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Intronless genes (IGs) or single-exon genes lacking an intron are found across most Eukaryotes.
Notably, IGs display a higher transcriptional fidelity as they are not regulated through alternative
splicing, suggesting better predictability biomarkers and easier regulation as targets for therapy.
Cancer is a complex disease that relies on progressive uncontrolled cell division linked with multiple
dysfunctional biological processes. Tumor heterogeneity remains the most challenging feature in
cancer diagnosis and treatment. Given the clinical relevance of IGs, we aim to identify their unique
expression profiles and interactome, that may act as functional signatures across eight different
cancers. We identified 940 protein-coding IGs in the human genome, of which about 35% were
differentially expressed across the analyzed cancer datasets. Specifically, ~78% of differentially
expressed IGs were undergoing transcriptional reprogramming with elevated expression in tumor
cells. Remarkably, in all the studied tumors, a highly conserved induction of a group of
deacetylase-histones located in a region of chromosome 6 enriched in nucleosome and chromatin
condensation processes. This study highlights that differentially expressed human intronless genes
across cancer types are prevalent in epigenetic regulatory roles participating in specific PPI networks
for ESCA, GBM, and LUAD tumors. We determine that IGs play a key role in the tumor phenotype at
transcriptional and post-transcriptional levels, with important mechanisms such as interactomics
rewiring.

Keywords: single-exon genes, comparative genomics, cancer genomics, epigenetics, tumor
heterogeneity, cancer evolutionary genomics.

1. Introduction

Most eukaryotic gene structures contain exons interrupted by non-coding introns that are
removed by RNA splicing to generate the mature mRNA. Although the most prevalent class of
genes in the human genome contain Multiple exon genes (MEGs), about 5% of the genes are
intronless (IGs) or single-exon (SEGs) that lack introns. Due to the absence of introns and
associated post-transcriptional splicing, IGs entail a higher transcriptional fidelity suggesting a
potential role as clinical biomarkers and drug targets that deserve careful consideration in
diseases such as cancer [1-3]. Several previous studies have identified the role of IGs in cancer
[2, 4-7]. For example the RPRM gene increased cell proliferation and tumor suppression activity
in gastric cancer [7]; CLDN8 gene is associated with colorectal carcinoma and renal cell tumors
[6]; while ARLTS1 is upregulated in melanoma; PURA & TAL2 are upregulated in leukemia [2]
and protein kinase CK2α gene is up-regulated in all human cancers [4];

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481319doi: bioRxiv preprint 

mailto:maribel.hr@cinvestav.mx
https://doi.org/10.1101/2022.02.21.481319
http://creativecommons.org/licenses/by-nc-nd/4.0/


A remarkable instance of IGs acting in a clinical role is SOX11, a member of SOXC (SRY-related
HMG-box) gene family of transcription factors involved in embryonic development and tissue
remodeling by participating in cell fate determination [8]. SOX11 has been associated with
tumorigenesis, with aberrant nuclear protein expression in Mantle Cell Lymphoma (MCL)
patients [9-12] . This TF is not expressed in normal lymphoid cells or other mature B cell
lymphomas (except Burkitt lymphoma), but it is highly expressed in conventional MCL,
including the cyclin D1-MCL subtype [5]. Hence, SOX11 represents a widely used marker in the
differential diagnosis of MCL and other types of small B-cell neoplasias in the clinical
hemato-oncology practice [13-14].

However, to date, a comparative analysis integrating transcriptomic and interactomics profiles of
IGs across diverse types of cancer is missing. Hence, this work aims to identify and characterize
their expression, functional role, and interactomics profiles across different selected cancers.

2. Results

In this study we use RNA-sequencing data from 3880 tumor samples belonging to 8 cancer types
from the cancer genome atlas or TCGA (Supplementary Table 1). We selected the four most
prevalent cancers, namely Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma
(COAD), Lung Adenocarcinoma (LUAD), Prostate Adenocarcinoma (PRAD); along with the
four most aggressive cancers with high intrinsic heterogeneity, namely Bladder Urothelial
Carcinoma (BLCA), Esophageal Carcinoma (ESCA), Glioblastoma Multiforme (GBM), and
Kidney Renal Clear Cell Carcinoma (KIRC).​​We found that 338 out of the 940 genes identified
as IG-encoded proteins are undergoing differential regulation in tumors compared to the normal
tissue. GBM had the most number of DE-IGs at 168, followed by KIRC at 130, and both PRAD
and COAD at 116. While in BRCA 104, LUAD 87, BLCA 97 and ESCA 86 were determined.

2.1 IGs tend to have a more induced gene expression pattern when compared to MEGs 

In order to characterize the distinct biological behavior of IGs, we studied the overall gene
expression patterns of IGs compared to those of the multi-exonic genes (MEGs) in all the
tumors. Notably, a greater percentage of upregulated genes are found among DE-IGs than
DE-MEGs in all the different types of cancers analyzed.

For instance, when comparing both populations of genes, we identified statistical significance for
an over-representation of the up-regulated IGs over the MEGs group among DEGs in PRAD
(p-value=2.8108 e-07); ESCA (p-value=7.0858 e-05); LUAD (p-value=0.0015), and BRCA
(p-value=0.0276) cancers. Moreover, we aimed to compare if the upregulation levels in means of
expression ranges are higher in IGs than in MEGs transcripts. Our analysis revealed that in
almost all the cancers under study, except in lung adenocarcinoma, IGs tend to express in higher
ranges than MEGs, as shown in Supplementary Figure 1. Further, we found a high proportion
of IGs encodes for histone proteins involved in chromatin structure and other proteins essential
to the regulation of development, growth, and proliferation (Supplemental Figure 2).
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2.2 Upregulated IGs across cancer types encode for highly conserved HDAC deacetylate
histones involved in negative gene regulation

To dig insight into the role of the prevalent upregulation mechanism identified for the DE-IGs,
we aimed to characterize the groups of induced IGs across the analyzed cancer types. 338 out of
940 (~35%) IG encoded proteins in the human genome, are differentially expressed across the
eight analyzed tumor types. In a high number of them, 222 (~78%), upregulation is conserved in
two or more cancers, which suggests they are undergoing transcriptional reprogramming with
higher rates of upregulated levels of their mRNAs as an outcome. Moreover, this upregulation
mechanism is highly shared among the different cancers (Figure 1). Most of the genes
upregulated in BLCA and ESCA are shared with the other tumors, while tumors with a
significant but less shared upregulation are GBM, PRAD, and KIRC, which could be expected
given their remarkable heterogeneity (Figure 1a).

Figure 1. Deregulated IGs across the analyzed cancer genomes. The Circos plot depicts how deregulated genes
for each cancer overlap. On the outside shell, each arc represents a cancer genome: BLCA in red, BRCA in blue,
COAD in green, ESCA in purple, GBM in orange, KIRC in yellow, LUAD in brown, and PRAD in pink. On the
inside shell, the dark orange color represents the proportion of DE genes shared with other cancers, while the light
orange color represents the proportion of genes that are uniquely deregulated in a cancer. Purple arcs represent
shared DE genes, while blue arcs represent shared functional enrichment terms among cancers. The greater the
number of purple arcs and the longer the dark orange area imply a greater overlap among the deregulated IGs across
cancers. (a) shows the upregulated genes, while (b) the downregulated.

To delve insights into the conservation of the activation of this negative gene expression
mechanism in the cancer genomes, we identify the most conserved upregulated histones in all the
diseases. We identified a group of 13 histone-related genes whose expression is highly conserved
among the cancers (Supplementary Figure 3). Moreover, this group of upregulated genes is
​​statistically enriched in a proximal region (26.1968-27.8927 position in Mbps ) in chromosome 6
in the human genome (Supplementary Figure 4).
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Haspin was found to be the only DE-IG shared among all the tumor genomes, highlighting its
relevance in tumorigenesis. This gene is known to be required for histone H3 phosphorylation,
necessary for chromosomal passenger complex accumulation at centromeres of mitotic cells
[15-16]. In addition to its chromosomal association, it is associated with centrosomes and
spindles during mitosis. The overexpression of this gene is related to a delayed progression
through early mitosis [15].

Functional enrichment analysis was carried out for the deregulated IGs in all the studied diseases
(Supplementary Table 2). GBM is the disease with the most DE-IGs and with the most diverse
functional roles for the induced genes. The GBM-specific enriched terms are pathways of
neurodegeneration, cell-cell adhesion, and gland development. The cancer-specific enriched
terms chaperone-mediated protein folding, and regulation of neuron apoptotic processes were
found for esophagus and colon cancers, respectively. Further, the Reactome pathways
R-HSA-321481 deacetylases histones (HDACs), and R-HSA-3214858 RMTs methylate histone
arginines were also enriched in IGs while GO:0006335 term: DNA replication-dependent
chromatin assembly was also enriched suggesting an essential role in cancer biology.

2.3 IG downregulation is conserved in breast and colon cancers and is involved in signaling
and cell-specific functions. 

When comparing the downregulated IGs and their enriched functional terms among the diseases,
it was pointed out that the breast and colon cancers share all the repressed IGs with their
functional pattern. Downregulated genes in those cancers are involved in the regulation of
cellular localization, sensory organ development, regulation of membrane potential,
adipogenesis, epithelial to mesenchymal transition in colorectal cancer, growth, actin filament
base process, positive regulation of cell death, class A/1 (rhodopsin-like receptors), and the
regulation of secretion by cell biological processes, (Supplementary Table 2). Notably, the most
shared downregulated pathway among cancer genomes is the regulation of anatomical structural
size, shared among BRCA, PRAD, GBM, LUAD, and BLCA tumors. Additionally, unique roles
are found in lung and prostate cancers. They have downregulated genes involved in the vitamin
D receptor pathway, and wounding response respectively.

2.4 Cancer-specific differentially expressed IGs

To study the specificity in the regulation of human IGs, we quantified the number of
cancer-specific DE-IGs (Figure 2). We also built a bipartite network to identify cancer-specific
and shared deregulated IGs, where upper nodes represent DE-IGs, and bottom nodes represent
cancer types, we link an IG to a cancer if it was found to be deregulated in that cancer
(Supplementary Figure 2). Among the 338 DE-IGs, we identified that ~35% were specific for a
cancer type (Supplementary Table 3). GBM followed by KIRC and PRAD with 35, 18, and 16
DE-IGs respectively displayed the highest specificity for IG expression.
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Figure 2. Shared and unique differentially expressed IGs across cancers. Circa plot depicts the number of shared
DE-IGs across the 8 types of tumors under study. In the left hemisphere, the total number of DE-IGs in each cancer
is represented by an arc: BLCA (red), BRCA (orange), COAD (yellow), ESCA (light green), GBM (green), KIRC
(turquoise), LUAD (light blue), and PRAD (dark blue). The unique (fuchsia) and shared (purple) groups are
depicted in the right hemisphere. The inner arcs represent the distribution of the DE-IGs in each cancer, while the
outside arcs represent the intersection of both hemispheres on a scale of 0-100%. Data was obtained from the
TCGA database.

2.4.1 GBM

Among the specific DE-IGs found in GBM, an evident first group includes mainly cellular
proliferation and cytoskeleton-related genes. An enrichment of microtubule-based movement,
transport along the microtubule, cytoskeleton-dependent intracellular transport, and
microtubule-based transport is identified (FDR= 0.0132). Moreover, the second group of specific
deregulated genes is related to tumor suppression, a negative regulatory mechanism of cell
growth control, which usually inhibits tumor development. We identified GBM specific
deregulated genes with crucial involvement in the p53 pathway, such as KLLN, INSM2 and SFN.

2.4.2 KIRC

The cancer-specific deregulated IGs in KIRC include the tissue-specific KAAG1 gene
(kidney-associated antigen 1) along with transcription factors POU5, TAL, and bHLH. Moreover,
transmembrane proteins such as the protocadherin beta 10 (PCDH10), related to the Wnt
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signaling, were also upregulated. PCDH10 has been classified as a tumor suppressor in multiple
cancers. It induces cell cycle retardation and increases apoptosis by regulating the p53/p21/Rb
axis and Bcl-2 expression [17].

2.4.3 PRAD

IGs specifically downregulated in PRAD include RAB6D (member RAS oncogene) and MARS2
(methionyl-TRNA Synthetase 2) related to amino acid metabolism, while PBOV1, a 135 amino
acid protein with a transmembrane domain was highly upregulated (logFC=3.1699). This gene is
mapped to 6q23-q24, a region associated with loss of androgen dependence in prostate tumors
[18]. Other upregulated IGs include transcription factors such as FOXB2 (Forkhead Box B2),
and ATOH1 a bHLH, which is associated with goblet cell carcinoid and Merkel cell carcinoma
diseases (Verhaegen et al 2017). Moreover, FRAT2, an essential positive regulator of the Wnt
signaling and LENG9, a member of the conserved cluster of receptors of the leukocyte-receptor
complex (LRC) were also upregulated [19].

2.4.4 BRCA

Few cancer-specific differentially expressed IGs that code for TFs were identified for BRCA,
while specific gene expression is more abundant for transmembrane proteins in this cancer, such
is the case of a group of glycoproteins and transmembrane receptors involved in signal
transduction. For instance, upregulation of PIGM (phosphatidylinositol glycan anchor
biosynthesis class M), GP5 (glycoprotein V platelet,) CALML5 (calmodulin-like 5), coiled-coil
domain-containing proteins CCDC96, and CCDC87, are identified specifically for this cancer.

2.4.5 LUAD

Regarding the specific differential expression found for lung tumors, the following TFs are
significantly upregulated: TAF1L, a transcription factor that is related to chronic inflammatory
diseases by regulating apoptotic pathways including regulation of TP53 activity, and FOXE1, a
forkhead TF previously related to thyroid cancer [20]. Interestingly, specific transmembrane
signaling receptors are upregulated. MAP10 is a microtubule-associated protein and THBD
thrombomodulin endothelial-specific type I membrane receptor that binds thrombin. Among
THBD related pathways are collagen formation and formation of fibrin clot, as well as calcium
ion binding and cell surface interactions at the vascular wall.

2.4.7 BLCA

In BLCA, only ZXDB (Zinc Finger X-Linked Duplicated B) TF is identified as specifically
deregulated. Transcripts for signal transduction proteins are specifically upregulated for OR52E8
(Signaling by GPCR), LRRC10B (Leucine-Rich Repeat Containing 10B), and MAS1L, a
proto-oncogene which is a peptide ligand-binding receptor linked to sensor neurons for pain
stimuli detection.
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2.4.6 ESCA & COAD

No specific TFs are specifically differentially expressed for colon and esophageal cancer.
Gastrointestinal adenocarcinomas of the tubular gastrointestinal tract, including esophagus,
stomach, colon, and rectum, share a spectrum of genomic features, including TF-guided genetic
regulation [21]. In keeping with this, we found that transmembrane proteins related to GPCR
signaling pathways are specifically undergoing differential expression for both cancers; for
instance, in colon, GPR25 (G protein-coupled receptor 25), CCDC85B (coiled-coil domain
containing 85B), CCDC184 (coiled-coil domain containing 184), SPRR1A (small proline-rich
protein 1A), PROB1 (proline-rich essential protein 1). Meanwhile, for esophagus tumors,
OR51B4 related to signaling by GPCRs, and LDHAL6B involved in glucose metabolism and
respiratory electron transport were identified.

Remarkably, when comparing IG’s deregulation across the eight cancer types, we identified that
ESCA and LUAD shared 93% of the DE-IGs, while BRCA, BLCA, COAD, PRAD, and KIRC
shared more than 86% at least with another cancer. Finally, and presumably given its
“multiforme” nature, GBM is the cancer type identified with a significant but lesser percentage
of shared DE-IGs (~79%). Notwithstanding, our results show that GBM represents the tumor
where the IGs have more differential expression, specificity, and concerted functional roles. This
could be explained due to their gene expression tissue-specific relevance in the brain.

2.5 Proteins encoded by cancer-specific deregulated IGs interact with distinct groups of
proteins in PPI networks

Gene expression is a phenomenon where coupled biochemical interactions take place to
transcribe mRNA for protein production. There is a high regulation in the balance of this event.
Hence differences in protein composition, production, or abundance are a consequence of
disruptions in cell phenotypes. The differential expression pattern of the mRNA is a key in
determining a cell state at the molecular and physiological level [22]. It has been shown that
genes involved in "similar diseases" depict shared protein-protein interactions (PPI), and higher
expression profiling similarity [23].

To determine if the DE-IGs play a crucial role in inhibiting or exacerbating biological reactions
at a physical level, we obtained the Protein-Protein Interactions (PPIs) with highest confidence
where DE-IGs for each cancer are involved. Our results show that a considerable proportion of
proteins encoded by DE-IGs in each cancer interacts with specific groups of proteins, due to the
low percentage of DE-IGs that are shared between two or more cancers (Supplementary Figure
5). In this work, we will consider that an interaction is shared between cancers, if a DE-IG in one
cancer is also deregulated in another cancer, and the interaction of the IG-encoded protein with
another protein is reported by String, otherwise, we classify that  interaction as cancer-specific.
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For instance, 100% of the interactions found in LUAD are cancer-specific, followed by the high
specificity of interactions found in ESCA (99.3865%) with only a unique shared PPI of
centromere complex with BLCA (HIST1H2BJ, CENPA). GBM has a similar pattern with
95.8333% of unique interactions and only 19 shared ones. In BLCA, 59.16% of the analyzed PPI
are specific to this cancer type. PRAD is a condition that possesses 53.1339% cancer-specific
interactions; and COAD has 42.1455%. For BRCA, 30.62% of its interactions are only found in
this cancer, the lowest fraction of unique interactions. KIRC has the second-lowest with only
31.55% of unique interactions.

If two cancers share PPIs related to the cancer-specific DE-IGs, there could be an underlying
affected process characteristic for such diseases. To determine those specific processes, protein
complexes involved in shared interactions were examined, finding that most of the identified
proteins belong to families of core histones. Overall, the analyzed PPIs indicate a very distinct
pattern of interactomics for each cancer. The tumors that share the greatest proportion of PPIs are
breast and colon, having 145 common interactions representing 44.61 % of the total interactions
identified for such diseases. The second higher similarity found is for prostate and kidney
tumors, sharing 227 interactions (28.64 % of all). The rest of the tumors share at most 21.32 %
interactions (Supplementary Figure 5, Supplementary Table 4).

These cancer-specific interactions were analyzed deeper to delve into their functional role in
each cancer (Figure 3). As it could be expected due to their high specificity at the PPI level, this
network approach shows specific clusters well defined for glioblastoma (Fig 3b) and lung (Fig
3d). In less-defined clusters, esophageal and bladder cancer can be observed in panels e) and f).
In contrast, in the case of prostate, bladder, and kidney tumors, the interactions are linked by
common DE-IGs in a cluster. On the other hand, we identified that the communities in the
network are defined primarily by the type of proteins. Functional enrichment shows specific
biological processes intrinsic to the physical interactions implied for the genes in each cancer
(Supplementary Figure 6). For instance, proteins involved in BLCA-specific PPIs are conducting
mainly chromatin organization and DNA repair reactions, while in colon tumors, proteins play a
concerted role in the regulation of transcriptional processes. In keeping with this, in esophageal
tissue, the interactors are involved in the regulation of different classes of non-coding RNAs.
Meanwhile, in glioblastoma and lung tumors, proteins are specifically interacting for splicing
activity, and transcription initiation processes, respectively. Kidney and prostate tumors show
specific protein-protein interactions for DNA-replication and protein-protein complex formation,
and DNA organization and packaging. In contrast, proteins with specific interactions in breast
tumors, have an important activity linked to cellular growth and apoptotic processes.

Intrinsic of the PPI networks is the topological information capable of characterizing cancer
proteins [24]. Surprisingly, our comparison of IGs with their physical interactors at a
protein-protein level shows a tendency to lower betweenness centrality, lower degree, and a few
interactions with other IGs. Therefore, even though IGs are not hubs in the network of
interactions where they participate, changes in their regulatory role can cause a cascade of
disruptions in interactions that might lead to malignancy.
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Figure 3. Protein-protein interaction network of DE-IGs and their 50 closest interactors across cancers. a)
Unique and shared PPI across cancer are shown, each cancer has a specific color for its interactions. Close-ups of
the biggest and more isolated clusters in the network are presented: b) GBM, c) PRAD, d) LUAD, e) ESCA, and f)
BLCA. Data was obtained from the String database.

Altogether, these results are the opposite of the patterns reported for cancer genes, which
suggests that the behavior tendency of IG proteins is to interact with oncogenic genes [24].

For a closer approach, the nearest fifty interactors of the DE-IG encoded proteins in each cancer
were analyzed. In Figure 4 we can observe that cancer-specific DE-IG encoded proteins interact
with specific groups of proteins in distinct cancers, suggesting that DE-IGs affect particular
post-transcriptional processes.

The most important protein complexes for each type of cancer were determined for
cancer-specific deregulated IGs and their interactors (Supplementary Table 5). In total, we
detected 27 protein complexes where cancer-specific DE-IGs and their interactors are found.
Colon cancer is the disease containing more DE IGs in the same complex: 9 out of 13
corresponding to the disassembly of the beta-catenin Wnt signaling pathway. Bladder DE IGs are
interacting mainly with the proteins of the CD40 signaling pathway, and are involved in
multi-multicellular organism processes. Likewise colon, breast cancer-specific IGs are related to
wnt signaling pathway, but also to follicle-stimulating hormone signaling. Glioblastoma-specific
proteins have a major participation in splicing, and vesicle transport. Kidney’s are more related
to regulation of feeding behavior. Esophageal’s IGs are involved in protein folding, and tRNA
and ncRNA processing. Lung cancer proteins participate in transcription preinitiation complex
assembly, as well as in the BMP signaling pathway. Prostate cancer DE-IGs are found mainly
related to chromatid sister cohesion and translation and postranslation processes . The protein
complex related to Wnt signaling pathway is associated with a large group of deregulated genes
among Bladder, Breast, Colon, Kidney and Glioblastoma, being a total of 17 IGs with disrupted
expression.
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Figure 4. Multilayer networks of IG-encoded proteins and their cancer-specific interactors. Protein-protein
interactions were found for deregulated IGs in each cancer. The cancer-specific deregulated IGs that encode for
proteins interact with exclusive groups of proteins in each cancer. Upper layer shows deregulated IGs across cancer,
highlighting the cancer-specific upregulated IGs in red,) and downregulated in blue. Links to the bottom layer
connect IG-encoded proteins to proteins found in PPIs by String. Yellow links highlight interactions that can be
affected by deregulation of IGs in a specific type of cancer.

2.6 DE-IGs participate in the genetic “rewiring” of cancer cells

Cancer cells undergo significant genetic “rewiring” as they acquire metastatic traits and adapt to
survive in multiple environments with varying nutrient availability, oxygen concentrations, and
extracellular signals. Therefore, to effectively treat metastatic cancer, it is important to
understand the strategies that cancer cells adopted during the metastatic process. Finally, we
focus on studying the “rewiring” between healthy and tumor samples using BRCA as a model
(Figure 5). We used breast cancer since it is the only dataset that fits the criteria for a mutual
information analysis (at least 100 samples for each condition are required). A network of DE-IGs
and their co-expressed genes was built and analyzed for each condition. Our results show that the
tumor co-expression network is composed of a total of 62,462 interactions among 15,347 genes,
while the healthy network has 13,037 genes with 45,941 interactions. There are only 9,615
interactions shared between the two network topologies. All the differences among these two
networks are potential rewiring-caused co-expression interactions that may be part of the
mechanism that BRCA cells follow to achieve the characteristics of their phenotype. For
instance, as seen in Figure 5, IGs like RRS1, FNDC10, EPOP and NND are highly affected by
this “rewiring” behavior in cancer. According to differential expression and network analysis,
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we observe that histones play a key role in rewiring the co-expression mechanism from healthy
to cancer tissue. Examples of this are H2AW and H2BC8, which are core histones that have only
few healthy tissue-specific interactions that are almost lost during cancer development, which
creates many new interactions with other genes.

Figure 5. Co-expression network of healthy and tumoral breast tissue. In this network, the co-expression of
DE-IGs found in BRCA in healthy tissue (depicted by brown links) and breast tumor tissue (purple links) is shown.
Shared co-expression relations are depicted with green links. Pie charts for IG nodes of a higher degree are shown.
Each of them indicates the percentage of each type of interaction: in purple tumor-specific interaction, in brown
healthy-specific interaction, in green conserved interaction. We can see the effect of rewiring, by observing that a
high percentage of interactions that are present in healthy tissue is not observed in tumor tissue. Moreover, many
more new interactions emerge in the tumor tissue.

3. Discussion

Here, we present a comprehensive analysis of differentially expressed Intronless genes (IGs)
across eight cancers using a standardized bioinformatics pipeline. We uncover signature changes
in gene expression patterns of IGs such as enhanced expression changes when compared to
multi-exon genes, unique and shared transcriptional signatures between different cancer types,
and association with specific protein-protein interactions that might have potential effects in
post-transcriptional processes.
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Strikingly, our results show that the upregulated IGs across the eight different cancer types were
related to negative regulation of gene expression (gene silencing) and negative regulation of cell
differentiation. Further, we found a core set of chromatin-modifying genes such as HASPIN and
Histone deacetylases (HDACs), located on chromosome 6, that were upregulated across all the
analyzed cancers. Although the pattern of differentially expressed (DE) IGs was found to be not
specifically shared across the different tumor types, highlighting their specificity modulating
cancer signaling and proliferative pathways. For example beta-catenin Wnt signaling was
regulated in kidney and prostate tumors while GPCR signaling critical to inflammation [25-27]
was regulated in gastrointestinal esophageal and colon adenocarcinomas, and p53 pathways.

This biological behavior could be due to tumor's cellular origin and heterogeneity [28], and
tissue-specific expression [2, 8]. Due to their remarkable heterogeneity, glioblastoma, prostate,
and kidney tumors were found with a less representative shared behavior in the upregulation of
IGs. Notably, glioma tumors are the malignant microenvironment where IGs showed the most
characteristic gene expression regulation profile with 35 unique DE-IGs, more than 50% greater
than other cancers. Notwithstanding, our results show that GBM represents the tumor where the
IGs have more differential expression, specificity, and concerted functional roles. This could be
explained due to the “multiforme” nature of GBM that is driven by brain-specific gene
expression as is further evidenced by least shared DE-IGs (~79%) with other cancers.

In conclusion, IGs drive massive transcriptional rewiring, as observed in co-expression analysis,
that may drive tumorigenesis and may act as novel therapeutic targets for gene therapy and
in-silico drug design such as popular GPCRs or emerging HDAC inhibitors [29].

4. Materials and Methods

4.1 Data extraction and curation for IG, and MEG datasets

Data was extracted using Python scripts (https://github.com/GEmilioHO/intronless_genes), and
the Application Programming Interface (API). Homo sapiens genome was assembled at a
chromosome level and was accessed at the Ensembl REST API platform (http://rest.ensembl.org/
accessed using Python with the ensembl_rest package). The pipeline process was as follows:
protein-coding genes with CDS identifiers for transcripts for all chromosomes were retrieved and
classified into two datasets named “single-exon genes'' (SEGs), and “multiple exon genes''
(MEGs) depending on exon and transcript count. The SEG dataset was submitted to the Intron
DB comparison (http://www.nextgenbioinformatics.org/IntronDB) to separate those with UTR
introns and referred to as uiSEGs. The output of the pipeline was a third dataset containing only
intronless genes (IGs). After data extraction, a manual curation step in the IG and uiSEG datasets
was followed to discard incomplete annotated protein sequences and mitochondrial encoded
proteins. The final IG dataset contained 940 protein-coding genes with only one exon and one
transcript.
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4.2 Bipartite network & quantification of shared and unique DE-IGs

The bipartite network was constructed with upper nodes representing IGs and bottom nodes
representing cancer types. We place links connecting each IG to the cancer types where such a
gene is differentially expressed (DE). Nodes corresponding to genes in the bipartite network
were sorted by degree aimed to visually identify intronless genes cancer-specific deregulated,
and those whose expression is disrupted in most of the diseases. A heatmap for shared IGs is
computed by identifying the number of deregulated IGs in every pair of cancers, and dividing
such quantity by the total of the disrupted genes in any of the compared diseases. This metric is
known as the Jaccard similarity coefficient.

4.3 Data source and differential expression analysis across cancer 

Currently, the (The Cancer Genome Atlas) TCGA possesses data for the study of 37 different
tumor types. We found the primary tumor and adjacent normal tissue transcriptomic data for 18
types. Among those, we selected 8 types for the present study. Gene expression data from
patients for BRCA, BLCA, COAD, ESCA, GBM, KIRC, LUAD and PRAD cancers was
downloaded from the NIH website (https://portal.gdc.cancer.gov/) using the TCGAbiolinks R
package [30] with the following restriction criteria: samples types primary tumor and solid tissue
normal (control); results of RNAseq experimental strategy; and workflow type HTSeq-counts
format. Differential expression analysis was carried out using the TCGAutilis R package [31],
indicating which of the obtained samples correspond to tumors and which to control, and
establishing a filtering threshold of FDR = 0.05 and logFC = 1 (absolute value) to consider a
gene significantly differentially expressed.

4.4 Functional Enrichment Analysis of Differentially Expressed IGs​​

The functional enrichment was conducted using the over-representation analysis of the functional
assignment (ORA). Genes with differential expression up to one log2-fold change values were
considered as up-regulated with a p- and q-value set at 0.05 and 0.10, respectively. First, the
functional enrichment of the 338 differentially expressed human IG proteins (up-regulated and
downregulated separately) was performed using all human IGs proteins as a background
“universe” (selecting input as species: Homo sapiens, universe 940 human IGs). The
comparative functional enrichment analyses were performed using Metascape
(https://metascape.org/) for the biological process category, including KEGG and Reactome
pathways. To delve insight into the role of specific IGs in the affected biological processes ORA
was assessed to determine category barplots. The Circos software [32] was employed for data
analysis and visualization.

4.5 DE-IGs PPI network construction & protein complex identification

Network analysis and visualization were performed using python scripts (See repository) and the
Gephi software. StringDB platform [33] was used to download physical and functional
interactions data. The highest confidence scores (0.9) were filtered for this study, keeping the
most probable interactions. Then, interactions were requested for the set of unique DE-IG of
each cancer type, downloading relations between those genes, and also their interactors in the
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first shell (up to 50 interactors). All this data is assembled into a single network. Network metrics
such as degree distribution, closeness, and betweenness centralities were computed using Python
networkx library [34]. For protein complex detection, we assumed that highly clustered nodes in
the PPI network correspond to protein complexes. Therefore, 27 protein complexes were
predicted using the Louvain method to find communities implemented in Gephi.

4.6 BRCA network deconvolution

Co-expression networks were inferred using ARACNe-AP [45], a mutual information-based tool
for gene regulatory network deconvolution. In this analysis, we used separated submatrices for
healthy and tumor tissue and the list of every DE-IG in the BRCA dataset. For this study, a
p-value of 1 × 10-8 was set up and 100 bootstraps were carried out. Then, they were consolidated
into a single network, getting an inferred co-expression network for each condition.
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Appendix

Supplementary Figure 1. Upregulated gene expression ranges among cancers. A boxplot is
shown for each cancer type, separated by gene type (IGs or MEGs); expression ranges are shown
on the y-axis using log2fold change values. The boxes present a notch corresponding to the
confidence interval for each population. In the upper part of the graph, the p-value for the
Wilcoxon test is shown in order to indicate the statistical difference between both populations.
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Supplementary Figure 2. IG-cancer type bipartite network. Intronless genes are shown in the
upper group of nodes, while cancers are located in the bottom group. A link joining an IG and a
cancer type indicates that the expression level of the IG is found disrupted in the linked cancer
type. Upper nodes are color-sorted by their cancer specificity: genes deregulated in a single
cancer are shown at the left in blue, followed by genes deregulated in two cancers, tree cancers,
and so on. At the right of the upper nodes, there is a single gene (HASPIN) whose expression is
disrupted in all tissues.
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Supplementary Figure 3. A high conserved group of up-regulated histones across tumors.
Circa plot depicts the conservation of the deregulation of a group of histones across cancers. In the upper
hemisphere, the total number of histone-related DE-IGs in each cancer is represented by an arc: GBM
(yellow), ESCA (mustard), COAD (orange), BRCA (dark orange), BLCA (red), PRAD (pink), LUAD
(violet), and KIRC (purple). Histone encoded IGs are depicted in the lower hemisphere. The inner arcs
represent the distribution of the histones in each cancer (0-13 genes), while the outside arcs represent the
tumors that have that particular gene upregulated (on a scale of 0-100%). Data was obtained from the
TCGA database
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Supplementary Figure 4. Comparison of genome location of highly conserved DE-IGs a)
Genome location of IGs in the human genome. b) Genome location of highly conserved DE-IGs
IGs encoded proteins are represented by red dots. The purple lines indicate regions where these
genes are statistically enriched, compared to the density of genes in the background. The
hypergeometric test is used to determine if the presence of the genes is significant. Essentially,
the genes in each region define a gene set/pathway. The chromosomes may be only partly shown
as the last gene's location to draw the line is used. Data was obtained from the ENSEMBL
database.

Supplementary Figure 5. Shared PPI heatmap. Color intensity indicates a higher percentage
of shared PPI related to DE IGs of the compared diseases. LUAD does not share any DE IG
interaction with other cancer types, and ESCA only one with BCLA. GMB shares almost no
interaction with any other cancer (a maximum of 1.64 % with BLCA). COAD and BRCA are the
two cancers where more DE IGs are shared, therefore having more interactions in common.
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Supplementary figure 6. PPI networks ontologies. FDR is calculated based on nominal P-value
from the hypergeometric test. Fold Enrichment is defined as the percentage of genes in each cancer
belonging to a pathway, divided by the corresponding percentage in the background. FDR indicats how
likely the enrichment is by chance. In x-axis the Fold Enrichment indicates how drastically genes of a
certain pathway are overrepresented. FDR values are depicted red (high) to blue (low).

Supplementary Table 1. Available expression data for each type of cancer
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Supplementary table 2. GO enrichment of deregulated IGs
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Supplementary Table 3. Cancer-specific deregulated genes
Each column contains the list of cancer-specific DE intronless genes.
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Supplementary Table 4. Shared PPIs. The first column contains pairs of cancers, followed by
the number of PPI related to unique DE IG of the compared diseases, finally, in the third column
is shown the percentage of shared interactions. Note that two cancer may share more genes than
other couples of genes but have a smaller percentage, this is due to a difference in the total
number of interactions associated with the compared tumors, for example, PRAD and KIRK
share 227 PPIs, representing a percentage of 28.64, while COAD and BRCA have less common
interactions (145) but a bigger percentage: 44.61.

Supplementary Table 5. Identified PPI complexes. Protein complexes identified where
cancer-specific IG-encoded proteins and their interactors play a key role.

Protein complex Enriched functions FDR Cancers

CD40 signaling pathway

Regulation of protein
monoubiquitination;Regulation of CD40
signaling pathway 0.018 BLCA

Multi-multicellular organism
process

Response to corticosterone;Multi-multicellular
organism process;Myeloid leukocyte
differentiation;Positive regulation of
transcription by RNA polymerase II

0.00001
4 BLCA

Electron transport chain

Mitochondrial electron transport, ubiquinol to
cytochrome c;Pons development;Pyramidal
neuron development 0.0067 BLCA

Chromatid sister cohetion

Positive regulation of maintenance of sister
chromatid cohesion;Positive regulation of
maintenance of mitotic sister chromatid
cohesion;Regulation of maintenance of sister
chromatid cohesion

0.00005
1 BLCA,PRAD
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Dendrite morphogensis

Positive regulation of dendrite
morphogenesis;Regulation of dendrite
morphogenesis;Regulation of mitotic nuclear
division 0.00057 BRCA

tRNA modifications

Protein urmylation;TRNA
thio-modification;TRNA wobble position
uridine thiolation 1.5E-10 BRCA

Protein localization to nucleolus
Ribosomal large subunit export from
nucleus;Protein localization to nucleolus 0.0055 BRCA

Wnt signaling pathways
Canonical Wnt signaling pathway;Wnt
signaling pathway;Cell-cell signaling by wnt 3.9E-19

KIRC,COAD,BRCA,B
LCA,GBM

Follicle-stimulating hormone
signaling

Desensitization of G protein-coupled receptor
signaling pathway by
arrestin;Norepinephrine-epinephrine-mediated
vasodilation involved in regulation of systemic
arterial blood pressure;Follicle-stimulating
hormone signaling pathway;Negative
regulation of multicellular organism growth

0.00006
5 BRCA

GPI anchor

Preassembly of GPI anchor in ER
membrane;GPI anchor biosynthetic
process;GPI anchor metabolic process 3.4E-08 BRCA

Hormone-mediated apoptosis

Hormone-mediated apoptotic signaling
pathway;Somatostatin receptor signaling
pathway;Somatostatin signaling
pathway;Positive regulation of T cell anergy 0.022 COAD

Light stimulus

Wnt signaling pathway, calcium modulating
pathway;Detection of light
stimulus;Phototransduction 0.0011 ESCA

Vasodilatation

Glutamate catabolic process to
2-oxoglutarate;Response to transition metal
nanoparticle;Negative regulation of collagen
biosynthetic process;Regulation of angiotensin
levels in blood;Angiotensin maturation 0.021 ESCA

Protein folding

Regulation of cellular response to
heat;Chaperone cofactor-dependent protein
refolding;Inclusion body assembly;de novo
protein folding 4.1E-08 ESCA

Heart morphogensis

Coronary vein morphogenesis;Negative
regulation of cell proliferation involved in heart
valve morphogenesis;Mitral valve
formation;Cardiac right atrium
morphogenesis;Cell proliferation involved in 0.0099 ESCA
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heart valve morphogenesis

tRNA and NcRNA processing

TRNA 5 -leader removal;TRNA 5 -end
processing;NcRNA 5 -end
processing;Endonucleolytic cleavage involved
in tRNA processing

6.90E-0
3 ESCA

Splicing

U2-type prespliceosome assembly;MRNA 3
-splice site recognition;Histone mRNA
metabolic process;Spliceosomal snRNP
assembly

0.00000
094 GBM

Habituation

Habituation;Nonassociative
learning;Regulation of glycogen (starch)
synthase activity 0.012 GBM

Vesicle transport

Golgi to plasma membrane transport;Vesicle
docking involved in exocytosis;Vesicle
docking;Exocytic process

0.00000
085 GBM

Intraciliary transport

Intraciliary anterograde transport;Negative
regulation of myotube
differentiation;Intraciliary transport 0.019 GBM

Regulation of feeding behavior

Positive regulation of feeding
behavior;Regulation of feeding
behavior;Positive regulation of
behavior;Negative regulation of myotube
differentiation 0.0005 KIRC

Transcription preinitiation
complex assembly

RNA polymerase II preinitiation complex
assembly;Transcription preinitiation complex
assembly

2.90E-1
5 BLCA,LUAD,GBM

BMP signaling pathway

Pharyngeal system development;Endocardial
cushion development;Positive regulation of
bone mineralization;Negative regulation of
BMP signaling pathway 8.8E-12 LUAD

Innate immune response

Innate immune response activating cell surface
receptor signaling pathway;Innate immune
response-activating signal
transduction;Activation of innate immune
response 8.9E-13 LUAD

Blood coagulation system

Positive regulation of blood
coagulation;Positive regulation of
hemostasis;Positive regulation of coagulation 6.3 LUAD

Translation and postranslation
processes

Translation;Peptide biosynthetic process;Amide
biosynthetic process 0.0013 PRAD
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Beta-catenin destruction complex

Negative regulation of type B pancreatic cell
development;Superior temporal gyrus
development;Beta-catenin destruction complex
assembly;Regulation of type B pancreatic cell
development;Beta-catenin destruction complex
disassembly 0.041 PRAD
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