
Research Article
MidSiot: A Multistage Intrusion Detection System for
Internet of Things

Nguyen Dat-Thinh ,1,2 Ho Xuan-Ninh ,1,2 and Le Kim-Hung 1,2

1Faculty of Computer Networks and Communications, University of Information Technology, Ho Chi Minh City 70000, Vietnam
2Vietnam National University, Ho Chi Minh City 70000, Vietnam

Correspondence should be addressed to Le Kim-Hung; hunglk@uit.edu.vn

Received 20 October 2021; Revised 4 January 2022; Accepted 17 January 2022; Published 21 February 2022

Academic Editor: Hamed Nassar

Copyright © 2022 Nguyen Dat-+inh et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Internet of +ings (IoT) has been thriving in recent years, playing an important role in a multitude of various domains, including
industry 4.0, smart transportation, home automation, and healthcare. As a result, a massive number of IoTdevices are deployed to
collect data from our surrounding environment and transfer these data to other systems over the Internet. +is may lead to
cybersecurity threats, such as denial of service attacks, brute-force attacks, and unauthorized accesses. Unfortunately, many IoT
devices lack solid security mechanisms and hardware security supports because of their limitations in computational capability. In
addition, the heterogeneity of devices in IoTnetworks causes nontrivial challenges in detecting security threats. In this article, we
present a collaborative intrusion detection system (IDS), namely, MidSiot, deployed at both Internet gateways and IoT local
gateways. Our proposed IDS consists of three stages: (1) classifying the type of each IoT device in the IoT network; (2) dif-
ferentiating between benign and malicious network traffic; and (3) identifying the type of attacks targeting IoT devices. +e last
two stages are handled by the Internet gateways, whereas the first stage is on the local gateway to leverage the computational
resources from edge devices. +e evaluation results on three popular IDS datasets (IoTID20, CIC-IDS-2017, and BOT-IoT)
indicate our proposal could detect seven common cyberattacks targeting IoT devices with an average accuracy of 99.68% and
outperforms state-of-the-art IDSs.+is demonstrates that MidSiot could be an effective and practical IDS to protect IoTnetworks.

1. Introduction

+e number of devices connecting to the Internet has been
growing at a breathtaking pace over the past decades. From
two billion in 2006, it reached 200 billion in 2020 because of
the proliferation of mobile computing and the Internet of
+ings (IoT) [1]. As a result, these devices play a critical role
in primary industries (e.g., healthcare, manufacturing, re-
tailing, security, and transportation) by providing intelligent
services, such as tracking inventory, managing machines,
monitoring patient health, and detecting abnormality. +ey
are anticipated to boost the total global worth of IoT to 6.2
trillion dollars by 2025, most of which come from
manufacturing (2.3 trillion dollars) and healthcare (2.5
trillion dollars) [2]. It is apparent that IoT is the driving force
of evolution in every daily aspect.

However, ensuring security and privacy for the IoT
devices is a nontrivial challenge due to their limitation in
computational capability, which is insufficient for traditional
security mechanisms. +is makes them susceptible to wide-
ranging cyberattacks, such as data leakage, spoofing, and
DoS/DDoS. In a report published by Kaspersky, the first half
of 2021 witnessed 1.5 billion attacks against smart devices
aiming at stealing data, mining cryptocurrency, or building
botnets [3]. In September 2016, an infamous attack per-
formed by Mirai malware turned 380,000 devices into
botnets that launched DDoS attacks against several services
and organizations, including Dyn-a domain registration
service provider [4]. Moreover, this malware is capable of
mutating [5]. On 12 December 2017, its variant exploited a
zero-day flaw in Huawei HG532 routers to speed up its
infection. One year later, the number of variants was

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 9173291, 15 pages
https://doi.org/10.1155/2022/9173291

mailto:hunglk@uit.edu.vn
https://orcid.org/0000-0001-5092-2386
https://orcid.org/0000-0001-8321-7886
https://orcid.org/0000-0002-2781-8043
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9173291

increased significantly, such as Okiru, Masuta, OMG,
Wicked, Hakai, and Yowai [6].

To eliminate such security threats, an intrusion detection
system (IDS) is commonly deployed at network gateways. It
constantly monitors network traffics coming from various
sources to detect abnormalities, which may be security
threats. Following [7], the attack detection approaches of the
IDS are categorized into signature-based and anomaly-
based. +e former approach identifies cyberattacks by
comparing a set of signatures (or rules) extracted from
known attacks with incoming traffic. We note that the key
difference between IoT network traffic and other network
traffics is the diversity and volume. +e diversity of IoT
network traffic comes from the heterogeneity of IoT devices
and their communication protocols, resulting in diverse
network behaviors. Furthermore, IoT devices exponentially
increase and generate massive data traversing the Internet.
Due to these characteristics, the rule-based detection
mechanism, SNORT is a typical example, is insufficient for
IoT networks. In detail, SNORT is ineffective for complex
attacks signs of which are various and implicit in network
traffic. In addition, SNORTneeds to maintain a large rule-set
and security experts in the loop to update these rules fre-
quently. +erefore, it is not efficient and scalable enough for
IoT scenarios. +e latter approach, which is the most
popular, makes use of machine learning (ML) to construct a
model of normal network traffic patterns. +is model is then
used to measure the similarity between the incoming traffic
and known patterns to detect malicious traffic. Although the
anomaly-based approach using machine learning consid-
erably alleviates the weaknesses of the signature-based ap-
proach, it still has several limitations.

(i) Neglecting a collaborative edge-cloud architecture:
Training and inferring tasks in machine learning are
resource-intensive, so they are usually handled by
cloud platforms in existing work. +is might de-
crease the detection performance because the net-
work traffic at the cloud level, which is merged from
several gateways consisting of various data sources,
is intricate. In contrast, edge devices are resource-
constraint IoTdevices that are insufficient to handle
complex machine learning tasks (e.g., detecting
abnormal activities, training detection models).
Offloading these tasks on edge devices severely
affects other services running on these devices.
However, we believe that these devices could handle
specific tasks to increase the IDS’s detection per-
formance regardless of their limitation in compu-
tation capability. +erefore, a collaborative edge-
cloud architecture for instruction detection systems
is necessary to overcome this limitation.

(ii) Lacking IoT device-type identification: Because the
IoT device types are various and heterogeneous,
their network behaviors are highly diverse. For
example, the high UDP packet rate coming from
IoT cameras is normal, but the one from temper-
ature sensors is a sign of a security threat. +is may
lead to false attack detection. +us, identifying

device types and considering them as an input
feature of the attack detection model is crucial to
increase the detection accuracy of IDSs.

(iii) Detecting a limited set of attack types: Existing
works about IDS are extensive but primarily con-
cerned with detecting a limited set of attacks in a
general domain, such as DoS and spoofing. Given
the rising prevalence of IoT, there is an essential
need to address a larger set of attacks targeting IoT
networks.

To solve the above limitation, we present MidSiot, a
machine learning-based three-stage IDS designed for IoT
networks supporting collaboration between local gateways
and Internet gateways of Internet Service Provider (ISP)
(solving the first limitation). In more detail, to leverage edge
computing and enhance the attack detection accuracy, the
first stage is operated at local gateways to identify IoTdevices
based on their behaviors in the network (solving the first
limitation), whereas the next two stages powered by a
machine learning model are handled by the Internet gate-
ways to not only differentiate between normal and malicious
network traffic, but also accurately identify the seven
common attack types (solving the first limitation). +e
evaluation results on existing IDS datasets for the IoT do-
main (IoTID20, BOT-IoT, and CIC-IDS-2017) show that
MidSiot could detect seven popular attacks targeting IoT
devices with an average accuracy of 99.68%. Our main
contributions presented in this study are as follows:

(1) A collaborative architecture for IoT IDSs to leverage
the computational resources of edge gateway to
enhance IDS’s detection performance.

(2) A lightweight and robust machine learning-based
IDS constituting of three stages to accurately detect
various cyberattacks pointing at IoT devices.

(3) We intensively evaluate our proposal on popular IDS
datasets and examine the resampling techniques to
address imbalanced datasets during our experiments.

+e remainder of the article is organized as follows. In
Section 2, we discuss related work. +e MidSiot architecture
and its detection method are presented in Section 3. Section
4 reports the evaluation of our method through IDS datasets,
and we conclude our work in Section 5.

2. Related Works

In recent years, there has been an increased interest in
exploring machine learning for enhancing the detection
quality of IDSs [17, 18]. In [9], the authors proposed an
anomaly detection mechanism using a single machine
learning classifier. +e authors of [10] presented a scalable
k-NN-based online anomaly detection addressing the lazy-
learning problem in wireless sensor networks [10]. +e
works in [16] also employed anomaly detection techniques
for IDSs using binary classification. +is means that they
cannot identify the type of attack. In [11], the authors
proposed an ensemble of autoencoders for online IDS whose

2 Wireless Communications and Mobile Computing

performance is comparable to offline anomaly detectors. Ref.
[12] is a novel approach for IDSs in which the authors
applied convolutional neural network to predict the attack
types. 98% accuracy on the NSL-KDD dataset was achieved
in this experiment. +ere are also hybrid-IDSs where
anomaly-based and signature-based approaches are used to
develop the IDS. Such a typical system is introduced in [19],
in which packet header anomaly detection, network traffic
anomaly detection, and SNORT are combined. In [13], the
authors leveraged four machine learning algorithms to
derive rule-sets used as signatures for their IDS. In [8], a
hierarchical architecture including multiple neural networks
was proposed to detect malicious packets and identify the
attack types hidden inside these packets. +e authors in [14]
introduced a hierarchical structure for IDS that separates the
detection process into different steps. +e authors in [20]
suggested a distributed architecture for smart home IDSs
that offload complex tasks onto the Internet Service Provider
(ISP) and deliver simple ones to the smart home gateway
[20].

In terms of datasets used for IDSs, the authors in [21]
proposed a new dataset called IoTID20, which was also
evaluated in their work by implementing several machine
learning algorithms (e.g., logistic regression, decision tree,
random forest), which results in increasing F1-score for both
binary classification and multiclass classification. +e au-
thors in [15] developed a new realistic botnet dataset for use
in IoT networks, and as a result, it mainly consists of DDoS
attacks. Another dataset is CICIDS-2017 including attack
traffic generated by their testbed and realistic background
traffic created by the B-profile system [22]. All of these 3
datasets were constructed using the CICFlowMeter tool
(formerly known as ISCXFlowMeter), thereby having a
similar set of features. Regarding resampling methods for
network intrusion detection system (NIDS), the literature at
[23] comparedmultiple undersampling techniques for NIDS
on CICIDS-2017 and CICIDS-2018 datasets, including
random, cluster centroids, and nearmiss algorithms. +e
authors concluded that these undersampling methods re-
duced models’ training time, and K-nearest neighbor has the
most significant improvement. +ere are also other works
that implemented a combination of several resampling
techniques, such as oversampling and undersampling [24].
+eir experimental results showed that the oversampling
method increases the training time, whereas the under-
sampling method decreases this time. In addition, if the
dataset is highly imbalanced, these methods improve the
recall score notably. +e authors in [25] proposed an al-
gorithm-level class balancing technique that addresses the
underlying issue about attack class imbalance in IDS
datasets, resulting in identifying various attack categories
with better accuracy than the CNN models.

In recent years, many researchers have geared toward
blockchain applications in intrusion detection systems
thanks to its potential in protecting data integrity and
privacy. +e authors in [26] investigated the challenges and
limitations of blockchain to intrusion detection in addition
to their applications, such as the overhead traffic with limited
handling capability of intrusion detection and extensive

energy and cost usage of blockchain. Despite these diffi-
culties, blockchain still has the potential to mitigate the data
sharing and trust management issues in collaborative in-
trusion detection. As far as collaborative intrusion detection
systems are concerned, a series of research [27–29] provided
blockchain challenge-based collaborative intrusion detec-
tions. In these systems, the authors leveraged the strength of
blockchain to investigate the trust mechanism in a network
of IDS nodes. +eir goals are to enhance the robustness of
trust management against attacks as well as to protect the
alarm aggregation process from malicious inputs. +e works
in [30, 31] made some contributions in the same direction,
but the authors specifically targeted intrusion detection
systems in a software-defined network. +e authors in [32]
proposed a deep blockchain framework to offer security-
based distributed intrusion detection and privacy-based
blockchain with smart contracts in IoT networks. Although
the experimental results of the intrusion detection system
were optimistic, the classification algorithm in use was a
bidirectional long short-term memory, which accompany-
ing blockchain might aggregate more computational burden
on operating IoT devices.

To summarize the related works, Table 1 presents the
state-of-the-art intrusion detection systems and their
characteristics, including targeting security threats, attack
detection method, evaluation datasets, attack-type and de-
vice-type detection, and lightweight. We can see that none of
them is lightweight enough to classify the type of attack and
its target. In addition, several approaches are evaluated by
non-IoT datasets or testbeds having a small number of IoT
devices. +us, previous IDS proposals are insufficient for
deploying to practical IoT ecosystem.

3. The MidSiot IDS

3.1. System Overview. In this section, we explain how our
proposal works. First of all, Figure 1 illustrates the architecture
of the proposed IDS that comprises three stages distributed
between local network infrastructures and ISPs. +e first stage
is operated at the local gateways to identify connected IoT
devices through their network behaviors. +e next stage,
which is conducted at the Internet gateways of ISPs, classifies
network traffic of such IoT devices as normality or abnor-
mality. When abnormal traffic is detected, it is transferred to
the third stage to identify the attack types. Since the last two
stages are done on ISPs which aggregate a huge volume of
network traffic, correctly identifying the IoTdevice types along
with their network traffic at the first stage is essential in in-
creasing attack detection performance at following stages,
especially for large-scale attacks targeting atmultiple networks.

Second, Figures 2 and 3 present the block diagram ofmain
operational phases in MidSiot, including the training and
prediction phases, respectively. +ey also illustrate the con-
nection and interfaces of components of the proposed IDS. In
more detail, as shown in Figure 2, the raw network packets are
captured by the packet flow inspection component from
network traffic and transformed into network flows. +ese
flows are then fed into the feature extraction component,
extracting network features and computing network flow

Wireless Communications and Mobile Computing 3

statistics. In addition, feature selection algorithm is applied to
filter inappropriate features from the output features. In the
training phase, these features are aggregated into a dataset
used to train the models. Once models are trained success-
fully, the ISPs store thesemodels used for the second and third
stages in their local storages, while the models used for the
first stage are sent to the local gateways. We note that the
second stage employs several models, and each model is
responsible for classifying network traffic for a specific device
type.

In the prediction phase illustrated in Figure 3, the
network features are constructed similarly with the training
phase; however, they are then fed to models for detecting

malicious traffic. In more detail, the model of the first stage
running on the local gateway is loaded to identify the device
type of such features. All this information is transferred to
ISP’s Internet gateways, where a well-trained model cor-
responding to the device type is used to detect abnormality
in these features. If malicious activities are detected, they
are forwarded to the third stage to detect attack types by
using a universal attack detection model. +e detection
results, including the IoT device under the attack and the
type of attack, are sent to the action manager component to
trigger necessary actions (logging attack behaviors,
blocking the network traffic of victims, notifying admin-
istrators about the attack). Note that, because MidSiot’s

Table 1: Summary of current works on Intrusion Detection Systems for Internet of +ings.

Work Security threat Detection
method Validation dataset Attack-type

detection
Device-type
detection Lightweight

Zhang et al.
[8] DoS, R2L, U2R, and PROBE Deep learning KDD Cup 1999

Data Yes No —

Wang and
Stolfo [9]

58 attack types with 1999 DARPA dataset
CUCS dataset (Code Red II, Buffer overflow)

1-gram
models

1999 DARPA IDS
Dataset CUCS

Dataset
Yes No —

Xie et al. [10] — Machine
learning

Real WSN data
sets — No Yes

Mirsky et al.
[11] Recon., MITM, DoS, Botnet Autoencoder Real-testbed Yes No Yes

Ince [12] DoS, probe, R2L, U2R Deep learning NSL-KDD Yes No —
Kumar et al.
[13] Dos, exploit, probe, generic Hybrid UNSW-NB15 Yes No —

Anthi et al.
[14]

Attack reconnaissances, DoS attacks, man-
in-the-middle attacks, replay attacks, DNS

spoofing

Machine
learning Real-testbed Yes Yes —

Koroniotis
et al. [15] DoS/DDoS attacks, keylogging, data theft Deep learning BOT-IoT Dataset Yes No —

Liu et al. [16] Vulnerability scanners, ARP spoofing, DoS
attacks, Mirai Botnet

Machine
learning IOTID-20 Dataset No No Yes

Proposed
System

Scanning methods (Host Discovery, Port
scanning, OS/Version Detection) ARP

Spoofing, SYN Flooding, Host Discovery,
Telnet Bruce-force, UDP/ACK/HTTP

Flooding

Machine
learning

IOTID-20,
CICIDS-2017,

BOT-IoT Dataset
Yes Yes Yes

Home Gateway

Internet

Stage 1: Device type
classifier

Stage 2: Attack
detection

Stage 3: Attack type
classifier

IoT Devices

ISP Gateway

Figure 1: Overview of the architecture of the multistage intrusion detection system.

4 Wireless Communications and Mobile Computing

structure uses linked stages, the errors of one stage might
affect not only the following stages but also the overall
system’s performance. For example, if MidSiot misclassifies
the device type, the second-stage results are potentially
false. +is is because the second-stage model is trained to
learn the network patterns associated with a specific device
type, and these patterns are different for each device type.
Similarly, if the second-stage model misclassifies normal
network traffic as abnormal, the final stage result is in-
correct and triggers a false alert.

3.2. Network Flow Generation. Network flow generator is
used to generate network flows from a batch of raw network
packets. In MidSiot, it is powered by the deep packet in-
spection method that aggregates packets into flows sharing
source/destination IP, source/destination port, and protocol
and calculates flow features and statistics. In addition, this

method supports extracting MAC addresses, making it
possible to label devices. +erefore, we could obtain 83
network features (e.g., FlowID, SourceIP, DestinationIP,
SourcePort, DestinationPort, TimeStamp, and Protocols)
listed in Appendix VI (Table 2).

3.3. Data Preprocessing. In IDS datasets, not all features are
suitable for machine learning algorithms; some of them may
degrade the model training performance, whereas others
make models overfit. +erefore, employing a feature se-
lection algorithm is necessary. First, all identity-based fea-
tures (e.g., ip_src, ip_dst, flow_id, timestamp) are dropped to
prevent the overfit issues, even features related to MAC
addresses after labeling connected devices. We then adopt
Pearson’s correlation coefficient to identify and remove
unimportant features. In more detail, the importance index
of each feature is its linear correlation coefficient value

Network Traffic

Raw Packets

Network Flow
Generation

Network flow Feature Selection

Features

Train Models
(at ISP)

Trained model stage 1Home Gateway
Storage

ISP Storage Trained model stage 2 and stage 3

(Send back to local)

(store at ISP)

Data Preprocessing

Figure 2: MidSiot’s training phase.

Network Traffic

Raw packets

Network Flow
Generation

Network flow
Feature Selection

Features

Load Model
(stage1 – classify

device types)

Home Gateway
Storage

Trained model

Prediction device types

(Forward prediction result

Load Model
(stage2 – classify

malicious/benign)
ISP Storage

Trained model

Malicious?

Yes

Load Model
(stage3 – classify attack

type)

Trained model

Prediction

Prediction Home
Gateway

No

(All results are sent back to HG)

Action Manager

(Start action manager if result
is malicious)

(benign result will be
ignored by HG)

Data Preprocessing

and features to ISP)

Figure 3: MidSiot’s prediction phase.

Wireless Communications and Mobile Computing 5

Table 2: Extract network features.

Feature name Description
fl_dur Flow duration
tot_fw_pk Total packets in the forward direction
tot_bw_pk Total packets in the backward direction
tot_l_fw_pkt Total size of the packet in the forward direction
fw_pkt_l_max Maximum size of the packet in the forward direction
fw_pkt_l_min Minimum size of the packet in the forward direction
fw_pkt_l_avg Average size of the packet in the forward direction
fw_pkt_l_std Standard deviation size of the packet in the forward direction
Bw_pkt_l_max Maximum size of the packet in the backward direction
Bw_pkt_l_min Minimum size of the packet in the backward direction
Bw_pkt_l_avg Mean size of the packet in the backward direction
Bw_pkt_l_std Standard deviation size of the packet in the backward direction
fl_byt_s Flow byte rate that is the number of packets transferred per second
fl_pkt_s Flow packets rate that is the number of packets transferred per second
fl_iat_avg Average time between two flows
fl_iat_std Standard deviation time two flows
fl_iat_max Maximum time between two flows
fl_iat_min Minimum time between two flows
fw_iat_tot Total time between two packets sent in the forward direction
fw_iat_avg Mean time between two packets sent in the forward direction
fw_iat_std Standard deviation time between two packets sent in the forward direction
fw_iat_max Maximum time between two packets sent in the forward direction
fw_iat_min Minimum time between two packets sent in the forward direction
bw_iat_tot Total time between two packets sent in the backward direction
bw_iat_avg Mean time between two packets sent in the backward direction
bw_iat_std Standard deviation time between two packets sent in the backward direction
bw_iat_max Maximum time between two packets sent in the backward direction
bw_iat_min Minimum time between two packets sent in the backward direction
fw_psh_flag Number of times the PSH flag was set in packets travelling in the forward direction (0 for UDP)
bw_psh_flag Number of times the PSH flag was set in packets travelling in the backward direction (0 for UDP)
fw_urg_flag Number of times the URG flag was set in packets travelling in the forward direction (0 for UDP)
bw_urg_flag Number of times the URG flag was set in packets travelling in the backward direction (0 for UDP)
fw_hdr_len Total bytes used for headers in the forward direction
bw_hdr_len Total bytes used for headers in the forward direction
fw_pkt_s Number of forward packets per second
bw_pkt_s Number of backward packets per second
pkt_len_min Minimum length of a flow
pkt_len_max Maximum length of a flow
pkt_len_avg Mean length of a flow
pkt_len_std Standard deviation length of a flow
pkt_len_va Minimum interarrival time of the packet
fin_cnt Number of packets with FIN
syn_cnt Number of packets with SYN
rst_cnt Number of packets with RST
pst_cnt Number of packets with PUSH
ack_cnt Number of packets with ACK
urg_cnt Number of packets with URG
cwe_cnt Number of packets with CWE
ece_cnt Number of packets with ECE
down_up_ratio Download and upload ratio
pkt_size_avg Average size of packet
fw_seg_avg Average size observed in the forward direction
bw_seg_avg Average size observed in the backward direction
fw_byt_blk_avg Average number of bytes bulk rate in the forward direction
fw_pkt_blk_avg Average number of packets bulk rate in the forward direction
fw_blk_rate_avg Average number of bulk rate in the forward direction
bw_byt_blk_avg Average number of bytes bulk rate in the backward direction
bw_pkt_blk_avg Average number of packets bulk rate in the backward direction
bw_blk_rate_avg Average number of bulk rate in the backward direction
subfl_fw_pk +e average number of packets in a subflow in the forward direction

6 Wireless Communications and Mobile Computing

varying between −1 and 1. Finally, we remove all features
having an importance index lower than 0.8. As a result, the
final dataset only comprises 40 features, excluding all labels.
We note that In MidSiot, Pearson correlation was only used
during the training phase to construct a set of concise and
suitable features for machine learning models. +is feature
set is then saved and loaded to the IDS in the detection
phases.+is means that Pearson correlation is inactive in the
detection phase. +erefore, it has no impact on the detection
procedure.

Algorithm 1 Overview. Let X � [x1, x2, . . . , xn] denote
a list of raw packets, and D is the list of processed flows. +e
major steps of this algorithm are described as follows:

(1) Network Flow Generation, in Line 2, receives a list
of raw packets X and generates network flows by
aggregating packets sharing Source/DestinationIP,
Source/DestinationPort, Protocol.

(2) Label Device Types, in Line 3, the device type of each
flow is deduced via Source/DestinationMAC
Address. In addition, this step is performed during
the training phase only.

(3) Drop and Normalize Data, in Lines 4 and 5, any
flows in F having a null value at any field will be
dropped. Afterward, the remaining flows are nor-
malized to facilitate the machine learning processes.

(4) Pearson’s Correlation Coefficient, in Line 6, the
Pearson’s correlation coefficient is applied on the
normalized flows F2 to select only important features
Fts. Finally, the flow list F2 will have some features
dropped and only features from Ft are retained,
which results in D.

3.4. Multistage Attack Detection Algorithm

3.4.1. 2e Overview. +e details of the multistage attack
detection algorithm is described in Algorithm 2. In more
detail, let X � [x1, x2, . . . , xn] denote a list of raw packets
and R is the resulting attack type. +e entire detection
process consists of the following main steps:

(i) Processing data, including generating network
flows, dropping unnecessary features, and nor-
malizing data are performed similarly to the Al-
gorithm 1. However, as this is the detection process,
device-type labeling and features selecting using
Pearson’s correlation coefficient are inactive.

(ii) Classifying device type, the classification model
from the storage of the local home gateway to
perform prediction on the processed flow f2 to
deduce the device type.

(iii) Sending the result to the ISP, the processed flow f2
in addition to the prediction results dt is forwarded
to the ISP to further perform abnormality and at-
tack-type detection.

(iv) Detecting the attacks, the model m is applied on
the flow f2 to deduce whether that flow is normal or
abnormal. If it is abnormal, move on to the next
step; otherwise, mark this flow as null (which
represents benign).

(v) Classifying attack type, a universal attack-type
detection model is loaded from the storage of the
ISP gateway. +is model will be then applied on the
malicious flow f2 to deduce the kind of attack a that
has happened. At the end of this process, we know
the device type of the flow, whether the flow is
malicious or benign, and the attack type of the flow
if it is malicious.

3.4.2.2e First Stage. +eprimary benefit of the first stage is to
enhance the accuracy of the attack detection model in the next
steps. In more detail, since the IoTdevice types are various and
heterogeneous, their network behaviors are highly diverse. For
example, the high UDP packet rate coming from IoTcameras is
normal, but the one from temperature sensors is a sign of a
security threat. +is may lead to false attack detection. +us,
identifying device types and considering them as an input
feature of the attack detection model is crucial to increase the
accuracy. Furthermore, this stage should be done on the local
gateway for two reasons: (1) local gateways have sufficient

Table 2: Continued.

Feature name Description
subfl_fw_byt +e average number of bytes in a subflow in the forward direction
subfl_bw_pkt +e average number of packets in a subflow in the backward direction
subfl_bw_byt +e average number of bytes in a subflow in the backward direction
fw_win_byt Number of bytes sent in initial window in the forward direction
bw_win_byt # of bytes sent in initial window in the backward direction
Fw_act_pkt # of packets with at least 1 byte of TCP data payload in the forward direction
fw_seg_min Minimum segment size observed in the forward direction
atv_avg Mean time a flow was active before becoming idle
atv_std Standard deviation time a flow was active before becoming idle
atv_max Maximum time a flow was active before becoming idle
atv_min Minimum time a flow was active before becoming idle
idl_avg Mean time a flow was idle before becoming active
idl_std Standard deviation time a flow was idle before becoming active
idl_max Maximum time a flow was idle before becoming active
idl_min Minimum time a flow was idle before becoming active

Wireless Communications and Mobile Computing 7

computation power to handle a part of the detection process,
which reduces the burden for the cloud; and (2) if device-type
classification is done with the other two steps on the cloud,
merge amultitude of network packets coming from various IoT
networks. +is aggregation may make the network data exhibit
more generic characteristics than device-specific ones, reducing
the device-type classification performance. +is directly affects
the attack detection accuracy. +erefore, running the device-
type classifiers in the local gateways closed to IoTdevices could
mitigate this issue since only a limited number of device types
are considered.

3.4.3. 2e Second and 2ird Stages. Take a dataset

D � x1, y1(􏼁, x2, y2(􏼁, . . . , xN, yN(􏼁, (1)

where xi � (x
(1)
i , x

(2)
i , . . . , xn

i)T, i � 1, 2, . . . , N, xi is the
input instance that represents a network flow. xi has n

features. N indicates the number of features of a network
flow contained in the dataset D. yi ∈ [0, 1, 2, . . . , K − 1] is
the result of each detection record. A decision tree recur-
sively partitions the feature space such that the samples with
the same labels or similar target values are grouped together.

Input: Raw network packets X

Output: Processed data D

(1) Initialize: D �

(2) Generate network flows: F←NetworkFlowGenerator(X)

(3) Label device type: LabelDeviceType(F)

(4) Drop invalid flows and identity columns: F1←DropInvalidData(F)

(5) Normalize data: F2←Normalize(F1)

(6) Select features using Pearson’s Correlation Coefficient:
(a) Fts←Corr(F2)

(b) D←SelectFeatures(F2, Fts)
(7) Return D

ALGORITHM 1: Data preprocessing in training phases.

Input: Raw network packets X

Output: Attack type R

(i) Local home gateway:
(1) Generate network flows:

f←GenerateFlows(X)

(2) Drop unnecessary features:
f1←DropFeatures(f)

(3) Normalize data:
f2←Normalize(f1)

(4) Load device type classification model:
M1←LoadModel

(5) Classify device type: Device type
dt ←M1.predict(f2)

(6) Send to ISP: Send((dt , f2))

(ii) Internet Service Provider (ISP)
(1) Initialize: R �

(2) Load all abnormality detection models:
M2←LoadModel2

(3) Load abnormality detection model:
m←M2[dt]

(4) Attack detection:
y←m.predict(f2)

(5) If y is not normal then
(a) Load attack type detection model:

M3←LoadModel3
(b) Attack classification:

a←M3.predict(f2)

(c) R←a

(6) Else
R←null

(7) Return R

ALGORITHM 2: +e overall detection process.

8 Wireless Communications and Mobile Computing

Let the data at node m be represented by Qm. For each split
θ � (j, tm) consisting of a feature j and a threshold tm,
partition the data into Qleft

m (θ) and Q
right
m (θ) subsets:

Q
left
m (θ) � (x, y)|xi < � tm􏼈 􏼉,

Q
right
m (θ) � Qm\Q

left
m (θ).

(2)

+e quality of a candidate split of node m is then
computed using an impurity function or loss function H, the
choice of which depends on the task being solved (classi-
fication or regression):

G Qm, θ(􏼁 �
N

left
m

Nm

H Q
left
m (θ)􏼐 􏼑 +

N
right
m

Nm

H Q
right
m (θ)􏼐 􏼑. (3)

Select the parameters to minimize the impurity:

θ∗ � argminθG Qm, θ(􏼁. (4)

Repeat for subsets Qleft
m (θ) and Q

right
m (θ) until the

maximum allowable depth is reached Nm <minsample or
Nm � 1.

For the classification of IDS, yi ∈ [0, 1, 2, . . . , K − 1] for
node m represents a region of Rm with instances of Nm.
Assume that pmk is the proportion of class k instance in m

and can be obtained by the following formula:

pmk �
1

Nm􏽐xj∈Rm
I yi � k(􏼁

. (5)

+e common measure of impurity is named Gini and
can be obtained by the following formula:

H Xm(􏼁 � − 􏽘
k

pmk 1 − pmk(􏼁. (6)

Cross-entropy can be obtained by the following formula:

H Xm(􏼁 � − 􏽘
k

pmklog pmk(􏼁. (7)

Misclassification can be obtained by the following for-
mula (not being used in the proposed system):

H Xm(􏼁 � − 􏽘
k

1 − max pmk(􏼁. (8)

4. Results and Discussion

4.1. Evaluation Metrics. In our experiments, we adopted
several evaluation metrics, such as precision (P), recall (R),
F-measure (F), and accuracy. Let TP, FP, and FN denote true
positives, false positives, and false negatives, respectively,
and these evaluation metrics are defined as

P �
TP

TP + FP
,

R �
TP

TP + FN
,

F � 2.
P.R

P + R
.

(9)

To evaluate the quality of attack detection models, we use
the model accuracy as a primary evaluation metric that is
directly computed from the confusion matrix based on the
following formula:

Accuracy �
TP + TN

TP + TN + FP + FN
. (10)

We evaluate the performance of these resampling
methods through macroaverage F1-score performed inde-
pendently on each class. Let MAP and MAR denote mac-
roaverage precision and macroaverage recall, and the
macroaverage F1-score is defined as

MacroAvgF1 � 2∗
MacroAvgPrec∗MacroAvgRec

MacroAvgPrec−1
+ MacroAvgRec−1,

(11)

where

MacroAvgPrec �
􏽐

K
k�1 Precisionk

K
,

MacroAvgRec �
􏽐

K
k�1 Recallk

K
,

(12)

where K is the total number of classes.

4.2. Dataset and Attack Class Balancing. We assessed Mid-
Siot on three different datasets: IoTID20, CIC-IDS-2017, and
BOT-IoT.

(i) +e IoTID20 dataset consists of two IoT devices (a
smart home device SKT NGU and an EZVIZ Wi-Fi
camera) and several non-IoT devices marked as
external devices. +e cyberattacks on these devices
are classified into four attack categories and seven
attack subcategories described in detail in Table 3.

(ii) +e CIC-IDS-2017 dataset contains the network
traffic of six cyberattack types listed in Table 4
targeting 12 different IoT devices, which are la-
beled according to their operating systems and
architectures. It also has several external devices to
generate normal traffic.

(iii) +e BOT-IoT has five IoT devices and several ex-
ternal devices.+emalicious network traffic of these
devices is classified into three attack categories and
detailed in Table 5.

+rough rigorously analyzing the evaluation datasets, we
figured out that the number of samples of each attack type is
slightly imbalanced; thus, employing resampling methods is
necessary. In our experiments, we experimented and eval-
uated the Random Undersampling algorithm (RU) and its
conjunction with Synthetic Minority Oversampling Tech-
nique (RU-SMOTE).

(i) Random Undersampling is a random selection
process running on overwhelmed attack types to
reduce their size. However, randomly selecting data
points might accidently ignore critical information,
resulting in degraded classification performance.

Wireless Communications and Mobile Computing 9

(ii) Synthetic Minority Oversampling Technique
(SMOTE) balances the dataset by synthesizing new
samples for the minority class. In more detail, it
selects a cluster of samples and draws a line between
them; new samples are the points along this line.

To implement these resampling methods, we utilized
imblearn library [33] supporting multiple resampling
techniques along with several running strategies for both
binary and multiclass classification. In binary classification,
we need to configure the ratio between minority class and
majority class after resampling, whereas this configuration is
unnecessary in multiclass classification. From the results
illustrated in Figures 4-6, it is obvious that these resampling
techniques have no significant impact on the performance of
models. Furthermore, if the number of samples in majority
classes drastically outweighs ones of minority classes, they
may decrease the attack detection quality of the smaller
classes. +erefore, our models are trained without resam-
pling techniques.

4.3. Results and Discussion. To select classification algo-
rithms for our multistage IDS, we examined the detection
time and accuracy of several supervised machine learning
algorithms on the IoTID20 dataset. In detail, the ability to

classify benign and malicious network traffic (binary attack
detection) and identify precisely the types of attacks
(multiclass attack detection) are both considered. Since
operating on network gateways requires a lightweight attack
detection model, experimented algorithms are simple ma-
chine learning algorithms, including linear support vector
machine, quadratic support vector machine, K-nearest-
neighbor, linear discriminant analysis, quadratic discrimi-
nant analysis, multilayer perceptron, long short-term
memory, autoencoder classifier, and decision tree classifier;
their results are presented in Table 6. As shown in the table,
the decision tree classifier outperforms other algorithms,
and it is considered a lightweight machine learning algo-
rithm [34]. +is classifier is thus selected for the attack
detection model of MidSiot. Note that empty values in the
table (denoted by N/A) imply the long training time ex-
ceeding two hours. Moreover, training a decision tree
classifier is trivial and possibly performed on IoTdevices.We
also applied Classification and Regression Tree (CART) to
boost the detection performance. Inmore detail, CARTsplits
training data into two subsets based on a specific feature k
and a threshold tk (e.g., “flow duration ≤ 100”). +is split is
repeated on each subset until it reaches the maximum depth
or subset size equals to 0. As a result, the computational
complexity of the classifier is reduced to O(log2(m)) withm

Table 3: Devices, attack categories, and subcategories of the IoTID20 dataset.

Device Category Subcategory

EZVIZ,
NUGU,
External

Normal,
DoS,
Mirai,
MITM,
Scan

Normal,
Syn Flooding,

Brute Force, HTTP Flooding, UDP Flooding,
ARP Spoofing,
Host Port, OS

Table 4: Devices, attack categories, and subcategories of the CIC-IDS-2017 dataset.

Device Category Subcategory
Web server 16 Public, Benign, Benign,
Ubuntu server 12 Public, Bot, Bot,
Ubuntu 14.4 32bit, Brute Force, FTP-Patator,
Ubuntu 14.4 64bit, Dos/Ddos, SSH-Patator,
Ubuntu 16.4 32bit, Infiltration, DDoS, DoS, GoldenEye,
Ubuntu 16.4 64bit, Portscan, DoS Hulk, DoS Slow,
Win 7 Pro, Web Attack httptest, DoS slowloris,
Win 8.1 64bit, Infiltration, Portscan,
Win Vista 64bit, Web Attack-Brute Force,
Win 10 pro 32bit, Web Attack-Sql Injection,
win 10 64bit, Web Attack-XSS, Heartbleed
MAC,
External

Table 5: Devices, attack categories, and subcategories of the BOT-IoT dataset.

Device Category Subcategory
Ubuntu Server, Normal, Normal,
Ubuntu Mobile, DoS/DDoS, Service scanning,
Metasploitable, Reconnaissance, OS Fingerprinting,
Windows 7, +eft DoS/DDoS TCP, DoS/DDoS UDP,
Ubuntu Tap, DoS/DDoS HTTP,
External Keylogging, data exfiltration

10 Wireless Communications and Mobile Computing

No resample

M
ac

ro
 A

ve
ra

ge
 F
1

 S
co

re

Stage 1
0

20

40

60

80

100

Stage 2 Stage 3

RU
RU-SMOTE

Figure 4: +e macroaverage F1-score of the IoTID20 dataset.

No resample

M
ac

ro
 A

ve
ra

ge
 F
1

 S
co

re

0

20

40

60

80

100

RU
RU-SMOTE

Stage 1 Stage 2 Stage 3

Figure 5: +e macroaverage F1-score of the CIC-IDS-2017 dataset.

No resample

M
ac

ro
 A

ve
ra

ge
 F
1

 S
co

re

0

20

40

60

80

100

RU
RU-SMOTE

Stage 1 Stage 2 Stage 3

Figure 6: +e macroaverage F1-score of the BOT-IoT dataset.

Wireless Communications and Mobile Computing 11

being the number of samples in the training set. +is sig-
nificantly increases the training and prediction rate to deal
with large datasets.

Attack detection results: Table 7 reports the overall
performance of each MidSiot’s stage on evaluated datasets.
We can see that MidSiot could not only accurately differ-
entiate between normal and malicious traffic in the second
stage, but also identify the type of attacks in the third stage.
+e average accuracy of such stages is about 99.98% and
99.68%, respectively. Regarding classifying IoT devices, our
proposal achieved a high classification accuracy reported at
95.55% on average. In detail, device-type classification for
BOT-IoT achieves the highest result, at 99.92%, whereas the
results of IoTID20 and CIC-IDS-2017 are about 92.57% and
94.17%, respectively. To have a better understanding the
attack detection performance of MidSiot, Tables 8–10 il-
lustrate the confusion matrices, which present the com-
parison between predicted attacks and the actual ones.

Comparing with baseline methods:We compared attack
detection quality between our proposal and state-of-the-art
IDS and reported the results in Table 11. Overall, MidSiot

outperforms its competitors on CICIDS-2017 and BOT-IoT
datasets and is comparable with them on IoTID2020 dataset.
In more detail, regarding CIC-IDS-2017, the best of our
competitors achieves 99.9% in both binary and multiclass
classification, whereas our proposed IDS achieves better results
recorded about 99.99% and 99.97%, respectively. Similar re-
sults are also found in the BOT-IoT dataset, in which our
proposal achieves 99.99% accuracy in binary classification and
99.93% in multiclass classification problems. In the IoTID20
dataset, the best competitor detects the attack types with 100%
accuracy, and MidSiot also has very competitive results re-
ported at 99.15%. Compared with state-of-the-art IDSs,
MidSiot employed more machine learning models to enhance
detection accuracy.+is demands high computation costs and
training datasets to train these models. Indeed, each stage in
MidSiot has a different training dataset, which requires a huge
effort to label. For example, the first-stage model needs to label
the device type of network traffic, whereas the second-stage
model demands labeling abnormal traffic. Moreover,
deploying the first-stage model from the cloud to IoT local
gateway consumes network bandwidth andmay trigger delays.

Table 6: +e results of examined classifiers.

Model Classification Accuracy
(%)

Training time
(μs/flow)

Prediction time
(μs/flow)

Adjusted parameters

Linear support vector
machine

Binary 98.16 1150.57 204.54 kernel� linear
gamma� autoMulticlass N/A 10 298.3 1453.1

Quadratic support
vector machine

Binary 98.25 792.61 311.5 kernel� poly
gamma� autoMulticlass N/A N/A N/A

K-Nearest neighbor Binary 99.79 0.17 2343.72 n_neighbors� 5Multiclass 98.61 0.19 2377.81
Linear discriminant
analysis

Binary 95.07 21.6 0.27 All defaultMulticlass 80.73 25.71 4.35
Quadratic discriminant
analysis

Binary 53.6 18.89 12.44 All defaultMulticlass 56.62 16.62 14.74

Multilayer perceptron
Binary 99.6 2.57 0.65 Input layer and first layer with 50 neurons

and activation� relu
Output layer with activation� sigmoidMulticlass 92.71 4.94 7.96

Long short-term
memory

Binary 96.53 572.44 62.64 input layer and LSTM layer with 50
neurons

Output layer with activation� sigmoidMulticlass N/A N/A N/A

Autoencoder classifier

Binary 93.01 11.65 0.62 Encoding layer with 50 neurons and
activation� relu

Decoding and output layer with
activation� softmax

Multiclass 87.74 13.35 0.81

Decision tree classifier Binary 99.94 12.49 0.43 criterion� entropyMulticlass 99.69 16.76 0.38

Table 7: +e evaluation results of the multistage IDS.

Dataset Stage Accuracy (%) Training time (μs/flow) Prediction time (μs/flow)

IoTID20
1 92.57 35.76 0.44
2 99.95 11.33 0.26
3 99.15 15.9 0.31

CIC-IDS-2017
1 94.17 110.31 0.89
2 99.99 25.65 0.25
3 99.97 78.68 0.27

BOT-IoT
1 99.92 19.27 0.15
2 99.99 3.24 0.07
3 99.93 15.05 0.17

12 Wireless Communications and Mobile Computing

Table 8: Attack detection confusion matrix on the IoTID20 dataset.

Predicted
Mirai Scan DoS Normal MITM ARP spoofing

Actual

Mirai 412446 2583 0 38 569
Scan 618 74 473 0 9 155
DoS 9 2 59356 5 3

Normal 63 15 6 53 30
MITM ARP Spoofing 624 200 2 16 34509

Table 9: Attack detection confusion matrix on the CIC-IDS-2017 dataset.

Predicted
Benign DoS/DDoS Portscan Bot Web attack

Actual

Benign 158303 6 2 7 35
DoS/DDoS 19 235881 8 0 2
Portscan 6 6 158911 0 1

Bot 10 0 0 1929 0
Web Attack 40 1 2 0 1463

Table 10: Attack detection confusion matrix on the BOT-IoT dataset.

Predicted
DDoS DoS Reconnaissance Normal

Actual

DDoS 1926189 435 0 0
DoS 1319 830786 0 0

Reconnaissance 2 6 81818 2
Normal 1 1 3 2

Table 11: Comparing the proposed system with other one-stage systems.

Dataset Work Attack detection model Binary attack
detection (%)

Multiclass
attack

detection (%)

Prediction time
(μs/netflow)

CICIDS-2017

MidSiot Multistage 99.99 99.97 1.41
Gamage and Samarabandu

[35] Random forest N/A 99.86 60.48

Vinayakumar et al. [36] Deep neural network 93.10 95.60 N/A
Elmrabit et al. [37] Decision tree 99.90 99.90 N/A
Manimurugan Deep belief network 99.37 97.73 N/A

IOTID20

MidSiot Multistage 99.98 99.88 1.01
Ullah and Mahmoud [21] Decision tree 99.94 99.69 N/A

Alkahtani and Aldhyani [38] Long short-term memory 98.20 N/A N/A
Song et al. [39] Autoencoder 93.76 95.20 N/A

Hussein et al. [40] Random forest 99.90 99.90 N/A

Ullah and Mahmoud [41] Convolution neural
network 99.98 97.76 N/A

Islam et al. [42] Decision tree N/A 100.00 1139.37

BOT-IOT

MidSiot Multistage 99.99 99.99 0.39
Ferrag et al. [43] Rules and decision tree N/A 97.00 1.54
Ferrag et al. [44] Deep autoencoder N/A 98.39 1916.55
Dwibedi et al. [45] Support vector machine 99.99 N/A N/A
Pokhrel et al. [46] K-Nearest neighbor 92.10 N/A N/A

Ge et al. [47] Support vector machine 99.74 99.03 693 040

Ullah and Mahmoud [41] Convolution neural
network 99.90 99.97 N/A

Wireless Communications and Mobile Computing 13

In conclusion, by using a hierarchical architecture and
chaining stages together, MidSiot effectively classifies device
types, identifies abnormal network traffic, and differentiates
cyberattack types.

5. Conclusion

In this article, we proposed a distributed intrusion detection
system for IoTscenarios, in which connected devices are not
only resource-constraint but also heterogeneous in hardware
specification. To accurately detect various types of cyber-
attacks, the proposed IDS consists of three stages: (1)
classifying device types; (2) detecting malicious network
flows; and (3) identifying attack types. In the experiments on
three popular IOT-IDS datasets (IoTID20, CIC-IDS-2017,
and BOT-IoT), we demonstrated that our proposal could
detect several attacks with an accuracy of 99.68% on average
and outperforms state-of-the-art IDSs. In addition, we ex-
amined two resampling techniques to balance the datasets
and discovered that these techniques slightly reduce the
detection rate of minority attack types. In short, MidSiot is
beneficial for both the industrial and research communities
interested in further developing intrusion detection systems
for IoT.

Data Availability

+e training data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is research was funded by the fund supporting research
activities from the University of Information Technology,
Vietnam National University, Ho Chi Minh City.

References

[1] W. a. Kassab and K. A. Darabkh, “A-Z survey of internet of
things: architectures, protocols, applications, recent advances,
future directions and recommendations,” Journal of Network
and Computer Applications, vol. 163, Article ID 102663, 2020.

[2] A. Menard, “How can we recognize the real power of the
internet of things,” Advanced Robotics, vol. 1, pp. 4-5, 2017.

[3] J. Sengupta, S. Ruj, and S. Das Bit, “A comprehensive survey
on attacks, security issues and blockchain solutions for iot and
iiot,” Journal of Network and Computer Applications, vol. 149,
Article ID 102481, 2020.

[4] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli,
“Passban ids: an intelligent anomaly-based intrusion detec-
tion system for iot edge devices,” IEEE Internet of 2ings
Journal, vol. 7, no. 8, pp. 6882–6897, 2020.

[5] G. Kambourakis, C. Kolias, and A. Stavrou, “+e mirai botnet
and the iot zombie armies,” in Proceedings of the MILCOM
2017-2017 IEEE Military Communications Conference (MIL-
COM), pp. 267–272, IEEE, Baltimore, MD, USA, October
2017.

[6] G. Gallopeni, B. Rodrigues, M. Franco, and B. Stiller, “A
practical analysis on mirai botnet traffic,” in Proceedings of the
2020 IFIP Networking Conference (Networking), pp. 667-668,
IEEE, Espoo, Finland, June 2020.

[7] A. Gangwar and S. Sahu, “A survey on anomaly and signature
based intrusion detection system (ids),” International Journal
of Engineering Research and Applications, vol. 4, no. 4, 2014.

[8] C. Zhang, J. Jiang, and M. Kamel, “Intrusion detection using
hierarchical neural networks,” Pattern Recognition Letters,
vol. 26, no. 6, pp. 779–791, 2005.

[9] K. Wang and S. J. Stolfo, “Anomalous payload-based network
intrusion detection,” Lecture Notes in Computer Science,
Springer, in Proceedings of the International Workshop on
Recent Advances in Intrusion Detection, pp. 203–222, Sep-
tember 2004.

[10] M. Xie, J. Hu, S. Han, and H.-H. Chen, “Scalable hypergrid
k-nn-based online anomaly detection in wireless sensor
networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 8, pp. 1661–1670, 2012.

[11] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
an ensemble of autoencoders for online network intrusion
detection,” 2018. arXiv preprint arXiv:1802.09089.

[12] K. Ince, “A novel approach for intrusion detection systems:
V-ids,” Turkish Journal of Electrical Engineering and Com-
puter Sciences, vol. 29, no. 4, pp. 1929–1943, 2021.

[13] V. Kumar, A. K. Das, and D. Sinha, “Uids: a unified intrusion
detection system for iot environment,” Evolutionary Intelli-
gence, vol. 14, no. 1, pp. 47–59, 2021.

[14] E. Anthi, L. Williams, M. Slowinska, G. +eodorakopoulos,
and P. Burnap, “A supervised intrusion detection system for
smart home iot devices,” IEEE Internet of 2ings Journal,
vol. 6, no. 5, pp. 9042–9053, 2019.

[15] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in the
internet of things for network forensic analytics: bot-iot
dataset,” Future Generation Computer Systems, vol. 100,
pp. 779–796, 2019.

[16] Z. Liu, N. +apa, A. Shaver, K. Roy, X. Yuan, and
S. Khorsandroo, “Anomaly detection on iot network intrusion
using machine learning,” in Proceedings of the 2020 Inter-
national Conference on Artificial Intelligence, Big Data,
Computing and Data Communication Systems (icABCD),
pp. 1–5, IEEE, KwaZulu Natal, South Africa, August 2020.

[17] H. Kaur, G. Singh, and J. Minhas, “A review of machine
learning based anomaly detection techniques,” 2013. arXiv
preprint arXiv:1307.7286.

[18] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion de-
tection,” IEEE Communications surveys & tutorials, vol. 18,
no. 2, pp. 1153–1176, 2015.

[19] M. A. Aydın, A. H. Zaim, and K. G. Ceylan, “A hybrid in-
trusion detection system design for computer network se-
curity,” Computers & Electrical Engineering, vol. 35, no. 3,
pp. 517–526, 2009.

[20] M. Gajewski, J. M. Batalla, G. Mastorakis, and
C. X. Mavromoustakis, “A distributed ids architecture model
for smart home systems,” Cluster Computing, vol. 22, no. 1,
pp. 1739–1749, 2019.

[21] I. Ullah and Q. H. Mahmoud, “A scheme for generating a
dataset for anomalous activity detection in iot networks,” in
Proceedings of the Canadian Conference on AI, pp. 508–520,
Ottawa, Ontario, May 2020.

14 Wireless Communications and Mobile Computing

[22] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
traffic characterization,” ICISSp, vol. 1, pp. 108–116, 2018.

[23] B. Silva, R. Silveira, M. Silva Neto, P. Cortez, and D. Gomes,
“A comparative analysis of undersampling techniques for
network intrusion detection systems design,” Journal of
Communication and Information Systems, vol. 36, no. 1,
pp. 31–43, 2021.

[24] S. Bagui and K. Li, “Resampling imbalanced data for network
intrusion detection datasets,” Journal of Big Data, vol. 8, no. 1,
pp. 1–41, 2021.

[25] P. Bedi, N. Gupta, and V. Jindal, “I-siamids: an improved
siam-ids for handling class imbalance in network-based in-
trusion detection systems,” Applied Intelligence, vol. 51, no. 2,
pp. 1133–1151, 2021.

[26] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J. Han,
“When intrusion detection meets blockchain technology: a
review,” IEEE Access, vol. 6, pp. 10179–10188, 2018.

[27] W. Li, Y. Wang, J. Li, and M. H. Au, “Towards blockchained
challenge-based collaborative intrusion detection,” in Applied
Cryptography and Network Security Workshops, J. Zhou,
R. Deng, Z. Li et al., Eds., Springer International Publishing,
Cham, Switzerland, pp. 122–139, 2019.

[28] W. Li, Y. Wang, J. Li, and M. H. Au, “Toward a blockchain-
based framework for challenge-based collaborative intrusion
detection,” International Journal of Information Security,
vol. 20, no. 2, pp. 127–139, 2021.

[29] W. Li, S. Tug, W. Meng, and Y. Wang, “Designing collabo-
rative blockchained signature-based intrusion detection in iot
environments,” Future Generation Computer Systems, vol. 96,
pp. 481–489, 2019.

[30] R. M. A. Ujjan, Z. Pervez, and K. Dahal, “Snort based col-
laborative intrusion detection system using blockchain in
sdn,” in Proceedings of the 2019 13th International Conference
on Software, Knowledge, Information Management and Ap-
plications (SKIMA), pp. 1–8, Ukulhas, Maldives, August 2019.

[31] W. Fan, Y. Park, S. Kumar, P. Ganta, X. Zhou, and
S.-Y. Chang, “Blockchain-enabled collaborative intrusion
detection in software defined networks,” in Proceedings of the
2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom),
pp. 967–974, Guangzhou, China, November 2020.

[32] O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A
deep blockchain framework-enabled collaborative intrusion
detection for protecting iot and cloud networks,” IEEE In-
ternet of 2ings Journal, vol. 8, no. 12, pp. 9463–9472, 2020.

[33] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-
learn: a python toolbox to tackle the curse of imbalanced
datasets in machine learning,” Journal of Machine Learning
Research, vol. 18, no. 1, pp. 559–563, 2017.

[34] R. Bikmukhamedov and A. Nadeev, “Lightweight machine
learning classifiers of iot traffic flows,” in Proceedings of the
2019 Systems of Signal Synchronization, Generating and
Processing in Telecommunications (SYNCHROINFO), pp. 1–5,
IEEE, Minsk, Belarus, July 2019.

[35] S. Gamage and J. Samarabandu, “Deep learning methods in
network intrusion detection: a survey and an objective
comparison,” Journal of Network and Computer Applications,
vol. 169, Article ID 102767, 2020.

[36] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, “Deep learning approach
for intelligent intrusion detection system,” IEEE Access, vol. 7,
pp. 41525–41550, 2019.

[37] N. Elmrabit, F. Zhou, F. Li, and H. Zhou, “Evaluation of
machine learning algorithms for anomaly detection,” in
Proceedings of the 2020 International Conference on Cyber
Security and Protection of Digital Services (Cyber Security),
pp. 1–8, IEEE, Dublin, Ireland, June 2020.

[38] H. Alkahtani and T. H. Aldhyani, “Intrusion detection system
to advance internet of things infrastructure-based deep
learning algorithms,” Complexity, vol. 2021, Article ID
5579851, 18 pages, 2021.

[39] Y. Song, S. Hyun, and Y.-G. Cheong, “Analysis of autoen-
coders for network intrusion detection,” Sensors, vol. 21,
no. 13, p. 4294, 2021.

[40] A. Y. Hussein, P. Falcarin, and A. T. Sadiq, “Enhancement
performance of random forest algorithm via one hot encoding
for iot ids,” Periodicals of Engineering and Natural Sciences
(PEN), vol. 9, no. 3, pp. 579–591, 2021.

[41] I. Ullah and Q. H. Mahmoud, “Design and development of a
deep learning-based model for anomaly detection in iot
networks,” IEEE Access, vol. 9, pp. 103906–103926, 2021.

[42] N. Islam, F. Farhin, I. Sultana et al., “Towards machine
learning based intrusion detection in iot networks,” Com-
puters, Materials & Continua, vol. 69, no. 2, pp. 1801–1821,
2021.

[43] M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, and
H. Janicke, “Rdtids: rules and decision tree-based intrusion
detection system for internet-of-things networks,” Future
Internet, vol. 12, no. 3, p. 44, 2020.

[44] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection: ap-
proaches, datasets, and comparative study,” Journal of In-
formation Security and Applications, vol. 50, Article ID
102419, 2020.

[45] S. Dwibedi, M. Pujari, and W. Sun, “A comparative study on
contemporary intrusion detection datasets for machine
learning research,” in Proceedings of the 2020 IEEE Interna-
tional Conference on Intelligence and Security Informatics
(ISI), pp. 1–6, IEEE, Arlington, VA, USA, November 2020.

[46] S. Pokhrel, R. Abbas, and B. Aryal, “Iot security: botnet de-
tection in iot using machine learning,” arXiv preprint arXiv:
2104.02231, 2021.

[47] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly,
“Deep learning-based intrusion detection for iot networks,” in
Proceedings of the 2019 IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC), pp. 256–
25609, IEEE, Kyoto, Japan, December 2019.

Wireless Communications and Mobile Computing 15

