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Abstract 

Background: Targeted Next Generation Sequencing is a common and powerful approach used in both clinical and 
research settings. However, at present, a large fraction of the acquired genetic information is not used since patho‑
genicity cannot be assessed for most variants. Further complicating this scenario is the increasingly frequent descrip‑
tion of a poli/oligogenic pattern of inheritance showing the contribution of multiple variants in increasing disease 
risk. We present an approach in which the entire genetic information provided by target sequencing is transformed 
into binary data on which we performed statistical, machine learning, and network analyses to extract all valuable 
information from the entire genetic profile. To test this approach and unbiasedly explore the presence of recurrent 
genetic patterns, we studied a cohort of 112 patients affected either by genetic Creutzfeldt–Jakob (CJD) disease 
caused by two mutations in the PRNP gene (p.E200K and p.V210I) with different penetrance or by sporadic Alzheimer 
disease (sAD).

Results: Unsupervised methods can identify functionally relevant sources of variation in the data, like haplo‑
groups and polymorphisms that do not follow Hardy–Weinberg equilibrium, such as the NOTCH3 rs11670823 
(c.3837 + 21 T > A). Supervised classifiers can recognize clinical phenotypes with high accuracy based on the muta‑
tional profile of patients. In addition, we found a similar alteration of allele frequencies compared the European popu‑
lation in sporadic patients and in V210I‑CJD, a poorly penetrant PRNP mutation, and sAD, suggesting shared oligo‑
genic patterns in different types of dementia. Pathway enrichment and protein–protein interaction network revealed 
different altered pathways between the two PRNP mutations.

Conclusions: We propose this workflow as a possible approach to gain deeper insights into the genetic information 
derived from target sequencing, to identify recurrent genetic patterns and improve the understanding of complex 
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Background
Gene panels are a powerful clinical and research tool 
that allow to perform massively parallel sequencing on a 
set of genes of interest. This technology is often used in 
the clinic practice as a diagnostic tool, however, at pre-
sent a large fraction of the collected genetic informa-
tion remains unexploited, since their valence is difficult 
to assess. On the research side however, genetic modifi-
ers and oligogenic patterns of inheritance are gaining an 
increasing interest, because of the phenotypic variability 
of some diseases and as a possible answer to missing her-
itability of other conditions [1]. An increasing number of 
papers is pointing out that the genetic part of the missing 
information about heritability and phenotypic heteroge-
neity is likely to be addressed by a set of variants reinforc-
ing themselves in connected molecular pathways rather 
than a specific mutation yet to be discovered [1–3]. It 
is therefore of great relevance to improve methods of 
analysis to acquire a richer insight of the overall genetic 
features. For this reason, in the genomic field there is 
an increasing use of machine learning methods (ML) 
and network analysis, which allow to identify recurrent 
genetic patterns in the data and to integrate and amplify 
single genetic variants in their biological context [4–10]. 
Neurodegenerative brain diseases are progressive and 
fatal conditions primarily affecting the central nervous 
system. In the last decades, linkage studies in families 
with a disease showing Mendelian inheritance identified 
high-penetrant mutations in causal genes in a minority 
of them. In the vast majority, common variants in genes 
with significant associations in genome-wide association 
studies (GWAS) concurred, with a modest increase in 
disease risk, to the disease. Genetic risk factors or modi-
fiers play an important role both as additional risk factors 
in co-occurrence with incompletely penetrant mutations 
but also as modulators of disease severity, age of onset 
and in the overall course of the disease [11–15]. Here, we 
consider three inheritance models in two neurodegenera-
tive diseases, genetic Creutzfeldt–Jakob Disease (gCJD) 
and sporadic Alzheimer Disease (sAD). Creutzfeldt–
Jakob Disease (CJD) is the most common human prion 
disease [16], where genetic forms caused by mutations 
in the PRNP gene account for 15% of the cases and show 
autosomal dominant inheritance with variable pene-
trance [17]. We focused on the two most common PRNP 
mutations in the Italian population, the highly penetrant 

p.Glu200Lys (E200K group) and the p.Val210Ile (V210I 
group), that shows low penetrance [18]. The PRNP gene, 
located in chromosome 20 in the human genome, is 
16 Kb long and made up of two exons, the second con-
taining the whole open reading frame, resulting in a 
mature protein of 208 amino acids. The most important 
known risk factor and phenotypic modifier is the poly-
morphism at the codon 129 of the PRNP gene, that can 
result either in Methionine or Valine. Homozygotes are 
overrepresented in the population affected by prion dis-
eases, while heterozygosity has a protective role. Sporadic 
Alzheimer Disease is the third model considered in this 
work: sAD is known to be influenced by both genetic and 
environmental factors. Extensive studies led to the dis-
covery of important predisposing factors, such as APOE 
genotype, and variants in ABCA7, SORL1, TREM2 genes 
[19]; nevertheless the missing heritability of sAD remains 
an important open question [20, 21]. In this study we 
tried to improve current approaches towards target 
sequencing data analysis considering each single nucle-
otide variant (SNVs) and small indels obtained through 
DNA target sequencing of twenty-nine genes known to 
play a role as risk factors or determinants of dementias, 
on one-hundred and twelve patients affected by either 
sAD or gCJD caused by either the highly penetrant 
mutation p.Glu200Lys or a lowly penetrant p.Val210Ile 
mutation. This study employs a data analysis workflow 
involving a combination of statistical, machine learning 
and network analysis to extract all the valuable informa-
tion to identify and evaluate potential polygenic contri-
butions to neurodegenerative dementia. We focused on 
differences of recurrent genetic patterns covered by our 
gene panel between groups of interest, sAD vs gCJD, and 
in the CJD group between the two described mutations, 
p.Glu200Lys and p.Val210Ile. As the results of our case 
study show, this workflow represents a suitable approach 
to acquire a deeper understanding of the genetic pattern 
present in target sequencing data, able to improve our 
understanding of the underlying molecular biology of 
complex diseases and a possible starting point as a pre-
dictive tool for personalized medicine applications.

Materials and methods
Subjects
We recruited patients with definite, probable, probable 
laboratory-supported, and possible CJD or AD diagnosed 

diseases. This work could also represent a possible starting point of a predictive tool for personalized medicine and 
advanced diagnostic applications.

Keywords: NGS, Genetic modifiers, Polygenic score, Gene panels, Machine learning, Complex diseases, 
Neurodegeneration, CJD, Alzheimer’s Disease
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according to National Institute of Aging/Alzheimer’s 
Association (NIA/AA) [22] or International Working 
Group-2 (IWG-2) [23] for AD and updated clinical diag-
nostic criteria for sporadic Creutzfeldt–Jakob disease 
[24], afferent to the Cognitive Disorders and Dementia 
Center of the UOC Clinica Neurologica, Bologna, either 
as outpatients, inpatients, or sent for genetic analysis 
between 2010 and 2019. One-hundred-twelve patients 
with either gCJD (n = 66) or sAD (n = 46) were recruited. 
Among the sixty-six gCJD patients, forty were carri-
ers of the p.Val210Ile and twenty-six of the p.Glu200Lys 
mutation. For brevity, in this work we will refer to these 
groups of patients as V210I and E200K groups, whilst 
specific protein coding variants will be reported with the 
aminoacidic shift nomenclature and non-coding variants 
with nucleotide shift nomenclature. Ethical approval was 
obtained from the ethical board of our institution. For 
all subjects, written informed consent was provided. All 
methods were performed in accordance with the relevant 
guidelines and regulations.

DNA extraction
Genomic DNA from peripheral blood was extracted 
using the Maxwell 16 extractor (Promega, Madison, 
WI, USA) and quantified using the Quantus Fluorom-
eter (Promega) with QuantiFluor double-stranded DNA 
system.

Target sequencing and secondary analysis
Target sequencing covers 29 genes (Additional file  1: 
Table S1 see also Bartoletti-Stella et al. 2018 [25]), known 
to play a role as risk factors or primary determinants in 
different types of dementia [26]. Libraries were con-
structed with the amplicon-based assay TruSeq Custom 
Amplicon v1.5 (TSCA, Illumina, CA, USA), sequencing 
was performed on a MiSeq sequencer using Illumina V2 
reagent kit, using 2 × 150 bp paired end read cycles. Raw 
data were analyzed by the MiSeq Reporter software (Illu-
mina), aligned to GRCh37/Hg19 using bwa-mem with 
variant calling and depth of coverage calculation with 
Genome Analysis Toolkit (GATK) [27]. During the vari-
ant calling steps, variants were filtered based on quality 
using Q30 as threshold, which means that at most 0.1% 
error rate is allowed.

Data transformation
To obtain an input suitable for the computational and 
statistical analysis, containing the whole genetic variabil-
ity in the dataset and still maintaining the single-patient 
detail, the genetic information contained in the Variant 
Call Format (VCF) files was transformed into binary data 
through an in-house Python script. Our script generates 
a matrix in which each row represents a variant reported 

in the provided VCF files at least once and each column 
is named after an ID assigned to each patient. In the 
matrix, 0 indicates that the variant is not present in the 
VCF file of the patient whereas 1 indicates its presence. 
A second version of the script was also used to produce 
a ternary matrix in which the zygosity information was 
added, thus 1 indicates heterozygosity and 2 homozigo-
sity. On these matrices, machine learning methods and 
statistical analysis were applied using scikit-learn  [28], 
seaborn  [29] and plotly express  [30] packages on Jupyter 
notebooks.

Machine learning analysis
We used both supervised and unsupervised methods to 
extract as much valuable information as possible from 
our transformed data. To visualize such high dimen-
sional data, we tested different dimensionality reduc-
tion techniques, such as Principal component analysis 
(PCA), t-distributed stochastic neighbour embedding 
(t-SNE) using Jaccard similarity as metric. As super-
vised methods, we used decision trees on binary data 
labelled accordingly to the disease or genotype (sporadic, 
p.Glu200Lys, p.Val210Ile) of each patient. The classifier 
was trained on a random selection of 2/3 of the dataset 
and adequate branching depth was set to avoid overfit-
ting. The classification rules were tested on a validation 
set represented by the remaining 1/3 of the dataset.

Statistical analysis
Allele frequencies of each variant found at least in one 
patient of our cohort were obtained by the ternary matrix 
in which the zygosity information was included. We then 
compared allele frequencies calculated in the sAD and 
in the gCJD populations with those reported in the gno-
mAD database  [31] for the non-Finnish European popu-
lation using Fisher’s exact test and Benjamini–Hochberg 
multiple test correction. We defined MAPT haplotypes in 
our population using the two coding SNV rs1052553 and 
rs1800547 [32, 33], and we tested for Hardy–Weinberg 
equilibrium using the R package “HardyWeinberg” [34].

Protein interaction network and pathway analysis
To further explore the biological interplay of genes har-
boring significant variants we performed protein–protein 
interaction network and pathway enrichment analysis. 
Protein–protein interaction network (PPIn) was built by 
merging data from four state-of-the-art protein–protein 
interaction databases [35–38]. All of them were obtained 
with high-throughput assays and comprise only biophysi-
cal interactions (i.e., molecular docking) between pro-
teins [39]. The network resulting from their union covers 
almost 14,000 genes and 110,000 interactions between 
gene products. For each disease group, we built a 
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group-specific subnetwork by mapping on the PPIn those 
genes harboring at least one variant with a p-adj < 0.05 
and considering their nearest neighbor genes. We then 
focused on differences between group-specific sub-
networks by identifying, for the group pairs of interest 
(i.e., sAD-gCJD, V210I-E200K), the sets of genes unique 
to one disease with respect to the other. On this sets of 
genes, we performed pathway enrichment using Gene 
Ontology [40, 41], to explore which pathways are likely to 
be affected by differences in genes harboring at least one 
statistically significant (p < 0.05) variant between disease 
groups.

Results
Unsupervised methods identify functionally relevant 
genetic modules
Binary transformation of the genetic information con-
tained in VCF files led to the generation of a matrix with 
shape 1046X112 where each row identifies a variant, and 
each column identifies a patient. The first exploratory 
analysis of the 1046X112 matrix containing the whole 
genetic information was performed trough dimension 
reduction with Principal Component Analysis (PCA) 
(Fig. 1). In the 2D plot each dot represents a patient. The 
first two principal components (PC1 and PC2) explain 
22% of the overall variance of the dataset (Additional 
file 1: Table S3). PC1’s main contributors are a group of 
SNPs that are all harboured in the MAPT genomic region 
(Additional file  1: Table  S2), that previous works have 
defined as haplotype-specific [33, 42]. The second prin-
cipal component involves a more heterogeneous group of 
SNPs in which the SNP rs11670823 in the NOTCH3 gene 
is the major contributor (Additional file 1: Table S3).

We labelled each sample according to the disease affect-
ing the patient, the genotype (sporadic, p.Glu200Lys, 
p.Val210Ile) and a label marking a possible batch effect 
due to different sequencing runs. None of these labels 
matched the identified clusters (Additional file  1: Fig. 
S1). Based on the loadings and score values of the PCA 
we focused on the main genetic sources of variation in 
the dataset. We identified the two main MAPT haplo-
types (H1,H2 and H1/H2), according to two coding SNPs 
rs1052553 and rs1800547  [33, 42] which are in linkage 
disequilibrium (LD) with the rs11575896 (first contribu-
tor to PC1, Additional file 1: Table S2). The result of the 
labelling of our dataset according to MAPT haplotypes 
perfectly matches the clusters in the PCA plot, as shown 
in Fig.  1. Our population is in Hardy–Weinberg (HW) 
equilibrium for the tested SNPs. The distribution on the 
y-axis recognizes specific SNPs patterns associated to 
haplotypes of NOTCH3 (Additional file  1: Fig. S2). [43] 
Interestingly, the SNP rs11670823 (c.3837 + 21  T > A), 
which is the major contributor to the PC2, is in LD with 

three NOTCH3 haplotype defining SNPs (rs1044009, 
rs104423702 and rs4809030) [43], and is in HW disequi-
librium (p = 0.03) in the complete cohort (sAD p = 0.085, 
E200K p = 0.276, V210I p = 0.420).

Supervised methods recognize clinical phenotypes 
with high accuracy
Supervised classifiers were used for automatic recogni-
tion of genetic patterns among the 1046 variants iden-
tified in this dataset. In the 112X1046 matrix, to each 
sample a label corresponding to the disease (class: “CJD” 
or “AD”) was added. The classification was achieved per-
fectly, with 100% of accuracy (ratio of correctly predicted 
observation to the total observations) on the test set, bas-
ing the classification on the two disease-causing muta-
tions p.Val210Ile and p.Glu200Lys (Fig. 2).

To test for the presence of additional recurrent genetic 
patterns that could characterize a homogeneously phe-
notypic group and possibly act as modifier, we removed 
from the input data provided to the classifier only the 
two rows of the 1046-rows matrix indicating the disease-
causing mutations. As expected, accuracy decreased both 
in training set and in test set, but interestingly the classi-
fier managed to distinguish the two diseases with a good 
accuracy (training = 0.97, test 0.78) (Table 1).

The classification is based on eight variants involving 
six different genes (Fig. 3). All considered variants were 
reported in common databases and genomic search 
engines such as VarSome [44], OMIM [45], ClinVar [46] 
or HGMD [47] and their consequence was assessed as 
known disease-causing variant, risk factor, variant of 
uncertain significance (VUS) or benign according to the 
ACMG guidelines for interpretation of sequence vari-
ants [48]. Five variants are predicted to be benign and 
are intronic or synonymous, three of them are classified 
as variants of uncertain significance and are missense or 
located in 3’UTR regions.

Statistical analysis of variants frequency
For each of the 1046 variants detected, allele frequency 
was calculated. We calculated separately allele frequen-
cies in the sAD and in the gCJD group. The latter was fur-
ther divided according to the presence of the p.Glu200Lys 
or p.Val210Ile mutations. Each allele frequency was then 
compared to those reported into the GnomAd database 
[31] for the European (non-Finnish) population. Differ-
ences between observed and expected allele frequency 
were tested for statistical significance with Fisher’s Exact 
test and Benjamini–Hochberg multiple test correction. 
Table  2 summarizes the number of each type of vari-
ants per group and show the average number of variants 
per patient in the different classes (gene list reported in 
Additional file 1: Table S4).
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Pathway analysis and protein–protein interaction network
To have functional insights of the consequences of the 
alterations in allele frequencies, genes harbouring at least 
one variant with p < 0.05 were used as input for pathway 
analysis with GO database (Fig.  4) and protein–pro-
tein interaction (PPI) network. Since part of the affected 
pathways are shared among the considered conditions, 
results are reported as differences between compari-
sons of two groups. Comparison of sAD vs gCJD in the 
PPI network shows a clear centrality of interactions of 

APP, PSEN2 and APOA1 in the AD but not in the CJD 
group (PPIn tables and figure in Additional file). Func-
tional analysis of the same coupled comparison points 
out a significant (p < 0.05) enrichment in the sAD group 
(compared to gCJD) of the GO terms involving regula-
tion of the apoptotic signaling pathway, supramolecular 
fiber organization, antigen processing and presentation 
of exogenous peptide antigen. Interestingly, in the CJD 
group we found and enrichment of GO terms involving 
the ER responses to stress, protein folding, regulation of 

Fig. 1 2D plot of the Principal Component Analysis (PCA) computed on the 1046 × 112 ternary matrix. PCA is a dimensionality reduction technique 
that computes an orthogonal linear transformation of the data to a new 2D coordinate system so that the greatest variance is on the x‑axis (PC1) 
and the second greatest variance on y‑axis. Each dot represents a patient, that is plotted in the 2D space accordingly to its genetic profile expressed 
in the ternary matrix. PC1 and PC2 show the main sources of variance in our data, accounting for 22% of overall variance, that are represented by 
variants on MAPT and NOTCH3 genes, respectively. PCA plot and hierarchical clustering recognize clusters that correspond to the MAPT haplotypes 
on the x‑axis, as shown by coloured labels in the picture legend. Similarly, the distribution along the y‑axis matches haplotypes in the notch3 gene 
(not shown)
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mRNA maturation and splicing and in the regulation of 
catabolic processes. We then investigated whether func-
tional differences within the gCJD group could provide 
further understanding of the different penetrance of 
the two mutations. In the coupled comparison between 
V210I and E200K, we found that only in the V210I 
group there is an enrichment of GO terms referring to 
proteasome mediated catabolic processes and antigen 
processing and presentation. In the PPIn results for the 
comparison V210IvsE200K, APOA1 and MAPT together 
with DCTN1 represented hubs of the network, highlight-
ing a similarity between the enriched modules in the net-
works of the lowly penetrant p.Val210Ile mutation and 
the one of sAD, with numerous interactions and shared 
nearest neighbours involved in the enriched pathways. 
In the E200K group compared to the V210I we found a 
significantly altered regulation of mRNA and splicing, 
reflected in the PPI network by the abundant presence of 
members of the family of heterogeneous nuclear ribonu-
cleoproteins (hnRNPs gene family) as nearest-neighbours 

of the input genes, in addition to the alteration of actin 
filament organization.

Discussion
In this work, we addressed the challenge of exploring the 
complete genetic information carried by target sequenc-
ing data to acquire deeper insights in the genetic contrib-
utors of complex diseases. For this purpose, we selected a 
population of one-hundred and twelve patients affected 
by two neurodegenerative diseases: sporadic (sAD) and 
genetic Creutzfeldt–Jakob Disease (gCJD), either due 
to a highly (p.Glu200Lys) or a lowly (p.Val210Ile) pene-
trant mutation. As supported by previous research about 
genetic modifiers in this field, it is possible that other fac-
tors reinforce its pathogenic role in carriers of the PRNP 
p.Val210Ile who indeed develop CJD. In sAD, no specific 
causative mutations are present, nevertheless GWAS 
have revealed many loci of common genetic variation 
that confer risk for developing the disease and evidence 
supports a polygenic contribution to disease risk from 
common genetic variants  [13, 49–51]. Our approach is 
based on a binary transformation of each detected vari-
ant. On the resulting matrix we applied statistical, super-
vised and unsupervised machine learning methods and 
network analysis as an unbiased approach to discover 
recurrent patterns and possible genetic modifiers among 
the genes included in the target sequencing. In this 
work we refer to patients’ groups as V210I, E200K and 
sAD groups, whilst specific protein coding variants are 
reported with the aminoacidic shift nomenclature and 
non-coding variants with nucleotide shift nomenclature.

Fig. 2 Dataset classification according to decision trees analysis: this supervised method computes on the 1046 × 112 matrix a classification based 
on the labels provided. The classifier correctly identifies the two disease groups on the two disease‑causing mutations

Table 1 Classification metrics.

 Precision is the ratio of correctly predicted observation to the total predicted 
positive observations (TruePositive/TruePositive + FalsePositive), Recall is the 
ratio of correctly predicted positive observations to all observations in actual 
class (TruePositive/TruePositive + FalseNegative), F1 Score is the harmonic mean 
of Precision and Recall (F1 Score = 2*(Recall * Precision) / (Recall + Precision)). 
Support indicates class numerosity

Precision Recall F1 Support

sAD 0.71 0.8 0.71 15

gCID 0.85 0.77 0.85 22
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Fig. 3 Result of Decision Trees analysis on the dataset deprived of the information about gCJD‑causing mutations. Classification is accomplished 
with 0.71 accuracy for sAD and 0.85 for gCJD. Classification is based on the reported eight variants harboured in six genes. Four of these are variants 
of uncertain significance not reported in the GnomAD database harbored in the genes APP c.*1A > C (rs748508166), GRN c.1179 + 100A > T, DCTN1 
p.Lys519Glu, PRKAR1B c.595 + 369 T > C (rs1342588350), two of them are rare (Minor Allele Frequency < 0.05) variants in the European population, 
APP p.Phe435 = (rs148180403, MAF = 0.001), DCTN1 p.Ala816 = (rs1130484, MAF = 0.007) and two are common benign variants in CHCHD10 
(c.261 + 99A > G) and GSN (c.666 + 53 T > C). “Value” indicates the number of samples at the given node that fall into each category. The “Gini” score 
quantifies the purity of the node/leaf, when greater than zero implies that samples contained within that node belong to different classes while a 
gini score of zero means that within that node only a single class of samples exist

Table 2 Summary of results of statistical analysis on each variant detected in our target sequencing panel

Rows identify pathologic groups with their numerosity reported between brackets. The first column shows the average number of variants carried per patient in the 
different disease groups. The second column shows the overall number of different variants detected in each group in at least one patient. The third column indicates 
variants annotated as missense, splice variants or 3’or 5’ UTR in each disease group. The last column contains the number of variants with a p < 0.05 after Fisher’s exact 
test and Benjamini–Hochberg correction despite of their annotation

Disease group Average number of SNV per 
patient

Unique SNV per disease 
group

Unique non-synonimous SNV per 
disease group

Unique SNV p < 0,05 
per disease group

AD (46) 145.05 654 27 72

CJD (66) 134.87 768 11 33

E200K (26) 138.73 483 14 52

V210I (40) 135.73 645 27 75

Fig. 4 Result of functional enrichment analysis performed on genes harbouring variants with significantly altered allele frequency compared to 
European population reported in the GnomAd database. Results of pathway analysis are reported as significantly (p < 0.05) enriched pathways 
in the first group but not in the second of each coupled comparison. Since part of the affected pathways are shared among the considered 
conditions, results are reported as differences between comparisons of two groups. Complete results of the functional analysis with Gene Ontology 
and of the Protein–Protein Interaction networks are reported in Supplementary materials

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Unsupervised machine learning methods
Unsupervised methods identify as the main sources of 
variation in the dataset the haplotypes in MAPT and 
NOTCH3 genes. Specifically, a set of haplotype-defin-
ing SNPs in NOTCH3 do not follow the Hardy–Wein-
berg equilibrium law in our complete cohort suggesting 
a role of NOTCH3 in the analysed neurodegenerative 
diseases. This role seems to be more stressed in the sAD 
group, both in the increasing number of variants with 
altered allele frequency (22 SNPs) and in the p-values 
when tested for HW equilibrium (p = 0.085). This result 
is in line with the functional role of MAPT haplotypes 
in most neurodegenerative diseases [43, 52–57] and 
with the role that NOTCH3 in AD has been addressed 
by multiple previous reports [53, 58–61]. Thus, these 
results support the validity of our approach. Never-
theless, it must be considered that these results are 
dependent on the selected genes of the target sequenc-
ing and on the amount of SNVs present in those genes.

Supervised machine learning methods
Supervised methods correctly classified our samples 
according to the two causative mutations responsi-
ble for the genetic forms of CJD. When applied to the 
data deprived of the two causative mutations, decision 
trees classified the phenotypic groups with 78% accu-
racy according to eight variants (Fig. 3 and Table 1). To 
our knowledge, none of the variants have been previ-
ously linked to the considered conditions. Four of these 
variants were not previously reported in the GnomAD 
database in the genes APP, c.*1A > C (rs748508166), 
GRN, c.1179 + 100A > T, DCTN1, p.Lys519Glu, 
PRKAR1B, c.595 + 369  T > C (rs1342588350), two of 
them are rare variants in the European population, 
APP p.Phe435 = (rs148180403, MAF = 0.001), DCTN1 
p.Ala816 = (rs1130484, MAF = 0.007) and two are com-
mon benign variants in CHCHD10 (c.261 + 99A > G) 
and GSN (c.666 + 53  T > C). Six variants were carried 
only by patients with either sAD or gCJD (gini = 0.0): 
of these, five rare or VUS variants were found only in a 
subset of sAD patients (the two variants in APP, the two 
in DCTN1 and the one in PRKAR1B), while the benign 
variant in CHCHD10 was found only in gCJD. Despite 
the lack of statistical power of the study, it is reasonable 
that at least some of these variants could play a role as 
a contributor to the disease risk, given that both CJD 
mutations are not completely penetrant [62] and the 
polygenic nature of sAD [21]. Decision trees have been 
recently proposed as a suitable method in clinical appli-
cations and precision medicine for interpreting the role 
of genetic variants in complex diseases [63]. Our results 
reinforce the importance of this supervised method 

to improve understanding of the role of the numerous 
variants of uncertain significance and as a promising 
path towards precision medicine applications. In addi-
tion, our results indicate that decision trees can provide 
accurate classification on high-dimensional genomic 
data.

Statistical and functional analysis
Statistical analysis performed on detected allele fre-
quencies compared to those reported in the gnomAD 
database for the European non-Finnish population iden-
tified 33 to 75 variants with significantly altered allele 
frequency in each studied group. Each group showed 
a unique set of significant variants in the tested genes. 
Coherently with the hypothesis of a polygenic contribu-
tion in sAD, we found a higher number in sAD patients 
compared to gCJD both in the average number of vari-
ants per patient, with on average 145 variants carried by 
patients with sAD compared to the 134.87 in the genetic 
CJD group, and in the overall number of SNV with a 
significantly altered allele frequency (72 in sAD, 33 in 
gCJD, see Table 2 and Additional file 1: Table S4). These 
genes were used as input to perform functional analysis 
with Gene Ontology (Fig. 4) and PPI network comparing 
groups of interest, namely the two disease groups gCJD-
sAD and the V210I-E200K CJD. In the first comparison, 
the PPI network identified important hubs only in the 
sAD group in correspondence of crucial genes in AD 
such as APP, PSEN2 and APOA1 despite the AD cohort 
did not bear any causative mutation. These results, 
together with the GO terms “regulation of the apoptotic 
signaling pathway”, “supramolecular fiber organization”, 
“antigen processing” and “presentation of exogenous 
peptide antigen” enriched in the functional analysis, are 
in line with previous reports about the polygenic nature 
of sAD and with its impaired pathways [50, 64–66]. 
With the same approach, in the CJD group we found an 
enrichment of pathways reported in previous functional 
studies as altered in this pathology, such as endoplasmic 
reticulum impairment, protein folding and regulation 
of mRNA maturation [67–70]. These results prove the 
validity of this approach to handle and valorise the great 
amount of information contained in target sequencing 
data and to acquire new insights about new putative risk 
variants. Within the CJD group, we observed differences 
in the lists of genes carrying altered allele frequencies, 
that were reflected in the functional analysis. The V210I-
E200K coupled comparison showed differences between 
the genetic background of the same pathology triggered 
by different mutations. In the E200K-CJD compared to 
the V210I-CJD we found an altered regulation of mRNA 
and splicing, reflected in the PPI network by the abun-
dant presence of members of the family of heterogeneous 
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nuclear ribonucleoproteins (hnRNPs gene family) as 
nearest-neighbours of the input genes, in addition to the 
alteration of actin filament organization. Interestingly, a 
similarity between the affected pathways in V210I-CJD 
and sAD emerged: these two groups show a high num-
ber of variants with altered allele frequencies, 75 and 
72, that lead in both cases in significant alterations in 
pathways involving proteasome-mediated catabolic pro-
cesses, antigen processing and presentation, and PPI net-
works sharing various hubs, such as APOA1 and DCTN1. 
These results are in line with several previous works that 
claim a complex genetic background in which the rein-
forcing role of several variants acting together increases 
the risk of developing a disease both in sporadic and in 
genetic forms  [21, 59, 67, 71]. Here, functional pathway 
enrichment analysis and protein–protein interaction net-
work showed a significant alteration in genes involved 
in immunity, catabolic processes, RNA splicing and 
cytoskeletal structure maintenance. These pathways are 
known to be altered in both AD and CJD [66, 68, 72–74] 
and in other neurodegenerative conditions, suggesting a 
contribution of those variants in exacerbating the patho-
logic alteration in those pathways.

Conclusions
This work proposes an innovative approach towards the 
analysis of targeted NGS data, based on a binary trans-
formation of the detected variants, on which an unbi-
ased analysis is performed through statistical, machine 
learning and network analysis. Our results show that 
this method is a valuable workflow to explore recurrent 
genetic patters in homogenous phenotypic groups and 
increase our understanding of complex diseases. This 
approach can also be used to acquire new hints to iden-
tify specific SNV that could act as modifiers or risk fac-
tors in the studied condition. Specifically, we showed in 
our cohort how unsupervised methods can identify func-
tionally relevant sources of variation in the data and that 
supervised classifiers can recognize clinical phenotypes 
with high accuracy based on the mutational profile of 
patients, thus representing a possible starting point for 
advanced diagnostic tools. Statistical, functional and net-
work analysis provided functional insights that showed 
reliability in identifying both important known molecu-
lar features of the considered diseases and providing new 
insights on putative new genetic contributors. To con-
clude, we propose this workflow for an advanced analysis 
of target sequencing data in complex diseases.
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