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ABSTRACT 21 
Background 22 
A primary goal of precision medicine is to identify patient subgroups and infer their underlying disease processes, 23 
with the aim of designing targeted interventions. However, while several studies have identified patient 24 
subgroups, there is a considerable gap between the identification of patient subgroups, and their modeling and 25 
interpretation for clinical applications. 26 

Objectives 27 
To develop and evaluate a novel analytical framework for modeling and interpreting patient subgroups (MIPS) 28 
using a three-step modeling approach. (1) Visual analytical modeling to automatically identify patient subgroups 29 
and their co-occurring comorbidities, and determine their statistical significance and clinical interpretability. (2) 30 
Classification modeling to classify patients into subgroups and measure its accuracy. (3) Prediction modeling to 31 
predict a patient’s risk for an adverse outcome, and compare its accuracy with and without patient subgroup 32 
information.  33 

Methods  34 
The MIPS framework was developed using (1) bipartite networks to identify patient subgroups based on 35 
frequently co-occurring high-risk comorbidities; (2) multinomial logistic regression to classify patients into 36 
subgroups; and (3) hierarchical logistic regression to predict the risk of an adverse outcome using subgroup 37 
membership, compared to standard logistic regression without subgroup membership. The MIPS framework 38 
was evaluated on three hospital readmission conditions: chronic obstructive pulmonary disease (COPD), 39 
congestive heart failure (CHF), and total hip/knee arthroplasty (THA/TKA). For each condition, we extracted 40 
cases defined as patients readmitted within 30 days of hospital discharge, and controls defined as patients not 41 
readmitted within 90 days of discharge, matched by age, gender, race, and Medicaid eligibility (n[COPD]=29,016, 42 
n[CHF]=51,550, n[THA/TKA]=16,498). 43 

Results 44 
In each condition, the visual analytical model identified patient subgroups that were statistically significant 45 
(Q=0.17, 0.17, 0.31; P<.001, <.001, <.05), were significantly replicated (RI=0.92, 0.94, 0.89; P<.001, <.001, <.01), 46 
and were clinically meaningful to clinicians. (2) In each condition, the classification model had high accuracy in 47 
classifying patients into subgroups (mean accuracy=99.60%, 99.34%, 99.86%). (3) In two conditions (COPD, 48 
THA/TKA), the hierarchical prediction model had a small but statistically significant improvement in 49 
discriminating between the readmitted and not readmitted patients as measured by net reclassification 50 
improvement (NRI=.059, .11), but not as measured by the C-statistic or integrated discrimination improvement 51 
(IDI). 52 

Conclusions 53 
While the visual analytical models identified statistically and clinically significant patient subgroups, the results 54 
pinpoint the need to analyze subgroups at different levels of granularity for improving the interpretability of 55 
intra- and inter-cluster associations. The high accuracy of the classification models reflects the strong separation 56 
of the patient subgroups despite the size and density of the datasets. Finally, the small improvement in predictive 57 
accuracy suggests that comorbidities alone were not strong predictors for hospital readmission, and the need 58 
for more sophisticated subgroup modeling methods. Such advances could improve the interpretability and 59 
predictive accuracy of patient subgroup models for reducing the risk of hospital readmission and beyond.  60 
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INTRODUCTION 61 
Overview 62 
A wide range of studies [1-9] on topics ranging from molecular to environmental determinants of health have 63 
shown that most humans tend to share a subset of characteristics (e.g., comorbidities, symptoms, genetic 64 
variants), forming distinct patient subgroups. A primary goal of precision medicine is to identify such patient 65 
subgroups and infer their underlying disease processes to design interventions targeted to those processes [2, 66 
10]. For example, recent studies in complex diseases such as breast cancer [3, 4], asthma [5-7] and COVID-19 67 
[11] have revealed patient subgroups, each with different underlying mechanisms precipitating the disease, and 68 
therefore each requiring different interventions. 69 

However, there is a considerable gap between the identification of patient subgroups, and their modeling and 70 
interpretation for clinical applications. To bridge this gap, we developed and evaluated a novel analytical 71 
framework called Modeling and Interpreting Patient Subgroups (MIPS) using a three-step modeling approach: 72 
(1) identification of patient subgroups, their frequently co-occurring characteristics, and their risk for adverse 73 
outcomes, (2) classification of a new patient into one or more subgroups, and (3) prediction of an adverse 74 
outcome for a new patient informed by subgroup membership. We evaluated MIPS on three datasets related to 75 
hospital readmission, which helped to pinpoint the strengths and limitations of MIPS. The results provide 76 
implications of MIPS for improving the interpretability of patient subgroups in large and dense datasets, and for 77 
the design of clinical decision support systems to prevent adverse outcomes such as hospital readmissions. 78 

Identification of Patient Subgroups 79 
Patients have been divided into subgroups by using (a) investigator-selected variables such as race for 80 
developing hierarchical regression models [12], or assigning patients to different arms of a clinical trial, (b) 81 
existing classification systems such as the Medicare Severity-Diagnosis Related Group (MS-DRG) [13] to assign 82 
patients into a disease category for purposes of billing, and (c) computational methods such as classification [14-83 
16] and clustering [5, 17] to discover patient subgroups from data (also referred to as subtypes or phenotypes 84 
depending on the condition and variables analyzed).  85 

Several studies have used computational methods to identify patient subgroups, each with critical trade-offs. 86 
Some studies have used combinatorial approaches [18] (identify all pairs, all triples etc.), which are intuitive, but 87 
which can lead to a combinatorial explosion (e.g., enumerating combinations of the 31 Elixhauser comorbidities 88 
would lead to 231 or 2147483648 combinations), with most combinations that do not incorporate the full range 89 
of symptoms (e.g., the most frequent pair of symptoms ignores what other symptoms exist in the profile of 90 
patients with that pair). Other studies have used unipartite clustering methods [16, 17] (clustering patients or 91 
comorbidities, but not both together) such as k-means, and hierarchical clustering; and dimensionality-reduction 92 
methods such as principal component analysis (PCA) to help identify clusters of frequently co-occurring 93 
comorbidities [18-24]. However, such methods have well-known limitations including the requirement of 94 
inputting user-selected parameters (e.g., similarity measures, and the number of expected clusters), in addition 95 
to the lack of a quantitative measure to describe the quality of the clustering (critical for measuring the statistical 96 
significance of the clustering). Furthermore, because these methods are unipartite, there is no agreed-upon 97 
method to identify the patient subgroup defined by a cluster of variables, and vice-versa.  98 

More recently, bipartite network analysis [25] has been used to address the above limitations by automatically 99 
identifying biclusters, consisting of patients and characteristics simultaneously. This method takes as input any 100 
dataset such as patients and their comorbidities, and outputs a quantitative and visual description of biclusters 101 
(containing both patients subgroups and their frequently co-occurring comorbidities). The quantitative output 102 
generates the number, size, and statistical significance of the biclusters [26-28], and the visual output displays 103 
the quantitative information of the biclusters through a network visualization [29-31]. Bipartite network analysis 104 
therefore enables (1) the automatic identification of biclusters and their significance, and (2) the visualization of 105 
the biclusters critical for their clinical interpretability. Furthermore, the attributes of patients in a subgroup can 106 
be used to measure the subgroup risk for an adverse outcome, to develop classifiers for classifying a new patient 107 
into one or more of the subgroups, and to develop a predictive model that uses that subgroup membership for 108 
measuring the risk of an adverse outcome for the classified patient.  109 
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However, while several studies [11, 28, 32-38] have demonstrated the usefulness of bipartite networks for the 110 
identification and clinical interpretation of patient subgroups, there has been no systematic attempt to integrate 111 
them with classification and prediction modeling, a critical step towards clinical application. We therefore 112 
leveraged the advantages of bipartite network to develop the MIPS framework, with the goal of bridging the gap 113 
between the identification and interpretation of patient subgroups, and their future clinical application. 114 

The Need for Modeling and Interpreting Patient Subgroups in Hospital Readmission 115 
An estimated one in five elderly patients (over 2.3 million Americans) is readmitted to a hospital within 30-days 116 
after being discharged [39]. While many readmissions are unavoidable, an estimated 75% of readmissions are 117 
unplanned and mostly preventable [40], imposing a significant burden in terms of mortality, morbidity, and 118 
resource consumption. Across all conditions, unplanned readmissions cost almost $17 billion annually in the US 119 
[40], making them an ineffective use of costly resources, and therefore closely scrutinized as a marker for the 120 
poor quality of care by organizations such as the Centers for Medicare & Medicaid Services (CMS) [41]. 121 

To address this epidemic of hospital readmission, CMS sponsored the development of models to predict the 122 
patient-specific risk of readmission in specific index conditions such as chronic obstructive pulmonary disease 123 
(COPD) [42], congestive heart failure (CHF) [43], and hip/knee arthroplasty (THA/TKA) [44]. The independent 124 
variables include prior comorbidities (as recorded in Medicare claims data), and demographics (age, gender, and 125 
race). This was motivated by numerous studies that have shown that almost two-thirds of older adults have two 126 
or more comorbid conditions, which have a heightened risk for adverse health outcomes such as hospital 127 
readmission [45]. However, although prior studies have shown the existence of subgroups among patients with 128 
hospital readmission [28], none of the CMS models incorporated patient subgroups. The identification and 129 
inclusion of patient subgroups could improve the accuracy of predicting hospital readmission for a patient, in 130 
addition to enabling the design of interventions targeted to each patient subgroup for reducing the risk of 131 
readmission. We therefore used the MIPS 132 
framework to model and interpret patient 133 
subgroups in hospital readmission, and 134 
tested its generality across three index 135 
conditions. Furthermore, to enable a 136 
head-to-head comparison with the 137 
existing CMS predictive models, we used 138 
the same independent variables in 139 
addition to patient subgroup 140 
membership, when developing our 141 
prediction models. 142 

METHOD 143 
Overview of MIPS 144 
Fig. 1 provides a conceptual description of 145 
the data inputs and outputs from the 146 
three-step modeling in MIPS. As shown, 147 
the visual analytical model identifies the 148 
patient subgroups, and visualizes them 149 
through a network. The classification 150 
model predicts subgroup membership for 151 
cases and controls, and uses it to measure 152 
the risk of readmission within each 153 
subgroup based on its proportion of 154 
cases. This risk information is juxtaposed 155 
with the visualization to enable clinicians 156 
interpret the readmitted patient 157 
subgroups. Finally, the predictive model 158 

 
Fig. 1. Inputs and outputs for the three-step modeling in MIPS. The visual 
analytical model quantitatively identifies the patient subgroups, and 
visualizes them using a bipartite network. The classification model 
predicts subgroup membership of cases and controls in addition to the 
risk of each subgroup, which is juxtaposed with the visualization to 
enable clinicians to qualitatively interpret the readmission subgroups. 
The predictive model uses subgroup membership, comorbidities, and 
demographics to predict the risk of a new patient for being readmitted. 
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uses the subgroup membership assignment of cases and controls to predict the readmission risk of a patient. 159 
Appendix-1 (Table-1) provides a summary of the inputs, methods, and outputs from each model. 160 

Data Description  161 
Study population. We analyzed patients hospitalized for chronic obstructive pulmonary disease (COPD), 162 
congestive heart failure (CHF), and total hip/knee arthroplasty (THA/TKA). We selected these three index 163 
conditions because: (a) hospitalizations for each of these conditions are highly prevalent in older adults [39]; (b) 164 
hospitals report very high variations in their readmission rates [39]; and (c) there exist well-tested readmission 165 
prediction models for each of these conditions that did not consider patient subgroups [42-44, 46, 47]. For each 166 
index condition, we used the same inclusion and exclusion criteria used to develop the CMS models, but with 167 
the most recent years (2013-2014) provided by Medicare when we started the project. Appendix-2 describes (1) 168 
the International Classification of Diseases, Ninth Version codes (ICD-9) codes for each of the three index 169 
conditions selected for analysis, and (2) the inclusion and exclusion criteria used to extract cases and controls 170 
for COPD, CHF, and THA/TKA, the respective numbers of patients extracted at each step, and how we addressed 171 
the small incidence of missing data. Each modeling method used relevant subsets of the above data, as described 172 
in the section on the analytical and evaluation approach. 173 

Variables. The independent variables consisted of comorbidities, and patient demographics (age, gender, race). 174 
Comorbidities common in older adults were derived from three established comorbidity indices: Charlson 175 
Comorbidity Index (CCI) [48], Elixhauser Comorbidity Index (ECI) [49], and the Center for Medicare and Medicare 176 
Services Condition Categories (CMS-CC) used in the CMS readmission models [50] (the variables in the CMS 177 
models varied across the index conditions). As these indices had overlapping comorbidities, we derived a union 178 
of them, which was verified by the clinician stakeholders. They recommended that we also include the following 179 
additional variables as they were pertinent to each index condition: COPD (history of sleep apnea, mechanical 180 
ventilation); CHF (history of coronary artery bypass graft surgery); THA/TKA (congenital deformity of the hip 181 
joint, post-traumatic osteoarthritis). For each patient in our cohort, we extracted the above comorbidities and 182 
variables from the physicians, outpatient, and inpatient Medicare claims data in the 6 months before (to guard 183 
against miscoding), and on the day of the index admission. The dependent variable (outcome) was whether a 184 
patient with an index admission (COPD, CHF, THA/TKA) had an unplanned readmission to an acute-care hospital 185 
within 30 days of discharge, as was recorded in the MEDPAR file (inpatient claims) in the Medicare database.  186 

Analytical and Evaluation Approach 187 
Visual Analytical Modeling. The goal of visual analytical modeling was to identify and interpret biclusters of 188 
readmitted patients (cases) consisting of patient subgroups and their most frequently co-occurring 189 
comorbidities. The data used to build the visual analytical model in each index condition consisted of randomly 190 
dividing 100% of the cases into a training (50%) and a replication (50%) dataset (we use the term replication to 191 
avoid confusion with the term validation typically used in classification and prediction models). For the feature 192 
selection, we extracted an equal number of 1:1 matched controls based on age, gender, and race/ethnicity, and 193 
Medicaid eligibility [51]. The above data were analyzed in each index condition using the following steps 194 
(Appendix-1 provides additional details for each step): 195 

1. Model Training. To train the visual analytical model, we used feature selection for identifying the set of 196 
comorbidities that were univariably significant in both the training and replication datasets, and used bicluster 197 
modularity maximization [26, 27] for identifying the number, members, and significance of biclusters in the 198 
training dataset.  199 

2. Model Replication. To test the replicability of the of biclusters, we repeated the above bicluster analysis on 200 
the replication dataset, and used the Rand Index (RI) [52] to measure the degree and significance of similarity 201 
in comorbidity co-occurrence between the two datasets. 202 

3. Model Interpretation. To enable clinical interpretation of the patient subgroups, we used the Fruchterman-203 
Reingold (FR) [29] and ExplodeLayout [30, 31] algorithms to visualize the network. Furthermore, based on a 204 
request from our clinician stakeholder team, for each bicluster we ranked and displayed the comorbidity labels 205 
with their univariable ORs for readmission (obtained from the feature selection above), and juxtaposed the 206 
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readmission risk of the bicluster (obtained from the classification step discussed below) onto the network 207 
visualization. Clinician stakeholders were asked to use the visualization to interpret the patient subgroups, 208 
their mechanisms, and potential interventions to reduce the risk for readmission. 209 

Classification Modeling. The goal of the classification modeling was to classify all cases and controls from the 210 
entire Medicare dataset into the biclusters identified from the visual analytical model. The resulting bicluster 211 
membership for all cases and controls were designed to (a) develop the predictive modeling described below, 212 
and (b) measure the risk of each subgroup to enable clinical interpretation of the patient sugroups. The training 213 
dataset in each condition consisted of a random sample of 75% cases with their subgroup membership (output 214 
of the visual analytical modeling), and an internal validation dataset consisting of randomly selected 25% of the 215 
cases (with subgroup membership used to validate the model). The above data were used to develop and use 216 
classification models in each index condition using the following steps (Appendix-1 provides additional details 217 
for each step): 218 

1. Model Training. To train the classifier, we used multinomial logistic regression [16] with independent 219 
variables consisting of comorbidities (identified through the feature selection). Accuracy of the trained model 220 
was measured by calculating the percentage of times the model correctly classifed the cases into the 221 
subgroups, using the highest predicted probability across the subgroups. 222 

2. Model Internal Validation. To internally validate the classifier, we randomly split the above data into the 223 
training (75%) and testing (25%) datasets, 1000 times. For each iteration, we trained a model using the training 224 
dataset, and measured its accuracy on the testing dataset. This was done by predicting the subgroup 225 
membership using the highest predicted probability among all the subgroups. The overall predicted accuracy 226 
was then estimated by calculating the mean accuracy across the 1000 models. 227 

3. Model Application. To generate data for the visual analytical and prediction models, the above classifier 228 
was used to classify 100% cases and controls from our entire Medicare dataset (July 2013-August 2014). The 229 
resulting classified data were used to measure the risk of each subgroup risk (juxtaposed onto the network 230 
visualization to enable clinical interpretation), and to conduct the following prediction modeling. 231 

Prediction Modeling. The goal of the prediction modeling was to predict the risk of readmission for a patient 232 
taking into consideration subgroup membership. The data used to build the prediction models consisted of 100% 233 
cases and 100% controls with subgroup membership  generated from the above classification modeling. These 234 
data were randomly spilt into the training (75%) and validation (25%) datasets. The above data were used to 235 
train, internally validate, and compare prediction models in each index condition using the following steps 236 
(Appendix-1 provides additional details for each step): 237 

1. Model Training. To train the prediction model, we used binary logistic regression for developing a Standard 238 
Model (without subgroup membership similar to the CMS models), and a Hierarchical Model (with subgroup 239 
membership). Independent variables for both models consisted of comorbidities (identified through the 240 
feature selection) and demographics, and the outcome was 30-day unplanned readmission (yes vs. no). 241 

2. Model Internal Validation. To internally validate the models, we used the internal validation data set to 242 
measure discrimination (C-statistic), and calibration (calibration-in-the-large, and calibration slope). 243 

3. Model Comparisons. To compare the accuracy of the Standard Model versus the Hierarchical Model, we 244 
used the chi-squared test to compare their C-statistics. Furthermore, to examine how the Standard Model 245 
performed on each subgroup, we measured the C-statistic of the Standard Model applied to each subgroup 246 
separately. Finally, because both of the above models used comorbidities selected through feature selection, 247 
they differed from the set of comorbidities used in the published CMS models. Therefore, to perform a head-248 
to-head comparison with the published CMS models (COPD [42], CHF [43], and THA/TKA [44]), we developed 249 
a logistic regression model using the independent variables from the published CMS model (CMS Standard 250 
Model), and compared it to the same model but which also included subgroup membership (CMS Hierarchical 251 
Model). Similar to the above comparisons, we used the chi-squared test to compare the C-statistic of the CMS 252 
Standard Model versus the CMS Hierarchical Model, and additionally measured the differences between the 253 
models using Net Reclassification Improvement (NRI), Integrated Discrimination Improvement (IDI).  254 
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RESULTS  255 
Data 256 
Table 1 provides a summary of the 257 
number of cases and/or controls 258 
used to develop the three models 259 
in each condition.  260 

Visual Analytical Modeling 261 
The visual analytical modeling of 262 
readmitted patients in all three 263 
index conditions produced 264 
statistically and clinically significant 265 
patient subgroups and their most 266 
frequently co-occurring 267 
comorbidities, which were 268 
significantly replicated. Results 269 
from each condition are described 270 
below. 271 

COPD. The inclusion and exclusion 272 
selection criteria (see Appendix-2) 273 
resulted in a training dataset 274 
(n=14,508 matched case/control pairs, of which 51 patient pairs with no dropped comorbidities), and a 275 
replication dataset (n=14,508 matched case/control pairs, of which 51 patient pairs with no dropped 276 
comorbidities), matched by age, sex, race, and Medicaid eligibility (a proxy for economic status). The feature 277 
selection method (see Appendix-3) used 45 unique comorbidities identified from a union of the three 278 
comorbidity indices, plus 2 condition-specific comorbidities. Of these, 3 were removed because of <1% 279 
prevalence. Of the remaining, 30 survived the significance and replication testing with Bonferroni correction. 280 
The visual analytical model used these surviving comorbidities (d=30), and cases consisting of CHF readmitted 281 
patients with at least one of those comorbidities (n=14,457). As shown in Fig. 2, the bipartite network analysis 282 
identified 4 biclusters, each representing a subgroup of readmitted COPD patients and their most frequently co-283 
occurring comorbidities. The biclustering had significant modularity (Q=0.17, z=7.3, P<.001), and significant 284 
replication (RI=0.92, z=11.62, P=<.001) of comorbidity co-occurrence. Furthermore, as requested by the clinician 285 
stakeholders, we juxtaposed a ranked list of comorbidities based on their ORs for readmission in each bicluster, 286 
in addition to the risk for each of the patient subgroups.   287 

The pulmonologist inspected the visualization and noted that the readmission risk of the patient subgroups had 288 
a wide range (12.7% to 19.6%) with clinical (face) validity. Furthermore, the co-occurrence of comorbidities in 289 
each patient subgroup was clinically meaningful with interpretations for each subgroup. Subgroup-1 had a low 290 
disease burden with uncomplicated hypertension leading to the lowest risk (12.7%). This subgroup represented 291 
patients with early organ dysfunction and would benefit from using checklists such as regular monitoring of 292 
blood pressure in pre-discharge protocols to reduce the risk of readmission. Subgroup-3 had mainly psychosocial 293 
comorbidities, which could lead to aspiration precipitating pneumonia leading to an increased risk for 294 
readmission (15.9%). This subgroup would benefit from early consultation with specialists (e.g., psychiatrists, 295 
therapists, neurologists, and geriatricians) that had expertise in psycho-social comorbidities, with a focus on the 296 
early identification of aspiration risks and precautions. Subgroup-2 had diabetes with complications, renal failure 297 
and heart failure and therefore had higher disease burden leading to an increased risk for readmission (17.8%) 298 
compared to Subgroup-1. This subgroup had metabolic abnormalities with greater end-organ dysfunction and 299 
would therefore benefit from case management from advanced practice providers (e.g., nurse practitioners) 300 
with rigorous adherence to established guidelines to reduce the risk of readmission. Subgroup-4 had diseases 301 
with end-organ damage including gastro-intestinal disorders, and therefore had the highest disease burden and 302 
risk for readmission (19.6%). This subgroup would also benefit from case management with rigorous adherence 303 

 

Model Training Replication/ 
Validation Total 

Visual Analytical* 
  COPD (cases/controls) 14,508/14,508 14,508/14,508 29,016/29,016 
  CHF (cases/controls) 25,775/25,775 25,775/25,775 51,550/51,550 
  THA/TKA (cases/controls) 8,249/8,249 8,249/8,249 16,498/16,948 
Classification 
  COPD (cases) 10,842 3,615 14,457 
  CHF (cases) 19,254 6,418 25,672 
  THA/TKA (cases) 5,257 1,753 7,010 
Prediction 
  COPD (cases/controls) 21,692/117,839 7,334/39,176 29,026/157,015 
  CHF (cases/controls) 38,728/183,093 12,845/61,095 51,573/244,188 
  THA/TKA (cases/controls) 12,376/255,203 41,44/85,049 16,520/340,252 

Table 1. Training and replication/validation datasets used to develop the 
three models in each of the three index conditions.  
*The visual analytical models used 1:1 matched controls for the feature 
selection, and used only cases for the bipartite networks to analyze 
heterogeneity in readmission. The numbers shown for the visual analytical 
models are before removing patients with no comorbidities. The resulting cases-
only datasets were used for the classification modelling as shown. 
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to established guidelines to reduce the risk of readmission. Furthermore, as patients in this subgroup typically 304 
experience complications that could impair their ability to make medical decisions, they should be provided with 305 
early consultation with a palliative care team to ensure that care interventions align with patients' preferences 306 
and values.  307 

CHF. The inclusion and exclusion selection criteria (see Appendix-2) resulted in a training dataset (n=25,775 308 
matched case/control pairs, of which 103 patient pairs with no dropped comorbidities) and a replication dataset 309 
(n=25,775 matched case/control pairs, of which 104 patient pairs with no dropped comorbidities), matched by 310 
age, sex, race, and Medicaid eligibility (a proxy for economic status). The feature selection method (see 311 
Appendix-3) used 42 unique comorbidities identified from a union of the three comorbidity indices, plus 1 312 
condition-specific comorbidity. Of these, 1 comorbidity was removed because of <1% prevalence. Of those 313 
remaining, 37 survived the significance and replication testing with Bonferroni correction. The visual analytical 314 
model (Fig. 4) used these surviving comorbidities (d=37), and cases consisting of CHF readmitted patients with 315 
at least one of those comorbidities (n=25,672). As shown in Fig. 3, the bipartite network analysis of the CHF cases 316 
identified 4 biclusters, each representing a subgroup of readmitted CHF patients and their most frequently co-317 
occurring comorbidities. The analysis revealed that the biclustering had significant modularity (Q=0.17, z=8.69, 318 
P<.001), and significant replication (RI=0.94, z=17.66, P<.001) of comorbidity co-occurrence. Furthermore, as 319 
requested by the clinicians, we juxtaposed a ranked list of comorbidities based on their ORs for readmission in 320 
each bicluster, in addition to the risk for each of the patient subgroups.  321 

The geriatrician inspected the visualization and noted that the readmission risk of the patient subgroups, ranging 322 
from 15.1% to 19.9%, was wide with clinical (face) validity. Furthermore, the co-occurrence of comorbidities in 323 
each patient subgroup was clinically meaningful. Subgroup-1 had chronic but stable conditions, and therefore 324 
had the lowest risk for readmission (15.1%). Subgroup-3 had mainly psychosocial comorbidities, but were not as 325 
clinically unstable or fragile compared to subgroups 2 and 4, and therefore had medium risk (16.6%). Subgroup-326 

  
Fig. 2. The COPD visual analytical model showing four biclusters consisting of patient subgroups and their most 
frequently co-occurring comorbidities (whose labels are ranked by their univariable ORs, shown within 
parentheses), and their risk of readmission (shown in blue text). 

Abbreviations: CardioRespShock, cardiorespiratory shock; COPD, chronic obstructive pulmonary disease; GI, 
gastrointestinal; Id, identifier; OB, obesity; Pneu, pneumonia; Psych, psychiatric; Uncomp, uncomplicated; HD_other, 
other and unspecified heart disease; MV, history of mechanical ventilation. 
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2 had severe chronic conditions, making them clinically fragile (with potential benefits from early palliative and 327 
hospice care referrals), and were therefore at high risk for readmission if non-palliative approaches were used 328 
(19.9%). Subgroup-4 had severe acute conditions which were also clinically unstable, associated with substantial 329 
disability and care debility, and therefore at high risk for readmission and recurrent intensive care unit (ICU) use 330 
(19.9%).  331 

THA/TKA. The inclusion and exclusion selection criteria (see Appendix-2) resulted in a training dataset (n=8,249 332 
matched case/control pairs, of which 1239 patient pairs with no dropped comorbidities) and a replication 333 
dataset (n=8,249 matched case/control pairs, of which 1264 patient pairs with no dropped comorbidities), 334 
matched by age, sex, race, and Medicaid eligibility (a proxy for economic status). The feature selection (see 335 
Appendix-3) used 39 unique comorbidities identified from the three comorbidity indices plus 2 condition-specific 336 
comorbidities. Of these, 11 comorbidities were removed because of <1% prevalence. Of the remaining, 11 337 
survived the significance and replication testing with Bonferroni correction. The visual analytical model (Fig. 5) 338 
used these surviving comorbidities (d=11), and cases consisting of readmitted patients with at least one of those 339 
comorbidities (n=7,010).  340 

As shown in Fig. 4, the bipartite network analysis of the THA/TKA cases identified 7 biclusters, each representing 341 
a subgroup of readmitted THA/TKA patients and their most frequently co-occurring comorbidities. The analysis 342 
revealed that the biclustering had significant modularity (Q=0.31, z=2.52, P=.011), and significant replication 343 
(RI=0.89, z=3.15, P=.002) of comorbidity co-occurrence. Furthermore, as requested by the clinician stakeholders, 344 

 
Fig. 3. The CHF visual analytical model showing four biclusters consisting of patient subgroups and their most 
frequently co-occurring comorbidities (whose labels are ranked by their univariable ORs, shown within 
parentheses), and their risk of readmission (shown in blue text). 

Abbreviations: CABG, coronary artery bypass graft; CardioRespShock, cardiorespiratory shock; CHF, congestive heart 
failure; comp, complicated; COPD, chronic obstructive pulmonary disease; GI, gastrointestinal; Id, identifier; Neuro, 
neurologic; OB, obesity; Pneu, pneumonia; Psych, psychiatric; Uncomp, uncomplicated; uri, urinary; w_comp, with 
complications; HD_other, other and unspecified heart disease. 
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we juxtaposed a ranked list of comorbidities based on their ORs for readmission in each bicluster, in addition to 345 
the risk for each of the patient subgroups.  346 

The geriatrician inspected the network and noted that TKA patients, in general, were healthier compared to THA 347 
patients, and therefore the network was difficult to interpret when the two index conditions were merged 348 
together. While our analysis was constrained because we were using the conditions as defined by CMS, these 349 
results nonetheless suggest that the interpretations did not suffer from a confirmation bias (manufactured 350 
interpretations to fit the results). However, he noted that the range of readmission risk had clinical (face) validity. 351 
Furthermore, subgroups 2, 4, and 5 had more severe comorbidities related to lung, heart, and kidney, and 352 
therefore had a higher risk for readmission compared to subgroups 1, 6, and 7 that had less severe comorbidities 353 
with a lower risk for readmission. In addition, subgroups 2, 5, 6 and 7 would benefit from chronic care case 354 
management from advanced practice providers (e.g., nurse practitioners). Finally, subgroups 2 and 5 could 355 
benefit from using well-established guidelines for CHF and COPD, subgroup 7 would benefit from mental health 356 
care and management of psycho-social comorbidities, and subgroup 6 would benefit from care for obesity and 357 
metabolic disease management.  358 

Classification Modeling  359 
The classification model used multinomial logistic regression in each index condition (see Appendix-4 for the 360 
model coefficients) to predict the membership of patients using subgroups (identified from the above visual 361 
analytical models). The results revealed that in each index condition, the classification model had high accuracy 362 
in classifying all the cases in the full dataset (training dataset used in the visual analytical modeling). Similarly, 363 
the internal validation results using a 75%-25% split of the above dataset also had high classification accuracy 364 
(Table 2 with classification accuracy divided into quantiles). We report both results for each index condition:  365 

 
Fig. 4. The THA/TKA visual analytical model showing four biclusters consisting of patient subgroups and their 
most frequently co-occurring comorbidities (whose labels are ranked by their univariable ORs, shown within 
parentheses), and their risk for readmission (shown in blue text). 

Abbreviations: CHF, congestive heart failure; comp, complicated; COPD, chronic obstructive pulmonary disease; Id, 
identifier; OB, obesity; Symp, symptom; THA/TKA, total hip/knee arthroplasty; Uncomp, uncomplicated. 
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COPD. The model correctly predicted subgroup membership for 99.90% of the cases (14443/14457) in the full 366 
dataset. Furthermore, as shown in Table 2, the internal validation results revealed that the percentage of COPD 367 
cases correctly assigned to a subgroup in the testing dataset, ranged from 99.10% to 100.00%, with a median 368 
(Q.50) of 99.60%, and with 95% being in the range from 99.30% to 99.80%. 369 

CHF. The model correctly predicted subgroup membership for 99.20% of the cases (25476/25672) in the full 370 
dataset. Furthermore, as shown in Table 3, the internal validation results revealed that the percentage of CHF 371 
cases correctly assigned to a subgroup in the testing dataset, ranged from 98.70% to 99.70%, with a median 372 
(Q.50) of 99.30%, and with 95% being in the range from 99.00% to 99.60%. 373 

THA/TKA. The model correctly predicted subgroup membership 100.00% of the cases (7010/7010) in the full 374 
dataset. Furthermore, as shown in Table 2, the internal validation results revealed that the percentage of CHF 375 
cases correctly assigned to a subgroup in the testing dataset, ranged from 99.40% to 100.00%, with a median 376 
(Q.50) of 99.90%, and with 95% being in the range from 99.70% to 100.00%. 377 

Application of the Classification Model to Generate Information for Other Models. The above classification 378 
model was used to classify 100% cases and 100% controls for use in the prediction model (described below). 379 
Furthermore, the proportion of cases and controls classified into each subgroup was used to calculate the risk 380 
of readmission for each subgroup (see Appendix-3). As this subgroup risk information was requested by the 381 
clinicians to improve interpretability of the visual analytical model, the values were juxtaposed next to the 382 
respective subgroups in the bipartite network visualizations (see blue text in Fig. 3-5).  383 

Prediction Modeling 384 
For each of the three index conditions, we developed two binary logistic regression models to predict 385 
readmission, with comorbidities in addition to sex, age, and race: (1) Standard Model representing all patients 386 
without subgroup membership, similar to the CMS models; and (2) Hierarchical Model with an additional 387 
variable that adjusted for subgroup membership.  388 

COPD. The inclusion and exclusion selection criteria (see Appendix-2) resulted in a cohort of 186,041 patients 389 
(29,026 cases and 157,015 controls). As shown in Fig. 5A, the Standard Model had a C-statistic of 0.624 (95% CI: 390 
0.617-0.631) which was not significantly (P=.8578) different from the Hierarchical Model that had a C-statistic 391 
of 0.625 (95% CI: 0.618-0.632). The calibration plots revealed that both models had a slope close to 1, and an 392 
intercept close to 0 (see Appendix-5).  393 

As shown in Fig. 6B, the Standard Model was used to measure the predictive accuracy of patients in each 394 
subgroup separately. The results showed that Subgroup-1 had a lower C-statistic compared to Subgroup-3 and 395 
Subgroup-4. While the C-statistics in Fig. 5A and Fig. 5B cannot be compared as they are based on models 396 
developed from different populations, these results reveal that the current CMS readmission model for CHF 397 
might be underperforming for one COPD patient subgroup, pinpointing which one might benefit by a Subgroup-398 
Specific Model.  399 

Models Quantiles Summary 
Q .025 Q .25 Q .50 Q .75 Q .975 Min Max Mean SD 

COPD 
  Training (n=10842) 99.90 100.00 100.00 100.00 100.00 99.70 100.00 100.00 0.02 
  Testing (n=3615) 99.30 99.40 99.60 99.60 99.80 99.10 100.00 99.60 0.15 
CHF 
  Training (n=19254) 99.40 99.50 99.60 99.60 99.80 99.00 99.90 99.57 0.11 
  Testing (n=6418) 99.00 99.30 99.30 99.40 99.60 98.70 99.70 99.34 0.15 
THA/TKA 
  Training (n=5257) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 
  Testing (n=1753) 99.70 99.80 99.90 99.90 100.00 99.40 100.00 99.86 0.09 

Table 2. Internal validation results showing the percentage of COPD, CHF, and THA/TKA 
patients correctly-assigned to a subgroup by the classification models in each condition. 
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 CHF. The inclusion and exclusion selection criteria 400 
(see Appendix-2) resulted in a cohort of 295,761 401 
patients (51,573 cases and 244,188 controls). As 402 
shown in Fig. 6A, the Standard Model had a C-403 
statistic of 0.600 (95% CI: 0.595-0.605), which was 404 
not significantly different (P=.2864) from the 405 
Hierarchical Model that also had a C-statistic of 0.600 406 
(95%CI: 0.595-0.605). The calibration plots revealed 407 
that all models had a slope close to 1, and an 408 
intercept close to 0 (see Appendix-5).  409 

As shown in Fig. 6B, the Standard Model was used to 410 
measure the predictive accuracy of patients in each 411 
subgroup separately. The results showed that 412 
Subgroup-1 had a lower C-statistic compared to 413 
Subgroup-4. While the C-statistics in Fig. 6A and Fig. 414 
6B cannot be compared as they are based on models 415 
developed from different populations, but similar to 416 
the results in COPD, these results reveal that the 417 
current CMS readmission model for CHF might be 418 
underperforming for one CHF patient subgroup, 419 
pinpointing which one might benefit by a Subgroup-420 
Specific Model.  421 

THA/TKA. The application of the inclusion and exclusion selection criteria (see Appendix-2) resulted in a cohort 422 
of 356,772 patients (16,520 cases and 340,252 controls). As shown in Fig. 7A, the Standard Model had a C-423 
statistic of 0.638 (95% CI: 0.629-0.646), which was not significantly different (P=.6817) from the Hierarchical 424 
Model that had a C-statistic of 0.638 (95% CI: 0.629-0.647). The calibration plots (see Appendix-5) revealed that 425 
both models had a slope close to 1, and an intercept close to 0 (see Appendix-5).   426 

As shown in Fig. 7B, the Standard Model was used to measure the predictive accuracy of patients in each 427 
subgroup separately. The results showed that 428 
Subgroup-1 had a lower C-statistic compared to 429 
Subgroup-4. Again, while the C-statistics in Fig. 7A 430 
and Fig. 7B cannot be compared as they are based 431 
on models developed from different populations, 432 
similar to the results in COPD, these results reveal 433 
that the current CMS readmission model for 434 
THA/TKA might be underperforming for 4 patient 435 
subgroups, pinpointing which ones might benefit by 436 
Subgroup-Specific Models.  437 

CMS Standard Model vs. CMS Hierarchical Model. 438 
Unlike the CMS published models, the above models 439 
used only the comorbidities that survived feature 440 
selection. Therefore, to perform a head-to-head 441 
comparison with the published CMS models, we also 442 
developed a CMS Standard Model (using the same 443 
variables from the published CMS model), and 444 
compared it to the corresponding CMS Hierarchical 445 
Model (with an additional variable for subgroup 446 
membership) in each condition. Similar to the 447 
models in Fig. 5-7, there were no significant 448 

 
Fig. 6. (A) Predictive accuracy of the Standard Model 
compared to the Hierarchical model in CHF as measured 
by the C-Statistic. The C-statistic for the CMS published 
model is shown as a dotted line. (B) Predictive accuracy 
of the Standard Model when applied separately to 
patients classified to each subgroup. S-1 has lower 
accuracy compared to S-3 and S-4. (C-statistics in A and 
B cannot be compared as they are based on models 
from different populations). 
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Fig. 5. (A) Predictive accuracy of the Standard Model 
compared to the Hierarchical model in COPD, as 
measured by the C-Statistic. The C-statistic for the CMS 
published model is shown as a dotted line. (B) 
Predictive accuracy of the Standard Model when 
applied separately to patients classified to each 
subgroup. S-1 has lower accuracy compared to S-3 and 
S-4. (C-statistics in A and B cannot be compared as they 
are based on models from different populations). 
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differences in the C-statistics between the two 449 
modeling approaches in any condition (see 450 
Appendix-5). However, as shown in Table 3, the CMS 451 
Hierarchical Model for COPD had significantly higher 452 
NRI, but not significantly higher NDI compared to the 453 
CMS Standard Model; the CMS Hierarchical Model 454 
for CHF had a significantly lower NRI and IDI 455 
compared to the CMS Standard Model, and the CMS 456 
Hierarchical Model for THA/TKA had a significantly 457 
higher NDI and IDI compared to the CMS Standard 458 
Model. Furthermore, similar to the results in 6B-8B, 459 
when the CMS Standard Model was used to predict 460 
readmission separately in subgroups within each 461 
index condition, it identified subgroups that 462 
underperformed, pinpointing which ones might 463 
benefit by a Subgroup-Specific Model (See 464 
Appendix-5). In summary, the comparisons between 465 
the CMS Standard Models and the respective CMS 466 
Hierarchical Models showed that in two conditions 467 
(COPD and THA/TKA), there was a small but 468 
statistically significant improvement in 469 
discriminating between the readmitted and not 470 
readmitted patients as measured by NRI, but not as measured by the C-statistic or IDI, and that a subgroup in 471 
each index condition might be underperforming when using the CMS Standard Model.  472 

DISCUSSION 473 
Overview 474 

Our overall approach of using the MIPS framework to identify patient subgroups through visual analytics, and 475 
using those subgroups to build classification and prediction models, revealed strengths and limitations for each 476 
modeling approach, and for our data source. This examination led to insights for developing future clinical 477 
decision support systems, and a methodological framework for improving the clinical interpretability of 478 
subgroup modeling results.  479 

Strengths and Limitations of Modeling Methods and Data Source 480 

Visual Analytical Modeling. The results revealed three strengths of the visual analytical modeling: (1) the use of 481 
bipartite networks to simultaneously model patients and comorbidities, enabled the automatic identification of 482 
patient-comorbidity biclusters, and the integrated analysis of co-occurrence and risk; (2) the use of a bipartite 483 
modularity maximization algorithm to identify the biclusters enabled the measurement of the strength of the 484 
biclustering, critical for gauging its significance; and (3) the use of a graph representation enabled the results to 485 
be visualized through a network. Furthermore, the request from the clinician stakeholders to juxtapose the risk 486 
of each subgroup with their visualizations appeared to be driven by a need to reduce working memory loads 487 
(from having to remember that information spread over different outputs), which could have enhanced their 488 
ability to match bicluster patterns with chunks (previously-learned patterns of information) stored in long-term 489 

 
Fig. 7. (A) Predictive accuracy of the Standard Model 
compared to the Hierarchical model in THA/TKA as 
measured by the C-Statistic. The C-statistic for the CMS 
published model is shown as a dotted line. (B) Predictive 
accuracy of the Standard Model when applied 
separately to patients classified to each subgroup. S-1 
has lower accuracy compared to S-7. (C-statistics in A 
and B cannot be compared as they are based on models 
developed from different populations). 
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Standard Hierarchical

Model NRI IDI 
 Categorical (95% Interval) Continuous (95% Interval) IDI (95% Interval) 

COPD .023 (.012, .034)* .059 (.034, .083)* .0002 (-.0004, .0008) 
CHF -.010 (-.016, -.0004)* -.038 (-.057, -.019)* -.0006(-.0009,- .0003)* 
THA/TKA .022 (.012, .032)* .111 (.080, .142)* -.003(-.002,- .003)* 

Table 3. Comparison of the CMS Standard Model with the CMS Hierarchical Model across the three index 
conditions based on NRI and IDI (* = significant at the .05 level). 
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memory. The resulting visualizations enabled them to recognize subtypes based on co-occurring comorbidities 490 
in each subgroup, reason about the processes that precipitate readmission based on the risk of each subtype 491 
relative to the other subtypes, and propose interventions that were targeted to those subtypes and their risks. 492 
Finally, the fact that the geriatrician could not fully interpret the THA/TKA network because it mixed two fairly 493 
different conditions, suggests that the clinical interpretations were not the result of a confirmation bias 494 
(interpretations leaning towards fitting the results). 495 

However, the results also revealed two limitations: (1) while modularity is estimated using a closed-form 496 
equation (formula), no closed-form equation exists to estimate the modularity variance, which is necessary to 497 
measure its significance. To estimate modularity variance, we therefore used a permutation test by generating 498 
1000 random permutations of the data, and then compared the modularity generated from the real data to the 499 
mean modularity generated from the permuted data. Given the size of our datasets (ranging from 7K-25K 500 
patients), this computationally-expensive test took approximately 7 days to complete, despite the use of a 501 
dedicated server with multiple cores; and (2) while bicluster modularity was successful in identifying significant 502 
and meaningful patient-comorbidity biclusters, the visualizations themselves were extremely dense, and 503 
therefore potentially concealed patterns within and between the subgroups. Future research should explore a 504 
closed-form equation to estimate modularity variance, with the goal of accelerating the estimation of modularity 505 
significance, and more powerful analytical and visualization methods to reveal intra- and inter-cluster 506 
associations in large and dense networks.  507 

Classification Modeling. The results revealed two strengths of the classification modeling: (1) the use of a simple 508 
multinomial classifier was adequate to predict with high accuracy to which subgroup a patient belonged; (2) 509 
because the model produced membership probabilities for each patient for each subgroup, the model captured 510 
the dense inter-cluster edges observed in the network visualization; and (3) the coefficients of the trained 511 
classifier could be inspected by an analyst making it more transparent (relative to most deep-learning classifiers 512 
which tend to be a black box).  513 

However, because we dichotomized the classification probabilities into a single subgroup membership, our 514 
approach did not fully leverage the membership probabilities for modeling and visual interpretation. For 515 
example, some patients have high classification probabilities (representing strong membership) to a single 516 
subgroup (as shown by patients in the outer periphery of the biclusters with edges only within their bicluster), 517 
whereas others have equal probabilities to all subgroups (as shown in the inner periphery of the biclusters with 518 
edges going to multiple clusters). Future research should explore incorporating the probability of subgroup 519 
membership into the design of hierarchical models to improve predictive accuracy, and visualization methods 520 
to help clinicians interpret patients with different profiles of membership strength, with the goal of designing 521 
patient-specific interventions.  522 

Predictive Modeling. The results revealed two strengths of the predictive modeling: (1) the use of the Standard 523 
Model to measure predictive accuracy across the subgroups helped to pinpoint which subgroups tend to have 524 
lower predictive accuracy compared to the rest, and therefore which of them could benefit from a more complex 525 
but accurate subgroup-specific model; and (2) despite the use of a simple Hierarchical Model with a 526 
dichotomized membership label for each patient, the predictive CMS models detected significant differences in 527 
the prediction accuracy as measured by NRI in two of the conditions, when compared to the CMS Standard 528 
Models. However, the results also revealed that the differences in predictive accuracy as measured by the C-529 
statistic and NDI were small, suggesting that comorbidities on their own were potentially insufficient for 530 
accurately predicting readmission. Future research should explore the use of electronic health records, and the 531 
use of multiple subgroup-specific models targeted to each subgroup (enabling each model to have different 532 
slopes and intercepts), to potentially improve the predictive accuracy of the prediction models. 533 

Data Source. The Medicare claims data had four key strengths: (1) scale of the datasets which enabled subgroup 534 
identification with sufficient statistical power; (2) spread of the data collected from across the US which enabled 535 
generalizability of the results; (3) data about older adults which enabled examination of subgroups in an 536 
underrepresented segment of the US population; and (4) data used by CMS to build predictive readmission 537 
models, which enabled a head-to-head comparison with the hierarchical modeling approach. 538 
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However, the data had two critical limitations. (1) As we compared our models with the CMS models, we had to 539 
use the same definition for controls (90 days with no readmission) that had been used, which introduced a 540 
selection bias that exaggerates the separation between cases and controls. Similarly, by excluding patients who 541 
died, this exclusion criterion potentially biased the results towards healthier patients. (2) Administrative data 542 
have known limitations such as the lack of comorbidity severity and test results, which could strongly impact the 543 
accuracy of predictive models. Future research should consider the use of national-level electronic health record 544 
(EHR) data such as those being assembled by the National COVID Cohort Collaborative (N3C) [53], and the 545 
TriNetX [54] initiatives, which could overcome the above limitations by providing laboratory values and 546 
comorbidity severity, but could also introduce new as yet unknown limitations. 547 

Implications for Clinical Decision-Support that Leverage Patient Subgroups 548 

While the focus of this project was to develop and evaluate the MIPS framework, its application to three index 549 
conditions coupled with extensive discussions with clinicians led to insights for designing a future clinical decision 550 
support system. Such a system could integrate outputs from all three models in MIPS. As we have shown, the 551 
visual analytical model automatically identified and visualized the patient subgroups, which enabled the 552 
clinicians to comprehend the co-occurrence and risk information in the visualization, reason about the processes 553 
that lead to readmission in each subgroup, and design targeted interventions. The classification model leveraged 554 
the observation that many patients have comorbidities in other biclusters (shown by a large number of edges 555 
between biclusters), and accordingly generated a membership probability of a patient belonging to each 556 
bicluster, from which the highest was chosen for bicluster membership. Finally, the predictive model predicts 557 
the risk for readmission for a patient, by using in the future the most accurate model designed for the bicluster 558 
to which the patient belongs. 559 

The outputs from the above models could be integrated into a clinical decision support system to provide 560 
recommendations for a specific patient using the following algorithm: (1) use the classifier to generate the 561 
membership probability (MP) of a new patient belonging to each subgroup; (2) multiply the MP in each subgroup 562 
with the patient’s risk (R) for readmission provided by the predictive model for that subgroup, to generate an 563 
importance score [IS = f(MP) X g(R)] for the respective intervention; (3) rank the subgroups and their respective 564 
interventions using IS; and (4) use the ranking to display in descending order, the subgroup comorbidity profiles 565 
along with their respective potential mechanisms, recommended treatments, and the respective IS. Such model-566 
based information, displayed through a user-friendly interface, could enable a clinician to rapidly scan the ranked 567 
list to (a) determine why a specific patient’s profile fits into one or more subgroups, (b) review the potential 568 
mechanisms and interventions ranked by their importance, and (c) use the combined information to design a 569 
treatment that is customized for the real-world context of the patient. Consequently, such a clinical decision 570 
support system could not only provide a quantitative ranking of membership to different subgroups, and the 571 
importance score for the associated interventions, but also enable the clinician to understand the rationale 572 
underlying those recommendations, making the system interpretable and explainable. Comparative evaluation 573 
of such a system to standard care could determine its clinical efficacy. 574 

Implications for Analytical Granularity to Enhance the Interpretability of Patient Subgroups 575 

While the visual analytical model enabled the clinicians to interpret the patient subgroups, they were unable to 576 
interpret the associations within and between the subgroups due to the large number of nodes in each bicluster 577 
and the dense edges between them. Several network filtering methods [55, 56] have been developed to “thin 578 
out” such dense networks such as by dropping or bundling nodes and edges based on user-defined criteria, to 579 
improve visual interpretation. However, such filtering could bias the results, or modify the clusters resulting 580 
from the reduced data.  581 

An alternate approach that preserves the full dataset leverages the notion of analytical granularity, where the 582 
data is progressively analyzed at different levels. For example, we have analyzed COVID-19 patients [11] at the 583 
cohort, subgroup, and patient levels, and we are currently using the same approach to examine symptom co-584 
occurrence and risk at each level in Long COVID patients. Our preliminary results suggest that analyzing data at 585 
different levels of granularity enables clinicians to progressively interpret patterns such as within and between 586 
subgroups, in addition to guiding the systematic development of new algorithms. For example, at the subgroup 587 
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level, we have designed an algorithm that identifies which patient subgroups have a significantly higher 588 
probability for having characteristics that are clustered in another subgroup, providing critical information to 589 
clinicians about how to design interventions for such overlapping subgroups; at the patient level, we have 590 
identified patients that are outliers to their subgroups based on their pattern of characteristics inside and outside 591 
their subgroup. Such patient outliers could be flagged to examine if they need individualized interventions versus 592 
those recommended for the rest of their subgroup. Such analytical granularity could therefore inform the design 593 
of interventions by clinicians, in addition to the design of decision support systems that provide targeted and 594 
interpretable recommendations to physicians, who can then customize them to fit the real-world context of a 595 
patient. 596 

Implications of the MIPS Framework for Precision Medicine 597 

While we have demonstrated the application of the MIPS framework across multiple readmission conditions, its 598 
architecture has three properties that should enable its generalizability across other medical conditions. First, 599 
as shown in Fig. 2, the framework is modular with explicit inputs and outputs, enabling the use of other methods 600 
at each of the three modeling steps. For example, the framework could use other biclustering (e.g.,  Non-601 
negative Matrix Factorization [57]), classification (e.g., deep learning [58]), and prediction methods (e.g., 602 
subgroup-specific modeling [16]). Second, the framework is extensible, enabling an elaboration of the methods 603 
at each modeling step to improve the analysis and interpretation of subgroups. For example, as discussed above, 604 
the analytical granularity at the cohort, subgroup, and patient levels could improve the interpretability of 605 
subgroups in large and dense datasets. Third, the framework is integrative as it systematically combines the 606 
strengths of machine learning, statistical, and precision medicine approaches. For example, the visual analytical 607 
modeling leverages search algorithms to discover co-occurrence in large datasets; the classification and 608 
prediction modeling leverages probability theory to measure the risk of co-occurrence patterns; and clinicians 609 
leverage medical knowledge and human cognition to interpret patterns of co-occurrence and risk for designing 610 
precision-medicine interventions. Such integration of different models and their interpretation operationalizes 611 
team-centered informatics [59] designed to facilitate data scientists, biostatisticians, and clinicians in 612 
multidisciplinary translational teams [60] to work more effectively across disciplinary boundaries, with the goal 613 
of designing interventions for precision medicine.  Our current research tests the generality of the MIPS 614 
framework in other conditions such as Long COVID and Post-Stroke Depression, with the goal of designing and 615 
evaluating precision medicine interventions targeted to patient subgroups. 616 

CONCLUSIONS 617 
Although several studies have identified patient subgroups in different conditions, there is a considerable gap 618 
between the identification of subgroups, and their modeling and interpretation for clinical applications. Here we 619 
developed MIPS, a novel analytical framework to bridge that gap using a three-step modeling approach. A visual 620 
analytical method automatically identified statistically significant and replicated patient subgroups and their 621 
frequently co-occurring comorbidities. Next, a multinomial logistic regression classifier had high accuracy in 622 
correctly classifying patients into the patient subgroups identified by the visual analytical model. Finally, despite 623 
using a simple hierarchical logistic regression model to incorporate subgroup information, the predictive models 624 
had a statistically significant improvement in discriminating between the readmitted and not readmitted 625 
patients in two of the three readmission conditions, and additional analysis pinpointed for which patient 626 
subgroups the current CMS model might be underperforming. Furthermore, the integration of the three models 627 
helped to (1) elucidate the data input and output dependencies among the models enabling clinicians to 628 
interpret the patient subgroups, reason about mechanisms precipitating hospital readmission, and design 629 
targeted interventions, and (2) provide a generalizable framework for the development of future clinical decision 630 
support systems that integrate outputs from each of the three modeling approaches. 631 

However, evaluation MIPS across three readmission index conditions also helped to identify limitations of the 632 
models and the data. The visual analytical model was too dense to enable the clinicians to interpret the 633 
associations within and between the subgroups, and the absence of a closed-form equation to measure 634 
modularity variance required a computationally-expensive process to measure the significance of the 635 
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biclustering. Furthermore, the small improvement in predictive accuracy suggested that comorbidities on their 636 
own were insufficient for predicting hospital readmission. 637 

By leveraging the modular and extensible nature of the MIPs framework, future research should address the 638 
above limitations by developing more powerful algorithms which analyze subgroups at different levels of 639 
granularity to improve the interpretability of intra- and inter-cluster associations, and the evaluation of 640 
subgroup-specific models to predict outcomes. Furthermore, EHR data made available through national-level 641 
data initiatives such as N3C and TriNetX now provide access to critical variables including laboratory results and 642 
comorbidity severity, which should lead to higher predictive power for predicting adverse outcomes. Finally, 643 
extensive discussions with clinicians have confirmed the need for decision support systems which integrate 644 
outputs from the three models to provide for a specific patient, predicted subgroup memberships, ranked 645 
interventions, along with associated subgroup profiles and mechanisms. Such interpretable and explainable 646 
systems could enable clinicians to use patient subgroup information for informing the design of precision 647 
medicine interventions, with the goal of reducing adverse outcomes such as unplanned hospital readmissions 648 
and beyond. 649 
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APPENDIX-1 
 Analytical Methods for the MIPS Framework 

Visual Analytical Modeling. The data used to build the visual analytical model consisted of 100% cases, and an 
equal number of 1:1 matched controls extracted by randomly selecting a control without replacement to match 
each case based on age, gender, race/ethnicity, and Medicaid eligibility [1]. The resulting dataset was divided 
randomly into a training (50%) and replication (50%) dataset (we use the term replication to avoid confusion 
with the term validation typically used in classification and prediction models). We used a bipartite network to 
model the cases (30-day readmitted patients) and significant comorbidities in each index condition using the 
following steps: 

A. Model Training. The training of the bicluster network model consisted of the following two steps: 

I. Feature Selection. Given the large number of patients and comorbidities in the dataset, we used feature 
selection to identify comorbidities with the strongest signal and therefore interpretability for readmission 
using the following steps: (1) excluded comorbidities with prevalence less than 1% (as is commonly done 
in studies to reduce noise [2]); (2) selected significant comorbidities in the training dataset based on a 2-
way interaction test using odds ratio (OR) with directionality, and correcting for multiple testing using 
Bonferroni, and (3) tested the surviving comorbidities for replication in the replication dataset, and 
selected those that were significant in both datasets. Appendix-2 shows the number of comorbidities, and 
variables that were included in the analysis for each of the three index conditions. The above feature 

 

Model Inputs Outputs 

1. Visual 
Analytical Model 
(Bipartite Network 
Analysis) 

• Training Dataset: 50% 
random sample of 100% 
cases, and an equal number 
of 1:1 matched controls 
(used only for feature 
selection) 

• Replication Dataset: 50% 
random sample of 100% 
cases and equal number of 
1:1 matched controls 

• Model Training 
Feature Selection: Set of comorbidities univariably significant in both the 
training and replication datasets 
Biclustering: Modularity (degree of biclusteredness) and its significance, 
number of biclusters (subgroups), and their patient and comorbidity 
members in the training and replication datasets 

• Model Replication 
Comorbidity Co-Occurrence: Rand Index (degree of replication), and its 
significance to measure replicability of comorbidity co-occurrence 

• Model Interpretation 
Visualization: Layout of the bipartite network juxtaposed with risk of 
individual comorbidities and subgroups 
Clinical Significance: Interpretation by clinicians for face validity of 
patient subgroups based on comorbidity co-occurrence, leading to 
inference of mechanisms precipitating readmission, and interventions 

2. Classification  
Model 
(Multinomial 
Logistic 
Regression) 

• Training Dataset: Random 
sample of 75% cases, with 
bicluster membership 

• Internal Validation Dataset: 
Random sample of 25% of 
cases (with subgroup 
membership used to validate 
the model) 

• Model Training 
Subgroup Membership: Probability of membership of each case to each 
subgroup (soft labels), with the highest used to determine subgroup 
membership (hard labels) 

• Model Internal Validation 
Internal Validation: Accuracy of classification model based on hard labels 

• Model Application 
Classification: Subgroup classification of 100% cases and 100% controls 
Subgroup Risk: Proportion of cases in each subgroup 

3. Prediction 
Model (Binary 
Logistic 
Regression, and 
Hierarchical Binary 
Logistic 
Regression) 

• Training Dataset: Random 
samples of 75% of 100% 
cases and controls, with 
subgroup membership 

• Internal Validation Dataset: 
Random sample of 25% of 
cases and controls (with 
case/control labels used to 
validate the model) 

• Model Training 
Predicted Risk: Each patient’s probability of being readmitted. 

• Model Internal Validation 
Internal Validation: C-statistic (discrimination), and calibration-in-the-
large and calibration slope (calibration) 

• Model Comparison 
Accuracy: Net Reclassification Improvement (NRI) and Integrated 
Discrimination Improvement (IDI) 

Table 1. Inputs used to train and replicate/validate the three models, and the analytical outputs they produced. 
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selection generated a single set of significant and replicated comorbidities used for the following bipartite 
network analysis. 

II. Biclustering. We used bipartite networks analysis [3] on the 
training dataset to analyze heterogeneity in readmission using 
the following steps: (1) Removed all cases that did not have any 
comorbidities (as the modularity maximization algorithm will 
trivially put disconnected nodes into a separate cluster). (2) 
Represented the cases (30-day readmitted patients in the 
training dataset) and their significant and replicated 
comorbidities (selected in Step A) as a bipartite network. As 
shown in Fig. 1, the nodes represented cases (circles) or 
comorbidities (triangles), and edges (lines) represented which 
case had which comorbidity. (3) Used a bipartite modularity 
maximization algorithm [4-6], to identify the number of 
biclusters, their members, and degree of biclusteredness of the 
network using modularity. Modularity is defined as the fraction 
of edges falling within a cluster, minus the expected fraction of 
such edges in a network of the same size with randomly assigned edges. Modularity ranges from -0.5 to 
+1, with values >0 indicating biclustering that is higher than can be expected by chance. We used the 
bipartite version of modularity to find biclusters in the network. (4) Measured the significance of the 
bicluster modularity by comparing it to a distribution of the same quantity generated from 1000 random 
permutations of the network, by preserving the network size (number of nodes) and the network density 
(number of edges). 

B. Model Replication. Repeated the above biclustering steps 1-4 to identify subgroups in the replication dataset, 
and compared the comorbidity co-occurrence in the training dataset, to that in the replication dataset using 
the Rand index (RI) [7]. RI measures the proportion of comorbidity pairs that co-occurred and did not co-occur 
in a cluster in the training and replication datasets (where 0=no inter-network cluster similarity, and 1=total 
inter-network cluster similarity). The significance of RI was measured by comparing it to a distribution of the 
same quantity generated from 1000 random permutations of the training and replication networks. All tests 
of statistical significance in Steps A and B were 2-sided. 

C. Model Interpretation. The model interpretation consisted of the following steps:  

I. Visualization. We used the following steps to visualize the network generated from the training dataset. 
(1) Used Fruchterman-Reingold (FR) [8], a force-directed algorithm to lay out the bipartite network. This 
layout algorithm pulls together nodes that are strongly connected, and pushes apart nodes that are not. 
This results in nodes with a similar pattern of connections to be placed close to each other in Euclidean 
space, and those that are dissimilar are pushed apart. (2) As the FR algorithm often cannot entirely 
separate clusters in large and dense networks, the network layout needs to be visually enhanced before 
it is interpretable by clinician stakeholders. Therefore, we used the ExplodeLayout algorithm [9, 10] to 
separate the biclusters to reduce their visual overlap. This algorithm preserves the distances of nodes 
within a bicluster, but increases the distance of nodes between clusters to improve interpretability. (3) 
Juxtaposed the risk of readmission with the network visualization (in response to a request from the 
clinical stakeholders). This was done by (a) displaying comorbidity labels with their univariable ORs for 
readmission (measured in Step A) ranked by their odds ratios (ORs) for each subgroup, and (b) measuring 
the readmission risk for each patient subgroup based on the full case-control population (explained in 
more detail in the section on classification modeling), and juxtaposing it with the respective subgroup. 

II. Clinical Interpretation. We used the following steps to solicit clinical interpretations of the above bipartite 
network. (1) Recruited a pulmonologist specializing in COPD and hospital readmission to interpret the 
COPD results, and a geriatrician with expertise in treating older adults in CHF and THA/TKA to interpret 
the respective results. (2) Requested each clinician stakeholder to interpret the patient subgroups, their 
mechanisms, and potential interventions to reduce the risk for readmission. 

 
Fig. 1. A bipartite network showing patient 
subgroups and their most frequently co-
occurring comorbidities.  
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Classification Modeling. As shown in the bipartite network example in Fig. 1, the biclusters identified through 
the modularity maximization algorithm contain patient subgroups and their most frequently co-occurring 
comorbidities with respect to other patients in the network. However, there are often many edges between 
biclusters, revealing that many patients within a bicluster have comorbidities that exist in other biclusters. As is 
true for most partitioning cluster methods, including modularity, membership of a new patient to each bicluster 
is therefore probabilistic. The classification of a patient into a cluster is therefore not defined by the inclusion or 
exclusion of comorbidities (e.g., hypertension and diabetes), but rather by the probability of being in a patient 
subgroup. Patients are therefore similar or different, not just in a handful of carefully-selected comorbidities 
while ignoring others, but based on all of their recorded comorbidities. This overall profile of patients reflects 
the reality of comorbid conditions.  

To model the above complexity, we used multinomial logistic regression [11] to develop classification models in 
each index condition. This approach has the advantage of generating probabilities (“soft labels”) for a patient to 
belong to each patient subgroup. The models were trained, internally validated, and then applied to generate 
information for the other two modeling methods, as described below: 

A. Model Training. The data used to build the classification model consisted of the training dataset and subgroup 
membership from the visual analytical model. We trained a multinomial logistic regression model using the 
above data, with independent variables that included comorbidities identified through feature selection done 
for the visual analytical modeling. Accuracy of the trained model was measured by calculating the percentage 
of times the model correctly classifed the cases into the subgroups, using the highest predicted probability 
across the subgroups (“hard labels”). 

B. Model Internal Validation. To internally validate the classifier, we randomly split the above data into training 
(75%) and testing (25%) datasets, 1000 times. For each iteration, we trained a model using the training 
dataset, and measured its accuracy on the testing dataset. This was done by predicting the subgroup 
membership using the highest predicted probability among all the subgroups. The overall predicted accuracy 
was then estimated by calculating the mean accuracy across the 1000 models. 

C. Model Application. Using the 100% cases, in addition to the 100% controls from July 2013-August 2014 
(representing the entire Medicare population of each index condtion from those years), we generated the 
following two types of information for use in the other models. (1) Used the classifier trained in Step A above, 
to classify 100% cases and 100% controls into a subgroup. This information was used by the subsequent 
predictive modeling. (2) While the visual analytical model used the 1:1 matched controls for feature selection, 
this cohort did not represent the entire population. Therefore, to accurately measure the subgroup risk, we 
used the entire case-control population classified into the subgroups (as described in the above step), and 
measured the proportion of cases in each subgroup. Furthermore, as requested by the clinicians, we 
juxtaposed these subgroup risks next to the respective subgroups in the bipartite network visualization, to 
improve their interpretability. 

Predictive Modeling. The data used to build the predictive models consisted of 100% cases and 100% controls, in 
addition to their subgroup membership generated from the above classification models. These data were 
randomly spilt into a training (75%) and validation (25%) dataset. The predictive models were trained, internally 
validated, and compared for predictive accuracy, as described below: 

A. Model Training. We used the training dataset to train a Standard Model (binary logistic regression without 
subgroup membership similar to the CMS models), and a Hierarchical Model (binary logistic regression with 
subgroup membership), with 30-day unplanned readmission (yes vs. no) as the outcome. Independent 
variables for both models included comorbidities identified through the feature selection in each index 
condition (see Appendix-2), and demographics. The Hierarchical Model additionally included subgroup 
membership. 

B. Model Internal Validation. We used the validation dataset to internally validate the models through the 
following two measures: 
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I. Discrimination (model’s ability to distinguish readmitted patients from those not readmitted) was measured 
using the C-statistic, which is identical to the area under the receiver operating characteristic (ROC) curve. 
Model discrimination was examined using box plots to show the average risk prediction for patients with 
and without readmission. 

II. Calibration (model’s agreement of the predicted probabilities with the observed risk) was measured using 
calibration-in-the-large, and calibration slope, which was examined through a calibration plot showing the 
proportion of patients actually admitted, versus deciles of predicted probability of having readmission. 
Good calibration is when calibration-in-the-large is close to zero, and the calibration slope is close to one. 
Since the large sample size overpowered the study, we did not measure the calibration based on statistical 
significance (e.g., P values of the Hosmer-Lemeshow and calibration indices). 

C. Model Comparisons. We used the chi-squared test to compare the C-statistic of the Standard Model to that 
of the Hierarchical Model. We also measured the C-statistic of the Standard Model applied to each subgroup 
separately. This enabled examination of how the Standard Model performed on patient subgroups to identify, 
for example, which subgroups underperformed when using the current Standard Model.  

Because the above models used the feature selection step to select comorbidities for use as independent 
variables, they differed from those used in the published CMS models. Therefore, to perform a head-to-head 
comparison with the published CMS models, we additionally developed a logistic regression model using 
independent variables that were identical to the published CMS model (CMS Standard Model), which was 
compared to the same model that included subgroup membership (CMS Hierarchical Model). We used the 
chi-squared test to compare the C-statistic of the CMS Standard Model to that from the CMS Hierarchical 
Model, in addition to the following measures of model accuracy: 

I. Net Reclassification Improvement (NRI) measured the proportion of patients whose predicted probability 
of readmission improved with reference to actual readmission status. We used two NRI statistics: (a) 
categorical NRI, which predicted readmission probabilities divided into 10 sequential categories ranging 
from 0-1, with improvement requiring a shift between categories; and (b) continuous NRI which is based on 
the proportions of patients with any improved predicted probability of readmission, regardless of the size 
of that improvement. 

II. Integrated Discrimination Improvement (IDI) measured the difference in the average improvement in 
predicted risks between the CMS Standard Model and the CMS Hierarchical Model.  
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APPENDIX-2 
Patient Inclusion and Exclusion Criteria 

ICD-9 Codes for Selecting Index Conditions 

1. Hospitalization for COPD was defined as (1) hospitalization with a primary ICD-9 code for COPD (491.21, 
491.22, 491.8, 491.9, 492.8, 493.20, 493.21, 493.22 and 496), or (2) primary ICD-9 codes of 518.81, 518.82, 
518.84 or 799.1 and secondary ICD-9 codes for COPD (491.21, 491.22, 493.21 and 493.22). 

2. Hospitalization for CHF was defined as hospitalization with a primary ICD-9 code for CHF (402.01, 402.01, 
402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93 or 428.xx) 

3. Hospitalization for THA/TKA was defined as hospitalization with a primary ICD-9 code for THA/TKA (81.51 and 
81.54). We included admissions only for elective total hip/knee arthroplasty, and those with non-elective were 
excluded. These included admissions with a diagnosis of a femur, hip, or pelvic fracture, those who received 
partial hip arthroplasty, revision or resurfacing procedures concurrently with hip/knee arthroplasty, those 
with malignant bone neoplasm, or with a procedure code for removal of implanted devices/prostheses. 

Inclusion and Exclusion Criteria 

For each index condition, we used the same inclusion and exclusion criteria used to develop the CMS models, but 
with the most recent years (2013-2014) provided by Medicare when we started the project. We used 100% of the 
30-day readmitted patients in 2013 and 2014 Medicare claims data, from which we extracted all patients that 
were admitted to an acute care hospital on or after July 2013-August 2014 with a principal diagnosis of the index 
condition, were 66 years of age or older, and were enrolled in both Medicare parts A and B fee-for-service plans 
in the 6 months before admission. Furthermore, we excluded patients who were transferred from other facilities, 
died during the hospitalization, or transferred to another acute care hospital. Similar to the CMS models, we 
selected the first admission for patients with multiple admissions during the study period, and did not use 
Medicare Part D (related to prescription medications).  

Next, we extracted 100% controls who were not readmitted for at least 90 days since discharge. CMS uses this 90-
day window of no re-admittance to ensure that the controls are substantially free of complications that result in 
readmission during this period [12, 13]. A small percentage (0.8%) of Medicare patients had “unknown race” for 
the Race attribute, so we grouped “unknown race” and “other race” and ensured that there was an equal number 
of them in the cases and control datasets. The low rate of missing data on race had too low a risk for bias to 
warrant a sensitivity analysis. The following flow charts describe the inclusion and exclusion criteria used to extract 
cases and controls for COPD, CHF, and THA/TKA, and the respective numbers of patients extracted at each step. 
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Patient Inclusion and Exclusion Criteria for COPD Training and Replication Datasets 
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Patient Inclusion and Exclusion Criteria for CHF Training and Replication Datasets 

 

 
  

The 1st CHF discharge Δ

between June 2013 and 
August 2014; aged 66 or older 

at admission N= 542,237 Not continuously enrolled in 
Medicare Parts A and B in the 
prior 6 months of admission 

N= 158,398 (29.21%)
N= 383,839

N= 303,988

N= 301,363

N= 298,493

N= 297,235

N= 296,005

In-hospital death or die 
within 90 days of discharge

N= 79,851 (20.80%)

Transferred to another acute 
care facility N= 2,625 (0.86%)

Not continuously enrolled in 
Part A in the 90 days post 

discharge N= 2,870 (0.95%)

Discharged against medical 
advice N= 1,258 (0.42%)

With a prior CHF admissions 
within 30 days 

N= 1,230 (0.41%)

N= 295,761

With a procedure code for 
LVAD or Heart transplantation 

during index admission or 6 
months prior to the index 

admission.
N= 244 (0.08%)

Cases(with an unplanned 
readmission within 30 days)

N= 51,573

Control (without any 
readmission within 90 days)

N= 186,935#

Matched case 
and control 
N= 103,100

(51,550 pairs*)

Randomly selected 
training dataset

N= 51,550
(25,775 pairs)

Randomly selected 
replication dataset

N= 51,550
(25,775 pairs)

Δ When a patient had more than 1 CHF admission during this time period, only the first one was 
selected.
# 57,253 patients were readmitted within 90 days and therefore removed from the control pool.
*Cases and controls were matched on age, gender, race/ethnicity, and Medicaid eligibility. There 
were 23 cases who could not be matched.

July 
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Patient Inclusion and Exclusion Criteria for THA/TKA Training and Replication Datasets 

 

 
 
 
  

The 1st THA/TKA discharge Δ

between June 2013 and 
August 2014; aged 66 or older 

at admission N= 553,849
Not continuously enrolled in 
Medicare Parts A and B in the 
prior 6 months of admission 

N= 180,464 (32.58%)
N=373,385

N=370,885

N=359,743

N=359,734

N=356,858

N=356,811

In-hospital death or die 
within 90 days of discharge

N= 2,500 (0.66%)

Having a qualifying elective 
primary THA/TKA procedure 
during the index admission

N= 11,142 (3.00%)

Transfer to another acute 
care facility

N= 9 (0.002%)

Not continuously enrolled in 
Part A in the 90 days post 

discharge
N=2,889 (0.79%)

Discharged against medical 
advice

N= 47 (0.01%)

N=356,772

With a prior THA/TKA 
admission within 30 days

N=21 (0.005%)

Cases (with an 
unplanned readmission 

within 30 days)
N= 16,520

Control (without any 
readmission within 90 

days)
N= #321,441

Matched case 
and control 
N= 32,996

(16,498 pairs*)

Randomly 
selected 
training 
dataset

N= 16,498
(8,249 pairs)

Randomly 
selected 

replication 
dataset

N= 16,498
(8,249 pairs)

Δ When a patient had more than 1 THA/TKA admission during this time period, only the first one 
was selected.
# 18,811 patients were readmitted within 90 days and therefore removed from the control pool.
* Cases and controls were matched on age, gender, race/ethnicity, number of procedures, type of 
procedure (THA or TKA), and Medicaid eligibility. There were 22 cases who could not be matched.

N=356,793

More than two THA/TKA 
procedure codes during the 

index hospitalization
N= 18 (0.005%)

July 
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APPENDIX-3 
Variable and Feature Selection 

COPD 

The initial set of comorbidities included 45 comorbidities generated from a union of the three comorbidity indices, 
plus 2 condition-specific comorbidities recommended by the clinicians, resulting in 47 comorbidities. The following 
feature-selection steps resulted in 30 comorbidities surviving, that were used for the modeling: 

1. Removed comorbidities with prevalence less than 1%, resulting in the following that were excluded, leaving 
44 comorbidities: 

Excluded Comorbidities Label 
1. RespDepend Respirator dependence/respiratory failure (V22 CC 82-83) 
2. Pancreatitis Chronic pancreatitis (V22 CC 34) 
3. HIV_AIDS HIV/AIDS 

 

2. Measured the OR of each comorbidity for readmission and excluded the following that were not significant 
(at the .05 level corrected for multiple testing with Bonferroni), leaving 40 comorbidities: 

Excluded Comorbidities Label 
1. Neoplasm_other Other digestive and urinary neoplasms (V22 CC 14) 

2. Lymphatic Lymphatic, head and neck, brain, and other major cancers; breast, colorectal 
and other cancers and tumors; other respiratory and heart neoplasms 

3. Diabetes_wo_comp Diabetes without complications 

4. Rheumatic Connective Tissue Disease-Rheumatic Disease 

 

3. Conducted a two-way co-occurrence test resulting in none being excluded.  

4. Conducted a two-way directionality test resulting in the following that were excluded: 

Excluded Comorbidities Label 
1. Anxiety Anxiety disorders (V22 CC 62) 
2. Brain_disorder Dementia or other specified brain disorders 
3. Liver_disease Liver disease 
4. LungCa Lung and other severe cancers (V22 CC 9) 
5. Metastatic_cancer Metastatic cancer or acute leukemia 
6. Vertebral_fract Vertebral fractures without spinal cord injury (V22 CC 169) 

 
5. Repeated steps 2-4 in the replication dataset resulting in 30 comorbidities shown below: 

Final Comorbidities Label 
1. Anemias Iron deficiency or other/unspecified anemias and blood disease 
2. Apnea Sleep apnea 
3. Arrhythmias Specified arrhythmias and other heart rhythm disorders 
4. CardioRespShock Cardio-respiratory failure and shock (V22 CC 84) 
5. Cellulitis Cellulitis, local skin infection (V22 CC 164) 
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6. Coronary_angina Coronary atherosclerosis or angina (V22 CC 88-89) 
7. Coronary_syndrome Acute coronary syndrome 
8. Depression Depression (V22 CC 61) 
9. Diabetes_w_comp Diabetes with complications 
10. Endocrine_disorder Endocrine and metabolic disorders; disorders of fluid/electrolyte/acidbase 

balance 
11. GI_other Other gastrointestinal disorders (V22 CC 38) 
12. HD_other Other and unspecified heart disease (V22 CC 98) 
13. Heart_failure Congestive heart failure 
14. Hemiplegia Hemiplegia, paraplegia, paralysis, functional disability 
15. Hypertension_comp Hypertension complicated 
16. Hypertension_Uncomp Hypertension uncomplicated 
17. Infection Severe infection; other infectious diseases (V22 CC 3-7) 
18. Malnutrition Protein-calorie malnutrition / weight loss 
19. Morbid_OB Morbid obesity; other endocrine/metabolic/nutritional disorders 
20. MV History of mechanical ventilation 
21. Neurological_Disorders Other Neurological Disorders 
22. Neuropathy Polyneuropathy / other neuropathies (V22 CC 75,81) 
23. Peptic_ulcer Peptic ulcer, hemorrhage, other specified gastrointestinal disorders 
24. Pneu Pneumonia (V22 CC 114-116) 
25. psych_other Other psychiatric disorders (V22 CC 63) 
26. Psychosis Drug/alcohol psychosis or dependence 
27. Renal_failure Renal failure 
28. Ulcer Decubitus ulcer or chronic skin ulcer (V22 CC 157-161) 
29. Valvular_Disease Valvular Disease 
30. Vascular Vascular or circulatory disease 

 
CHF 

The initial set of comorbidities included 42 comorbidities generated from a union of the three comorbidity indices, 
plus 1 condition-specific comorbidities recommended by the clinicians, resulting in 43 comorbidities. The following 
feature-selection steps resulted in 37 comorbidities, that were used for the modeling: 

1. Removed comorbidities with prevalence less than 1%, resulting in the following that were excluded, leaving 
42 comorbidities: 

Excluded Comorbidities Label 

1. HIV_AIDS HIV/AIDS 
 
2. Measured the OR of each comorbidity for readmission and excluded the following that were not significant 

(at the .05 level corrected for multiple testing with Bonferroni), leaving 40 comorbidities that had significant 
associations with readmission: 

Excluded Comorbidities Label 
1. Metastatic_cancer Metastatic cancer or acute leukemia 
2. Diabetes_wo_comp Diabetes Mellitus without Complication 

 
3. Conducted a two-way co-occurrence test resulting in none being excluded.  
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4. Conducted a two-way directionality test, resulting in the following that were excluded leaving 39 variables 
that were involved in one or more significant direction tests: 

Excluded Comorbidities Label 
1. Rheumatic Rheumatic Disease 

 
5. Repeated steps 2-4 in the replication dataset resulting in 37 comorbidities shown below: 

Final Comorbidities Label 
1. Coronary_angina Coronary atherosclerosis or angina (CC 88-89) 
2. CABG History of coronary artery bypass graft (CABG) surgery 
3. COPD Chronic Obstructive Pulmonary Disease (CC 111) 
4. CardioRespShock Cardio-respiratory failure and shock 
5. Depression Depression (CC 61) 
6. Dialysis Dialysis status (CC 134) 
7. GI_other Other gastrointestinal disorders (CC 38) 
8. Hypertension_Comp Hypertension Complicated 
9. Hypertension_Uncomp Hypertension Uncomplicated 
10. Hypothyroidism Hypothyroidism 
11. Nephritis Nephritis (CC 141) 
12. Obesity Obesity 
13. Neuro_disorders Other Neurological Disorders 
14. HD_other Other and unspecified heart disease (CC 98) 
15. Psych_other Other psychiatric disorders (CC 63) 
16. Urinary_tract_disorder Other urinary tract disorders (CC 145) 
17. Pneu Pneumonia (CC 114-116) 
18. Renal_failure Renal failure (CC 135-140) 
19. Ulcer Decubitus ulcer or chronic skin ulcer (CC 157-161) 
20. Coronary_syndrome Acute coronary syndrome 
21. Psychosis Drug/alcohol abuse/dependence/psychosis 
22. Anemias Iron deficiency or other/unspecified anemias and blood disease 
23. Arrhythmia Specified arrhythmias and other heart rhythm disorders 
24. CHF Congestive heart failure 
25. Cancer Cancer 
26. Stroke Stroke 
27. Brain_disorders Dementia or other specified brain disorders 
28. Diabetes_w_comp Diabetes Mellitus Complicated 
29. Endocrine_disorders Other significant endocrine and metabolic disorders; disorders of 

fluid/electrolyte/acid base balance 
30. Liver_disease Liver or biliary disease 
31. Malnutrition Protein-calorie malnutrition 
32. Hemiplegia Hemiplegia, paraplegia, paralysis, functional disability  
33. Peptic_ulcer Peptic ulcer, hemorrhage, other specified gastrointestinal disorders 
34. Vascular Vascular or circulatory disease 
35. Psychiatric_disorders Major psychiatric disorders 
36. Hematological Severe hematological disorders 
37. Valvular_disease Valvular and Rheumatic Heart Disease 
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TKA/THA 

The initial set of comorbidities included 39 comorbidities generated from a union of the three comorbidity indices, 
plus 2 condition-specific comorbidities recommended by the clinicians, resulting in 41 comorbidities. The following 
feature-selection steps resulted in 11 comorbidities, that were used for the modeling: 

1. Removed comorbidities with prevalence less than 1%, resulting in the following that were excluded, leaving 
30 comorbidities: 

Excluded Comorbidities Label 
1. Other_Hip_Cong_Def Other congenital deformity of hip (joint) 
2. Post_Trau_Osteoarthritis Post traumatic osteoarthritis 
3. Dialysis_status Dialysis status (CC 134) 
4. Blood_Loss_Anemia Blood Loss Anemia 
5. Alcohol_Abuse Alcohol Abuse 
6. Drug_Abuse Drug Abuse 
7. HIV_AIDS HIV/AIDS 
8. Metastatic_cancer Metastatic cancer or acute leukemia 
9. Hemiplegia Hemiplegia, paraplegia, paralysis, functional disability 
10. Liver_disease Liver disease 
11. Peptic_ulcer Peptic Ulcer Disease 

 
2. Measured the OR of each comorbidity for readmission (at the .05 level corrected for multiple testing with 

Bonferroni), leaving all 30 comorbidities that had significant associations with readmission 

3. Conducted a two-way co-occurrence test resulting in none being excluded.  

4. Conducted a two-way directionality test, resulting in the following that were excluded leaving 19 variables 
that were involved in one or more significant direction tests: 

Excluded Comorbidities Label 
1. Brain_disorders Dementia or other specified brain disorders 
2. Cancer Cancer 
3. Cellulitis Cellulitis, local skin infection (CC 164) 
4. Deficiency_Anemia Deficiency Anemia 
5. Diab_wo_comp Diabetes mellitus 
6. Hematological Severe hematological disorders 
7. Malnutrition Protein-calorie malnutrition 
8. Neuro_disorders Other Neurological Disorders 
9. Stroke Stroke 
10. Ulcer Decubitus ulcer or chronic skin ulcer (CC 157-161) 
11. Valvular_disease Valvular Disease 

 
5. Repeated steps 2 through 4 in the replicate dataset resulting in 11 comorbidities shown below: 

Final Comorbidities Label 
1. Arrhythmia Specified arrhythmias and other heart rhythm disorders 
2. CHF Congestive heart failure 
3. COPD Chronic Obstructive Pulmonary Disease 
4. Coronary_angina Coronary atherosclerosis or angina 
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5. Endocrine_disorders Other significant endocrine and metabolic disorders; 
disorders of fluid/electrolyte/acidbase balance 

6. Hypertension_Comp Hypertension complicated 
7. Hypertension_Uncomp Hypertension Uncomplicated 
8. Major_Symp_Abnormalities Major symptoms, abnormalities (CC 178) 
9. Morbid_OB Morbidity obesity 
10. Psychiatric_disorders Major psychiatric disorders 
11. Renal_failure Renal failure (CC 135-140) 
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APPENDIX-4 
Classification Modeling 

Multinomial Logistic Regression Coefficients 

COPD 
 

Bicluster-2 Bicluster-3 Bicluster-4 
(Intercept) 9.478442033 -15.60229477 -20.58911845 
MV 15.37003888 31.79526753 174.7625575 
Apnea 14.73866236 30.13129952 174.8192981 
Infection 13.07141525 30.94167533 175.7976241 
GI_other -138.0330506 -122.1606071 -141.8251611 
Depression 11.44920157 194.57748 15.50399067 
Psych_other 6.633772193 193.1120262 15.01395622 
Neuropathy 4.22511563 191.7033722 11.82453364 
CardioRespShock 15.935738 30.78720915 177.4810561 
Coronary_angina -140.3504037 -121.6295958 -139.1018879 
HD_other 12.65500876 22.79910161 173.1189166 
Pneu 12.40491598 192.8944261 14.40776138 
Ulcer 25.40389722 36.65033091 174.4945337 
Cellulitis 10.19338572 25.35264195 174.1779677 
Valvular_Disease 179.470279 29.79933499 12.07687072 
Hypertension_Uncomp -144.0822947 -135.252917 -149.1763872 
Hypertension_comp 169.9103199 9.909139715 -15.01176101 
Neurological_Disorders 11.98793007 27.3962048 174.152075 
Diabetes_w_comp 179.9458627 32.79407674 10.94569788 
Malnutrition 2.619696434 190.2553747 10.57634814 
Morbid_OB -144.7853066 -126.4723011 -150.75158 
Endocrine_disorder 18.25087715 30.17692505 173.8734803 
Peptic_ulcer 14.57401571 33.3138924 174.6959617 
Anemias 180.37182 32.01649034 11.85268168 
Psychosis 0.808153461 190.136092 8.470673123 
Hemiplegia 22.05837142 36.91425527 173.7515174 
Heart_failure 179.4801884 29.61286201 6.090102717 
Coronary_syndrome 17.65746601 31.18056088 177.0738381 
Arrhythmias -140.5676174 -122.0347651 -139.1832525 
Vascular 12.82066036 29.47640378 174.8331118 
Renal_failure 181.4635165 35.07327525 9.594086268 
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CHF 
 

Bicluster-2 Bicluster-3 Bicluster-4 
(Intercept) 4.228411649 3.221587055 4.404809652 
CABG -16.88332455 -16.46705046 -16.90410559 
GI_other 1.608383181 18.42437593 2.537152385 
Depression 1.744237257 18.57833534 2.132954431 
Psych_other 1.565344584 18.89075678 1.851558983 
CardioRespShock 1.899086259 2.614460813 20.82096349 
Coronary_angina -16.52943558 -16.50069914 -16.28824682 
HD_other 1.630347764 1.900983651 20.69135601 
COPD 2.208517874 18.8515632 2.812111665 
Pneu 1.368125374 1.230710494 20.35722646 
Dialysis_status 21.64550697 7.573268069 6.356824836 
Renal_failure 16.64635654 3.207105993 2.875810167 
Nephritis 24.05426922 11.91409993 8.430710694 
Other_uri_tract_disorders 17.28359996 3.468138309 2.68316497 
Ulcer 18.62035155 4.612512833 4.621717632 
Hypertension_Uncomp -16.17798732 -17.43341906 -17.17899564 
Hypertension_Comp 18.21349274 2.666169079 2.719974312 
Neuro_Disorders 3.174148638 3.426243554 21.7581539 
Hypothyroidism 1.532038616 18.6465425 2.742755582 
Obesity 16.77179346 3.477665718 1.851913596 
Cancer 1.825845108 18.78533294 2.280566193 
Diabetes_w_comp 16.97604199 3.131645807 2.25066864 
Malnutrition 1.654276729 2.26075743 20.16266194 
Endocrine_disorder 16.95913583 3.414523477 2.762293049 
Liver_disease 0.509273487 1.346254075 19.37619302 
Peptic_ulcer 1.882489155 2.868064904 20.99453939 
Hematological 1.215479083 1.623296079 20.18186306 
Anemias 16.84448889 2.650113464 2.132489404 
Brain_disorders 1.214570676 19.0044895 2.119832832 
Psychosis 1.612149611 18.59666356 2.038965354 
Psychiatric_disorders 3.533134983 19.8653935 3.164125739 
Hemiplegia 2.634196819 3.196095963 21.40555332 
CHF -16.83591928 -17.14949663 -16.56386079 
Coronary_syndrome 1.423033472 2.813198347 20.7510375 
Valvular_disease -16.84402957 -16.55559304 -16.67291059 
Arrhythmia -17.41765184 -17.22878444 -17.44203684 
Stroke 1.248759632 1.486455436 19.78749343 
Vascular 0.908845182 1.356092137 19.93213936 
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TKA/THA 
 

Bicluster-2 Bicluster-3 Bicluster-4 Bicluster-5 Bicluster-6 Bicluster-7 
(Intercept) -645.18 19.65 -365.25 -1.65 154.42 162.00 
Renal_failure 568.98 529.82 1385.51 811.46 748.18 514.28 
Major_Symp_Abnormalities 338.07 756.45 494.57 542.41 548.90 529.61 
Hypertension_Uncomp -863.03 -675.02 -695.36 -655.72 -711.68 -668.86 
Hypertension_Comp -380.60 -814.06 468.07 -52.64 -121.56 -260.13 
Morbid_OB 229.35 294.47 409.00 492.63 824.96 492.19 
Endocrine_disorders 426.79 310.04 1280.41 702.34 612.09 439.19 
Psychiatric_disorders -12.78 22.00 196.72 -634.96 -258.19 944.17 
CHF 881.66 179.53 67.03 -113.47 -132.62 46.56 
Coronary_angina 865.33 94.72 1.15 -184.54 -119.69 -108.41 
Arrhythmia 936.49 95.61 77.56 -126.56 -133.83 -163.73 
COPD 360.05 240.86 508.18 990.19 358.05 655.49 

Subgroup Risk 

COPD. The COPD dataset included 186041 total patients, of which 29026 were cases (15.6%). The following are 
the percentage of cases in each bicluster (subgroup risk) after classification of the 100% cases and 100% controls 
by the classification model, and then juxtaposed with the visualization of the respective patient subgroups: 

Bicluster Total Patients Cases Percent CI95 (Min) CI95 (Max) 
1 76296 9673 12.7% 12.4 12.9 
2 43477 7731 17.8% 17.4 18.1 
3 37174 5906 15.9% 15.5 16.3 
4 29094 5716 19.6% 19.2 20.1 

 
CHF. The CHF dataset included 295761 total patients, of which 51573 were cases (17.4%). The following are the 
percentage of cases in each bicluster (subgroup risk) after classification of the 100% cases and 100% controls into 
subgroups by the classification model, and juxtaposed with the visualization of the respective patient subgroups: 

Bicluster Total Patients Cases Percent CI95 (Min) CI95 (Max) 
1 9673 76296 12.7% 12.4 12.9 
2 7731 43477 17.8% 17.4 18.1 
3 5906 37174 15.9% 15.5 16.3 
4 5716 29094 19.6% 19.2 20.1 

 

THA/TKA. The TKA/THA dataset included 356772 total patients, of which 16520 were cases (4.6%). The following 
are the percentage of cases in each bicluster (subgroup risk) after classification of 100% cases and 100% controls 
by the classification model, and then juxtaposed with the visualization of the respective patient subgroups: 

Bicluster Total Patients Cases Percent CI95 (Min) CI95 (Max) 
1 2157 57045 3.8% 3.6 3.9 
2 2317 33535 6.9% 6.6 7.2 
3 2255 55260 4.1% 3.9 4.2 
4 2135 29475 7.2% 7 7.5 
5 2003 30856 6.5% 6.2 6.8 
6 1945 43185 4.5% 4.3 4.7 
7 3708 107416 3.5% 3.3 3.6 
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APPENDIX-5 
Predictive Modeling 

COPD 

Discrimination. The following are box plots of risk prediction by readmission status for the Standard Model and 
the Hierarchical Model.  

Calibration. The following are calibration plots showing logistic regressions relating readmission status to the 
logistic quantile of the predicted probability of readmission yield regression lines with specified intercept and 
slope (the ideal regression line would have intercept=0 and slope=1, which is shown shaded for reference).  The 
histograms at the bottom of each graph reflect the frequency of modeled data, horizontal axes show predicted 
probability, vertical axes show actual probability, and the axes of all figures are constrained to range from 0 to .5. 

Coefficients. Logistic regression coefficients relating readmission status to the logistic quantile of the predicted 
probability of readmission for each model, with standard errors.  

  

 

Standard Model Hierarchica l Model

 

Standard Model Hierarchica l Model

 Intercept (Standard Error) Slope (Standard Error) 
Standard Model 0.051 (0.049)  1.015 (0.029) 
Hierarchical Model 0.051 (0.049) 1.015 (0.029) 
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Model Coefficients for Standard Model (COPD) 

(Intercept) -2.136379215 
sex2 -0.018974047 
AgeAdm -0.006994626 
RACE51 0.295066886 
RACE52 0.341204445 
RACE53 0.171206943 
RACE55 0.273604446 
MV 0.117480441 
Apnea -0.012262741 
Infection 0.026450984 
GI_other 0.087222647 
Depression 0.080231389 
Psych_other 0.082623979 
Neuropathy 0.069716803 
CardioRespShock 0.228794257 
Coronary_angina 0.048182744 
HD_other 0.015511356 
Pneu 0.057607182 
Ulcer 0.091465998 
Cellulitis 0.095049297 
Valvular_Disease 0.078134984 
Hypertension_Uncomp 0.087684427 
Hypertension_comp 0.143660314 
Neurological_Disorders 0.075023091 
Diabetes_w_comp 0.077946469 
Malnutrition 0.095555424 
Morbid_OB -0.056028398 
Endocrine_disorder 0.137464197 
Peptic_ulcer 0.114498859 
Anemias 0.1663521 
Psychosis 0.13049134 
Hemiplegia 0.113401107 
Heart_failure 0.23205475 
Coronary_syndrome 0.110911596 
Arrhythmias 0.188301605 
Vascular 0.090867219 
Renal_failure 0.11154648 
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Model Coefficients for Hierarchical Model (COPD) 

(Intercept) -2.170381336 
sex2 -0.018743606 
AgeAdm -0.00702047 
RACE51 0.29629354 
RACE52 0.342336002 
RACE53 0.172316947 
RACE55 0.275083731 
MV 0.112639359 
Apnea -0.017323465 
Infection 0.02133693 
GI_other 0.095383617 
Depression 0.072418589 
Psych_other 0.075096553 
Neuropathy 0.063679331 
CardioRespShock 0.224665848 
Coronary_angina 0.056139938 
HD_other 0.011352801 
Pneu 0.052053617 
Ulcer 0.089352719 
Cellulitis 0.091640641 
Valvular_Disease 0.074608627 
Hypertension_Uncomp 0.100372891 
Hypertension_comp 0.143513998 
Neurological_Disorders 0.070642457 
Diabetes_w_comp 0.076044197 
Malnutrition 0.089847317 
Morbid_OB -0.045581819 
Endocrine_disorder 0.132138897 
Peptic_ulcer 0.1109747 
Anemias 0.162850779 
Psychosis 0.124238457 
Hemiplegia 0.109511728 
Heart_failure 0.228425309 
Coronary_syndrome 0.106258 
Arrhythmias 0.19629312 
Vascular 0.085350053 
Renal_failure 0.106363156 
PredCluster2 0.042362651 
PredCluster3 0.05007554 
PredCluster4 0.052171757 
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CMS Models (CMS Standard Model and CMS Hierarchical Model) for COPD  

C-Statistics. The following table shows C-statistics for the CMS Standard Model and the CMS Hierarchical Model.  

 C-Statistic CI95 (Min) CI95 (Max) 
CMS Standard Model 0.622 0.615 0.629 
CMS Hierarchical Model 0.622 0.615 0.629 

 

The following table shows C-statistics for the CMS Standard Model used to predict readmission for patients in 
each bicluster separately. 

 C-Statistic CI95 (Min) CI95 (Max) 
Bicluster 1 0.587 0.575 0.599 
Bicluster 2 0.611 0.598 0.625 
Bicluster 3 0.620 0.604 0.636 
Bicluster 4 0.638 0.622 0.654 
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Model Coefficients for CMS Standard Model (COPD) [14] 

(Intercept) -2.188594326 
V1 -0.004884898 
V2 0.173933436 
V3 -0.004371274 
V4 0.014983286 
V5 0.158622714 
V6 0.197266795 
V7 0.082435098 
V8 -0.042473792 
V9 0.075588823 
V10 0.089748913 
V11 -0.042615016 
V12 0.146684496 
V13 0.381543598 
V14 0.085139806 
V15 0.075183842 
V16 0.114503012 
V17 0.16450527 
V18 -0.034979967 
V19 0.198698509 
V20 0.100948646 
V21 0.069808662 
V22 0.023636931 
V23 0.069163157 
V24 0.111452974 
V25 0.064113847 
V26 -0.039814801 
V27 0.173239512 
V28 0.212336424 
V29 0.066160516 
V30 0.109441845 
V31 0.190317991 
V32 0.043561901 
V33 0.015612425 
V34 0.074089074 
V35 0.069126003 
V36 0.036551409 
V37 0.174960292 
V38 0.102815442 
V39 0.082962429 
V40 0.127491216 
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Model Coefficients for CMS Hierarchical Model (COPD) 

(Intercept) -2.222560918 
V1 -0.005037176 
V2 0.164652122 
V3 -0.011571161 
V4 0.007278066 
V5 0.159430966 
V6 0.197452639 
V7 0.083353046 
V8 -0.042706545 
V9 0.071953525 
V10 0.098535986 
V11 -0.030172663 
V12 0.143262108 
V13 0.382813245 
V14 0.081387202 
V15 0.086119119 
V16 0.11252111 
V17 0.150832777 
V18 -0.035543286 
V19 0.207400734 
V20 0.10019542 
V21 0.07625943 
V22 0.023819484 
V23 0.076936963 
V24 0.105746192 
V25 0.07104448 
V26 -0.033998175 
V27 0.168407005 
V28 0.202506355 
V29 0.063304577 
V30 0.116819091 
V31 0.195860925 
V32 0.037067697 
V33 0.014270778 
V34 0.066636971 
V35 0.069127715 
V36 0.043952171 
V37 0.129843017 
V38 0.099065392 
V39 0.078360538 
V40 0.127042521 
PredCluster2 0.098236779 
PredCluster3 0.014085719 
PredCluster4 0.072649738 
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CHF 

Discrimination. The following are box plots of risk prediction by readmission status for the Standard Model and 
the Hierarchical Model.  

Calibration. The following are calibration plots showing logistic regressions relating readmission status to the 
logistic quantile of the predicted probability of readmission yield regression lines with specified intercept and 
slope (the ideal regression line would have intercept=0 and slope=1, which is shown shaded for reference).  The 
histograms at the bottom of each graph reflect the frequency of modeled data, horizontal axes show predicted 
probability, vertical axes show actual probability, and the axes of all figures are constrained to range from 0 to .5. 

Coefficients. The following are the logistic regression coefficients relating readmission status to the logistic 
quantile of the predicted probability of readmission for each model, with standard errors.  

  

 

Standard Model Hierarchical Model

 

Standard Model Hierarchical Model

 Intercept (Standard Error) Slope (Standard Error) 
Standard Model .009 (0.042) 1.013 (0.027) 
Hierarchical Model 0.008 (0.042) 1.013 (0.027) 
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Model Coefficients for Standard Model (CHF) 

(Intercept) -1.475389967 
sex2 0.074653204 
AgeAdm -0.008514725 
RACE51 -0.036053802 
RACE52 0.040134152 
RACE53 -0.079761067 
RACE55 0.072722149 
CABG 0.030894001 
GI_other 0.056464897 
Depression 0.025005144 
Psych_other 0.045337378 
CardioRespShock 0.048277891 
Coronary_angina 0.055087252 
HD_other 0.080761149 
COPD 0.149282237 
Pneu 0.081351108 
Dialysis_status 0.173258929 
Renal_failure 0.140937411 
Nephritis 0.012307007 
Other_uri_tract_disorders 0.065712737 
Ulcer 0.108579462 
Hypertension_Uncomp 0.041031817 
Hypertension_Comp 0.105063607 
Neuro_Disorders 0.032623414 
Hypothyroidism 0.024951326 
Obesity 0.026406255 
Cancer 0.028160953 
Diabetes_w_comp 0.085693489 
Malnutrition 0.038386944 
Endocrine_disorder 0.093422704 
Liver_disease 0.051990801 
Peptic_ulcer 0.053199182 
Hematological 0.045559899 
Anemias 0.123037859 
Brain_disorders -0.00749815 
Psychosis 0.093703137 
Psychiatric_disorders 0.072868486 
Hemiplegia 0.057172104 
CHF 0.106985057 
Coronary_syndrome 0.096953224 
Valvular_disease 0.018311001 
Arrhytmia 0.00786506 
Stroke -0.012731604 
Vascular 0.061193164 
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Model Coefficients for Hierarchical Model (CHF) 

(Intercept) -1.449848979 
sex2 0.074706479 
AgeAdm -0.008504158 
RACE51 -0.035610416 
RACE52 0.04010896 
RACE53 -0.079311376 
RACE55 0.073284464 
CABG 0.024674808 
GI_other 0.061045731 
Depression 0.029184869 
Psych_other 0.049224598 
CardioRespShock 0.057426429 
Coronary_angina 0.048052865 
HD_other 0.089668573 
COPD 0.154094768 
Pneu 0.089524374 
Dialysis_status 0.164539306 
Renal_failure 0.139877836 
Nephritis 0.004910838 
Other_uri_tract_disorders 0.062840363 
Ulcer 0.105143831 
Hypertension_Uncomp 0.032829812 
Hypertension_Comp 0.100497599 
Neuro_Disorders 0.040022189 
Hypothyroidism 0.029106384 
Obesity 0.022538905 
Cancer 0.031985591 
Diabetes_w_comp 0.082993693 
Malnutrition 0.046167614 
Endocrine_disorder 0.091753086 
Liver_disease 0.060002993 
Peptic_ulcer 0.061215338 
Hematological 0.054764671 
Anemias 0.12180882 
Brain_disorders -0.003163932 
Psychosis 0.097984879 
Psychiatric_disorders 0.075834723 
Hemiplegia 0.065565413 
CHF 0.10067029 
Coronary_syndrome 0.107487626 
Valvular_disease 0.012129124 
Arrhytmia 0.001138884 
Stroke -0.003992176 
Vascular 0.069322294 
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PredCluster2 -0.013499297 
PredCluster3 -0.039541727 
PredCluster4 -0.057008659 
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CMS Models (CMS Standard Model and CMS Hierarchical Model) for CHF  

C-Statistics. The following table shows C-statistics for the CMS Standard Model and the CMS Hierarchical Model.  

 C-Statistic CI95 (Min) CI95 (Max) 
CMS Standard Model 0.602 0.597 0.608 
CMS Hierarchical Model 0.602 0.597 0.608 

 

The following table shows C-statistics for the CMS Standard Model used to predict readmission for patients in 
each bicluster separately. 

 C-Statistic CI95 (Min) CI95 (Max) 
Bicluster 1 0.573 0.563 0.583 
Bicluster 2 0.590 0.579 0.600 
Bicluster 3 0.603 0.591 0.614 
Bicluster 4 0.614 0.603 0.626 
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Model Coefficients for CMS Standard Model (CHF) [15] 

(Intercept) -2.062052423 
V1 -0.008807384 
V2 0.08069205 
V3 0.026511089 
V4 0.059292935 
V5 0.021486724 
V6 0.083551993 
V7 0.043335937 
V8 0.110433094 
V9 0.050644153 
V10 0.055051891 
V11 0.063148831 
V12 0.046434593 
V13 0.130099365 
V14 -0.001401658 
V15 0.096204102 
V16 0.074628886 
V17 0.02554376 
V18 0.045885408 
V19 0.072014832 
V20 0.053421316 
V21 0.124207717 
V22 0.105487347 
V23 0.051450424 
V24 0.021372813 
V25 0.01075549 
V26 0.086498498 
V27 -0.001335018 
V28 0.070577466 
V29 0.142129454 
V30 0.046599464 
V31 0.042236327 
V32 0.07795193 
V33 0.206227519 
V34 0.170726009 
V35 0.05424802 
V36 0.071097061 
V37 0.117969103 
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Model Coefficients for CMS Hierarchical Model (CHF) 

(Intercept) -2.050961429 
V1 -0.008696382 
V2 0.080417206 
V3 0.024568048 
V4 0.060401182 
V5 0.026470131 
V6 0.07824069 
V7 0.055357171 
V8 0.100353589 
V9 0.061970384 
V10 0.066594667 
V11 0.068254076 
V12 0.058624423 
V13 0.120852698 
V14 0.005596376 
V15 0.102047312 
V16 0.079661612 
V17 0.031011406 
V18 0.050815364 
V19 0.084441452 
V20 0.065024208 
V21 0.119511648 
V22 0.11654221 
V23 0.047832743 
V24 0.0189412 
V25 0.007449149 
V26 0.097154811 
V27 0.009679744 
V28 0.079037213 
V29 0.147713008 
V30 0.04662239 
V31 0.041108317 
V32 0.088384596 
V33 0.190553921 
V34 0.160246633 
V35 0.035498901 
V36 0.061096207 
V37 0.106604226 
PredCluster2 0.028721208 
PredCluster3 -0.029432347 
PredCluster4 -0.048839832 
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TKA/THA 

Discrimination. The following are box plots of risk prediction by readmission status for the Standard Model and 
the Hierarchical Model.  

Calibration. The following are calibration plots showing logistic regressions relating readmission status to the 
logistic quantile of the predicted probability of readmission yield regression lines with specified intercept and 
slope (the ideal regression line would have intercept=0 and slope=1, which is shown shaded for reference).  The 
histograms at the bottom of each graph reflect the frequency of modeled data, horizontal axes show predicted 
probability, vertical axes show actual probability, and the axes of all figures are constrained to range from 0 to .5. 

Coefficients. The following are logistic regression coefficients relating readmission status to the logistic quantile 
of the predicted probability of readmission for each model, with standard errors.  

 
  

 

Standard Model Hierarchical Model

 

Standard Model Hierarchical Model

 Intercept (Standard Error) Slope (Standard Error) 
Standard Model 0.066 (0.092) 1.015 (0.031) 
Hierarchical Model 0.072 (0.092) 1.017 (0.031) 
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Model Coefficients for Standard Model (TKA/THA) 

(Intercept) -6.263520554 
sex2 -0.156977542 
AgeAdm 0.037561114 
RACE51 0.107946335 
RACE52 0.385560747 
RACE53 0.083620721 
RACE55 0.103221123 
Renal_failure 0.367756519 
Major_Symp_Abnormalities 0.173001919 
Hypertension_Uncomp 0.115321908 
Hypertension_Comp 0.034487102 
Morbid_OB 0.1284828 
Endocrine_disorders 0.221828594 
Psychiatric_disorders 0.321401406 
CHF 0.21488135 
Coronary_angina 0.263264479 
Arrhytmia 0.24838679 
COPD 0.389660791 
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Model Coefficients for Hierarchical Model (TKA/THA) 

(Intercept) -6.257678633 
sex2 -0.156625896 
AgeAdm 0.037256943 
RACE51 0.104795822 
RACE52 0.38085003 
RACE53 0.080648574 
RACE55 0.100025632 
Renal_failure 0.326415209 
Major_Symp_Abnormalities 0.143870143 
Hypertension_Uncomp 0.109878666 
Hypertension_Comp 0.028345431 
Morbid_OB 0.068228389 
Endocrine_disorders 0.209295683 
Psychiatric_disorders 0.439980871 
CHF 0.241863504 
Coronary_angina 0.242997744 
Arrhytmia 0.236970594 
COPD 0.294032113 
PredCluster2 0.101832731 
PredCluster3 0.060642002 
PredCluster4 0.117407922 
PredCluster5 0.201783265 
PredCluster6 0.14290807 
PredCluster7 -0.0369165 
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CMS Models (CMS Standard Model and CMS Hierarchical Model) for TKA/THA  

C-Statistics. The following table shows C-statistics for the CMS Standard Model and the CMS Hierarchical Model.  

 C-Statistic CI95 (Min) CI95 (Max) 
CMS Standard Model 0.648 0.640 0.657 
CMS Hierarchical Model 0.648 0.640 0.657 

 

The following table shows C-statistics for the CMS Standard Model used to predict readmission for patients in 
each bicluster separately. 

 C-Statistic CI95 (Min) CI95 (Max) 
Bicluster 1 0.585 0.561 0.609 
Bicluster 2 0.632 0.609 0.655 
Bicluster 3 0.617 0.594 0.641 
Bicluster 4 0.630 0.606 0.653 
Bicluster 5 0.608 0.583 0.632 
Bicluster 6 0.589 0.562 0.615 
Bicluster 7 0.640 0.621 0.659 
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Model Coefficients for CMS Standard Model (TKA/THA) [16] 

(Intercept) -4.007625537 
Var1 0.036039292 
Var2 -0.149437339 
Var3 0.088157516 
Var4 0.252326647 
Var5 -0.255229777 
Var6 0.234030925 
Var7 0.131248955 
Var8 0.118415513 
Var9 -0.014234681 
Var10 0.158442117 
Var11 0.186149829 
Var12 0.10822119 
Var13 0.120553114 
Var14 0.213179137 
Var15 0.166404922 
Var16 0.244882944 
Var17 0.260963406 
Var18 0.228775313 
Var19 0.099773803 
Var20 0.167375189 
Var21 0.236389437 
Var22 0.08572084 
Var23 0.22805813 
Var24 0.092669018 
Var25 0.099767352 
Var26 0.363700358 
Var27 0.038962561 
Var28 0.582409201 
Var29 0.317306501 
Var30 0.103490531 
Var31 -0.001329201 
Var32 0.026795269 
Var33 0.150796704 
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Model Coefficients for CMS Hierarchical Model (TKA/THA) 

(Intercept) -4.0316433 
Var1 0.035679265 
Var2 -0.148849333 
Var3 0.08807725 
Var4 0.25290998 
Var5 -0.257380043 
Var6 0.241117802 
Var7 0.132427427 
Var8 0.115796146 
Var9 -0.014769398 
Var10 0.15814836 
Var11 0.187159646 
Var12 0.035368612 
Var13 0.120886777 
Var14 0.211303719 
Var15 0.170049309 
Var16 0.245655958 
Var17 0.387470462 
Var18 0.234387939 
Var19 0.102192659 
Var20 0.187162267 
Var21 0.20830413 
Var22 0.084196245 
Var23 0.206829049 
Var24 0.096990789 
Var25 0.103278456 
Var26 0.256166878 
Var27 0.069134573 
Var28 0.601609967 
Var29 0.294460582 
Var30 0.109616297 
Var31 0.003492241 
Var32 0.030762491 
Var33 0.117221489 
PredCluster2 0.132189893 
PredCluster3 0.074260901 
PredCluster4 0.096335076 
PredCluster5 0.225685704 
PredCluster6 0.166772439 
PredCluster7 -0.034196246 
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