “Estimating the
influence of common disruptions on urban rail transit net-
works,” Transportation Research Part A: Policy and Practice,
vol. 94, pp. 62-75, 2016.

[19] L.Hong,J. Gao, and R. Xu, “Calculation method of emergency
passenger flow in urban rail network,” Journal of Tongji
University, vol. 39, no. 10, pp. 1485-1489, 2011.

[20] J.Li and P. Liang, “Quantitative analysis of affected passenger
scale for rail transit operation cessation,” Urban Mass Transit,
vol. 16, no. 8, pp. 59-63, 2013.

[21] T. Huang, H. Zhu, and J. Yang, “The route choice model of
urban rail traveler based on prospect theory,” Urban Rapid
Rail Transit, vol. 32, no. 2, pp. 67-71, 2019.

[22] X. Wang and J. Wu, “Cumulative prospect theory based urban
railway traffic route choice for travelers in emergent events,”
Shandong Science, vol. 28, no. 2, 2015.

[23] Z. Wang, "Research on auxiliary technology of urban rail
transit emergency decision,” Ph.D. thesis, Tongji University,
Shanghai, China, 2008.

[24] Q. Luo, "Research on theory and simulation of urban rail
transit passenger flow distribution based on network opera-
tion," Ph.D. thesis, Tongji University, Shanghai, China, 2009.



Journal of Advanced Transportation

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

K. Qiao, "Research on urban rail transit network operation
characteristics and train regulation,” Ph.D. thesis, Beijing
Jiaotong University, Beijing, China, 2015.

L. Wu, "Study on passenger travel route matching and impact
of emergence in urban rail transit network based on AFC
data," Ph.D. thesis, Beijing Jiaotong University, Beijing,
China, 2016.

H. Yu, "A dynamic stochastic disequilibrium passenger flow
assignment method and its application on a local disruption
ofurban railway network,” Ph.D. thesis, Beijing Jiaotong
University, Beijing, China, 2015.

F. Liu, "Influence of operation disruption on urban rail transit
network and emergency strategy,” Ph.D. thesis, Beijing
Jiaotong University, Beijing, China, 2015.

R. Xu, J. Ye, and H. Pan, “Method for early warning of heavy
passenger flow at transfer station of urban rail transit network
under train delay,” China Railway Science, vol. 35, no. 5,
pp. 127-133, 2014.

W. Wang, C. Zhang, C. Zhu, and G. Fang, “Route selection
method for emergency logistics based on cumulative prospect
theory,” China Safety Science Journal, vol. 3, 2017.

H. Wang, H. Chen, W. Feng, and W. Liu, “Multi-dimensional
travel decision model of heterogeneous commuters based on
cumulative prospect theory,” Journal of Zhejiang University,
vol. 2, 2017.

A. Tversky and D. Kahneman, “Advances in prospect theory:
cumulative representation of uncertainty,” Journal of Risk ¢
Uncertainty, vol. 5, pp. 297-323, 1992.

11



