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Abstract: Host-virus associations have co-evolved under ecological and evolutionary selection 77 

pressures that shape cross-species transmission and spillover to humans. Observed virus-host 78 

associations provide relevant context for newly discovered wildlife viruses to assess knowledge 79 

gaps in host range and estimate pathways for potential human infection. Using models to predict 80 

virus-host networks, we predicted the likelihood of humans as host for 513 newly discovered 81 

viruses detected by large scale wildlife surveillance at high-risk animal-human interfaces in 82 

Africa, Asia, and Latin America. Predictions indicated that novel coronaviruses are likely to 83 

infect a greater number of host species than viruses from other families. Our models further 84 

characterize novel viruses through prioritization scores and directly inform surveillance targets to 85 

identify host ranges for newly discovered viruses. 86 

One Sentence Summary: Potential host range and spillover risk for novel viruses can be 87 

predicted using a network informed by known virus-host associations.  88 

mailto:pspandit@ucdavis.edu
mailto:ckjohnson@ucdavis.edu


 

 

4 

 

Main  89 

Identifying zoonotic virus emergence events at the earliest possible stage is key to mitigating 90 

outbreaks and preventing future epidemic and pandemic threats. By the time novel viruses are 91 

recognized in humans, often within the context of a cluster of unusual cases, public health 92 

interventions to prevent or contain an epidemic face major challenge. However, determining the 93 

potential zoonotic transmission for newly discovered animal viruses, in the absence of 94 

documented human infection, is currently a major scientific challenge. New approaches are 95 

needed to evaluate and characterize risk of zoonotic transmission of newly discovered animal 96 

viruses in the face of very limited data. Here we analyze human, domesticated animal, and wild 97 

animal surveillance and viral discovery data collected from 2009-2019, as part of a consortium 98 

led One Health project aimed at strengthening pandemic threat detection capabilities in Africa, 99 

Asia, and Latin America1. Surveillance efforts resulted in 944 novel monophyletic clusters of 100 

virus sequences in wildlife (referred to as novel viruses henceforth) from 18 virus families 101 

sampled at high-risk animal human disease transmission interfaces in 34 countries. As none of 102 

these viruses have yet been identified in humans, other indices were established to assess 103 

potential risk, including host range or plasticity of viruses and integration of virus and ecological 104 

characteristics with expert opinion2-5. Using an analysis of the host-virus network we were able 105 

to quantify risk of zoonotic transmission for 531 out of 944 novel animal viruses.   106 

Patterns observed across host-virus networks have been used to understand virus sharing among 107 

vertebrate species3,6,7, and predict cryptic links between mammalian, and avian hosts and their 108 

viruses8-10. Host-virus network linkages can be informed by virus traits, virus biogeography, host 109 

ecological niches, and propensity for host sharing among viruses10,11. Precedence in viral sharing 110 

among species and ecological opportunities for spillover, as characterized by network topology, 111 

can inform propensities for newly discovered viruses that lack data2. Further exploration of these 112 

networks can aid in estimating the host plasticity of viruses, an important characteristic 113 

associated with zoonotic potential 2,3. Unfortunately, systematically collected surveillance data to 114 

parameterize and validate these models have been missing4. Here, we apply a network approach 115 

to gain ecological insights from viruses that have been shared among species in nature and 116 

inform potential virus-host associations and zoonotic risk of novel viruses recently discovered 117 

from in wildlife.  118 

Using data from the literature, we developed a network that included 269 known zoonotic and 119 

307 non-zoonotic viruses infecting 885 avian and mammalian hosts (𝐺𝑐;Fig. 1). The network was 120 

used to train and validate two gradient boosting decision tree models to predict links and 121 

taxonomic orders of missing links generated by sharing of hosts12. Trained models were used to 122 

predict possible host links for 531 novel viruses due to commonalities in host sharing with 123 

known viruses and generated a predicted host-virus network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, Fig. 1) formed due to 124 

inclusion of novel viruses and their predicted linkages. We also predicted taxonomic order of the 125 

probable host shared as a link between two virus nodes of the network and the likelihood of the 126 

link to be humans, indicative of  viruses’ predicted potential to be zoonotic. 127 

Results and discussion 128 

Virus-host network for known viruses (𝑮𝒄):  We developed a unipartite network with viruses 129 

as nodes and host species as an edge for all species recognized as a host for viruses based on data 130 
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presented in previous studies and databases, specifically, data shared by Olival et al.5, Pandit et 131 

al.4, and Johnson et al.13 and GenBank. In the observed network (𝐺𝑐), viruses were represented as 132 

nodes and a link (edge) was generated if two viruses had been detected in the same host species. 133 

The observed network (𝐺𝑐) included 576 viruses as nodes and 35,838 edges (viruses linked 134 

because of shared hosts) representing 352 vertebrate species (Fig.1). Exploration of network 135 

characteristics of known viruses revealed differences in host sharing among virus families. The 136 

distributions of centrality measures (Fig. 2a, 2b, 2e, 2i) for Filoviridae, Flaviviridae, 137 

Hantaviridae, and Orthomyxoviridae families were statistically different from the mean 138 

distribution (Kolmogorov-Smirnov, p < 0.05). Furthermore, after accounting for sampling bias 139 

for individual viruses using PubMed hits, we ran a linear regression model with node-level 140 

permutations (10,000 permutations to further characterize the distribution of viruses within virus 141 

families in the network). Viruses in families Hantaviridae, Filoviridae, Flaviviridae, and 142 

Orthomyxoviridae had a significantly higher degree (p < 0.05) and eigenvector centrality (p < 143 

0.05), indicating more connections in the host-virus network than other represented virus 144 

families. Viruses from the Flaviviridae family also had higher betweenness centrality (p = 0.01) 145 

indicating more connections based on shared host species (Fig S2-S5). Results based on 146 

distributions of centrality measures, as well as node level regression models, show similar 147 

directionality for Hantaviridae, Filoviridae, Flaviviridae, and Orthomyxoviridae families across 148 

multiple network topological metrics. Our findings provide further evidence for direct 149 

relationship between higher host plasticity and greater zoonotic potential 3,5.  Viruses from 150 

Nairoviridae (p = 0.01) and Rhabdoviridae (p = 0.01) families (Fig S6) were significantly more 151 

clustered together than viruses from other families.     152 

The wildlife surveillance data consisted of tests for 99,375 animals, representing specimens from 153 

861 species, mostly bats, rodents, primates, and other mammals 154 

(https://zenodo.org/record/5899054)1. To predict associations between novel viruses nodes 155 

related to sharing common host species, gradient boosting models were trained using network 156 

topological characteristics and families of viruses in the virus pairs to estimate: 1) whether virus 157 

pairs have a species host in common; and 2) the taxonomical order of shared hosts (Fig. 1).  158 

Characteristics of predicted network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) and newly discovered viruses: The binary 159 

model performed high performance in predicting the presence of links formed due to sharing of 160 

hosts between two virus nodes in the network. The binary model performed well in predicting 161 

sharing of viruses (mean positive predictive value = 0.99, sensitivity = 0.96, F-score 0.97, Fig. 162 

S6) The distribution of predicted probability for all links using the binary model showed clear 163 

bimodal distribution (Fig. S7a). The accuracy scores as a function of precision and recall 164 

indicated good model performance beyond 0.15 predicted probability for the binary model (Fig. 165 

S8). Hence, as a more conservative approach and to give weightage to the precision, we decided 166 

to use 0.7 as an optimum threshold for detecting a positive link between two nodes (viruses). The 167 

performance of the multilabel model varied for taxonomical orders, with higher moderate 168 

performance for predicting taxonomical orders and groups of ‘humans’ and Cetartiodactyla (Fig 169 

S7, Fig S9). For 531 novel viruses, we identified 184,055 possible links to new hosts ( based on 170 

optimum probability threshold of 0.7 identified for the binary model) to generate the predicted 171 

network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, Fig. 1, Fig S7a). For these predicted links, between two viruses, the 172 

multiclass model was able to to estimate potential taxonomic order of the shared species for 173 

175,113 links. For the remaining links, the model was not able to confidently predict a specific 174 

taxonomic order. Empirical biological networks are rarely scale-free (network with large hubs 175 
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and showing a power-law distribution for degree)14 but recent host-based host-virus unipartite 176 

networks have shown scale-free nature where models with power-law distributions showed the 177 

best fit for host-parasite networks15. Similarly, both observed (𝐺𝑐) and predicted (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 178 

networks provided evidence that some viruses shared significantly larger numbers of hosts, 179 

creating hubs of preferential attachment and showed weak evidence of scale-free nature 180 

(loglikelihood ratio test p>0.05).The predicted network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) had longer tails at network 181 

level (Kolmogorov-Smirnov, p < 0.05) as well as at virus family level for degree (Fig. 2a, e, f) 182 

and betweenness centrality (Fig. 2 b, i, j) distributions than the observed network (𝐺𝑐). Mean 183 

network degree for all virus families reduced significantly with the addition of newly discovered 184 

viruses that were predicted to have fewer links than known viruses, indicating lower host 185 

plasticity for novel viruses than known viruses or insufficient adjustment of reporting bias (Fig 186 

S10).  187 

Based on a linear regression model with node-level permutations (10,000 permutations), our 188 

adjustment for search effort (PubMed hits) was found to have no effect on the degree (p =0.38, 189 

Fig S11) and betweenness centrality (p = 0.21, Fig S12), but did significantly affect the 190 

eigenvector (p<0.05, Fig S13) and clustering coefficient (p<0.05, Fig S14) of novel viruses. 191 

These results indicate that sampling and reporting efforts affect our understanding of the 192 

predilection towards certain species as illustrated by clustering in the network, but do not affect 193 

the prediction of missing host links quantified by degree centrality within the network. Many of 194 

the newly discovered viruses were mostly detected in only one species (mean = 1.32, SD±0.99, n 195 

= 944). Long tails of centrality distributions generated for the predicted network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) and 196 

comparatively lower centrality measures for novel viruses, when compared with known viruses, 197 

support a tendency for newly discovered viruses to be more host-specific than previously 198 

recognized viruses, a pattern that should be further evaluated with additional sampling effort to 199 

identify the full host range for novel viruses.  200 

Importantly, a comparison between virus families of novel viruses showed that novel 201 

coronaviruses had higher degree (p < 0.001, Fig. 2C, Fig S11), betweenness (p = 0.02, Fig. 2D, 202 

Fig S12), and eigenvector (p < 0.001) centralities in the predicted network compared to newly 203 

discovered viruses in all sixteen other virus families (Fig. 2 C, D, G). In additional, the raw 204 

detection data showed significantly higher host diversity for novel coronaviruses with a mean of 205 

2.02 (SD ± 2.03, n = 114) unique host species (maximum of 15 species) compared to 1.22 (SD ± 206 

0.70, n = 834) for other novel viruses detected in this study. This finding raises concern about the 207 

ability of novel coronaviruses to infect a greater number of species than viruses from other 208 

families. The recently emerged SARS-CoV-2 and the previously emerged SARS-CoV-1, have 209 

shown a wide host breadth16. These predictions for novel coronaviruses highlight their key 210 

ecological properties that can influence spillover into humans. Following coronaviruses, novel 211 

flaviviruses showed significantly higher betweenness centrality (p < 0.001). Host taxonomic 212 

order for novel viruses had no significant association with the degree centrality of the virus in the 213 

predicted network. Predicted network characteristics not only differentiate virus families based 214 

on network characteristics but also predict network characteristics that are key in understanding 215 

the ecology of a novel virus and its behavior within the network community of hosts, including 216 

the expected breadth of host species most likely to be infected by that novel virus.  217 

Prioritizing novel viruses for further characterization: For the 531 newly detected viruses, 218 

we developed prioritization metrics based on multiclass model predicted human links for known 219 

viruses that inform on the ecological and evolutionary tendencies for spillover. Novel viruses 220 
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from Herpesviridae, Rhabdoviridae, Coronaviridae, Adenoviridae, Astroviridae, and 221 

Paramyxoviridae families not only showed a high median probability of sharing human links 222 

with known viruses (Fig S15) but also were predicted to have large numbers of human links in 223 

the predicted network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑). Novel members of the Picobirnaviridae and Rhabdoviridae 224 

families detected here have been speculated to be hyper-parasites infecting bacteria and insects 225 

and were identified in mammalian host samples. Hence the predicted associations for these virus 226 

families should not be inferred as infection but only as detection in host samples (e.g. potentially 227 

insect viruses detected in oral swab samples from bats). Based on Generalized Linear Mixed 228 

models, search effort (PubMed hits) was not associated with the predicted number of human 229 

links (p=0.24, Table S1) nor the mean probability of sharing human links for novel viruses 230 

(p=0.778, Table S2).  231 

For relative comparison of zoonotic risk for the newly detected viruses, a prioritization metric 232 

was developed based on the predicted probability of links being human and the number of shared 233 

human links in the predicted network for a given virus. To understand the performance of the 234 

prioritization score, we compared scores for known zoonotic and non-zoonotic viruses generated 235 

by the ensemble of both binary and multi-class models. Results indicated significantly higher 236 

prioritization scores for known zoonotic viruses (Fig S 16, p < 0.001) compared to known non-237 

zoonotic viruses. Prioritization scores were derived essentially from the prediction of new/yet 238 

unobserved network links generated by the virus with another virus formed due to sharing of 239 

hosts. However, models were unable to predict new links for well recognized  that have 240 

numerous hosts, such as Rabies virus and West Nile virus, and consequently resulted in a 241 

prioritization score of zero. Fig. 3A-D shows the top ten and bottom five novel viruses from four 242 

virus families for relative comparison based on the prioritization metric (Fig S17-23). 243 

PREDICT_CoV-15 found in two Phyllostomidae bats from South America (Artibeus lituratus, 244 

Sturnira lilium) scored the highest prioritization score in all novel viruses. Other top ten novel 245 

coronaviruses based on the prioritization score included viruses detected in Phyllostomidae bats 246 

(PREDICT_CoV-4, PREDICT_CoV-13, PREDICT_CoV-11, PREDICT_CoV-5). Out of these, 247 

PREDICT_CoV-11 was also detected in Mormoopidae species (Pteronotus personatus) and 248 

PREDICT_CoV-5 was found in Vespertilionidae species (Bauerus dubiaquercus) during the 249 

surveillance. These also included coronaviruses detected in South-east Asian Pteropodidae bat 250 

species such as PREDICT_CoV-16 and PREDICT_CoV-22. PREDICT_CoV-22 was also 251 

detected in Hipposideridae bat species (Hipposideros lekaguli). PREDICT_CoV-78 detected in 252 

multiple bat and rodent species of Southeast Asia also showed a high prioritization score. These 253 

model outcomes, especially the prioritization score, provide a data driven tool to quantify 254 

zoonotic risk for novel viruses. Even though the model is trained on numerous data points for 255 

known zoonotic and non-zoonotic viruses, individual predictions for new virus discoveries 256 

would only requires the data on hosts and virus families if used within our modeling framework. 257 

 258 

Prioritizing future surveillance: The sharing of viruses among hosts is driven by geographical 259 

overlap and synergies in ecological niches of hosts, as well as virus-specific characteristics that 260 

enable cross-species transmission 10. Novel viruses discovered in rodents, bats, primates, and 261 

other mammalian hosts that were sampled from sites in close association with people, or at high-262 

risk interfaces that can facilitate disease transmission in urban and rural settings1,13. Additional 263 

surveillance across a broader taxonomic range is essential to gain additional insight on newly 264 

detected viruses, further inform spillover risk, and improve model predictions presented here. 265 
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We used our network model and host taxonomic data in which the novel virus is first detected to 266 

prioritize host species (surveillance targets) for further surveillance for newly discovered viruses 267 

(Supplementary Data File 1). Moreover, given the recent SARS-CoV-2 pandemic we further 268 

explored surveillance targets for novel coronaviruses. Novel coronaviruses were detected in bats, 269 

rodents, birds, and primates (Fig. 4a). For novel coronaviruses, that were detected in bats, 270 

predicted surveillance targets for bat coronaviruses showed three distinct clusters (Fig. 4b). The 271 

first cluster of novel coronaviruses in bats had a higher proportion of predicted species from 272 

Miniopteridae family (Bent-winged bats) but none from Natalidae (Neotropical funnel-eared 273 

bats). Another prominent cluster prioritized all 11 chiropteran families, while the third cluster of 274 

coronaviruses showed relatively fewer host recommendations from Miniopteridae bats. 275 

Representation of these surveillance targets through these clusters highlights host predilection of 276 

novel coronaviruses and indicates the preferential sharing of hosts by the novel coronaviruses. 277 

These clusters also support earlier results related to the scale-free nature of the predicted network 278 

(𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) by creating virus hubs in the virus-host network. Cluster maps for other virus 279 

families providing evidence for future surveillance are shown in Fig S24-S33 and supplementary 280 

data file 1.  281 

Grange et al developed a tool that ranks viruses for animal to human spillover using a risk-based 282 

approach validated inputs by various experts from the field of virology, epidemiology and 283 

ecology2. Our approach, on the other hand, quantifies the risk of spillover  agnostically and 284 

informs predicted host range solely based on existing data available across the breadth of viruses 285 

and natural infections observed in free-ranging mammalian and avian hosts. Although numerous 286 

studies have been recently published that predict host-pathogen predictions, our framework 287 

quantifies the risk for viruses that have been recently discovered in animal hosts. Network 288 

models have shown to perform well with the inclusion of ecological trait data10,17 and genome 289 

sequences18, but ,with the limited data available for novel viruses, the approach provided here is 290 

an important step towards characterizing zoonotic potential for newly discovered animal viruses 291 

in the face of sparse data. Our virus-centric approach (virus as nodes and edges as shared hosts) 292 

showed improved performance over previous host-centric models17. Our network approach 293 

presents some limitations specifically for viruses that have been detected in species with limited 294 

surveillance effort to date and are thus not part of the training data. For this reason, we were able 295 

to generate predictions for only 531 novel viruses out of 944. The remaining 413 novel viruses 296 

without predictions were detected in species that were never found positive for any virus, starkly 297 

indicating the lack of surveillance in wildlife. Further, model findings should be interpreted as 298 

associations between hosts and viruses (based on detection of viruses in samples collected from 299 

host species) with these associations requiring further to understand relationship between viruses 300 

and hosts that might serve as reservoir, amplifying, or dead-end hosts. Detection of a virus in a 301 

host species is not always correlated with that host’s ability to produce viremia for further 302 

transmission. Similarly, some of the novel viruses from Picobirnaviridae and Rhabdoviridae 303 

have been speculated to be hyperparasites and the interpretation of these detections and predicted 304 

host-associations need further investigations.  305 

Novel viruses with high scores on the prioritization metrics present a strong eco-evolutionary 306 

case for further genetic and in-vivo characterization to understand the risk of spillover. The 307 

scoring will help streamline in-depth in-vivo characterization and develop additional hypotheses 308 

related to genetic and ecological mechanisms for cross-species transmission and zoonotic 309 

spillover. Nucleotide data associated with novel viruses presented here are short, hence the 310 
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current model framework of using only host associations provides a key advantage. However, 311 

network models have shown to improve prediction capacities when nucleotide data is included as 312 

features for prediction11. These tools will improve with the as well as the discovery of new 313 

viruses and further surveillance 20, ultimately informing our understanding of the mechanisms of 314 

zoonotic emergence for viruses from wildlife.  315 

Methods 316 

Data collection: Virus-host data was collated from various sources. Major sources for the 317 

association databases included data shared by Olival et al.5, Pandit et al.4, and Johnson et al.13. In 318 

data provided by Olival et al (assessed September 2019), host-virus associations have been 319 

assigned a score, based on detection methods and tests that are specific and more reliable. We 320 

used associations that have been identified as the most reliable (stringent data) from Olival et al5. 321 

In addition, a query in GenBank was run to parse out hosts reported for each GenBank 322 

submission for viruses presented in each of these three databases. Initially, for each virus name, 323 

taxonomic ID was identified using entrez.esearch function in biopython package. The taxonomic 324 

ID helped identify ICTV lineage and associated data in PubMed. This included virus genus and 325 

family information along with a standard virus name. Host data were aggregated based on the 326 

taxonomic ID and associated standard name. Finally, for each virus, a search was completed in 327 

PubMed to compile the number of hits related to the virus and their vertebrate hosts using the 328 

search terms below. The number of PubMed hits (PMH1) were used as a proxy for sampling 329 

bias4,13. The virus-host association data source is presented in supplementary code and data files  330 

(https://zenodo.org/record/5899054).. 331 𝒔𝒆𝒂𝒓𝒄𝒉𝒕𝒆𝒓𝒎 =  (+𝒗𝒊𝒓𝒖𝒔_𝒏𝒂𝒎𝒆332 + [𝑻𝒊𝒕𝒍𝒆/𝑨𝒃𝒔𝒕𝒓𝒂𝒄𝒕]) 𝑨𝑵𝑫 (𝒉𝒐𝒔𝒕 𝑶𝑹 𝒉𝒐𝒔𝒕𝒔 𝑶𝑹 𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓 𝑶𝑹 𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓𝒔 𝑶𝑹  333 𝒘𝒊𝒍𝒅 𝑶𝑹 𝒘𝒊𝒍𝒅𝒍𝒊𝒇𝒆 𝑶𝑹 𝒅𝒐𝒎𝒆𝒔𝒕𝒊𝒄 𝑶𝑹 𝒂𝒏𝒊𝒎𝒂𝒍 𝑶𝑹 𝒂𝒏𝒊𝒎𝒂𝒍𝒔 𝑶𝑹  334 𝒎𝒂𝒎𝒎𝒂𝒍 𝑶𝑹 𝒃𝒊𝒓𝒅 𝑶𝑹 𝒃𝒊𝒓𝒅𝒔 𝑶𝑹 𝒂𝒗𝒆𝒔 𝑶𝑹 𝒂𝒗𝒊𝒂𝒏 𝑶𝑹 𝒂𝒗𝒊𝒂𝒏𝒔  335 𝑶𝑹 𝒗𝒆𝒓𝒕𝒆𝒃𝒓𝒂𝒕𝒆 𝑶𝑹 𝒗𝒆𝒓𝒕𝒆𝒃𝒓𝒂𝒕𝒆𝒔 𝑶𝑹 𝒔𝒖𝒓𝒗𝒆𝒊𝒍𝒍𝒂𝒏𝒄𝒆 𝑶𝑹 𝒔𝒚𝒍𝒗𝒂𝒕𝒊𝒄) 336 

Along with the PubMed terms we also queried the nucleotide database on PubMed using the 337 

taxonomic ID to find the number of GenBank entries for these viruses (PMH2). A correlation 338 

analysis between the PMH1 and PMH2 showed a high correlation with each other for us to 339 

safely use GenBank hits for novel viruses during the prediction stage of the model (Fig S. 31).  340 

Development of 𝑮𝒄 341 

a. Centrality measures of observed network (𝑮𝒄) 342 

To test if centrality measures (degree centrality, betweenness centrality, eigenvector centrality, 343 

clustering coefficient) for viral nodes in the observed network (𝐺𝑐) vary significantly between 344 

viral families, we firstly used the Kolmogorov-Smirnov (KS) test. KS test is routinely used to 345 

identify distances between cumulative distribution functions of two probability distributions and 346 

is largely used to compare degree distributions of networks 21,22. For each viral family, 347 

distributions of centrality measures (degree centrality, betweenness centrality, and eigenvector 348 

centrality) and clustering coefficient within the observed network (𝐺𝑐) were compared with the 349 
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distribution of all nodes in the network using the two-tailed KS test. Secondly, a linear regression 350 

model with virus family as a categorical variable and the number of PubMed hits as a covariate 351 

to adjust for sampling bias were fitted to understand associations of viral families with centrality 352 

measures. 353 

 354 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝛽0𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽1𝑉𝑖𝑟𝑎𝑙 𝑓𝑎𝑚𝑖𝑙𝑦𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 + 𝛽2𝑃𝑢𝑏𝑀𝑒𝑑 ℎ𝑖𝑡𝑠  355 

 356 

After fitting the model, node-level permutations were implemented. For each random 357 

permutation, the output variable was randomly assigned to covariate values and the model was 358 

re-fitted. Finally, a p-value was calculated by comparing the distribution of coefficients from 359 

permutations with the original model coefficient. 360 

Network topology feature selection: Using the observed network (𝑮𝒄), multiple network 361 

topological features for all node pairs were calculated. The following are topographical network 362 

features calculated.  363 

1. The Jaccard coefficient: a commonly used similarity metric between nodes in information 364 

retrieval, is also called an intersection of over the union for two nodes in the network. In the 365 

unipartite network generated here, it represents the proportion of common neighbor viruses from 366 

the union of neighbor viruses for two nodes. Neighbor viruses are defined as viruses with which 367 

the virus shares at least a single host. Higher Jaccard index represents similar host predilection.     368 

2. Adamic/Adar (Frequency-Weighted Common Neighbors): Is the sum of inverse logarithmic 369 

degree centrality of the neighbors shared by two nodes in the network23. The concept of the 370 

Adamic Adar index is a weighted common neighbors for viruses in the network. Within network 371 

prediction, the index assumes that viruses with large neighborhoods have a less significant 372 

impact while predicting a connection between two viruses compared with smaller 373 

neighborhoods.   374 

Both Jaccard and Adamic Adar coefficients have been routinely used for generalized network 375 

prediction24.   376 

3. Resource allocation: Similarity score of two nodes defined by the weights of common 377 

neighbors of two nodes. Resource allocation is another measure to quantify the closeness of two 378 

nodes in the network and hence to understand the similarity of hosts they infect.  379 

4. Preferential attachment coefficients: The mechanism of preferential attachment can be used to 380 

generate evolving scale-free networks, where the probability that a new link is connected to node 381 

x is proportional to k25. 382 

5. Betweenness centrality: For a node in the network betweenness centrality is the sum of the 383 

fraction of all-pairs shortest paths that pass through it. The feature that we used for training the 384 

supervised learning model was the absolute difference between of betweenness centralities of 385 

two nodes. The difference between the betweenness centrality represents the difference in the 386 

sharing observed by two viruses in the pair.  387 

6. Degree centrality: The degree centrality for a node v is the fraction of nodes it is connected to. 388 

The feature that we used for training the supervised learning model was the absolute difference 389 

between degree centralities of two nodes. Unlike the difference in the betweenness centrality, the 390 

difference in degree centrality only looks at the difference in the number of observed host 391 

sharing.   392 

7. Network clustering: All nodes were classified into community clusters using Louvain 393 

methods26. A binary feature variable was generated to describe if both the nodes in the pair were 394 
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part of the same cluster or not. If both viruses are from the same cluster, it represents similar host 395 

predilection than when both viruses are not from the same cluster hence accounting for the 396 

evolutionary predilection of viruses (or virus families) to infect a certain type of hosts.  397 

 398 

Pearson’s correlation coefficients were calculated to identify highly correlated features and for 399 

choosing features for model training (Fig. S32). Virological features included in model training 400 

were categorical variables describing the virus family of both the nodes in the pair, followed by a 401 

binary variable if both the viruses belong to the same virus family. During the model 402 

development, PubMed hits generated three predictive features for each pair of viruses on which 403 

model training and predictions were conducted. These included two features representing 404 

PubMed hits for the two viruses in the pair (PubMedV1, PubMedV2) and the absolute difference 405 

between PubMedV1 and PubMedV2 to account for sampling bias differences between two viruses.  406 

Cross-validation and fitting generalized boosting machine (GBMs) models: A nested-cross-407 

validation was implemented for the binary model while simple cross-validation was 408 

implemented for the multiclass model (multiple output categories). The model parameters of the 409 

binary model were first hyper-tuned using a cross-validated grid-search method. Values were 410 

tested using a grid search to find the best-performing model parameters that showed the highest 411 

sensitivity (recall). The parameters tested for hypertuning and their performance are provided in 412 

the supplementary material (supplementary results and Table S5). For further cross-validation of 413 

the overall binary model,  all the viruses were randomly assigned to five groups. For each fold, 414 

the viruses assigned to a group were dropped from the data, and a temporary training network 415 

(𝑮𝒕) was constructed, assuming that this represented the current observed status of the virus-host 416 

community. For all possible pairs in 𝑮𝒐 (both that sharing and not sharing any hosts) ten 417 

topographical and viral characteristics were calculated as training features (Table S4). 418 

Categorical features were one-hot-encoded and numeric features were scaled. An XGBClassifier 419 

model with binary: logistic family was trained using the feature dataset to predict if virus pairs 420 

share hosts (1,0 encoded output). The cross-validation was also used to determine the optimum 421 

decision threshold for determining binary classification (Fig S17) and a precision-recall curve 422 

was used to identify positive predictive value and sensitivity at the optimum threshold (Fig S8). - 423 

The multiclass model was implemented in the same  way, creating an observed network 424 

(𝐺𝑐) based on species-level sharing of hosts and randomly dropping viruses to generate a training 425 

network (𝐺𝑡) to train the XGboost model. The output variables were generated based on the 426 

taxonomical orders of shared hosts. A pair of viruses can share multiple hosts, hence we trained a 427 

multioutput-multiclass model. Humans were considered an independent category taxonomical 428 

order (label) and were given a separate label than primates. For fine-tuning the multiclass model, 429 

we started with the best performing parameters of the binary model and manually tested 5 430 

combinations of model parameters by adjusting values of the learning rate, number of estimators, 431 

maximum depth, and minimum child weight (Supplementary code and results).  432 

Missing links for novel viruses, binary and multiclass prediction: The wildlife surveillance 433 

data represented sampling of 99,379 animals (94,723 wildlife, 4,656 domesticated animals) 434 

conducted in 34 countries around the world between 2009-2019 (Table S6)1. Specimens were 435 

tested using conventional Rt-PCR, Quantitative PCR, Sanger sequencing, and Next Generation 436 

Sequencing protocols to detect viruses from 28 virus families or taxonomic groups (Table S7). 437 

Testing resulted in 951 novel monophyletic clusters of virus sequences (referred to as novel 438 
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viruses henceforth). Within 951 novel viruses, 944 novel viruses had vertebrate hosts that were 439 

identified with certainty based on barcoding methods and field identification. Host species 440 

identification was confirmed by cytochrome b (cytb) DNA barcoding using DNA extracted from 441 

the samples 27. We predicted the shared host links between novel viruses and known viruses 442 

using binary and multiclass models in the following steps. Out of 944 novel viruses discovered in 443 

the last ten years, we were able to generate predictions for 531 novel viruses that were detected 444 

in species already classified as hosts within the network. The remaining 413 viruses were the 445 

first detection of any virus in that species and thus host associations could not be informed by the 446 

observed network (𝑮𝑪) data. 447 

1. A new node representing the novel virus was inserted in the network of the observed 448 

network (𝑮𝒄). Using the list of species in which the novel virus was detected, new edges were 449 

created with known viruses that are also known to be found in those hosts. This generated a 450 

temporary network for the novel virus (𝑮𝑡𝑒𝑚𝑝). If the novel virus was not able to generate any 451 

edges with known viruses, meaning the host in which they have been found were never found 452 

positive for any known virus, predictions were not performed.  453 

2. Using 𝑮𝑡𝑒𝑚𝑝 feature values were calculated for the novel virus (betweenness centrality, 454 

clustering, and degree). For all possible pairs of the novel virus with known viruses that are not 455 

yet connected with each other through an edge in 𝑮𝑡𝑒𝑚𝑝 a feature dataset was generated (Jaccard 456 

coefficient(novel virus, known virus), the difference in betweenness centrality of the novel virus and 457 

known virus, if the novel virus and known virus were in the same cluster, the difference in 458 

degree centrality(novel virus, known virus), if the novel virus and known virus were from same virus 459 

family, the difference in PubMed hits(novel virus, known virus), PubMed hits for the novel virus, 460 

PubMed hits for the known virus). Studies and nucleotide sequences for novel viruses are 461 

expected to be published and shared on PubMed’s Nucleotide database and in various peer-462 

reviewed publications. Since, at the time of development of the model, data for all viruses was 463 

not shared in a format that would reflect on PubMed’s database, we decided to use the number of 464 

times the virus was detected in the last ten years of wildlife surveillance. These detections will be 465 

reflected in PubMed’s Nucleotide database eventually, hence we considered them as a proxy for 466 

search terms conducted for known viruses. Currently, evaluation of effects of this substitution of 467 

PubMed hits with the number of detections for novel viruses is not possible with limited data on 468 

novel viruses but needs to be reevaluated as more studies are published on these novel viruses.   469 

3. Using this dataset for the novel virus, a binary presence of a link between the novel virus 470 

and known viruses was predicted using the trained binary model. The taxonomic order of the 471 

host link was predicted using the trained multiclass model.  472 

4. For each possible link, the binary model predicted a probability of sharing link and the 473 

multiclass model predicted multivariate outcomes of taxonomic orders and associated 474 

probabilities. A threshold of 0.70 for the binary prediction model was used to classify if the link 475 

is present or not and only those links were explored for their corresponding multiclass model 476 

outputs.  477 

5. The multiclass model showed higher performance for correctly classifying links as 478 

“human” hosts than other numerous avian and mammalian taxonomic orders. Hence, the 479 

multiclass model outputs were summarized into either humans or other taxonomic groups. For 480 

the novel virus, a list of known viruses with the predicted link was generated. Using the hosts of 481 

these known viruses and the taxonomic order in which the novel virus was detected, a list of 482 

most likely species was generated based on the overall frequency of the host species. For 483 

understanding the likelihood of infecting humans two factors were considered to be of 484 



 

 

13 

 

importance. Firstly, the number of links where humans are predicted as shared hosts with known 485 

viruses (𝑛) and the average model-predicted probability of those links. A representation was 486 

generated incorporating the probability and available model support in terms of number links to 487 

reflect the likelihood and compare viruses relative to each other.  488 

To test if virus family, the taxonomic order of hosts in which novel viruses were detected, 489 

and the number of times the viruses were detected (equivalent to PubMed hits for known viruses) 490 

influenced node (virus) level network centrality measures in the predicted network (𝑮𝒑) a linear 491 

regression model was fitted with centrality measures.  492 

 493 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒494 = 𝛽0𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽1𝑉𝑖𝑟𝑎𝑙 𝑓𝑎𝑚𝑖𝑙𝑦𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 + 𝛽2𝐻𝑜𝑠𝑡 𝑂𝑟𝑑𝑒𝑟𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙495 + 𝛽3𝑃𝑢𝑏𝑀𝑒𝑑 ℎ𝑖𝑡𝑠  496 

 497 

For each of the random 10,000 node-level permutations, the output variable (centrality 498 

measure) was randomly assigned to covariate values and the model was re-fitted. A p-value was 499 

calculated by comparing the distributions of coefficients with the original model coefficient. 500 

These models were fitted for degree centrality, betweenness centrality, eigenvector centrality, 501 

and clustering coefficient of novel viruses in the predicted network.    502 

 503 

Prioritization score for novel viruses: Generalized Linear Mixed Models were used to 504 

understand the association effects of virus family, taxonomic order of the host and PubMed hits 505 

on the number of predicted human links and mean probability of the predicted links. The models 506 

were fit using glmmTMB and glm packages in R. For relative comparison of zoonotic risk and for 507 

prioritizing novel viruses for further characterization, a prioritization metric was developed based 508 

on the predicted probability of sharing the humans as hosts with known viruses (𝑝𝑠ℎ𝑎𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑎𝑛𝑠) 509 

and the number of predicted shared human links (𝑛ℎ𝑢𝑚𝑎𝑛𝑠) in the predicted network for the 510 

given virus (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑). Distributions for both 𝑝𝑠ℎ𝑎𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑎𝑛𝑠 and 𝑛ℎ𝑢𝑚𝑎𝑛𝑠 were normalized 511 

and multiplied to generate a single score for a virus and for appropriate relative comparisons 512 

between novel viruses. To understand the behavior of the prioritization score when predicting the 513 

zoonotic risk of novel viruses, we also compared prioritization scores of known zoonotic and 514 

non-zoonotic viruses using the Kolmogorov-Smirnov test.  515 

 516 
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 613 

Figures and Tables 614 

 615 

Fig. 1. Modeling workflow: The figure shows modeling procedure and methods implemented in the study. Orange dot 616 
represents a known virus in the observed (𝐺𝑐) and predicted networks (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑), blue dots represent novel viruses in the 617 

predicted network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑). Virus-host networks: 𝐺𝑐, represents a unipartite observed network of known zoonotic and non-618 

zoonotic viruses with nodes representing viruses and edges representing shared hosts. G_𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑represents the predicted 619 

https://github.com/PanditPranav/PREDICT_network_analysis
https://data.usaid.gov/Global-Health-Security-in-Development-GHSD-/PREDICT-Emerging-Pandemic-Threats-Project/tqea-hwmr
https://data.usaid.gov/Global-Health-Security-in-Development-GHSD-/PREDICT-Emerging-Pandemic-Threats-Project/tqea-hwmr
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unipartite network generated after predicting possible linkages between 531 novel viruses (white) and known viruses. The node 620 
size is proportional to the betweenness centrality. 621 

Fig. 2. Predicting missing links between virus-host communities. Distribution shapes of degree (A) and 622 

betweenness centrality (B) for the observed and predicted network. Degree distributions for virus families in 623 

observed and predicted networks are shown in (E) and (F). Similarly, shapes of betweenness centrality for virus 624 

families in observed and predicted networks are shown in (I) and (J). Right panels show boxplots for novel virus 625 

families describing (C) degree, (D) betweenness centrality, (G) eigenvector centrality, and (H) clustering based on 626 

the predicted network formed by the binary prediction model. 627 

Fig. 3: Prioritization metrics for novel viruses to understand zoonotic risk: Top ten and bottom five newly 628 

discovered viruses from six virus families (A-F) with the virus prioritization scores based on multiclass model 629 

predictions. Annotations show the score and support represented by number of human links predicted. 630 

 631 

Fig. 4: Surveillance targets for novel coronaviruses based on predicted sharing of hosts with known viruses. 632 

Red color represents the evidence towards species in the taxonomic family (cumulative probability) with darker red 633 

color indicating higher number of species occurrences from taxonomical families adjusted by model predicted 634 

probability. A) shows clustering of PREDICT coronaviruses by host, and B) focuses on coronaviruses found in bats. 635 

Clustering is based on the Bray-Curtis dissimilarity index.  636 

 637 

 638 
Fig. 1: Model prediction workflow: The figure shows modeling procedure and methods implemented in the study. Orange dot 639 
represents a known virus in the observed (𝐺𝑐) and predicted networks (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑), blue dots represent novel viruses in the 640 

predicted network (𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑). Virus-host networks: 𝐺𝑐, represents a unipartite observed network of known zoonotic and non-641 

zoonotic viruses with nodes representing viruses and edges representing shared hosts. G_𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑represents the predicted 642 

unipartite network generated after predicting possible linkages between 531 novel viruses (white) and known viruses. The node 643 
size is proportional to the betweenness centrality. 644 

 645 
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 646 
Fig. 2: Predicting missing links between virus-host communities. Distribution shapes of degree (A) and betweenness centrality 647 
(B) for the observed and predicted network. Degree distributions for virus families in observed and predicted networks are 648 
shown in (E) and (F). Similarly, shapes of betweenness centrality for virus families in observed and predicted networks are 649 
shown in (I) and (J). Right panels show boxplots for novel virus families describing (C) degree, (D) betweenness centrality, (G) 650 
eigenvector centrality, and (H) clustering based on the predicted network formed by the binary prediction model. 651 

 652 
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 653 
Fig. 3: Prioritization metrics for novel viruses to understand zoonotic risk: Top ten and bottom five newly discovered viruses 654 
from six virus families (A-D) with the virus prioritization scores based on multiclass model predictions. Annotations show the 655 
score and support represented by number of human links predicted.        656 

 657 

 658 
Fig. 4: Surveillance targets for novel coronaviruses based on predicted sharing of hosts with known viruses. Red color represents 659 
the evidence towards species in the taxonomic family (cumulative probability) with darker red color indicating higher number of 660 
species occurrences from taxonomical families adjusted by model predicted probability. A) shows clustering of newly discovered 661 
coronaviruses by host, and B) focuses on coronaviruses found in bats. Clustering is based on the Bray-Curtis dissimilarity index.  662 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementaryMaterialsPanditJohnsonetalr1.docx

Supplementraydata�le1.xlsx

https://assets.researchsquare.com/files/rs-846253/v1/adb8a692458fe4435ab0dc86.docx
https://assets.researchsquare.com/files/rs-846253/v1/0d80b6e4e9fe787e449a274e.xlsx

