
Research Article
A Novel Malware Detection and Family Classification Scheme for
IoT Based on DEAM and DenseNet

Changguang Wang ,1,2 Ziqiu Zhao,2 Fangwei Wang ,1,2 and Qingru Li 1,2

1Key Lab of Network & Information Security of Hebei Province, Shijiazhuang 050024, China
2College of Computer & Cyber Security, Hebei Normal University, Shijiazhuang 050024, China

Correspondence should be addressed to Fangwei Wang; fw_wang@hebtu.edu.cn and Qingru Li; liqingru2006@163.com

Received 20 November 2020; Revised 12 December 2020; Accepted 19 December 2020; Published 5 January 2021

Academic Editor: Athanasios V. Vasilakos

Copyright © 2021 Changguang Wang et al. /is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the rapid increase in the amount and type of malware, traditional methods of malware detection and family classification for
IoT applications through static and dynamic analysis have been greatly challenged. In this paper, a new simple and effective
attention module of Convolutional Neural Networks (CNNs), named as Depthwise Efficient Attention Module (DEAM), is
proposed and combined with a DenseNet to propose a new malware detection and family classification model. Based on the good
effect of the DenseNet in the field of image classification and the visual similarity of the malware family on images, the gray-scale
image transformed from malware is input into the model combined with the DEAM and DenseNet for malware detection, and
then the family classification is carried out. /e DEAM is a general lightweight attention module improved based on the
Convolutional Block Attention Module (CBAM), which can strengthen the attention to the characteristics of malware and
improve the model effect. We use the MalImg dataset, Microsoft malware classification challenge dataset (BIG 2015), and our
dataset constructed by the two above-mentioned datasets to verify the effectiveness of the proposed model in family classification
and malware detection. Experimental results show that the proposed model achieves 99.3% in terms of accuracy for malware
detection on our dataset and achieves 98.5% and 97.3% in terms of accuracy for family classification on the MalImg dataset and
BIG 2015 dataset, respectively. /e model can reliably detect IoT malware and classify its families.

1. Introduction

Malware is a kind of software program designed to access a
computer system and perform useless or harmful opera-
tions. It includes viruses, worms, Trojan horses, advertising
software, spyware, blackmail software, and other types.
/ese kinds of software will obtain confidential data, steal
identity, hijack traffic and operating system, encrypt digital
assets, and monitor users, which poses threats to users and
operating systems. Malware is constantly challenging the
network security situation with its continuously increasing
growth rate and endless family types. According to the
statistics of “malware threat situation report 2020” [1] re-
leased by Malwarebytes labs, in 2019, the detection of
Windows malware on business endpoints increased by 13%.
Malware detection and family classification technology is

still a development direction that cannot be ignored. Sim-
ilarly, the Internet of /ings (IoT) devices built on different
processor architectures have increasingly become targets of
adversarial attacks. Although there are many ways to detect
malware on the Internet of /ings [2, 3], we still need to
make further efforts in this field.

Traditional malware detection and family classification
use two kinds of malware analysis techniques: static analysis
and dynamic analysis. Static analysis disassembles execut-
able programs and analyzes and extracts the characteristic
information of code without executing malware. In [4],
sequential pattern mining technology is used to detect the
maximum frequent pattern (MFP) of the opcode sequence
for malware detection in the Internet of /ings. In [5], the
behavior sequence chain of some malware families is gen-
erated, and the similarity between the behavior sequence

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6658842, 16 pages
https://doi.org/10.1155/2021/6658842

mailto:fw_wang@hebtu.edu.cn
mailto:liqingru2006@163.com
https://orcid.org/0000-0002-2054-9215
https://orcid.org/0000-0003-3888-8167
https://orcid.org/0000-0003-2532-045X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6658842

chain and the sequence of the target process is calculated to
detect and classify malware. In [6], malware is identified by
combining normalized compression distance (NCD) with
the compressibility rates of executables using decision for-
ests. However, static analysis may consume a lot of time in
useless code because the code analyzed is not necessarily the
code of final execution. At the same time, the reliance of
static analysis on disassembly technology also results in
malware that can use various obfuscation techniques to
hinder disassembly analysis. Some malware makes reverse
engineering more complex by encrypting, packaging, and so
on, which increases the difficulty of static analysis. Dynamic
analysis is the extraction of feature information in the
process of code execution, and the analyzed code is the
actual execution code. In [7], malicious artifacts are
extracted from memory through memory forensics tech-
nology, and malware detection is performed by combining
the extracted malicious artifacts with the features extracted
when executing malware files using dynamic analysis. In [8],
the confusedmalware is detected by proper hook installation
and real calculation of malware activity time in user and
kernel. In [9], a graph repartitioning algorithm that uses the
N-order subgraph (NSG) to convert API call graphs into
fragment behaviors is proposed for malware detection and
family classification. Besides, the “term frequency-inverse
document frequency” (TF-IDF) and information gain (IG)
were improved and used to extract thecrucial N-order
subgraph (CNSG). However, dynamic analysis of one exe-
cution process can only obtain a single path behavior, and
some malware has multiple execution paths. At the same
time, dynamic analysis has certain risks due to the actual
execution of the program. With the development of neural
networks in recent years, static analysis and dynamic
analysis are often combined with neural networks for
malware detection and family classification. In [10], the
bigram model is used to represent the opcode, the frequency
vector is used to represent the API call, and then con-
volutional neural network and backpropagation neural
network are used to embed features based on opcodes and
APIs for malware detection and family classification. In [11],
based on the behavior of malware, a classification method
based on malware type was proposed, and LSTM was used
for a new dataset developed for Windows operating system
based on API calls.

/e main purpose of this paper is to combine the at-
tention module and convolutional neural network to better
perform malware detection and family classification. In our
framework, we convert the malware samples into gray-scale
images and then apply DenseNet with Depthwise Efficient
Attention Module to the images. In this process, DEAM can
generate feature attention maps to strengthen the attention
to malware features, to improve the effectiveness of detec-
tion and family classification. /e main contributions of our
work are as follows.

/is paper proposes a new general lightweight attention
module, DEAM, which can be widely used to improve the
performance of CNNs, while not increasing the amount of
calculation. It consists of both the Improved Efficient
Channel Attention (IECA) and a new spatial attention

mechanism, Depthwise Spatial Attention (DSA). We replace
the SENet in the original channel attention mechanism
structure in CBAM with ECA-Net to get the IECA of the
proposed model. /e DSA is constructed by using Depth-
wise Convolution. We combine the DSA module and the
DenseNet for malware detection and family classification.

/e proposed model performs well on the MalImg
dataset, the BIG 2015 dataset, and the dataset built by us and
can effectively perform malware detection and family
classification.

/e rest of the paper is organized as follows: Section 2
discusses the related work concerning different techniques
such as visualization, the structure of the CNNs, attention
mechanism in malware detection, and classification. Section
3 presents our proposed model in detail. /e performance of
our algorithm is evaluated in Section 4. Section 5 summa-
rizes our work and put forward some suggestions for future
work.

2. Related Work

2.1.MalwareVisualization. In this paper, we use the method
proposed in the literature [12] to convert malware into gray-
scale images. We convert each byte (8-bit binary or 2-bit
hexadecimal) in the PE file into a pixel, and the value of each
pixel is in the range of [0, 255] (0: black, 255: white). /e
height of the image is determined by the size of the PE file, as
shown in Table 1.

/rough malware images, we can find that the images of
malware from the same family are visually similar, but there
are large visual differences between different malware
families. Besides, the difference also exists between benign
software and malware, as shown in Figure 1. Converting
malware into images can help us perform malware analysis.
After being converted into images, different parts of the file
can be easily distinguished so that we can find the functional
parts of the malware.

Converting malware into images for detection and
family classification has become a common practice in re-
cent years. In [13], the memory data dump file was converted
into a gray-scale image, and the histogram of gradient
(HOG) extraction function was used to effectively classify
the malware. In [14], a new hybrid model based on image
analysis was proposed, which uses similarity mining and
deep learning architecture to accurately identify and classify
confusing malware. Inspired by the visual similarity between
malware samples of the same family, a file-agnostic deep
learning method is proposed for malware classification [15].
/rough a set of discriminative patterns extracted from the
visualized image of the malware, the malware is effectively
divided into multiple families. In [16], based on the visual
similarity between malware in the same family, a suggestion
of directly performing binary texture analysis on gray-scale
images of malware executable files was proposed. /is
technology derives a new combination of second-order
statistical texture features based on the first-order and gray-
level cooccurrence matrix (GLCM) on the visualized mal-
ware to perform confusion and unbalanced malware
classification.

2 Security and Communication Networks

2.2. Structure of the CNNs. /e Convolutional Neural
Networks (CNNs) have greatly promoted the development
of image classification with their excellent performance.
Recently, in order to improve the performance of Con-
volutional Neural Networks, researchers have made many
changes in three aspects: depth, width, and cardinality.
Starting from LeNet [17], the pioneering work of the CNNs,
and then the outbreak after AlexNet [18], the structure of
CNNs has been becoming deeper and deeper to achieve
richer representations. VGGNet [19] proved that increasing
the depth of the network can affect the final performance of
the network to a certain extent. ResNet [20] introduced a
shortcut to make the network have a certain identity
mapping ability, and strengthen the correlation of gradients
between the layers of the network. GoogLeNet [21] proved
that width is another important factor to improve model
performance. DenseNet [22] further deepened the idea of
ResNet, applied a shortcut to the entire network, realized the
dense connection of the network, and strengthened the
connection between features of each layer. Image classifi-
cation technology based on DenseNet has recently been
applied to various fields [23–25]. However, as the model
continues to be expanded in depth, width, and base, the
amount of its calculation is also increasing. In order to
achieve a better balance between the performance and cost of
the model, it is more possible to build a universal bionic
mechanism in the deep learning model than to pile up more
nonlinear layers.

2.3. Attention Mechanism. /e attention mechanism is a
deep learning technology that originated from the study of
human vision and has been widely used in natural language
processing [26, 27], recommendation systems, and image
classification [28, 29]. It mimics the characteristics of the
human visual system that selectively focuses on the salient
parts, and improves the efficiency of the model by dy-
namically selecting important features. It can be found from
the development in recent years that the attention mecha-
nism has become a commonmethod to enhance the effect of
CNNs. /e attention map obtained by the attention
mechanism from CNNs shows specific areas, which rep-
resent the features being focused on.

SENet [30] first proposed an effective channel attention
learning block and achieved good performance, proving that
attention can improve the expressiveness of the network by
enhancing important features and suppressing unnecessary
features. In [31], the malware is converted into a gray-scale

image and then input into the model combined with SENet
[30] and CNN for malware analysis and family classification.
After that, the attention module is developed from two
aspects: the enhancement of feature aggregation or the
combination of channel and spatial attention. GSoP [32]
introduced a second-order pool to achieve more effective
feature aggregation. CBAM [33] proposed a general atten-
tion module for CNNs, which uses max pooling and average
pooling to aggregate features and uses the aggregated fea-
tures for sequential channel attention mechanism (using
SENet [30]) and spatial attention mechanism. ECA-Net [34]
improved SENet [30] according to the idea of no dimen-
sionality reduction and lightweight and improved the effect
while reducing the parameters. ADCM [35] integrates
dropout into the attention mechanism according to the idea
of lightweight and improves CBAM [33]. In addition, many
works use improved attention mechanisms to improve the
effect of CNNs [36, 37].

Based on the CBAM [33] framework, this paper im-
proves the channel attention mechanism inside and creates a
new spatial attention mechanism. A new general lightweight
attention module called Depthwise Efficient Attention
Module is proposed.

3. Proposed Model

In order to better perform malware detection and family
classification of malware, we proposed a new method based
on DenseNet and the attention mechanism. In this section,
we will introduce the proposed model in detail. /e pro-
posedmodel is composed of DenseNet andDEAM. Based on
DenseNet-121, we construct a DenseNet suitable for the
proposed model. DEAM is composed of Improved Efficient
Channel Attention (IECA) and Depthwise Spatial Attention
(DSA). First, we introduce the architecture of DenseNet.
/en the proposed IECA and the DSA are described, re-
spectively. Finally, the entire flowchart of our model for
malware detection and family classification is represented.

3.1. Structure of theDenseNet. /eDenseNet model is a deep
learning model developed on the ResNet. In recent years,
DenseNet has achieved better results in the field of image
classification. /e basic idea of ResNet and DenseNet is the
same; however, DenseNet establishes a dense connection
between all the previous layers and the latter, and it realizes
feature reuse through the connection of features on the
channel. /ese features make DenseNet achieve better
performance than ResNet with fewer parameters and
computational costs and alleviate gradient vanishing
problems.

/e DenseNet is mainly composed of DenseBlock and
Transition layer. DenseBlock adopts a radical dense con-
nection mechanism; that is, all layers are connected to each
other. Specifically, each layer accepts the output from all the
previous layers as its additional input, as shown in Figure 2.

In DenseBlock, each layer has the same size and each
layer is concatenated with all previous layers in the channel
dimension. For a network with L layer, DenseBlock contains

Table 1: Image height for several file sizes.

File size Image height
<10 kB 32
10 kB–30 kB 64
30 kB–60 kB 128
60 kB–100 kB 256
100 kB–200 kB 384
200 kB–500 kB 512
500 kB–1000 kB 768
>1000 kB 1024

Security and Communication Networks 3

a total of L (L+ 1)/2 connections. /e input of the layer L is
as follows:

xL � HL x1, x2, . . . , xL−2, xL−1 (, (1)

where L represents the number of layers. HL(...) represents
nonlinear transformation, which is a combination of Batch
Normalization (BN), ReLU, Pooling, and Conv operations.
In this paper, the common DenseNet-B structure is utilized,
and the bottleneck layer is used to reduce the amount of
calculation; that is, the structure
BN+ReLU+ 1× 1Conv +BN+ReLU+ 3×3 Conv is adop-
ted in this paper. Each layer in DenseBlock outputs k feature
maps after convolution, that is, the number of convolution
kernels. If we set the channel number of input DenseBlock as
k0, then the input channel number of L layer is k0+ k(L-1).
Here, the final convolution of each layer is k, and k is called
the growth rate. In DenseBlock, with the increase in the
number of layers, the number of input channels will be larger
and larger.

Since the input size of the model after passing through a
DenseBlock remains unvaried, the channel dimension will
continue to increase. /erefore, dimension reduction is
necessary to reduce computational complexity. /e Tran-
sition layer is mainly composed of a 1× 1 convolution and
2× 2 AvgPooling or MaxPooling, and its structure is
BN+ReLU+ 1× 1 Conv + 2× 2 AvgPooling. It connects two

adjacent DenseBlocks and reduces the dimensionality of the
output of the DenseBlock.

Now the commonly used DenseNet frameworks are
DenseNet-121, DenseNet-169, DenseNet-201, and Dense-
Net-264. /e DenseNet in our proposed model is based on
DenseNet-121. Table 2 shows a comparison between Den-
seNet-121 and the DenseNet in our proposed model.

3.2. Depthwise Efficient Attention Module. /e DEAM we
proposed follows the framework of CMBA [33] and consists
of two parts, IECA and DSA. For an input feature
mapM ∈ RC×H×W (where C denotes channel, H denotes
height, and W denotes width), DEAM calculates the rela-
tionship between the channels of the feature map through
IECA to obtain a 1-dimensional channel attention
mapMC ∈ RC×1×1 to focus on important features on the
image. /en, DEAM calculates the 3-dimensional spatial
attention map MS ∈ RC×H×Wof the feature map through
DSA and pays attention to the position of the feature on the
image. /e calculation process in the DEAM is as follows:

M′ � MC(M)⊗M,

M″ � MS M′(⊗M′,
(2)

where⊗ denotes elementwise multiplication.
According to [33], in the DEAM, we connect the two

attention mechanisms serially and put IECA in the front of

DenseBlock

Input
Feature

k0
channels

k0 + 4k
channels

k0 + 3k
channels

k0 + 2k
channels

k0 + k
channels

Output
Feature

H1(.) H2(.) H3(.) H4(.)

C C C C C

C: channel-wise concatenation
HL(.): non-linear transformation

X0 X0

X1 X0

X1

X2

X0

X1

X2

X3

X0

X1

X2

X3
X4

Figure 2: Implementation mechanism of DenseBlock.

(a) (b) (c)

Figure 1: Malware samples from different families and benign samples are visualized as gray-scale images. Note the texture differences of
different samples: (a) malware sample (Adialer.C); (b) malware sample (Agent.FYI); (c) benign sample.

4 Security and Communication Networks

DEAM to get the best effect. /rough experimental com-
parisons, when DEAM is put behind the last DenseBlock of
DenseNet, the system can achieve the best effect. Since
DenseNet is the connection of all layers, the input of each
layer is the superposition of all the previous layers. Adding a
DEAM behind each DenseBlock will recalculate the calcu-
lated value and create a lot of useless overhead. In addition,
each DEAM focuses on different features. If the DEAM is in
front of or behind each DenseBlock, they may interfere with
each other to reduce the effect of the model. Figure 3 de-
scribes the process of each attention map, and the detailed
information of each attention mechanism is described
below.

3.2.1. Improved Efficient Channel Attention. In the mech-
anism of channel attention, we consider which features we
should pay attention to. Each channel of the feature map is
regarded as a feature detector [38]; however, not every
channel is very useful for image recognition. By calculating
the probability of different channels, the channel attention
will be focused on the main features of the image. /erefore,
through the channel attention mechanism, we can better
extract the representative features of malware images and
improve the efficiency of malware detection and family
classification.

/e attention mechanism has been widely used to im-
prove the performance of CNNs, among which the more
representative ones are SENet [30] and CBAM [33].
However, most of the attention mechanisms are dedicated to
complicating themselves to achieve better performance.
ECA-Net [34] improved SENet model by lightweight
without dimensionality reduction, and the important role of
no dimensionality reduction for the attention mechanism is
proved. ECA-Net proposes a 1-dimensional convolution to
achieve a local cross-channel interaction strategy, which

reduces model complexity while improving performance.
/e formula is as follows:

ω � σ C1Dk(y)(, (3)

where C1Ddenotes 1-dimensional convolution, k denotes
convolution kernel size of 1-dimensional con-
volutiony ∈ RC×1×1,ω denotes channel attention map, and
σdenotes Sigmoid function. Meanwhile, a method of
adaptively selecting the size of a 1-dimensional convolution
kernel is proposed to determine the coverage rate of local
cross-channel interaction. /e formula is as follows:

k � ψ(C) �
log2(C)

c
+

b

c

odd
, (4)

where |t|odd denotes the odd number closest to t, c and b are
set to 2 and 1, respectively, and C denotes the channel
number of the input feature map. /is improvement sig-
nificantly reduces the parameters of the channel attention
mechanism and enhances the computational efficiency of
the model.

In this paper, we use ECA-Net to replace the SENet in
the channel attention mechanism structure in CBAM in
order to achieve the effect without local dimensionality
reduction, and then we get the IECA. We use the max pool
and average pool to compress the input feature map in the
channel space in order to effectively calculate the channel
attention. /e average pool gathers spatial information, and
the max pool gathers distinctive object features. Two spatial
context descriptors (MC

avg and MC
max) which represent av-

erage pool feature and max pool feature are output from
average pool and max pool, respectively. /e two spatial
context descriptors are combined into a feature
vectorF0 ∈ RC×1×1 by element summation, and the com-
bined feature vector is transferred into a 1-dimensional
convolution. /e size k of the 1-dimensional convolution

Table 2: /e structure of DenseNet in the proposed model and its comparison with DenseNet-121.

Layers Our DenseNet (k� 12) DenseNet-121 (k� 32)
Convolution 3∗ 3 conv, stride 1 7∗ 7 conv, stride 2
Pooling 2∗ 2 max pool, stride 2 3∗ 3 max pool, stride 2

DenseBlock(1) 1∗ 1 conv
3∗ 3 conv ∗ 3 1∗ 1 conv

3∗ 3 conv ∗ 6

Transition
1∗ 1 conv

2∗ 2 ave pool, stride 2

DenseBlock(2) 1∗ 1 conv
3∗ 3 conv ∗ 6 1∗ 1 conv

3∗ 3 conv ∗ 12

Transition
1∗ 1 conv

2∗ 2 ave pool, stride 2

DenseBlock(3) 1∗ 1 conv
3∗ 3 conv ∗ 12 1∗ 1 conv

3∗ 3 conv ∗ 24

Transition
1∗ 1 conv

2∗ 2 ave pool, stride 2

DenseBlock(4) 1∗ 1 conv
3∗ 3 conv ∗ 8 1∗ 1 conv

3∗ 3 conv ∗ 16

Pooling GlobalAveragePooling
Softmax

Security and Communication Networks 5

kernel is obtained by the adaptive selection, and the Sigmoid
function is used for the eigenvector of a 1-dimensional
convolution outputF1 ∈ RC×1×1 to obtain a 1-dimensional
channel attention mapMC ∈ RC×1×1. /e formula is as
follows:

MC(M) � σ(conv1D(Avg Pool(M) + Max Pool(M))),

MC(M) � σ C1Dk M
C
avg + M

C
max ,

(5)
where + denotes element summation.

3.2.2. Depthwise Spatial Attention. Different from the
channel attention mechanism, the spatial attention mech-
anism pays attention to which position on the feature de-
tector is meaningful and which part is a supplement to the
channel attention mechanism. /e spatial attention mech-
anism will calculate the probability of different positions on
the feature map and focus on the meaningful positions on
the feature map. /erefore, through the spatial attention
mechanism, we can better extract the representative features
of malware images and improve the efficiency of malware
detection and family classification.

/e spatial attention mechanism of CMBA [33] first
compresses the feature map with the max pool and the
average pool along the channel axis [39] and then connects
their outputs to generate an effective feature descriptor.
Convolution is used for the feature descriptor to generate a
2-dimensional spatial attention map. DSA in this paper is a

new spatial attention mechanism that is constructed based
on the idea of no dimensionality reduction in ECA-Net [34].
In ECA-Net, it has been proved that avoiding dimensionality
reduction is very important for the attention mechanism.
DSA uses Depthwise Convolution to calculate the 3-di-
mensional spatial attention map of the feature map without
dimensionality reduction. Depthwise Convolution is a
special form of Group Convolution when the number of
groups is equal to the number of channels. Depthwise
Convolution divides the input features into different groups
according to the number of channels and convolves each
group separately. In IECA, we only replace the part of SENet
[30] to achieve the effect of no local dimensionality re-
duction in the channel attention mechanism. In DSA, we
construct a new spatial attention mechanism through
Depthwise Convolution, abandoning the dimensionality
reduction of the max pool and average pool along the
channel axis in the CMBA, and achieve the effect of no
dimensionality reduction. Depthwise Convolution can ob-
tain a prominent information area from each channel, which
is more comprehensive than applying the convergence
operation along the channel axis [39]. We will describe the
detailed operation below.

We apply Depthwise Convolution on the input feature
map and use the Sigmoid function on the output feature
descriptorF2 ∈ RC×H×W to get a 3-dimensional spatial at-
tention mapMS ∈ RC×H×W. /e formula is as follows:

MS M′(� σ Depthwise Conv2D M′((, (6)

k = 3

C∗1∗1

C∗1∗1

C∗1∗1 C∗1∗1

C∗1∗1

Input
feature

M

H Output
Feature

MC
Adaptive selection of

Kernel size:
k = Ψ(C)

MaxPool

AvePool

Improved efficient channel attention

F0

Input
Feature

M′

F1

:Sigmoid function

:Element by element summation

C
W

C1 C2 C3 ... Cc
W

H

C∗H∗W C∗H∗W

Depthwise spatial attention3∗3 conv

3∗3 conv

3∗3 conv

3∗3 conv

3∗3 conv

1∗H∗W

1∗H∗W

1∗H∗W

N∗H∗W

1∗H∗W Output
feature

Ms

F2

Figure 3: Diagram of each attention submodule of the EDAM. As illustrated, the IECA submodule combines the maximum pool output and
average pool output into a 1-dimensional convolution to generate a 1-dimensional channel attention map; the DSA submodule uses the
Depthwise Convolution to generate the 3-dimensional space attention map.

6 Security and Communication Networks

where Depthwise Conv2D denotes Depthwise Convolution.

3.3. 9e Process of Detecting and Classifying Malware. /e
whole process of detecting and classifying malware is de-
scribed as follows. First, the PE file is converted into a gray-
scale image using the method in the literature [12]. Second,

the converted gray-scale image is applied to a malware
detection model, which consists of DEAM and DenseNet.
/e model is trained using the gray-scale images of known
benign software samples and malware samples, as well as

Detection model

Classification model

Portable
executable

samples Gray-scale
images

Apply the images to DenseNet
with DEAM (Binary

classification)

Benign
samples

Malware
samples

Gray-scale
images

Apply the images to DenseNet
with DEAM (Multi classification)

Family 1

Family 2

Family n

Convert to
images

Figure 4: Block diagram of malware detection and classification.

Table 3: MalImg: distribution of samples.

No. Family Number of samples
1 Adialer.C 122
2 Agent.FYI 116
3 Allaple.A 2949
4 Allaple.L 1591
5 Alureon.gen!J 198
6 Autorun.K 106
7 C2LOP.gen!g 200
8 C2LOP.P 146
9 Dialplatform.B 177
10 Dontovo.A 162
11 Fakerean 381
12 Instantaccess 431
13 Lolyda.AA1 213
14 Lolyda.AA2 184
15 Lolyda.AA3 123
16 Lolyda.AT 159
17 Malex.gen!J 136
18 Obfuscator.AD 142
19 Rbot!gen 158
20 Skintrim.N 80
21 Swizzor.gen!E 128
22 Swizzor.gen!I 132
23 VB.AT 408
24 Wintrim.BX 97
25 Yuner.A 800

9339

Table 4: BIG 2015: distribution of samples.

No. Family Number of samples
1 Ramnit 1541
2 Lollipop 2478
3 Kelihos_ver3 2942
4 Vundo 475
5 Simda 42
6 Tracur 751
7 Kelihos_ver1 398
8 Obfuscator.ACY 1228
9 Gatak 1013

10868

Table 5: Precision, recall, and F1 score of our model on the
constructed dataset.

Malware Benign Precision Recall F1 score
Malware 204 0 0.986 1 0.992
Benign 3 214 1 0.986 0.993
Macro 0.993 0.993 0.993

Table 6: Precision, recall, and F1 score of DenseNet on the con-
structed dataset.

Malware Benign Precision Recall F1 score
Malware 201 3 0.995 0.985 0.990
Benign 1 216 0.986 0.995 0.990
Macro 0.991 0.990 0.990

Security and Communication Networks 7

their corresponding labels. /e trained detection model can
effectively distinguish the malware from benign software.
/en, the gray-scale image of malware is applied to the
malware family classification model which consists of
DEAM and DenseNet. /e model is trained using gray-scale
images of known malware samples and their labels repre-
senting the family of each malware sample. /e trained
family classification model can effectively identify malware
families. /e whole process is shown in Figure 4.

4. Experiments

4.1. Datasets and Evaluation Criterion. /e datasets used for
the evaluation of the classification results of malware fam-
ilies in this article are the MalImg dataset from [12] and the
BIG 2015 dataset provided by Microsoft for the Big Data
Innovators Gathering Anti-Malware Prediction Challenge.
/e MalImg dataset is a large-scale unbalanced Windows
malware gray-scale image dataset which contains 25 mal-
ware families and a total of 9339 malware gray-scale image
samples, as shown in Table 3. /e malware families in
MalImg dataset include worm, Trojan horse, backdoor, and
rogue software.

We only use the labeled training set of the BIG 2015
dataset, which contains 9 malware families and a total of
10868 malware samples, as shown in Table 4. Each sample of
the dataset has a hexadecimal representation of its binary
content and its corresponding assembly file. Both the
MalImg dataset and the BIG 2015 dataset are benchmark
datasets used in many recent works.

Due to the lack of public datasets for detection, we use
our own constructed dataset for indirect comparison with
the work of others. We merged the MalImg dataset and the
BIG 2015 dataset and randomly selected the same number of
malware samples from each of the 34 malware families in the
merger. /en, we constructed a 1 :1 detection dataset with
the extracted 1087 malware samples and the collected 1087
benign software samples. /e diversity of malware families
in the dataset ensures the generalization ability of the de-
tection model, so as to avoid the reduction of model

generalization performance caused by overfitting when
using unbalanced data to train the model.

In order to test the generalization performance of our
model, we divided the dataset into the training set, validation
set, and test set at a ratio of 6 : 2:2 and repeated each experiment
5 times to reduce experimental errors. /e training set is used
to train the model, the validation set is used to adjust the
performance of the model, and the test set is put into the
trained model to test the performance of the model. Our
experiment is based on the TensorFlow 2.0 framework. /e
Adam optimizer and categorical_crossentropy are used in our
experiments. Besides, such parameters as accuracy, recall, and
F1 score are also used as performance indicators to select the
best model in detection and family classification. /is is be-
cause when there is an imbalance between different classes, the
accuracy rate can only reflect the overall prediction level. It
ignores the prediction ability of a small number of classes.
Sometimes, it can still get a higher level of classification ac-
curacy when there are errors in a small number of classes or key
classes. /e precision is relative to the prediction results and
indicates the correct number of the samples whose predictions
are positive./e recall rate is relative to the sample, that is, how
many positive samples are correctly predicted. /e F1 score
combines the precision and recall results.

/e precision is calculated as follows:

Precision �
TP

TP + FP
, (7)

where TP is the true positive number and FP is the false
positive number.

/e recall is obtained as follows:

Recall �
TP

TP + FN
, (8)

where FN is the false negative number.
/e F1 score is a weighted harmonic mean of precision

and recall, as follows:

F1 �
2∗ Precision∗Recall
Precision + Recall

. (9)

Accuracy 97.0% 95.1% 98.5% 96.2% 99.0% 99.3%

RF [41] (Zhang, [10]) SVM [7] CRNN [40] DenseNet Proposed
method

97
.0

%

95
.1

%

98
.5

%

96
.2

%

99
.0

%

99
.3

%

Accuracy

Figure 5: Accuracy comparison of our model with recent works in detection.

8 Security and Communication Networks

Ta
bl

e
7:

Pr
ec
isi
on

,r
ec
al
l,
an
d
F1

sc
or
e
of

ou
r
m
od

el
on

th
e
M
al
Im

g
da
ta
se
t.

A
di
al
er
.C

A
ge
nt
.F
YI

A
lla
pl
e.
A

A
lla
pl
e.
L

A
llu

er
on

.g
en
!J

A
ut
or
un

.K
C
2L

op
.P

C
2L

op
.g
en
!g

D
ia
lp
la
tfo

rm
.B

D
on

to
vo
.A

Fa
ke
re
an

In
st
an
ta
cc
es
s

Lo
ly
da
.A
A
1

Lo
ly
da
.A
A
2

Lo
ly
da
.A
A
3

Lo
ly
da
.A
T

M
al
ex
.g
en
!J

O
bf
us
ca
to
r.A

D
A
D

Rb
ot
!g
en

Sk
in
tr
im

.N
Sw

iz
zo
r.g

en
!E

Sw
iz
zo
r.g

en
!I

V
B.
A
T

W
in
tr
im

.B
X

Yu
ne
r.A

Pr
ec
isi
on

Re
ca
ll

F1
sc
or
e

A
di
al
er
.C

25
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
ge
nt
.F
YI

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
lla
pl
e.
A

0
0

76
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
lla
pl
e.
L

0
0

0
86

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
llu

er
on

.g
en
!J

0
0

0
0

37
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

0
0

0
0

0
0.
92
5

0.
86
0

0.
89
1

A
ut
or
un

.K
0

0
0

0
3

34
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1.
00
0

0.
91
8

0.
95
7

C
2L

op
.P

0
0

0
0

0
0

25
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

C
2L

op
.g
en
!g

0
0

0
0

0
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

D
ia
lp
la
tfo

rm
.B

0
0

0
0

0
0

0
0

26
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

0.
96
2

0.
98
1

D
on

to
vo
.A

0
0

0
0

0
0

0
0

0
28

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Fa
ke
re
an

0
0

0
0

0
0

0
0

0
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
96
9

1.
00
0

0.
98
4

In
st
an
ta
cc
es
s

0
0

0
0

0
0

0
0

0
0

0
23

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Lo
ly
da
.A
A
1

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Lo
ly
da
.A
A
2

0
0

0
0

0
0

0
0

0
0

0
0

0
22

3
0

0
0

0
0

0
0

1
0

0
0.
78
5

0.
84
6

0.
81
4

Lo
ly
da
.A
A
3

0
0

0
0

0
0

0
0

0
0

0
0

0
6

19
0

0
0

0
0

0
0

0
1

0
0.
79
1

0.
73
0

0.
76

Lo
ly
da
.A
T

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
82

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

M
al
ex
.g
en
!J

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

19
0

0
0

0
0

0
0

0
0.
95

1.
00
0

0.
97
4

O
bf
us
ca
to
r.A

D
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Rb
ot
!g
en

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

58
9

0
0

0
0

0
0

1.
00
0

0.
99
8

0.
99
9

Sk
in
tr
im

.N
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

31
8

0
0

0
0

0
0.
98
1

1.
00
0

0.
99
0

Sw
iz
zo
r.g

en
!E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

40
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Sw
iz
zo
r.g

en
!I

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
21

0
0

0
1.
00
0

1.
00
0

1.
00
0

V
B.
A
T

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0.
94
8

0.
92
5

0.
93
6

W
in
tr
im

.B
X

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

37
0.
88
1

Yu
ne
r.A

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1.
00
0

M
ac
ro

0.
96
9

0.
96
6

0.
96
7

Security and Communication Networks 9

Ta
bl

e
8:

Pr
ec
isi
on

,r
ec
al
l,
an
d
F1

sc
or
e
of

D
en
se
N
et

on
th
e
M
al
Im

g
da
ta
se
t.

A
di
al
er
.C

A
ge
nt
.F
YI

A
lla
pl
e.
A

A
lla
pl
e.
L

A
llu

er
on

.g
en
!J

A
ut
or
un

.K
C
2L

op
.P

C
2L

op
.g
en
!g

D
ia
lp
la
tfo

rm
.B

D
on

to
vo
.A

Fa
ke
re
an

In
st
an
ta
cc
es
s

Lo
ly
da
.A
A
1

Lo
ly
da
.A
A
2

Lo
ly
da
.A
A
3

Lo
ly
da
.A
T

M
al
ex
.g
en
!J

O
bf
us
ca
to
r.A

D
Rb

ot
!g
en

Sk
in
tr
im

.N
Sw

iz
zo
r.g

en
!E

Sw
iz
zo
r.g

en
!I

V
B.
A
T

W
in
tr
im

.B
X

Yu
ne
r.A

Pr
ec
isi
on

Re
ca
ll

F1
sc
or
e

A
di
al
er
.C

25
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
ge
nt
.F
YI

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
lla
pl
e.
A

0
0

76
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
lla
pl
e.
L

0
0

0
86

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

A
llu

er
on

.g
en
!J

0
0

0
0

43
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
93
4

1.
00
0

0.
96
6

A
ut
or
un

.K
0

0
0

0
3

34
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
97
1

0.
91
8

0.
94
4

C
2L

op
.P

0
0

0
0

0
0

25
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

C
2L

op
.g
en
!g

0
0

0
0

0
0

0
32

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

D
ia
lp
la
tfo

rm
.B

0
0

0
0

0
1

0
0

26
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

0.
96
2

0.
98
1

D
on

to
vo
.A

0
0

0
0

0
0

0
0

0
28

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Fa
ke
re
an

0
0

0
0

0
0

0
0

0
0

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

In
st
an
ta
cc
es
s

0
0

0
0

0
0

0
0

0
0

0
23

0
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Lo
ly
da
.A
A
1

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Lo
ly
da
.A
A
2

0
0

0
0

0
0

0
0

0
0

0
0

0
10

16
0

0
0

0
0

0
0

0
0

0
0.
55
5

0.
38
4

0.
45
4

Lo
ly
da
.A
A
3

0
0

0
0

0
0

0
0

0
0

0
0

0
2

24
0

0
0

0
0

0
0

0
0

0
0.
52
1

0.
92
3

0.
66
6

Lo
ly
da
.A
T

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
82

0
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

M
al
ex
.g
en
!J

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

19
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

O
bf
us
ca
to
r.A

D
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Rb
ot
!g
en

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

59
0

0
0

0
0

0
0

0.
99
8

1.
00
0

0.
99
9

Sk
in
tr
im

.N
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

31
8

0
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Sw
iz
zo
r.g

en
!E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

40
0

0
0

0
1.
00
0

1.
00
0

1.
00
0

Sw
iz
zo
r.g

en
!I

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
21

0
0

0
1.
00
0

1.
00
0

1.
00
0

V
B.
A
T

0
0

0
0

0
0

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
0

35
1

0
0.
94
5

0.
87
5

0.
90
9

W
in
tr
im

.B
X

0
0

0
0

0
0

0
0

0
0

0
0

0
2

6
0

0
0

1
0

0
0

2
18

0
0.
94
7

0.
62
0

0.
75
0

Yu
ne
r.A

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

35
1.
00
0

1.
00
0

1.
00
0

M
ac
ro

0.
95
5

0.
94
7

0.
94
6

10 Security and Communication Networks

We derive the values of the binary classification task
(detection) normally. For multiclassification tasks (family
classification), we obtain the precision, recall, and F1 scores
of each family separately. After that, the macro-precision,
macro-recall, and macro-F1 are calculated by averaging the
sum of the evaluation indicators of each family (the macro-
average gives each family the same weight), respectively.

4.2. Malware Detection. We conduct malware detection
experiments on the constructed dataset. Tables 5 and 6 show
the obtained detection results in the form of a 2×2 confusion
matrix, as well as the precision, recall, and F1 score values of
each family. For the proposed model, the results of the
accuracy, precision, recall, and F1 score are all 99.3%. /e
DenseNet without DEAM has an accuracy of 99.0%, a
precision of 99.1%, a recall of 99.0%, and an F1 score of
99.0% on our constructed dataset. It can be found that
DEAM almost does not improve the performance of CNNs
in terms of detection, but the numbers of wrong predicted
samples in the two experiments are only 3 and 4, respec-
tively. /erefore, we believe that DenseNet itself already has
high detection capabilities, and adding DEAM can no longer
improve the performance of CNNs. Figure 5 gives an in-
direct comparison between our model and recent works, [7,
10, 40, 41] which proves that the proposed model is superior
in detection compared with existing methods.

4.3. Malware Family Classification

4.3.1. MalImg Dataset. Our model is trained by reducing the
image size in the MalImg dataset to 192 ∗ 192 pixels. /e
smaller image size cannot retain all important information
(that is, loss of discriminative information about a family),
while a higher value will only increase the calculation time
while not improving the overall accuracy. Tables 7 and 8 give
the classification results in the form of a 25× 25 confusion
matrix, as well as the precision, recall, and F1 score values of
each family. /e proposed model achieves very good results:

the accuracy is 98.5%, the precision is 96.9%, the recall is
96.6%, and the F1 score is 96.7%. /ese performance in-
dicators show that the method achieves better classification
and lower misclassification. On the MalImg dataset, Den-
seNet without DEAM has an accuracy of 97.9%, a precision
of 95.5%, a recall of 94.7%, and an F1 score of 94.6%. Figure 6
shows the comparison between our model and recent work
on the MalImg dataset. Experimental results show that our
model has the same accuracy as that of in the literature [16],
but other performance indicators are slightly lower than
those in the literature [16]. Compared with other recent
works, [14, 15, 42] our model has improved performance in
malware family classification and robustness in classification
imbalance.

/e MalImg dataset contains many samples processed
through obfuscation techniques, such as packaging and
encryption. Among them, Yuner.A, VB.AT, Malex.gen!J,
Autorun.K, and Rbot!gen families use the same packaging
technology, UPX, whichmakes them have similar structures,
and it is difficult to distinguish them. However, our model
classifies the Yuner.A with 100% accuracy; the F1 scores of
Malex.gen!J and Rbot!gen are 97.4% and 99.9%, and the F1
scores of VB.AT and Autorun.K are also 93.6% and 95.7%.
Allaple encrypts the code part in several layers using a
random key. Our model classifies Allaple.A and Allaple.L at
a rate of 100%. /is proves that our model is robust in both
packaging and encryption. Meanwhile, Swizzor.gen!E and
Swizzor.gen!I that belong to the same family variants are also
classified with the accuracy of 100%.

It can be seen from the comparison of Tables 7 and 8 that
our model slightly reduces the classification effect in each
category compared with DenseNet without DEAM. For
example, the F1 score of Fakerean has dropped from 1 to
98.4%. However, it greatly improves the classification ac-
curacy ofWintrim.BX, Lolyda.AA2, and Lolyda.AA3./e F1
score of Wintrim.BX is raised from 75% to 88.1%, the F1
score of Lolyda.AA2 is raised from 45.4% to 81.4%, and the
F1 score of Lolyda.AA3 is raised from 66.6% to 76%, thus
improving the overall classification accuracy. /is proves

Macro-precision 91.8% 94.6% 95.8% 98.0% 92.5% 95.5% 96.9%

Macro-recall 91.5% 94.5% 96.6% 98.0% 92.6% 94.7% 96.6%

Macro-accuracy 96.3% 94.5% 98.5% 98.5% 97.5% 97.9% 98.5%

Macro-F1 measure 91.6% 94.5% 95.8% 98.0% 92.5% 94.6% 96.7%

(Venkatraman,
2019)[14]

(Cui , 2018)
[42]

(Gibert, 2019)
[15]

(Verma,
2020)[16]

DenseNet + C
BAM DenseNet

Proposed
method

91
.8

%

94
.6

% 95
.8

%

98
.0

%

92
.5

%

95
.5

% 96
.9

%

91
.5

%

94
.5

%

96
.6

% 98
.0

%

92
.6

%

94
.7

% 96
.6

%

96
.3

%

94
.5

%

98
.5

%

98
.5

%

97
.5

%

97
.9

%

98
.5

%

91
.6

%

94
.5

% 95
.8

%

98
.0

%

92
.5

%

94
.6

%

96
.7

%

Macro-precision

Macro-recall

Macro-accuracy

Macro-F1 measure

Figure 6: Comparison of our model with recent works on MalImg dataset.

Security and Communication Networks 11

Ta
bl

e
9:

Pr
ec
isi
on

,r
ec
al
l,
an
d
F1

sc
or
e
of

ou
r
m
od

el
on

BI
G

20
15

da
ta
se
t.

Ra
m
ni
t

Lo
lli
po

p
K
el
ih
os
_v
er
3

V
un

do
Si
m
da

Tr
ac
ur

K
el
ih
os
_v
er
1

O
bf
us
ca
to
r.A

C
Y

G
at
ak

Pr
ec
isi
on

Re
ca
ll

F1
sc
or
e

Ra
m
ni
t

29
5

2
0

0
0

4
1

6
1

0.
97
3

0.
95
4

0.
96
4

Lo
lli
po

p
0

49
1

0
0

0
0

0
2

3
0.
98
5

0.
98
9

0.
98
7

K
el
ih
os
_v
er
3

0
0

58
8

0
0

0
0

0
0

0.
99
8

1.
00
0

0.
99
9

V
un

do
0

1
0

91
0

1
1

1
0

0.
95
7

0.
95
7

0.
95
7

Si
m
da

0
0

0
1

7
0

0
0

0
0.
87
5

0.
87
5

0.
87
5

Tr
ac
ur

2
2

0
1

0
14
0

1
0

4
0.
94
5

0.
93
3

0.
93
9

K
el
ih
os
_v
er
1

0
0

0
0

0
0

76
0

3
0.
95
0

0.
96
2

0.
95
5

O
bf
us
ca
to
r.A

C
Y

6
1

1
2

1
3

1
22
7

3
0.
95
7

0.
92
6

0.
94
1

G
at
ak

0
1

0
0

0
0

0
1

20
0

0.
93
4

0.
99
0

0.
96
1

M
ac
ro

0.
95
3

0.
95
4

0.
95
4

12 Security and Communication Networks

Ta
bl

e
10
:P

re
ci
sio

n,
re
ca
ll,

an
d
F1

sc
or
e
of

D
en
se
N
et

on
BI
G

20
15

da
ta
se
t.

Ra
m
ni
t

Lo
lli
po

p
K
el
ih
os
_v
er
3

V
un

do
Si
m
da

Tr
ac
ur

K
el
ih
os
_v
er
1

O
bf
us
ca
to
r.A

C
Y

G
at
ak

Pr
ec
isi
on

Re
ca
ll

F1
sc
or
e

Ra
m
ni
t

28
5

8
0

0
1

1
3

11
0

0.
.9
76

0.
92
2

0.
94
8

Lo
lli
po

p
0

49
5

0
1

0
0

0
0

0
0.
94
8

0.
99
7

0.
97
2

K
el
ih
os
_v
er
3

0
0

58
8

0
0

0
0

0
0

0.
98
9

1.
00
0

0.
99
4

V
un

do
0

2
0

90
0

1
0

1
1

0.
95
7

0.
94
7

0.
95
2

Si
m
da

0
0

0
1

5
0

1
0

1
0.
83
3

0.
62
5

0.
71
4

Tr
ac
ur

3
2

2
1

0
13
5

2
0

5
0.
97
8

0.
90
0

0.
93
7

K
el
ih
os
_v
er
1

0
1

2
0

0
0

76
0

0
0.
91
5

0.
96
2

0.
93
8

O
bf
us
ca
to
r.A

C
Y

4
8

2
0

0
1

1
22
4

5
0.
94
1

0.
91
4

0.
92
7

G
at
ak

0
6

0
1

0
0

0
2

19
3

0.
94
1

0.
95
5

0.
94
8

M
ac
ro

0.
94
2

0.
91
4

0.
92
6

Security and Communication Networks 13

that our proposed DEAM has an improving effect on CNNs.
Besides, in the entire model, the original CBAM block has
4,935 parameters, while our DEAM has only 1,935 pa-
rameters, almost reduced to one-third of CBAM parameters.
For the 346,293 parameters in the entire DenseNet model,
there is almost no increase in computational consumption.

On the MalImg dataset, the model using CBAM took
Swizzor.gen!I for Obfuscator. AD with a rate of 100% in 5
experiments causing a significant drop in the classification
effect, which reduced the performance of DenseNet.

4.3.2. BIG 2015 Dataset. /e processing method of the BIG
2015 dataset is similar to that of the MalImg dataset. We
downsample the gray-scale images. Tables 9 and 10 give the
obtained classification results in the form of a 9×9 confusion
matrix, as well as the precision, recall, and F1 measurement
values of each family. /e accuracy of our model on the BIG
2015 dataset is 97.3%, the precision is 95.3%, the recall is
95.4%, and the F1 score is 95.4%. DenseNet without DEAM
has an accuracy of 96.3%, a precision of 94.2%, a recall of
91.4%, and an F1 score of 92.6% on the BIG 2015 dataset.
Figure 7 shows a comparison of ourmodel with recent works
[15, 43] on the BIG 2015 dataset. It can be seen from Figure 7
that our model has improved precision, recall rate, and F1
score compared with [15], which proves that our model can
better classify malware families. Our DEAM and CBAM
have basically the same classification effect on the BIG 2015
dataset. However, the parameters used by DEAM are much
less than those of CBAM, which can effectively improve the
calculation efficiency. Based on the experimental results on
the MalImg dataset and the BIG 2015 dataset, we can prove
that the proposed DEAM has a better effect than CBAM.
/rough the comparison between Tables 9 and 10, we can
see that the addition of DEAM has increased the classifi-
cation effect of the model on multiple classes, especially the
F1 score on Simda increasing from 71.4% to 87.5%.
/erefore, it is further verified that DEAM improves the

performance of CNNs. /ere is a certain gap between the
effect on BIG 2015 dataset and that on MalImg dataset. We
think that this is due to the larger texture gap between the
same family samples in BIG 2015. In this paper, we only use
the global image and do not further process the gray-scale
image of malware.

5. Conclusion

/is paper proposes a new lightweight and effective con-
volutional neural network attention module that is defined
as DEAM, and combines it with the DenseNet for malware
detection and family classification. /e proposed method,
which is first used in the detection model, converts exe-
cutable files into gray-scale images, and then the detected
malware is used in the family classification model to dis-
tinguish different malware families. Experimental results
show that the number of DEAM parameters is only one-
third of the CBAM parameters, so the DEAM can reduce the
attention module parameters and improve the computa-
tional efficiency of the model. Besides, it is better than
CBAM in performance, which helps to improve the per-
formance of CNNs. /e presented model performs well in
malware detection and family classification, and it also
shows robustness to code confusion and class imbalance
problems.

Although the proposedmethod has good performance in
malware detection and family classification, it still needs
improvements. For example, our method directly uses the
original gray-scale image of the malware in the model and
does not process the gray-scale image of the malware. In the
future, we will explore these issues to further improve
performance.

Data Availability

/e MalImg dataset can be obtained from http://vision.ece.
ucsb.edu/∼lakshman/malware_images/album/. /e BIG

Macro-precision 95.4% 95.3% 94.2% 95.3%

Macro-recall 88.3% 95.5% 91.4% 95.4%

Macro-accuracy 97.5% 96.0% 97.4% 96.3% 97.3%

Macro-F1 measure 94.0% 89.7% 95.4% 92.6% 95.4%

(Gibert, 2019)[15] ACNN[43] DenseNet + CBAM DenseNet Proposed method

95
.4

%

95
.3

%

94
.2

% 95
.3

%

88
.3

%

95
.5

%

91
.4

%

95
.4

%97
.5

%

96
.0

% 97
.4

%

96
.3

% 97
.3

%

94
.0

%

89
.7

%

95
.4

%

92
.6

%

95
.4

%

Macro-precision
Macro-recall

Macro-accuracy
Macro-F1 measure

Figure 7: Comparison of our model with recent works on BIG 2015 dataset.

14 Security and Communication Networks

http://vision.ece.ucsb.edu/%7Elakshman/malware
http://vision.ece.ucsb.edu/%7Elakshman/malware

2015 dataset can be obtained from https://www.kaggle.com/
c/malware-classification/data.

Conflicts of Interest

/e authors declare that they have no conflicts of interest.

Acknowledgments

/is work was supported by the National Natural Science
Foundation of China under Grants No. 61572170 and No.
61672206, Natural Science Foundation of Hebei Province of
China under Grant No. F2019205163, Science Foundation of
Returned Overseas of Hebei Province of China under Grant
No. C2020342, Science Foundation of Department of Hu-
man Resources and Social Security of Hebei Province under
Grant No. 201901028, and Natural Science Foundation of
Hebei Normal University under Grant No. L072018Z10.

References

[1] 2020 State Of Malware Report, 2020, https://resources.
malwarebytes.com/files/2020/02/2020_State-of-Malware-
Report.pdf.

[2] D. Vasan, M. Alazab, S. Venkatraman, J. Akram et al., “Cross-
architecture IoT malware detection based on neural network
advanced ensemble learning,” IEEE Transactions on Com-
puters, vol. 69, no. 11, pp. 1654–1667, 2020.

[3] M. Amin, D. Shehwar, A. Ullah et al., “A deep learning system
for health care IoT and smartphone malware detection,”
Neural Computing and Applications, vol. 31, no. 11, pp. 1–12,
2020.

[4] H. Darabian, A. Dehghantanha, S. Hashemi et al., “An
opcode-based technique for polymorphic Internet of /ings
malware detection,” Concurrency Computational Practice
Expert, vol. 32, no. 6, 2019.

[5] H. Kim, J. Kim, Y. Kim et al., “Improvement of malware
detection and classification using API call sequence alignment
and visualization,” Cluster Comput, vol. 22, no. 1, pp. 921–929,
2017.

[6] N. Alshahwan, E. T. Barr, D. Clark, G. Danezis, and
H. D. Menéndez, “Detecting malware with information
complexity,” Entropy, vol. 22, no. 5, pp. 575–603, 2020.

[7] R. Sihwail, K. Omar, K. Zainol Ariffin, and S. Al Afghani,
“Malware detection approach based on artifacts in memory
image and dynamic analysis,” Applied Sciences, vol. 9, no. 18,
pp. 3680–3691, 2019.

[8] D. Javaheri and M. Hosseinzadeh, “A framework for recog-
nition and confronting of obfuscated malwares based on
memory dumping and filter drivers,” Wireless Personal
Communications, vol. 98, no. 1, pp. 119–137, 2018.

[9] F. Xiao, Y. Sun, D. Du et al., “A novel malware classification
method based on crucial behavior,”Mathematical Problems in
Engineering, vol. 2020, no. 3, Article ID 6804290, 2020.

[10] J. Zhang, Z. Qin, H. Yin, L. Ou, and K. Zhang, “A feature-
hybrid malware variants detection using CNN based opcode
embedding and BPNN based API embedding,” Computers &
Security, vol. 84, no. 7, pp. 376–392, 2019.

[11] F. O. Catak, A. F. Yazı, O. Elezaj et al., “Deep learning based
sequential model for malware analysis using Windows exe
API Calls,” Peerj Computer Science, vol. 6, no. 81, pp. 285–307,
2020.

[12] L. Nataraj, S. Karthikeyan, G. Jacob et al., “Malware images:
visualization and automatic classification,” in Proceedings of
the 8th International Symposium on Visualization for Cyber
Security, pp. 401–407, ACM press, Pittsburgh, PA, USA, 2011.

[13] Y. Dai, H. Li, Y. Qian, and X. Lu, “A malware classification
method based on memory dump grayscale image,” Digital
Investigation, vol. 27, no. 12, pp. 30–37, 2018.

[14] S. Venkatraman, M. Alazab, and R. Vinayakumar, “A hybrid
deep learning image-based analysis for effective malware
detection,” Journal of Information Security and Applications,
vol. 47, no. 8, pp. 377–389, 2019.

[15] G. Daniel, M. Carles, P. Jordi et al., “Using convolutional
neural networks for classification of malware represented as
images,” J. Comput. Virol. Hacking Tech, vol. 15, no. 1,
pp. 15–28, 2019.

[16] V. Verma, S. K. Muttoo, and V. B. Singh, “Multiclass malware
classification via first- and second-order texture statistics,”
Computers & Security, vol. 97, Article ID 101895, 2020.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Proceedings of Neural Information Processing System Foun-
dation, pp. 1097–1105, IEEE press, Lake Tahoe, NV, USA,
2012.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, http://
arxiv.org/abs/1409.1556.

[20] K. He, X. Zhang, S. Ren et al., “Deep residual learning for
image recognition,” 2016, http://arxiv.org/abs/1512.03385.

[21] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” 2014, http://arxiv.org/abs/1409.4842.

[22] G. Huang, Z. Liu, L. van der Maaten et al., “Densely connected
convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pp. 2261–2269, IEEE press, Honolulu, HI, USA, 2017.

[23] Z. Huang, Y. Zhao, X. Li et al., “Application of innovative
image processing methods and AdaBound-SE-DenseNet to
optimize the diagnosis performance of meningiomas and
gliomas,” Biomedical Signal Processing and Control, vol. 59,
Article ID 101926, 2020.

[24] X. Li, X. Shen, Y. Zhou et al., “Classification of breast cancer
histopathological images using interleaved DenseNet with
SENet (IDSNet),” PLoS One, vol. 15, no. 5, pp. 1–13, 2020.

[25] W. Tong, W. Chen, W. Han, X. Li, and L. Wang, “Channel-
attention-based denseNet network for remote sensing image
scene classification,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 13, no. 4,
pp. 4121–4132, 2020.

[26] Q. Xie, K. Zhou, and X. Fan, “Feature attention based de-
tection model for medical text,” Journal of Intelligent & Fuzzy
Systems, vol. 37, no. 4, pp. 4585–4594, 2019.

[27] L. Yang, P. Wang, H. Li, Z. Li, and Y. Zhang, “A holistic
representation guided attention network for scene text rec-
ognition,” Neurocomputing, vol. 414, no. 1, pp. 67–75, 2020.

[28] Y. Yang, X. Wang, Q. Zhao, and T. Sui, “Two-level attentions
and grouping attention convolutional network for fine-
grained image classification,” Applied Sciences, vol. 9, no. 9,
pp. 1939–1953, 2019.

[29] L. Mou and X. X. Zhu, “Learning to pay attention on spectral
domain: a spectral attention module-based convolutional
network for hyperspectral image classification,” IEEE

Security and Communication Networks 15

https://www.kaggle.com
https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report.pdf
https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report.pdf
https://resources.malwarebytes.com/files/2020/02/2020_State-of-Malware-Report.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1409.4842

Transactions on Geoscience and Remote Sensing, vol. 58, no. 1,
pp. 110–122, 2020.

[30] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation net-
works,” 2018, http://arxiv.org/abs/1709.01507.

[31] H. Yakura, S. Shinozaki, R. Nishimura et al., “Neural malware
analysis with attention mechanism,” Computers & Security,
vol. 87, Article ID 101592, 2019.

[32] Z. Gao, Ji. Xie, Q. Wang et al., “Global second-order pooling
convolutional networks,” 2019, http://arxiv.org/abs/1811.
12006v2.

[33] S. Woo, J. Park, J. Y. Lee et al., “CBAM: convolutional block
attention module,” 2018, http://arxiv.org/abs/1807.06521v2.

[34] Q. Wang, B. Wu, P. Zhu et al., “ECA-Net: efficient Channel
attention for Deep Convolutional neural networks,” 2020,
http://arxiv.org/abs/1910.03151.

[35] Z. Liu, J. Du, M. Wang, and S. S. Ge, “ADCM: attention
dropout convolutional module,” Neurocomputing, vol. 394,
no. 6, pp. 95–104, 2020.

[36] Y. Yang, C. Xu, F. Dong, and X. Wang, “A new multi-scale
convolutional model based on multiple attention for image
classification,” Applied Sciences, vol. 10, no. 1, pp. 101–118,
2019.

[37] W. Zeng and M. Li, “Crop leaf disease recognition based on
self-attention convolutional neural network,” Computers and
Electronics in Agriculture, vol. 172, no. 3, pp. 105341–105347,
2020.

[38] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 818–833, IEEE
press, Washington, DC, 2014.

[39] S. Zagoruyko and N. Komodakis, “Paying more attention to
attention: improving the performance of convolutional neural
networks via attention transfer,” 2017, http://arxiv.org/abs/
612.03928v3.

[40] S. Jeon and J. Moon, “Malware-detection method with a
convolutional recurrent neural network using opcode se-
quences,” Information Sciences, vol. 535, no. 5, pp. 1–15, 2020.

[41] A. Yewale and M. Sing, “Malware detection based on opcode
frequency,” in Proceedings of the 2016 International Confer-
ence on Advanced Communication Control and Computing
Technologies (ICACCCT), pp. 646–649, IEEE press, Ram-
anathapuram, India, 2016.

[42] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G Wang, and J. Chen,
“Detection of malicious code variants based on deep learn-
ing,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 7, pp. 3187–3196, 2018.

[43] X. Ma, S. Guo, H. Li et al., “How to make attention mech-
anisms more practical in malware classification,” IEEE Access,
vol. 7, pp. 155270–155280, 2019.

16 Security and Communication Networks

http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1811.12006v2
http://arxiv.org/abs/1811.12006v2
http://arxiv.org/abs/1807.06521v2
http://arxiv.org/abs/1910.03151
http://arxiv.org/abs/612.03928v3
http://arxiv.org/abs/612.03928v3

