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Abstract

Clonal analysis of tumour sequencing data enables the evaluation of the relationship
of histologically distinct synchronous lesions, such as co-existing benign areas, and
temporally distinct tumours, such as primary-recurrence comparisons. In this review,
we summarise statistical approaches that are commonly employed to define tumour
clonal relatedness using data from bulk DNA technologies. We discuss approaches
using total copy number, allele-specific copy number and mutation data, and the
relative genomic resolution required for analysis and summarise some of the current
tools for inferring clonal relationships. We argue that the impact of the biological
context is critical in selecting any particular approach, such as the relative genomic
complexity of the lesions being compared, and we recommend considering this
context before employing any method to a new dataset.

Background
A central dogma of oncology is that clonal expansion, in which tumours arise from a

genetically altered cell and develop into an invasive cancer, occurs in a stepwise man-

ner with sequential somatic cell mutations along with subclonal selection. This revolu-

tionary perspective described by Peter Nowell in 1976 meant that cancer is indeed an

evolutionary process [1]. Early molecular studies attempted to elucidate tumour devel-

opment from premalignant lesions to carcinoma by their genetic similarities [2, 3]

using various technologies including cytogenetic analysis, Loss of Heterozygosity

(LOH) studies, and mutations in known oncogenes/tumour suppressor genes (KRAS

or TP53).

In order to understand cancer progression from pre-malignant lesions or the rela-

tionship of clinically identified “paired” tumours, the ability to accurately estimate

clonal relatedness (i.e. whether paired tumours share a common ancestor) is crucial.

Different statistical and analytical approaches have been used to investigate clonal rela-

tionships from data generated by multiple techniques using bulk DNA [4–8]. In

addition, deep sequencing has revealed the co-existence of major and minor clones
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within the same tumour; we also explore this intra-tumour heterogeneity (ITH) as it is

a very important phenomenon in the clinical context.

This Review summarises the evolution of these statistical approaches and discusses

the strengths and limitations of each approach. We focus on bulk technologies (not sin-

gle cell) for DNA analyses, firstly considering the total and allele-specific copy number

data that can be obtained from both pre-next generation DNA sequencing (NGS)

employing microarrays (CGH arrays, SNP arrays) and current low-resolution NGS

technologies (lower depth sequencing, targeted sequencing panels). Given the limita-

tions of using copy number data alone, we will also consider the impact of including

somatic point mutation data from NGS technologies when determining clonal related-

ness. We consider approaches that are suitable using low depth NGS data as well as ad-

dress the importance of high depth NGS technologies and how subclonal

reconstruction and phylogenetic analyses have changed our understanding of cancer

evolutionary models.

Finally, given the limitations of existing approaches, especially for data derived from

lower resolution technologies, we consider the appropriateness of statistical methods

based on the biological context. We will discuss premalignant lesions and metastasis

settings and how different contexts might influence the selection of statistical methods.

Estimating similarities from somatic copy number alteration data
Since aneuploidy is a hallmark of many cancers, somatic copy number alterations

(SCNA) are a valuable genetic event for assessing clonal relationships between samples

(Fig. 1). SCNA are generally assessed using two broad approaches: total SCNA, or

assessed from allele- and haplotype-specific SCNA. Recent studies also show that with

high depth sequencing data, evolutionary methods can be utilised to reconstruct

tumour phylogenies to understand the complex ITH of a single tumour. Here in the

first part of the review, we will discuss the statistical approaches applicable to low reso-

lution technology as well as the evolutionary methods applicable to high depth sequen-

cing methods (Fig. 1, Table 1).

Use of only total SCNA concordance to derive the similarity profile of a tumour pair

An early approach to assessing clonality using CGH arrays was performed by Waldman

et al. [4] based on the overall SCNA concordance of primary and recurrent ductal car-

cinoma in situ (DCIS) breast lesions (n=18). This approach was followed by Biermann

et al. [12] later on, who assessed the similarity index (SI):

SI ¼ Ns= NsþNuþNoð Þ:

Here SI = Similarity Index, Ns=shared events, Nu=unique events and No=opposite

events between pairs. Notably, for this index, only one chromosomal change per

chromosome arm is considered as a genetic event (gain/loss).

Hierarchical clustering, for example using the Pearson coefficient, is another com-

monly employed method to investigate the genetic similarities based on overall SCNA

[13, 14]. An unsupervised analysis is employed whereby complete linkage (cluster

method) and Pearson correlation (distance metric) are used to relate the similarity of

samples and a dendrogram generated to depict similarity (shorter branched cluster) or

disparity (longer branched) of genomic changes among tumours. Thus, clustering
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together of two tumours from the same patient indicates the relative similarity of the

pairs, but cannot determine the statistical confidence of these relationships and cannot

be applied to a single pair alone.

These fairly low resolution approaches may not identify the true extent of clonal rela-

tionships or may give an equivocal result, especially when there are more private rather

than shared events, as can occur in distantly related lesions. In addition, they might

falsely call clonality if specific events are shared by chance, such as gains or losses that

occur at commonly involved loci.

The analysis by Waldman et al. raises the question of whether total SCNA alone is

sufficient to estimate clonality. Importantly, this study investigated recurrent breast tu-

mours after ductal carcinoma in situ (DCIS), genetically advanced lesions that had a

very similar frequency of SCNA as IBC [15, 16]. Thus, it is possible that some pairs

would appear to show clonal relatedness by chance. For rare tumours this may not be

an issue; unless the individual has a genetic predisposition to a particular rare tumour

type, the weight of clinical evidence would always strongly suggest a recurrence. How-

ever, for tumours such as breast or colorectal cancer, there is a significant probability

that independent tumours share SCNA at commonly affected loci by chance.

Total SCNA approaches incorporating breakpoint locations

The lack of precision offered by considering only broad SCNA can be partially compen-

sated for by including information on copy number breakpoints. A comparison

Fig. 1 Summary of clonality approaches illustrating their features in relation to the type of genetic event.
Clonality methods are placed horizontally relative to the minimal assay type that can be used and vertically
by the relative confidence each method provides in the clonal relationship. CN, copy number; SV, structural
variation; BAF, B-allele frequency and the assay method; LC-WGS, low coverage whole genome sequencing;
CGH, comparative genomic hybridisation; SNP, single nucleotide polymorphism; WES, whole exome
sequencing; WGS, whole genome sequencing
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between the two approaches (overall SCNAs vs shared breakpoints) was carried out by

Bollet et al. [6] using fresh frozen invasive ipsilateral breast cancer pairs (recurrence/

new primary) (n=22) using SNP arrays. Samples had to have ≥50% cancer cell cellular-

ity for maximal sensitivity and the location of breakpoint had to be precise down to the

SNP probe for a pair to be called genetically related. For example, the breakpoints of

PTEN losses differed among patients, demonstrating the power of using of precise

breakpoint(s) over SCNA alone.

A “partial identity score” (PS) was developed by taking into account the frequency of

each shared breakpoint within a set of control samples. Therefore, the final PS was:

PSE1;E2 ¼
X

1‐Fkð Þ2= 1
2
�

X
1‐Fkð ÞE1 þ

X
1‐Fkð ÞE2

h i

Here, Fk is the frequency and E1 and E2 are the tumour pairs.

The strength of this score is the weighting applied based on the frequency of the

shared breakpoint: less frequent shared breakpoints are less likely to happen by chance

in the pairs. Another strength of this score is the specificity of the cut-off value. The

threshold was calculated based on calculating the 462 possible “artificial pairs” from the

22 sample pairs (i.e. 22 patients were artificially paired with each of the 21 other

Table 1 Summary of the types of technologies used in clonality analysis

Methods Depth/
resolution

CNA BAF Variant
detection

Subclonal
reconstruction

Comment

CGH arrays Low: 5–10 Mb ✓ x x x Suitable for clonality analysis in
tumours with high SCNA

Low
coverage
WGS

Low: <4× ✓ x x x

SNP arrays 300 K–1 M SNPs ✓ ✓ x x Suitable for clonality analysis in
tumours with high and low SCNA

Targeted
sequencing
panel

High depth
(>200×) but only
on target regions

✓ x ✓ ✓ SCNA called from off-target se-
quence suited to clonality analysis
but BAF may be unreliable with so
few genes; phylogenetic analysis is
possible with ultra-deep sequen-
cing (>500×) using TRONCO but
limited power due to selective gen-
omic markers [9]

Low
coverage
WES

30–60× ✓ ✓ ✓ x Read depth might be too low for
subclonal analyses but suited to
clonality analyses of paired/multi-
region samples. Needs matching
normal DNA for maximum power.

High
coverage
WES

High: >60× ✓ ✓ ✓ ✓ Powerful for clonality analyses but
needs matching normal DNA. Low
purity might interfere with the
estimation of subclonal SCNA
especially at lower depth.WGS High breakpoint

resolution but
depth can be low
>30×

✓ ✓ ✓ ✓

Single cell
sequencing

Low individual
cell resolution

✓ ✓ x ✓ Individual cell allele-specific CN for
deep subclonal reconstruction [10,
11]; mutation calling still challen-
ging due to allelic dropout at the
individual cell level.

CGH comparative genomic hybridisation, SNP single nucleotide polymorphism, WES whole exome sequencing, WGS
whole genome sequencing, SCNA somatic copy number alterations, BAF B-allele frequency
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patients). If the PS is only higher than the upper 5th percentile in the distribution of

the artificial pairs, then the null hypothesis (there is no partial identity between the

tumour pairs) was rejected (i.e. the pairs are genetically related to each other). The

higher the score is, the more likely the IBC is a true recurrence. To make this score sta-

tistically sound, 1000 random extractions were performed in these 22 pairs to confirm

the status of all pairs using the threshold. This approach of using the frequency of

shared genetic events in a “control” group as well as calculating “artificial pairs” was

later utilised by Ostrovnaya et al. while developing the Clonality R Package. The disad-

vantage of this approach is that the threshold has to be recalculated with the addition

of samples and that the threshold cannot be compared across different studies. In this

study, the derived PS both outperformed overall SCNA analysis by hierarchical cluster-

ing, based on the higher concordance with clinical recurrence definition. However, one

case was re-reviewed by a pathologist after getting a discordant result between using PS

(true recurrent) and clinical definition (new primary based on histopathological differ-

ences), which resulted in reclassifying the primary with the presence of a minor compo-

nent of micropapillary carcinoma that was initially overlooked. This case shows us a

great example why defining “true recurrence” based on only subjective histopatho-

logical review instead of shared genetic events could lead to different information rele-

vant to the patient.

In summary, Bollet et al. concluded that using precise breakpoints was more accurate

and meaningful than the clinical definition. One thing to consider though was that their

samples were from fresh frozen tissues with high-quality CN data enabling precise

breakpoints to be determined. It is more technically challenging to get the precise

breakpoint(s) on DNA from FFPE specimens [17, 18]. The resolution and inherent

noise in each assay, as well as the quality of individual sample data must be taken into

account when applying a shared breakpoint approach. Noisy data can lead to inexact or

over segmentation, thus comparing breakpoints without taking this inaccuracy into ac-

count could be misleading, i.e. the breakpoints may in fact be the same, but miscalled

in one or both samples. However, if some leeway is provided in calling breakpoint simi-

larity, false positive clonality calling based on breakpoints is only likely to be an issue in

regions with frequent breakpoints, such as centromeres, which have additional chal-

lenges in terms of accuracy due to the presence of repetitive sequences [19].

Estimating similarity from allele-and haplotype-specific SCNA

In many cancer types, both parallel and convergent evolution have been detected (Fig.

2). In the parallel model, a patient tumour from one initiating cell and sharing early

truncal events gives rise to subclones that then progress independently, but have a simi-

lar phenotype due to genetic events affecting similar pathways. Breast cancer has been

described with a parallel evolutionary model by multiple studies. A convergent model

describes different initiating cancer cells that acquire the same or highly similar genetic

alterations and phenotype [20, 22]. Germline driven VHL-associated renal cell carcin-

oma [23] and squamous cell carcinoma [24] were both shown to be convergent,

whereby even independent tumours carry similar genetic alterations overall. This con-

vergence can include SCNA since both tumours are evolving in the same host with the

same microenvironment and similar selection pressures. Thus, when only lower
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resolution data is available, any approaches taking into account only total SCNA might

give a strong clonality signal regardless of the true relationship. This issue is particu-

larly problematic for cancers with low chromosomal instability such as reported for ~

30% of IBC (METABRIC study IntClusters 3 and 4 - the “SCNA devoid” subgroups)

[25]. However, including allele-specific copy number (ASCN) can improve the detec-

tion of clonal relatedness versus independent convergent evolution.

The approach of Bollet et al. [6] was developed into a statistics-based clonality ana-

lysis (Clonality: an R package) incorporating SCNA and B-allele frequency (BAF) [26,

27]. BAF (i.e. the allelic ratio of heterozygous SNPs in a tumour) (Fig. 3) is more

powerful than the copy number alone when estimating clonality. The BAF can also

identify copy neutral loss of heterozygosity (LOH) events. This package aimed to test

whether relatively close SCNA can be statistically representative of the exact changes

shown by Bollet et al., in situations where precision matches within a chromosomal

arm are not feasible due to the low resolution and technical noise in the assay, for ex-

ample CGH arrays, targeted sequencing or low-coverage WGS on FFPE samples. In

fact, only one prominent SCNA per chromosome arm was used for this analysis, as de-

scribed earlier for SI [5]. Segmentation of the CGH data allows selection of only one

prominent SCNA/chromosome. No separate reference group of the same disease was

used, instead, they created a reference distribution of genetic changes using the avail-

able data set being tested [27]. This reference distribution was used to create P values

for the tumour pairs. This feature is an advantage for tumours where no independent

data sets are available, but is problematic if only a small group of samples is being

Fig. 2 Summary of evolutionary models. This figure depicts different aspects of cancer evolution and is
adapted from [20, 21]. In parallel evolution, the tumour arises from a single cancer-initiating cell (at the base
of the trunk) in the same patient, whereas in convergent evolution, phenotypically similar tumours arise
from different cancer-initiating cells in the same or different patients. Purple circles depict tumour
subclones with a similar phenotype
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tested. Since this package was designed to increase the influence of shared infrequent

CN changes, it is important to make sure that germline variants are removed prior to

analysis. Otherwise, those small changes will lead to overcalling of clonality.

For copy number analysis, the final statistic for this package is LR2 = LR+LR1,

whereby LR calculates frequencies of gains/losses for each chromosome arm based on

the dataset being tested and LR1 is calculated based on the concordance of the gain/

loss/normal profiles within each arm between pairs, taking discordant events into ac-

count. While LR takes into account any chromosomal changes including whole arm

changes, LR1 is exclusive of whole arm gain/losses due to the ineffective measurement

of the exact end point of frequent whole arm changes. Combining these two are im-

portant since common concordant events could be occurring in paired tumours by

chance. For BAF, the LR test output provides the P value based on the concordant

losses (i.e. LOH of the same allele) in tumour pairs, assuming that allele 1 and 2 have

an equal chance of loss in any given pair. This test also uses the frequency of LOH

Fig. 3 Example of allele-specific copy number changes. The top panel shows an example of copy number
changes with B-Allele Frequency. The bottom panel shows an example of mirrored subclonal allelic
imbalance. This term is used when within the same tumour, one subclone has gained or lost the maternal
allele but the other subclone has gained or lost the paternal allele of the same chromosome, indicative of a
parallel evolutionary events. Only high depth sequencing data can estimate with this level of resolution
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events from the reference distribution. Thus, concordance of infrequent LOH between

a pair will give stronger evidence towards clonality than a frequent event.

All of the statistical analyses of this package were tested on paired invasive tumours

to identify whether the recurrence/metastasis is a new tumour or related to the primary

tumour. Therefore, using the same testing dataset as the reference distribution is statis-

tically justifiable because invasive tumours are genetically very advanced lesions with a

high number of SCNA. However, this feature may not be suitable in some biological

contexts, which will be discussed in more detail later in this review.

With higher depth multi-region sequencing, allelic imbalance from the BAF is a very

powerful measure for subclonal reconstruction for both paired tumours and within a

single tumour. For example, in a cohort of early-stage non-small cell lung cancer

(NSCLC) different subclones from different branches of the same phylogenetic tree (i.e.

from the same tumour) had gain or loss of different alleles of the same chromosome,

termed “mirrored subclonal allelic imbalance” (Fig. 3) [22]. In addition, using multi-

sample phasing, haplotype-specific CN was achieved with even higher resolution [28].

With low resolution data it might be impossible to get the subclonal structures of a

given tumour. ITH will be underestimated and deriving an evolutionary model difficult;

nonetheless, any BAF data will increase the ability to determine clonal relationships be-

tween distinct lesions.

Evolutionary methods for SCNA

If high depth sequencing data is available, then using evolutionary methods is more

powerful than concordance approaches to understand ITH within a single tumour or

when estimating clonal relatedness between tumour pairs. Cancer phylogenetic trees

constructed by such methods contain a trunk (i.e. all clonal descendants of the initiat-

ing tumour cell harbour these genetic alterations) and branches (i.e. descendant subclo-

nal populations carrying additional genetic alterations) (Fig. 2).

Campbell et al. showed the presence of subclonal genetic alterations in a proportion

of chronic lymphocytic leukaemia, indicating that cancer had undergone branched evo-

lution [29], and phylogenetic reconstruction of other tumour types has confirmed this

finding. Branched evolution was further characterised as either parallel or convergent

evolution (Fig. 2) [20]. The composition of clonal and subclonal populations are clinic-

ally very relevant. The presence of complex subclonal populations indicates an aggres-

sive tumour with increased capacity to metastasise, evade the immune system and

develop drug resistance.

Several phylogenetic analyses for subclonal reconstruction have been developed and

modified over time and are detailed in reviews by Beerenwinkel et al. [30] and Schwartz

& Schaffer [31]. Large cohort studies such as TRACERx have confirmed genome doub-

ling as one of the most common clonal events linked to worse prognoses in 87% of the

tumours across 22 different cancer types [22, 28]. This Whole Genome Doubling

(WGD) event leads to ongoing chromosomal instability reflected by diverse subclonal

structures and extensive ITH compared to non-WGD tumours [22, 28, 32]. Recent

studies using pan-cancer multi-region sequencing and WGS showed that these late

subclonal events can influence the progression of invasive cancer to metastasis [28, 33].

Tetraploid cells generated by WGD have even been observed as an early event when
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progressing from premalignant to malignant [34–36]. Therefore, a tool that can derive

a phylogenetic tree based on both SCNA and WGD can determine early clonal events

while estimating diversity within a single tumour. Such tools can also estimate shared

clonal and subclonal SCNA between a tumour pair to determine clonal relatedness.

A phylogenetic tree based on SCNA changes can be derived utilising MEDICC (Mini-

mum Event Distance for Intra-tumour Copy-number Comparisons) [37]. This tool has

been used on WGS data to explore spatial and temporal clonal heterogeneity and its in-

fluence on overall survival of high-grade serous ovarian cancer patients [38] as well as

deriving a big bang model of evolution in colorectal tumours [39]. MEDICC involves

three steps: (i) allele-specific assignment of major (i.e. the larger) and minor copy num-

bers, (ii) estimating evolutionary distance between samples followed by tree interference

(the tree topology) and (iii) reconstructing the ancestral genome based on the number

of events between genomes to determine the final branch lengths [37]. Recent studies

suggest that detecting subclonal allelic imbalance using multi-sample phasing will im-

prove the reconstruction of the phylogenetic tree [22, 28], particularly if mirrored allelic

imbalance is present (loss of maternal allele in one subclone and paternal allele in an-

other). MEDICC2 incorporates WGD, while also taking parallel evolution into account

through the use of the Minimum-Event Distance [11]. This measure determines the

shortest genetic event pathway (differences in gains, losses, WGD and allele-specific

events) between two genomes. The allele-specific SCNA profile is needed to be pre-

phased using multi-sample reference phasing [28] or has undergone evolutionary phas-

ing to determine the final haplotype prior to computing the Minimum-Event Distance

by MEDICC2. MEDICC2 accurately identified WGD events in > 2000 CN profiles from

the Pan Cancer WGS studies and was able to time SCNA/LOH events relative to the

WGD. MEDICC2 also identified mirrored subclonal allelic imbalance and parallel evo-

lutionary events [11]. Taken all together, MEDICC2 applied to high depth NGS data

can elucidate early clonal events including WGD along with the subsequent diversity of

SCNA.

Estimating clonal relatedness from somatic mutation data
With the rise of next-generation sequencing, somatic point mutations are increasingly

important and offer a high degree of sensitivity for clonality detection. A specific base

change is less likely to be shared by chance compared to a large-scale copy number

event, and there are often dozens, if not hundreds, of independent mutations to meas-

ure in a tumour. Various statistical approaches can be utilised to investigate clonal re-

latedness in a tumour pair including concordance measures and phylogenetics

approaches. The selection of a method may depend on the type of sequencing data

available, with phylogenetics-based methods requiring higher depth WES/WGS data.

Clonality index

Schultheis et al. [7] described and validated a method of estimating clonal relatedness

of 23 synchronous endometrioid endometrial carcinoma (EEC) and endometrioid ovar-

ian carcinomas (EOCs) utilising high-depth WES (105×) and targeted sequencing

(453×, > 300 genes) (Table 2). They employed two novel approaches for clonality esti-

mation (Clonality Index (CI) 1 and CI2) both based on shared non-synonymous (i.e.
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mutations likely to alter fitness by changing protein structure and function) and syn-

onymous (i.e. that are likely neutral) somatic mutations. It is noteworthy that they

stringently curated the mutation list prior to the CI analysis including manual evalu-

ation in Integrative Genomics Viewer for high confidence variants and filtering out

common polymorphisms. The CI takes into account the frequency of a given somatic

mutation in TCGA data of the same tumour type. This approach is to reduce the effect

of a given mutation in highly frequent driver genes such as hot spot mutations in

PIK3CA or KRAS, which have the potential to mislead the clonality analysis by being

shared by chance.

The CI for a tumour pair was defined as:

CI ¼ 1−Πn
k¼1 f k ; n > 0
0; n ¼ 0

�

where fk is the percentage of tumours TCGA [50] harbouring a given mutation (k)

and n is the number of shared mutations between a pair of tumours. The pair is con-

sidered genetically related if CI is more than 0.8. This approach means that irrespective

of the number of shared mutations between a pair of tumours, if just one of the shared

mutations has a ≤ 20% frequency in TCGA, then for that pair CI ≥ 0.8 (i.e. clonal).

CI2 is similar to CI, but by using an R package ROCR, the calculated threshold can

be carried out with any external large dataset if TCGA data is not available for a par-

ticular tumour type. Unlike CI, where the threshold was fixed as 0.8 to define any pair

tumour as “clonal”, the CI2 threshold will vary based on the average mutation rate of

that tumour type in the control dataset, and the frequency distribution of variants of

the testing cohort (calculated by the ROCR package).

Very recently we employed this analysis in 8 breast papillary lesions with co-existing

DCIS/IBC using targeted sequencing. Despite a very low mutation burden (median of

one shared mutation/case) 6 cases were found to be clonally related by the CI index,

driven by shared variants infrequent in breast TCGA data [18] and consistent with

clonality determined by copy number.

The risk in this CI analysis is that if the particular tumour type (or subtype) has a

common hot-spot driver mutation along with a low mutational burden and/or employ-

ment of a targeted panel, estimating clonal relatedness could result in equivocal find-

ings. In addition, the mutational landscape markedly differs among subtypes of breast

cancer reported in TCGA. For example, the most commonly mutated gene in breast

cancer is PIK3CA (36%), however, when we look at the frequency of different subtypes,

PIK3CA mutation is found in 37% of luminal subtypes/ER+ tumours (45% in Luminal

A, 29% in Luminal B) vs 9% of basal/ER- tumours. But how far should the reference set

go in terms of subtypes? For example, even within the breast cancer luminal subtype

there is further heterogeneity in terms of gene expression and histological subtypes (i.e.

ductal/lobular/mucinous/papillary); should these be treated separately? Comparing mu-

cinous IBC with luminal IBC from both TCGA and METABRIC showed a different

mutational profile, namely for PIK3CA (6.7% mucinous vs 37.4% IBC of no special type,

p< 0.001, Fisher’s exact test) and TP53 mutation (3.3% vs 20%, p< 0.02, Fisher’s exact

test) [51].

Another major concern common to any mutation-based approach is that they rely on

accurately identifying somatic variants. Should an uncommon germline polymorphism

Kader et al. Genome Biology           (2022) 23:43 Page 13 of 23



be present that is wrongly classified as somatic, this will of course be present in both

tumours and they will be called as clonal (i.e. one rare germline/sequencing artifactual

mutation can significantly define CI> 0.9). Therefore, matching germline data and strin-

gent variant filtering are essential.

Statistical tests for relatedness of a tumour pair

Statistical tests, similar to those described earlier for SCNA and LOH can also be ap-

plied to single nucleotide variant data, using mutation frequency from TCGA or an in-

dependent external dataset for subtypes of a cancer type (e.g. Luminal A breast cancer)

[41]. For example, the p value generated by the Clonality package “get.mutation.fre-

quencies” function is based on how common the shared variants of the pair in TCGA

dataset. The less common it is, the smaller the p value will be and therefore, suggestive

of a clonal pair if p < 0.05. This package also has a random-effects model function to

estimate independent probabilities of clonal relatedness based on unshared mutations

between paired tumours when the second pair is at the same site (i.e. not metastasis).

Mathematically, Mauguen et al. showed that with increasing unshared events, the prob-

ability of a pair being clonal also decreases [42]. This test cannot provide the probabil-

ity of independence in cases with no matches (i.e. p value is always 1, regardless of how

many non-matches occur in the case).

Subclonal reconstruction with high depth bulk sequencing data

Better understanding of ITH is important for future biomarker discovery as well as

therapeutic interventions. In order to understand the heterogeneity in a single tumour,

subclonal reconstruction is a necessary step to distinguish between clonal and subclo-

nal populations of the tumour. The major challenges of bulk DNA sequencing analyses

have been described in detail by Tarabichi and colleagues [52] and include the type of

sequencing, sequencing coverage, single vs multiple sampling to reconstruct subclones,

tumour ploidy, purity, and germ line variants being misclassified as somatic.

One widely used computational tool for subclonal reconstruction is PyClone, which

can be applied to multi-sample analyses as well as to a single tumour. PyClone esti-

mates the clonal architecture and composition by using mutant allelic fractions from

all somatic mutations adjusted for sequencing errors, tumour cell content, ploidy and

local CN profile. However, PyClone assumes only one chromosomal change per seg-

ment. Generally, PyClone is recommended for samples with high depth (e.g. at least

100× sequencing depth for WES) and with matched normal data [48, 52]. Lower depth

of matched normal might overestimate clonal mutations through the misclassification

of germline variants as somatic (i.e. false positive clonal relationship). Additionally, gen-

erally deeper sequencing improves the accuracy of subclonal reconstruction. For calling

clonal relatedness of paired samples, a tree with no shared trunk would indicate lack of

clonality, as might a very short trunk defined by a highly frequent mutation potentially

shared by chance. PyClone was utilised on high-depth WES data to describe synchron-

ous DCIS progression to IBC using single-sampled specimens [53] and for multi-region

sampling in the TRACERx-NSCLC cohort to define clonal vs subclonal mutations as

well as the timing the events (early vs late) [22].
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Evolutionary methods with high depth bulk sequencing data

PyClone only utilises somatic point mutations to reconstruct subclonal populations and

ignores the critical contribution of CN changes. In contrast, PhyloWGS combines both

types of event and predicts more accurate subclonal reconstruction than other tools

since it recognises the impact of CN changes on variant allele frequencies (VAF). For

example, both CN amplification and LOH can cause increased VAF but would be indi-

cative of a separate subclonal lineage. An increased VAF might therefore be ambiguous

if the CN data is not incorporated [49]. As for PyClone, PhyloWGS could also be used

to estimate the clonal relatedness of two tumour samples.

Taken together, in order to identify whether a tumour pair (e.g. primary/recurrence

or primary/metastasis) share a common ancestor, the clonality index and clonality

packages are widely used with data from targeted sequencing panels and WES. If higher

depth WES or WGS data are available, phylogenetic quantification would be most

powerful for both single-sample subclonal reconstruction and multi-sample clonal re-

latedness analyses.

Consideration of biological contexts when determining clonal relatedness
When analysing higher depth NGS data, consideration of biological contexts might not

be so crucial, since >60× coverage will precisely define breakpoints, provide allele-

specific CN changes and estimate evolutionary distance. However, before any of the

discussed methods (Table 2) are applied, biological contexts should be taken into ac-

count, especially when working with low resolution technologies.

Initiating events for cancer evolution, premalignant lesions and estimating clonal

relatedness with synchronous cancer

It has long been understood that cancer-initiating events are often tissue specific, such

as APC mutation in colon carcinoma, DNMT3A mutation in AML, and loss of chromo-

some 16q in breast cancer [54]. Understanding and unravelling these initiating events,

how they increase fitness and are clonally selected, gradually expand and progress fur-

ther to cancer, might open windows for prognostic tools or preventative therapies. Here

in this Review, “premalignant” lesions will be referred as clinically diagnosed lesions

which may be considered as a precursor to malignancy, summarised by Curtius et al.

[55].

Premalignant lesions most likely will have a different clonal architecture than fully

developed cancer. Therefore, to analyse premalignant lesions and their clonal related-

ness with synchronous/metachronous cancer, it is important to remember some key

points:

1) Generally, the degree of aneuploidy is higher with the progression of cancer with

the exception of breast and lung cancer [56], whereby the in situ diseases of both

types have similar CIN to invasive tumours [56]. In addition, the pattern of

mutations and aneuploidy is known to be tumour-type specific [57].

2) Although there is growing understanding of the somatic mutational landscape in

phenotypically normal tissues [58, 59], such as endometrium [60], skin [61] and

oesophagus [62]; a higher degree of somatic mutations are still observed in cancer
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than normal tissues. This observation indicates that only a few of the many driver

mutations of each tumour type already exist in normal tissues and could be

sufficient to drive clonal expansion, albeit often still behaving phenotypically as

normal tissue. Therefore, it is possible that some driver mutations, if not all, are

expected to be more frequent in premalignant conditions than the passenger

mutations of a malignant tumour (i.e. that passively accumulate with the

progression of the disease) [55]. For example, it was shown in melanoma that only

one fully clonal mutation (mostly BRAF V600E) was present in both the benign

precursor and coexisting invasive melanoma, with an increased rate of other

somatic mutations after disease progression through intermediate lesions [63].

3) Observed premalignant lesions may or may not be a direct precursor to a

coexisting or later cancer, therefore, while the two neoplasms may share a very

early common ancestral cell, premalignant lesions could follow an early divergent

evolutionary trajectory. This early branching evolution may manifest as

significantly fewer genetic alterations overall in premalignant lesions than

malignant tumours. Such branching evolution was shown by phylogenetic tree

analysis of somatic SNVs by Weng et al. and others [44, 45] for early breast lesions

and DCIS/IBC (n=6).

While all of the statistical approaches described in this Review so far have been tested

on genetically advanced in situ lesions or invasive cancers in recurrence/metastasis set-

tings, a question remains: which method should be employed in pre-malignant settings?

For example, for breast premalignant lesions, such as ADH synchronous with IBC/

DCIS, even if ADH is a direct precursor to cancer, it is still expected to have fewer gen-

etic alterations than the DCIS/IBC counterparts. More importantly, as mentioned

above, some ADH cases might carry only the initiating genetic events/driver events (i.e.

the most frequent changes in DCIS/IBC), such as whole chromosome arm 1q gain and/

or 16q loss (~ 60% and ~ 80% of breast cancers carry these changes, respectively). The

genetic relationship of ADH to DCIS/IBC depends on the relative duration of the

period in which the original clonal cell accumulated those initiating events and became

“ADH” compared to the period of ADH and the DCIS evolving separately. If that rela-

tive duration is very small, then only initiating events are expected in ADH lesions

compared to co-existing carcinoma. This diversion will be especially wide with high-

grade DCIS or IBC, whereby the carcinoma component will likely evolve on its own

with a high level of genomic instability. In addition, multifocal ADH might be heteroge-

neous with regards to their CN events but due to the limitations of bulk sequencing,

we cannot detect such spatial heterogeneity. Only one clone might eventually give rise

to cancer and only the clones that are histologically “ADH”, while still sharing the com-

mon ancestor, are likely to be analysed with bulk DNA sequencing.

Approaches that take the frequency of genetic events into account for clonality as-

sessment, such as the Clonality Package, will have limited utility, since they discount

the common changes of the dataset being tested. For example, one of the cases in the

study by Begg et al. [5] provides an example of how the impact of frequent and shared

SCNA is reduced. In this case, only 1q whole arm gain and 16q whole arm loss were

shared between lobular carcinoma in situ (LCIS) and invasive lobular carcinoma (ILC);
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this case was called as non-clonal due to the high frequency of these events in the data-

set (P=0.31).

We recently showed that ADH is a multipotent precursor of IBC using only CN data

[64] and employing unsupervised hierarchical clustering, the Clonality Package and

visually inspected shared breakpoints. The discordant cases among these three methods

arose primarily due to the lesions only sharing CN changes very frequent in IBC. Some

were defined as clonal based on the precise shared breakpoints of those common

events. Additionally, it is important to note that premalignant lesions of a heterogenous

tumour type such as breast need to be classified on their own first (without synchron-

ous cancer) in order to anticipate the frequency of any genetic events in those lesions

when they exist by themselves. For example, isolated breast papillary lesions have al-

most no CN events [18, 64] and therefore, might share only one or two common CN

events with the DCIS/IBC, again depending on the evolutionary context of that particu-

lar case.

The ability to interrogate premalignant lesions has been technically challenging, due

to their small size and their low nucleic acid quality due to fixation with formalin.

Nonetheless, Hu et al. [65] recently investigated lung pre-neoplasia to understand the

progression to lung adenocarcinoma whereby cases were subjected to multi-region

WES (at least 20×) to estimate clonality and phylogenetic analysis. Ideally, single cell

sequencing or higher depth sequencing using WES/WGS would be performed whereby

early divergence and the duration of branching evolution would be taken into account

for more accurate clonality estimation. Lacking data with such high-depth and breadth,

a new statistical approach or test is necessary to accurately evaluate cancer progression

from premalignant lesions synchronous or metachronous with cancer. An approach

that incorporated specific events (breakpoints, mutations) and incorporating their fre-

quency in a relevant control tumour set could be the most suitable.

Detecting clonality in metastasis

When determining the clonality of tumours at anatomically distant sites, which refer-

ence cohort should be used? Mutational profiles, especially the driver events, differ sub-

stantially based on the site of the origin. If there are very few shared mutations how

will the marginal probabilities be calculated? And even if they are defined as clonal,

which site will be considered as the primary in a synchronous context? The importance

of biological context has very recently been addressed in an extension of the Clonality

package [43]. The updated equation for different anatomical locations now assumes ra-

ther than a shared probability for both samples, that the different cell types have differ-

ent mutation probability distributions. A classic example was given: two tumours were

subjected to targeted sequencing using a panel of 410 genes, one located in the pan-

creas (n=8 mutations) and one in lung (n=9 mutations), whereby they shared only one

mutation, KRAS G12C. The original test derived a non-significant P value for this case

(P=0.076), however, the updated test calculating the “incongruence index” (i.e. the

index that estimates the likelihood of each site being the primary site) was suggestive of

a lung cancer metastasized to the pancreas. This result is due to the much lower abun-

dance of the only shared mutation in the pancreas compared to the lung (0.8% vs

12.8%, respectively), meaning the tumour was unlikely to have arisen in the pancreas
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independently of the lung tumour. This example highlights the importance of taking

into account the biological context (which in this example is tumours at anatomically

distant sites) before employing any statistical approaches.

It is important to remember a few key points with regards to metastatic settings in

utilising statistical tools for determining clonality:

1) Evidence of early dissemination for distant metastasis, even before primary

tumours become clinically apparent, has been identified for multiple solid tumour

types [66]. This process implies that only truncal mutations will be shared between

primary and distant metastases and functional driver mutations will be enriched on

the trunk of the phylogenetic tree [66]. Therefore, approaches that also consider

differences as well as similarities (e.g. hierarchical clustering) may not be ideal for

detecting clonality in this scenario.

2) Similarly, multi-region sequencing suggested that in colorectal cancer, distant me-

tastases arose only from a small region of the primary tumour [67], thus if that re-

gion is not sampled for analysis, then only truncal mutation(s) will be reported as

shared. The clonality estimation will depend on how well the tumour was sam-

pled—bulk DNA analyses could be underpowered to detect sub-clonal mutations

(depending on the sequencing coverage). While truncal mutations will still be de-

tected in both sites, detection of mutations at a low frequency in the primary and

enriched in the metastatic site could increase the power of clonality detection,

which is especially important if there are no clear truncal mutations or a truncal

mutation is a common variant.

3) Highly divergent CN profiles are common in metastatic tumours compared to the

primary, and the nature of chromosome instability is that later events build on and can

obscure initiating breakpoints (e.g. in the context of breakage-fusion-bridge cycles [68]).

4) Reiter et al. [67] suggested that genetic diversity might be different in local lymph

node metastases compared to distant ones, whereby a very tight selective

bottleneck and therefore less genetically diverse clones might be expected in the

latter. Similarly, Hu et al. [66] evaluated colorectal, breast and lung tumours (n=

136 by WES) and found that monoclonal tumour deposits (i.e. originating from a

single cell or clone) are more frequent in distant metastasis than the primary. In

contrast, for other tumour types, such as ovarian cancer, polyclonal seeding is not

uncommon [69, 70]. The prevalence of different metastatic seeding events is

important to keep in mind if we would like to estimate clonality in metastasis

settings.

5) Treatment influences clonal evolution and the mutation landscape in metastatic

settings. For example, higher mutational burden in metastases than the treatment

naïve pancreatic ductal adenocarcinoma [71]. In addition, the frequency of specific

mutations may be higher, such as mutations in ESR1 in breast cancer metastasis

after anti-oestrogen therapy [72]. These features should be considered when apply-

ing a burden or frequency-weighted approach.

While the evolutionary trajectory of distant metastasis is yet to be explored with large

single-cell-sequencing studies across multiple tumour types, it is important to take the

context and clinical information into account while employing statistical clonality tools.
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Conclusion
With the growing body of evidence in the field of cancer evolution and the im-

portance of tumour heterogeneity to clinical outcome, biological context is increas-

ingly important. Since high depth, breadth and single cell sequencing technologies

are becoming more and more feasible, clonal analysis is an important tool to un-

ravel the biology of the heterogeneous populations of any tumour type. For ex-

ample, it has long been an ongoing challenge to identify predictive biomarkers for

DCIS recurrence, especially when they recur as IDC. Unless single cell analysis or

multi-region high depth WES/WGS analysis is carried out, the genomic complexity

of the primary tumour might be severely underestimated, and the genetic relation-

ship between the primary and recurrence misinterpreted. There might be subclonal

events, not well represented in the specimen sequenced, carrying any of the genetic

events that have the potential to drive DCIS progression towards invasiveness over

time. In addition, it is an active field of research to understand how in breast can-

cer, immune “cold” regions co-exist with immune “hot” regions and whether the

prognosis is different for patients with such potentially genetically determined het-

erogeneity. Without unravelling the intra-tumoural spatial heterogeneity, we might

not be able to determine the evolutionary bottleneck of DCIS progressing to IDC.

With greater depth, we can also estimate the selection type (positive/negative/neu-

tral), which is often impossible due to sampling bias. Additionally, with the poten-

tial for further development of single cell genomics technology for FFPE samples,

bioinformatics tools also should be developed to overcome the caveats of current

analytical tools. Single cell analysis may provide deep insights into tumour evolu-

tion and the order of the genetic events, such as the punctuated model for triple

negative breast cancer [10].

Most of these tools require matched normal data, yet the feasibility of obtaining

germ-line DNA is problematic for retrospective studies using archival tissue sam-

ples with long follow up or those collected through routine diagnostic procedures.

Another point to consider is that normal tissues have been shown to carry poten-

tial driver mutations [59, 73] and can be aneuploid (e.g. normal colorectal crypts

[74] and non-malignant cells like fibroblasts and immune cells [75]). Should the

pipeline be modified when we analyse the variants of cases with matched normal,

particularly when single-cell approaches are employed? Other limitations of clonal-

ity analysis include the inherent noise of some assays such as FFPE-CN profiling,

which then require manual inspection. Advancement in methods to reduce noise

without manual curation will dramatically improve the accuracy and ease of

analysis.

Bulk sequencing is still an important ongoing tool given the well-established

pipelines in a wide range of tissue sources [76], but lineage tracing and single cell

technologies have shown great promise to study cancer evolution. Exciting develop-

ments in spatial single-cell technologies have the potential to one day evaluate en-

tire cancer tissue fields for their clonal relationships in the context of the

microenvironment and immune escape mechanism. All of these developments to

estimate clonal relatedness might have the potential to aid in clinical treatment

strategies in the future.
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