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Abstract – In this study, a system based in 
Convolutional Neural Networks for differentiating 
lung nodules and non-nodules in Computed 
Tomography is developed. Multi-scale patches, 
extracted from LIDC-IDRI database, are used to train 
different CNN models. Adjustable hyperparameters 
are modified sequentially, to study their influence, 
evaluate learning process and find each size best 
performing network. Classification accuracies obtained 
are superior to 87% for all sizes with areas under 
Receiver Operating Characteristic in the interval 
(0.936-0.951). Trained models are tested with nodules 
from an independent database, providing sensitivities 
above 96%. Performance of trained models is similar 
to other published articles and show good classification 
capacities. As a basis for developing CAD systems, 
recommendations regarding hyperparameter tuning 
are provided.  
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1. Introduction

Computer Aided Diagnosis and Detection (CAD) 
systems have proven to be valuable tools for assisting 
radiologists [1] and have many applications in the 
field of radiology [2]. Due to the incidence and 
mortality of lung cancer [3], nodule classification in 
Computed Tomography (CT) is among them [4]. 
Deep learning systems have gained popularity in 
recent years, because of their capacity to extract 
information with a high level of abstraction from 
large datasets [5]. A type of Artificial Neural 
Networks inspired in visual cortex, known as 
Convolutional Neural Networks (CNNs), is very 
useful for image recognition and pattern 
identification [6], [7]. 

 Nodule classification using CNNs was addressed 
by W. Li [8] using two convolutional and three fully-
connected layers, 5x5 kernels and patches from 
LIDC-IDRI database, reporting a sensitivity of 
87.1%. Another scheme with two convolutional 
layers of (50, 100) kernels was proposed by W. Shen 
[9]. Applying data augmentation techniques to 
nodules from LIDC-IDRI, classification accuracy 
was 84%. The use of multi-scale CNNs was extended 
to lung texture classification in interstitial lung 
diseases by Q. Wang [10]. Their three convolutional 
layer model (as in this work), reached an accuracy 
and precision around 90%. 

 Another dataset, from Kaggle Data Science Bowl 
(2017), served as basis for the research of W. 
Alakwaa [11]. Their implementation reached an 
accuracy of 86.6% with 11.9% FPR, assigning 5 
malignancy grades to nodules. This dataset was also 
used by M. Fatan [12] to evaluate their three 
convolutional layer model of (50, 120, 120) kernels 
of size (11, 5, 3) with 120x120 input patches. 
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 A deep CNN of 15 layers, proposed by G. S. Tran 
[13], was trained with augmented 64x64 patches 
from LUNA16 database. Kernels of size 5x5 for the 
first and 3x3 in subsequent layers were used, as 
recommended in this study, to obtain an accuracy of 
97.2% using focal loss function. Variations in 
pooling operations were introduced by W. Shen [14] 
applying a multi-crop strategy to feature maps. 
Trained with augmented LIDC-IDRI nodules, small 
filters and three convolutional layers, their MC-CNN 
achieved an accuracy of 87.1%. 

 Multi-Level CNNs created by J. Lyu [15] used a 
combination of networks with different kernels to fed 
a fully-connected layer and a softmax classifier, 
reaching an accuracy of 84.3% on LIDC-IDRI 
nodules. LUNA16 database was used for developing 
an ensemble of three variable depth 3D-CNN by W. 
Huang [16]. Using input sizes of (32, 64, 96) and 5x5 
filters, reported accuracies reached 81.7% and 85.1% 
with 0.125 and 0.25 FPs/scan.  

In this paper, a comprehensive study of the 
influence of adjustable hyperparameters on CNN 
performance is conducted. Several variations of a 
three convolutional layer model are trained, selecting 
different learning rates, number of kernels per layer, 
kernel sizes and pooling operations. The analysis is 
focused on training and testing processes, evaluating 
the evolution of classification accuracy, confusion 
matrix parameters and loss function values, among 
other parameters. To conduct this, nodule and non-
nodule datasets are generated from scratch using 
images and information provided with an annotated 
database, and applying data pre-processing and 
augmentation techniques.  
 
2. Material and methods 

 
2.1. Image Database and Patch Cropping 

 
A PC with an Intel-i7 processor, 12GB of DDR3-

RAM and an NVIDIA GeForce 920M Graphical 
Card is used for CNN training, validation and testing. 
Code is compiled with Theano [17], a Python 
implementation for machine learning that works with 
symbolic calculations as graphs and runs in GPU 
[18]. Patch cropping and preprocessing are done 
using Matlab® platform. 

The Cancer Imaging Archive (TCIA) is a public 
database for radiological cases [19]. In this work, 
annotated screening and diagnostic CT scans from 
the Lung Image Database Consortium (LIDC-IDRI) 
are used [20], [21]. LIDC Toolbox, developed by T. 
Lampert [22], is used to extract nodule locations that 
allow patch cropping (see Figure 1).  

 

 
 

 

Figure 1. Two cropped nodules for different matrix sizes 
 
As slice thickness is usually smaller than nodule 

size, visualized sections increase available patches. 
Besides, more nodules fulfil cropping requirements 
for bigger sizes (Table 1). 

 
Table 1. Total number of nodule patches for each size 

 

Matrix size Nodule patches 
16x16 5008 
24x24 6373 
32x32 7480 
40x40 8045 
48x48 8164 

 

In Figure 2, the wide variability in nodule shape, 
morphology, location and surrounding structures can 
be seen.  

 

 
 

Figure 2. Example of five nodules cropped in 48x48 
 
This holds for non-nodule patches, randomly 

selected from non-marked and healthy regions, as 
lung anatomy includes airways, blood vessels, lymph 
nodes and alveolar airspace, as shown in Figure 3. 

 
 

Figure 3. Examples of two non-nodule regions 
 

2.2. Data Preprocessing and Augmentation 
 

Pixel values are integers of 16 bits with sign. As 
neural activation functions perform better in the 
interval (-1, 1), cropped matrices are normalized by 
their maximum absolute value, using Eq.1 and Eq.2, 
and then stored with eight decimal digits.  

 

  𝑥௠௔௫ ൌ 𝑚𝑎𝑥൛ห𝑚𝑎𝑥൫𝑥௜௝൯ห, ห𝑚𝑖𝑛൫𝑥௜௝൯หൟ ∀ 𝑖, 𝑗     (1) 

  𝑥௜௝
௡௢௥௠ ൌ

௫೔ೕ

௫೘ೌೣ
             (2) 

 

To expand the above cited number of patches, data 
augmentation based on rigid geometrical 
transformations is applied to each cropped patch, as 
shown in Figure 4 for a 40x40 nodule. For nodule 
patches, four size-dependent random vector 
translations, four random rotations and four 
rotation+translation are applied. For non-lesions, due 
to their greater availability, only five rotations are 
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applied. To allow supervised learning, a numerical 
label is assigned to each patch, according to 
radiologists’ annotations: “1” for nodules, and “0” 
for non-nodules. 

 

 
 

Figure 4. Patches generated from an original nodule 
 
2.3. Neural Network Architecture and Training 

 
All nodules and non-nodules for each matrix size, 

along with their numerical labels, are divided into 
three datasets: 75% for training and 12.5% for 
validation and testing. Each dataset contains the same 
number of patches of each type. Their distribution 
and patch grouping (batches), to make training more 
efficient, can be seen in Table 2. 

 
Table 2. Distribution of patches (nodules + non-nodules) 
for each matrix size 
 

Matrix 
size 

Training 
patches 

(batches) 

Validation 
patches 

(batches) 

Testing 
patches 

(batches) 

Total  
patches 

(batches) 

16x16 
  97656 
(156) 

16276 
 (26) 

16276 
(26) 

130208 
(208) 

24x24 
123948 
(198) 

20658 
(33) 

20658 
(33) 

165264 
(264) 

32x32 
145232 
(232) 

24414 
(39) 

24414 
(39) 

194060 
(310) 

40x40 
156500 
(250) 

25666 
(41) 

25666 
(41) 

207832 
(332) 

48x48 
159004 
(254) 

26292 
(42) 

26292 
(42) 

211588 
(338) 

 
A tutorial on Deep Learning algorithm 

implementation with Theano was developed by LISA 
lab [23]. The network configuration selected for this 
research is based on LeNet model, initially applied to 
character recognition in documents [24]. A third 
convolutional layer has been added to the original 
model to increase depth, as shown in Figure 5. They 
are followed by a fully-connected layer and a logistic 
regression classifier.  

 

 
 

Figure 5. Shape of CNN architecture used in this work 

To update model parameters, stochastic gradient 
descent (SGD) is modified to use groups of samples 
(batches) for estimating gradient values. Weights and 
offsets are randomly initialized and updated several 
times on every epoch. Loss function optimized 
during learning is negative log-likelihood, with no 
regularization. Neural activation function is the 
hyperbolic tangent and pooling is average of size 2. 
For early stopping, training iterations initially set 
(patience parameter) are only extended if validation 
improves beyond an improvement threshold. 

Tunable hyperparameters that impact CNN 
behavior include learning rate, number of kernels per 
layer, their sizes and pooling operations. To test their 
influence on performance, different combinations are 
used to train several models. For each of the five 
sizes investigated, the CNN with best generalization 
capability is selected for further analysis. 
 
2.4. Evolution of Confusion Matrix During 

Training 
 

According to the relation between actual and 
predicted class, true positives (TP), true negatives 
(TN), false positives (FP), false negatives (FN) and 
cost function losses are computed during training. 
Logistic Regression class of LeNet model is modified 
to calculate them by comparing assigned labels with 
network results. Graphs are constructed to evaluate 
training evolution and performance on validation and 
test sets. As patch number varies with size, parameter 
rates are calculated according to Eq.3: 

 

𝑇 ൜
𝑃
𝑁

ൠ 𝑅 ൌ
𝑇൛௉

ேൟ

𝑇൛௉
ேൟ ൅ 𝐹൛ே

௉ൟ
; 𝐹 ൜

𝑃
𝑁

ൠ 𝑅 ൌ
𝐹൛௉

ேൟ

𝐹൛௉
ேൟ ൅ 𝑇൛ே

௉ൟ
  ሺ3ሻ 

 

Accuracy and precision are determined to monitor 
CNN performance as in Eq. 4: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
; 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ

𝑇𝑃
𝑇𝑃 ൅ 𝐹𝑃

  ሺ4ሻ 
 

To evaluate CNN abilities for differentiating 
classes, Receiver Operating Characteristic (ROC) is 
built varying classification threshold in 0.05 steps, 
and computing TPR (sensitivity) and FPR (1-
specificity). Area under ROC (AUC) of trained 
models, is integrated numerically from these curves. 
For each size best network, a Matlab® routine is 
programmed to build CNN models by loading tuned 
hyperparameters and trained weights and biases. All 
test nodules are loaded iteratively, and after 
convolving, applying the fully-connected layer and 
logistic regression classifier, output class values are 
computed for all test patches. Finally, TPR and FPR 
are calculated modifying classification thresholds. 
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2.5. Validation With Independent Data 
 

Nodules extracted from the SPIE-AAPM Lung CT 
Challenge database [25] are used to test trained 
CNNs sensitivity on an independent dataset. It 
contains 70 CT scans, with the coordinates of 83 
marked nodules. Multiple sections can be visualized 
depending on their size resulting in the number of 
patches shown in Table 3:  

 
Table 3. Patches extracted from SPIE-AAPM database 
 

Matrix size Nodule patches 
16x16 149 
24x24 338 
32x32 561 
40x40 634 
48x48 634 

 
3. Results 

 
3.1. Training CNN Architectures with Variable 

Patch Sizes 
 

The objectives of this section are tuning 
hyperparameters to find networks with best 
generalization capacity (less test score error) and 
study their influence on performance.  

Tuning starts with 16x16 patches, 40 filters of size 
(3, 5, 3) per layer, and second layer pooling. 
Learning rate adjustment is important not only to 
control training time, but also to find the adequate 
minimum of the cost function, by setting SGD 
parameter update steps. Results after modifying its 
value are summarized in Table 4, showing longer 
times for small rates. The best validation epoch 
occurs before for higher rates, while test accuracy 
reaches a maximum for 0.1, and worsens below. 
Therefore, this is the value selected for training in 
this research. 

 
Table 4. Results for different learning rates 
 

Learning 
rate 

Best 
valid. 
Epoch 

Best 
valid. 

Error (%) 

Test 
accuracy (%) 

Simulation 
time (min)

0.05 85 13.71 86.1 510.1 
0.10 54 12.93 87.0 399.0 
0.15 31 14.70 85.1 246.7 
0.20 6 18.87 80.7 117.1 

 

In Table 5, results after training 32 different CNN 
architectures for five patch sizes are presented.  

 

Columns 2-8 contain the number of filters per 
convolutional layer and filter and pool sizes. The 
next columns show best validation epoch, score 
errors for validation and test (percentage of 
misclassified nodules and non-nodules with respect 
to total patch number), and simulation time. 

To analyze these results, the influence of the 
number of kernels per layer on output is studied 
firstly. When kernels increase with depth (Ids.1, 3, 
5), optimal test performance is achieved for (20, 40, 
60), with an accuracy of 87.1% and FPR of 13.8%. 
Rising the number of filters (Id.5) reduces accuracy 
in 0.5% and increases FPR in 3.9%, while accuracy 
drops for less filters (Id.3).  

When filter number decreases (Ids.2, 4), accuracy 
reduces in 1.3% and 3.3% respectively. Using (60, 
40, 20) filters instead of (20, 40, 60) gives less 
accuracy and increases FPR in 5.8%. For (30, 20, 
10), FPR rise since epoch 24.  

For the five cases considered so far, best test score 
(12.88%) was obtained for Id.1.  To continue with 
hyperparameter tuning, different filter sizes and 
pooling combinations were assayed in Ids.6-10 
without improvements. 

To complete 16x16 patches study, CNNs where 
the number of kernels is kept constant with depth are 
trained. Figure 6 represents changes in test accuracy 
and FPR for three cases (Ids.11-13) with equal 
number of kernels per layer (maintaining Id.1 
structure). The best epoch (vertical line) is obtained 
before for less kernels. There is a significant 
improvement in test accuracy from 20 kernels 
(84.0%) to 40 (87.1%), but not from 40 to 60 (just 
0.08%). Although Id.11 and Id.13 produce low 
errors, test score is slightly better for Id.1. 

 

 
 

Figure 6. Test performance with equal number of filters 
per layer (Ids.11, 12, 13) 
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Table 5. CNN architectures and training results for 16x16 (Ids.1-13), 24x24 (Ids.14-19), 32x32 (Ids.20-25), 40x40 
(Ids.26-30) and 48x48 (Ids.31-32) 
 

CNN Id. 
Number 
of filters 

Sizes Best 
validation 

epoch 

Best 
validation 

error 

Test 
score 
error 

Simulation 
time (min) F1 P1 F2 P2 F3 P3 

11 [20,40,60] 3 - 5 2 3 - 63 13.06 12.88 490.2 
2 [60,40,20] 3 - 5 2 3 - 54 14.04 14.19 833.8 
3 [10,20,30] 3 - 5 2 3 - 52 14.65 15.09 181.4 
4 [30,20,10] 3 - 5 2 3 - 24 15.99 16.17 193.1 
5 [30,50,70] 3 - 5 2 3 - 58 13.17 13.40 670.1 
6 [20,40,60] 3 2 3 - 3 - 67 13.10 13.82 157.8 
7 [20,40,60] 5 - 3 - 3 - 21 21.46 21.76 214.7 
8 [20,40,60] 5 2 3 - 3 - 29 16.73 16.66 48.83 
9 [20,40,60] 5 - 3 2 3 - 30 16.63 16.75 83.33 

10 [20,40,60] 5 - 3 - 3 2 40 14.96 12.04 106.8 
11 [40,40,40] 3 - 3 2 3 - 54 12.93 12.98 399.0 
12 [20,20,20] 3 - 3 2 3 - 25 16.00 16.05 98.42 
13 [60,60,60] 3 - 3 2 3 - 62 12.66 12.90 744.5 
14 [20,40,60] 5 2 3 - 3 - 52 16.80 17.02 289.9 
15 [20,40,60] 5 - 3 - 3 2 43 16.18 16.24 1008 
16 [40,40,40] 5 2 3 - 3 2 86 11.58 11.68 521.2 
17 [20,40,60] 5 - 5 2 5 - 56 14.85 15.02 898.9 
18 [20,40,60] 7 - 5 2 5 - 56 13.50 13.59 530.3 
19 [20,40,60] 7 - 7 - 5 2 79 13.99 14.10 1282 
20 [20,40,60] 7 2 5 - 3 2 59 11.70 11.86 600.6 
21 [40,40,40] 7 2 5 - 3 2 26 13.62 14.26 396.1 
22 [20,40,60] 7 - 7 2 5 2 61 12.68 13.11 2236 
23 [20,40,60] 3 - 3 2 3 2 32 12.89 13.69 1060 
24 [40,40,40] 3 - 3 2 3 2 33 12.80 13.33 1753 
25 [20,40,60] 5 2 3 2 3 - 23 12.39 12.83 445.8 
26 [20,40,60] 5 2 5 2 3 - 35 13.67 13.38 943.6 
27 [40,40,40] 5 2 5 2 3 - 64 10.80 10.72 1419 
28 [40,40,40] 7 2 5 2 5 - 76 12.76 12.42 2042 
29 [40,40,40] 9 2 7 - 5 2 72 12.28 12.20 1368 
30 [20,40,60] 11 - 11 - 9 2 68 16.98 16.52 5519 
31 [20,40,60] 5 2 3 2 3 2 49 11.91 12.50 958.5 
32 [40,40,40] 7 2 7 2 5 - 77 10.72 11.11 2452 

 

1 In bold, CNN with less test score error for each size 
 

To determine how pooling operation affects 
performance, four examples (Ids.7-10) are compared 
in Figure 7. Pooling on the third layer produces better 
accuracy, precision and less FPR.  Pooling does not 
give bad results because matrix size after three 
convolutions is high, complicating classification in 
subsequent layers. 

For bigger patch sizes, the number of simulations 
is reduced based on information extracted so far. For 
24x24, smaller filters of 3x3 and 5x5 along with two 
pooling and 40 filters per layer (Id.16) provide the 
lowest test score error (11.68%).  

 

 
 

Figure 7. Effect of average pooling acting on different 
layers 
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A unique pooling in the first (Id.14) or the last 
layer (Id.15) and bigger kernels don not enhance 
CNN performance.  

The best CNN for 32x32 is Id.20, with filter sizes 
(7, 5, 3) and two pooling (11.70% and 11.86% 
validation and test errors). A constant number of 
filters worsens results (Id.21), just as no pooling in 
the first layer (Id.22) and using smaller filters 
(Ids.23-25). 

Regarding 40x40, (40, 40, 40) small filters (5, 5, 3) 
with two pooling provide this work’s best result: 
10.80% validation error and 10.72% for testing, with 
9.0% FPR (Id.27). To study the influence of filter 
sizes, testing evolution on four 40x40 CNNs is 
compared in Figure 8: sizes 5-7-9 result in 2% worse 
accuracy and FPR. For Id.30, 11x11 and 9x9, 
complicate learning despite training time (83.5% 
accuracy). Eventually, two 48x48 CNNs were 
trained, resulting in validation and test errors of 
10.72% and 11.11% for 40 kernels per layer.  

In summary, accuracy of lower test error CNNs 
are: 40x40 (89.2%), 48x48 (88.9%), 24x24 (88.3%), 
32x32 (88.1%) and 16x16 (87.1%). The best 

performance occurs for bigger sizes, although results 
are comparable. 

 

 
 

Figure 8. Influence of filter size on test accuracy and FPR 
in 40x40 CNNs 

 

3.2. Training Evolution of Best Performing CNNs 
 

The evolution of accuracy, precision and FPR on 
training dataset for top performing CNNs is 
represented in Figure 9, where vertical lines mark 
best validation epoch. Changes are smoother for 
smaller matrix size (particularly 16x16), and become 
more abrupt as size increases (multiple peaks for 
48x48). 

 

 
 

Figure 9. Monitoring of training process: (a) 16x16 (Id.1), (b) 24x24 (Id.16), (c) 32x32 (Id.20), (d) 40x40 (Id.27) and 
(e) 48x48 (Id.32) 

 
To evaluate their generalization capabilities, a 

comparison between training and testing is shown in 
Table 6. As testing patches have not been used to 
adjust network parameters, the small reduction in 
accuracy and precision (from -1.8% to -3.3%) 
demonstrates that overfitting is not affecting training, 
so CNNs can extrapolate to unknown data. Likewise, 
the increment in FPR ranges from +1.6% to +3.4%. 
The amount of test patches, ranging from 16276 

(16x16) to 26292 (48x48), reflected in Table 2, 
enforces data reliability.  

Moreover, cost function losses show small 
differences between datasets in all cases, as 
represented in Figure 10. This demonstrates that 
underfitting is not present, so CNNs have enough 
number of parameters to explain data. Besides, when 
training and validation curves start to separate, early 
stopping is applied, avoiding overfitting. 
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Table 6.  % Change in accuracy, precision and FPR from training to testing 
 

Matrix 
size 

Train accuracy 
(%) 

Test change 
(%) 

Train precision 
(%) 

Test change 
(%) 

Train FPR 
(%) 

Test change 
(%) 

16x16 90.4 -3.3 89.8 -3.3 10.4 +3.4 
24x24 91.5 -3.2 91.2 -3.1 8.84 +3.2 
32x32 90.0 -1.9 91.5 -1.8 8.25 +1.6 
40x40 92.4 -3.1 93.4 -2.8 6.42 +2.6 
48x48 91.8 -2.9 93.6 -2.9 6.10 +2.7 

 

 
 

Figure 10. Monitoring of cost function losses during training process for three datasets: training,  
validation and test datasets for best CNNs 

 
3.3. Evolution of Confusion Matrix During 

Training 
 

Graphs in Figure 11 show the evolution of TPR, 
TNR, FPR and FNR on training dataset for best 
performing CNNs (highlighted in Table 5).  

For 16x16, rates vary smoothly from epoch 8, but 
in all other cases bigger changes can be observed. 
Data tendency is similar for training, validation and 
testing datasets. The difference arises in the slight 
reduction of TPR and TNR and the slight increase in 
FPR, indicating good CNN extrapolation capacities. 

 

 
 

Figure 11. Influence of filter size on test accuracy and FPR in 40x40 CNNs TPR, TNR, FPR and FNR evolution: (a) 
16x16 (Id.1), (b) 24x24 (Id.16), (c) 32x32 (Id.20), (d) 40x40 (Id.27), (e) 48x48 (Id.32) 
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The trade-off between TNR-FPR is more accused 
than for TPR-FNR when learning algorithm adjusts 
CNN parameters (peaks in graphs). For 16x16, 
Figure 11(a), CNNs have a different behavior: TPR 
is always higher than TNR from epoch 9 until early 
stopping. For other sizes TPR and TNR evolution 
curves cross several times except for 40x40, Figure 
11(d): TNR are higher than TPR, performing better 
on non-nodules with lower FPR.  

These variations are expressed in Table 7. Opposed 
changes occur for FPR and FNR. Accuracy and 
precision loss during testing, explained in Table 6, 
has more impact on TPR (nodule identification), 
except for 16x16, because the reduction affects more 
to TNR (non-nodule detection). 

 
Table 7. True rate changes from training to testing 
 

Matrix size TPR (% change) FNR (% change) 
16x16 -3.1 -3.4 
24x24 -1.9 -0.3 
32x32 -2.2 -1.7 
40x40 -3.6 -2.7 
48x48 -3.0 -2.7 

 
ROC curves, shown in Figure 12, present similar 

shapes in all cases. For FPR in the range 0-25%, 
sensitivity achieved by bigger patch CNNs is better. 
For higher FPR rates all curves have the same 
behavior.  

 

 
 

Figure 12. Left: complete ROCs. Right: shoulder part 
enlarged 

 
Table 8 reflects FPR value to provide a sensitivity 

of 90%, showing no important differences except for 
16x16. Sensitivity differences are below 1% for all 
cases for FPRs above 0.24. AUC values are close to 
unity, proving that trained models solve well the 
problem of class separation (nodule detection), 
especially for bigger patches. 

 
Table 8. FPR to achieve 90% sensitivity and AUC for best 
performing CNNs 
 

Matrix size CNN Id. FPR (%) AUC 
16x16 1 16.3 0.936 
24x24 16 13.2 0.946 
32x32 20 14.2 0.947 
40x40 27 12.1 0.951 
48x48 37 13.3 0.950 

3.4. Result Validation with Independent Data 
 

Each of the patches extracted from SPIE-AAPM 
database is fed into CNN models with learnt 
parameters. Based on logistic regression results, TPR 
is calculated (Table 9). High sensitivities, above 
90%, are achieved with size 32x32 and bigger. For 
smaller sizes, sensitivity gets lower, so CNNs have 
more difficulties learning distinctive nodule features 
because their morphology is closer to non-nodules. 
Neuron activation values show that nodules are 
classified correctly with a high certainty degree, 
rejecting those misclassified by a small margin.  
 
Table 9. CNN sensitivity and average nodule neuron 
output 
 

Matrix 
size 

CNN 
Id. 

TPR 
(%) 

FNR 
(%) 

Average 
nodule output 

16x16 1 86.6 13.4 0.799 
24x24 16 87.6 12.4 0.852 
32x32 20 92.9 7.1 0.912 
40x40 27 96.5 3.5 0.944 
48x48 37 96.2 3.8 0.948 

 
4. Discussion 

 
In this study, datasets of variable patch size are 

constructed from LIDC-IDRI database. To test the 
influence of network hyperparameters and optimize 
performance, 35 different models are trained and 
results compared using different metrics. 

The number of patches is high for matrix sizes 
considered (Table 2), compared to other papers. As 
matrix size increases, data complexity grows, but on 
the other hand training samples rise, so parameters 
have more chances to adapt. Best results obtained 
correspond to 40x40 (test accuracy of 89.3%) and 
48x48 (88.9%), so the second effect overcomes the 
difficulties of learning more complex patterns.  

The size of nodule and non-nodule datasets are 
equal to balance accuracy (includes all data) and 
precision (affects performance on nodules): less than 
2% difference for the best validation epoch in all 
cases. With the exception of 16 x 16, where accuracy 
is higher than precision essentially during the whole 
training process (90.4% vs 89.8% respectively on the 
best epoch), in the rest of cases their evolution curves 
cross themselves several times during training. 

The main objective of this kind of CAD schemes is 
to achieve a very high detection sensitivity (TPR), so 
no suspicious radiological finding is discarded, 
keeping the number of false positives low. To obtain 
the maximum number of nodule patches and increase 
sensitivity, all marked nodules from LIDC-IDRI are 
selected, regardless of marking radiologists.  

One disadvantage inherent to CAD is the number 
of FPR, a fact that can be discouraging for 
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radiologists utilizing these systems.  This has to be 
taken into account especially for lung CT screening 
programs, because of the negative consequences 
produced by patient recalls (for additional testing or 
biopsy) due to a FP. It is relevant to note that FPRs 
obtained are below 14% and even 10% for bigger 
sizes, as can be seen in Table 6. In training datasets 
FPRs around 6% are achieved. 

The small gap between training and testing 
accuracy and precision (Table 6), along with the high 
number of test samples are good indicators of trained 
CNNs’ generalization capabilities. Training is 
adequately stopped to avoid overfitting and 
underfitting, as reflected in the evolution of cost 
function losses. Tests with less restrictive stopping 
criteria have shown to improve results on training 
dataset, but without enhancing CNNs generalization 
capabilities. 

The presence of underfitting and overfitting can be 
discarded evaluating the evolution of cost function 
losses presented in Figure 10. Learning is stopped 
when improvements in training data classification 
have no impact on validation dataset. 

For three sizes, best results are obtained with 
(40,40,40) kernels per layer and for the others with 
an increasing number with depth (20,40,60), so it 
cannot be concluded whether is better to use the 
same number of filters per layer or an increasing 
number as CNN goes deeper. However, based on this 
article results, others conclusions can be established: 

 

 A decreasing number of filters with depth 
compromises CNN performance. 

 The same applies when reducing the number of 
filters below 40.  Results were worse in cases 
with Id.3, Id.4, Id.12, where kernels used were 
(10, 20, 30), (30, 20, 10) and (20, 20, 20). Test 
errors obtained were of 15% or higher, resulting 
in accuracies below 85%. 

 Rising the number of filters does not enhance 
output once a threshold has been passed, 
increasing training time without rewards. 

 Tendency to use bigger filters when increasing 
input size has to be avoided. Using small filters 
(3x3 or 5x5) combined with pooling improves 
results. For small kernels, the lower reduction in 
input features size joined to the fact that neurons 
sweep more parts of the input allow the 
establishment of valuable data links.  

 The influence of pooling operations on CNN 
performance is positive. When no pooling is 
done results are worse. In case of using a unique 
pool, better accuracy is obtained if it is applied in 
a deep layer. The combination of two of these 
operations enhance results, by controlling the 
number of neurons in the fully connected layer 
and easing classification task. 

 

All ROCs have similar shapes, achieving 
sensitivities above 90% with relatively small FPRs. 
AUC values obtained are similar or superior to other 
reported values [11], [13], [14]. CNNs have been 
tested with nodule patches from an independent 
database, showing high sensitivities (up to 96%), 
better than for LIDC-IDRI.  

The difficulty of having annotated datasets that 
cover the great variety of patient cases is partly 
overcome by LIDC-IDRI. Further tests to infer 
augmentation effects on generalization will be 
conducted. In future research related to this work, 
trained CNNs will be combined to reduce FPR and 
increase sensitivity, as part of a learning platform 
dedicated to radiology residents training. 
 
5. Conclusions 

 
Tuning CNN hyperparameters is crucial for 

learning complex patterns from CT images and 
obtaining high nodule classification accuracies. 
Performance of CNNs developed in this work is 
comparable to other published papers. Test 
accuracies range from 89.2% (48x48) to 87.1% 
(16x16). FPR on test dataset are below 9% for bigger 
patches, and do not exceed 15% for any size. 

AUC values for the best five networks are in the 
range (0.936-0.951), demonstrating strong 
classification capacities. An independent sensitivity 
test with nodules from an alternative database 
provides TPRs above 86.6% in all cases, and superior 
to 96% for sizes 40x40 and 48x48.  

The analysis of training and performance for 
different CNN configurations, show the importance 
of selecting the optimal arrangement of kernels for 
each layer, an adequate learning rate and using small 
size kernels combined with pooling. Matrix sizes of 
40x40 or 48x48 are recommended based on the 
studied metrics, along with their capacity to detect 
bigger nodules. 
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