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COMPUTATIONALLY RELATED PROBLEMS·
 

SARTAJ SAHNIt
 

Abstract. We look at several problems from areas such as network flows, game theory, artificial 
intelligence, graph theory, integer programming and nonlinear programming and show that they are \. 

related in that anyone of these problems is solvable in polynomial time iff all the others are, too. At i 
present, no polynomial time algorithm for these problems is known. These problems extend the 
equivalence class of problems known as P-Complete. The problem of deciding whether the class of 1 
languages accepted by polynomial time nondeterministic Turing machines is the same as that accepted 1 
by polynomial time deterministic Turing machines is related to P-Complete problems in that these two 
classes of languages are the same iff each P-Complete problem has a polynomial deterministic solution. l 
In view of this, it appears very likely that this equivalence class defines a class of problems that cannot 
be solved in deterministic polynomial time. 

Key words. complexity, polynomial reducibility, deterministic and nondeterministic algorithms, 
network flows, game theory. optimization, AND/OR graphs 

1. Introduction. Cook [3J showed that determining whether the class of 
languages accepted by nondeterministic Turing machines operating in polynomial 
time was the same as that accepted by deterministic polynomial time bounded 
Turing machines was as hard as deciding if there was a deterministic polynomial 
algorithm for the satisfiability problem of propositional calculas (actually, Cook 
showed that there was a polynomial algorithm for satisfiability iff the determin­
istic and nondeterministic polynomial time languages were the same). This problem 
about equivalence of the two classes oflanguages is a long-standing open problem 
from complexity theory. Intuitively, it seems that the lM'0 classes are not the same. 
Consequently there may be no polynomial algorithm for the satisfiability problem. 
Further empirical evidence that the two classes may not be the same was provided 
by Karp in [5J, where he showed that many other problems like the traveling sales­
man problem, finding the maximum clique of a graph, minimal colorings of graphs, 
minimal set covers, etc., had polynomial algorithms iff the two classes of languages 
were the same. In view of this relationship amongst all these problems, we can say 
that there is strong evidence to believe that there is no polynomial algorithm for 
any of the problems given in Karp [5J. However, no formal proof of this (if this is 
true) is available at this time. 

The equivalence class of problems having the property that each member of 
the class has a polynomial algorithm iff nondeterministic and deterministic poly­
nomiallanguages are the same is known as P-Complete. In [5J, Karp presents 21 
members of this class. The purpose of this paper is to extend the class of known 
P-Complete problems. Specifically, we show that several important problems from 
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was supported in part by the National Science Foundation under Grant GJ-33169. 

t Department of Computer Science, Cornell University, Ithaca. New York. Now at Department 
of Computer, Information, and Control Sciences, University of Minnesota, Minneapolis, Minnesota 
55455. 
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There are several ways to show that a problem L is P-Complete. For instance, 
one could show L to be P-Equivalent to M, where M is a problem already known 
to be P-Complete, or show that L has a polynomial algorithm iff P = NP, etc. 
Most of the proofs in the next section will adopt the following approach: (i) show 
that "if P = NP, then L" is polynomial solvable, i.e., L IX (P = NP), and (ii) show 
M IX L, where M is a problem known to be P-Complete. M will usually be the 
satisfiability problem of propositional calculus (see Karp [5J for a formal definition 
of this problem). 

2. P-Complete and P-Hard problems. In this section we shall show that 
several frequently encountered problems in various areas such as network flows, 
game theory, graph theory, nonlinear and linear optimization are either P­
Complete or at least P-Hard. The reductions are easily seen to be effective. The 
polynomial factors involved in the reduction are small (usually a constant or a 
polynomial of degree 1). 

2.1. Some known P-Complete problems. To prove some of the reductions, we 
shall make use of some known members of Pc. A brief description of these members 
is given below. (A more exhaustive list may be found in Karp [5J.) 

(i)	 Propositional calculus. 
(a)	 Satisfiability. Given a formula from the propositional calculus, in 

conjunctive normal form (CNF), is there an assignment of truth values 
for which it is "true"? 

(b)	 Satisfiability with exactly 3 literals per clause. This is the same as (a), 
except that each clause of the formula now has exactly 3 literals. 

(c)	 Tautology. Given a formula, from the propositional calculus, in dis­
junctive normal form (DNF), does it have the value "true" for all pos­
sible assignments of truth values. 

(ii) Sum of subsets of integers. Given a multiset S = (SI' ... , sr) of positive 
integers and a positive integer M, does there exist a submultiset of S that sums to 
M? (This problem is called the Knapsack problem in [5]. However, here we shall 
denote by "Knapsack problem" a similar integer optimization problem.) Note 
that a multiset is a collection of elements that may not necessarily be distinct. 

(iii) Maximum independent set. Let G be a graph with vertices V p Vz , ... , vn • 

A set of vertices is independent if no two members of the set are adjacent in G. A 
maximum independent set is an independent set that has a maximum number of 
vertices. 

(iv)	 Directed Hamiltonian cycle. Given a directed graph G, does it have a 
cycle that includes each vertex exactly once? 

THEOREM 2.1. The following problems are in PC: 
(i)	 Satisfiability, satisfiability with exactly three literals per clause, tautology; 

(ii)	 Sum of subsets of integers; 
(iii) Maximum independent set ofa graph; 
(iv) Directed Hamiltonian cycle.
 
Proof (i) is proved in Cook [3]. The rest are proved in Karp [5].
 
Cook [3J actually shows that satisfiability with at most three literals per
 

clause is P-Comp1ete. From this result one may trivially show that satisfiability 
with exactly three literals per clause is P-Complete. We show how to convert a 
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two-literal clause into an equivalent pair of three-literal clauses. Let (x I + xz) be 
the clause and y a variable not occurring in the formula. Then (XI + X z + y) 
/\ (XI + X z + y) is satisfiable iff the two-literal clause is. All two-literal clauses may 
be replaced by pairs of three-literal clauses as above. This at most doubles the 
number of clauses. Clauses with only one literal can be deleted, the literal determin­
ing the truth assignment to that variable. 

2.2. Integer network flows. We define the following network problems. 
Problem N(i). Network flows with multipliers. Let G be a directed graph with 

vertices sl' 05 z , VI' •.. , Vn and edges (arcs) e l , ez , ... , em' Let w-(v) be the set of 
arcs directed into vertex V and w+(v) those arcs directed away from v. 

G will be said to denote a network with multipliers if: 
(a)	 the source SI of the network has no incoming arcs, i.e., W-(SI) = 0; 
(b) the sink Sz has no outgoing arcs, i.e., w+(sz) = 0; 
(c)	 to every vertex Vi (excluding the source and sink) there corresponds an 

integer hi > 0, called its multiplier. 
(d) to each edge ei there corresponds an interval [ai' bJ ; 

Conditions (a)-(d) are said to define a transportation network. 
We are required to find a flow vector, with integer entries, <I> = (¢I' ¢z, 

... , ¢m) such that the following conditions hold. 
Condition 1. ai ~ ¢i ~ bi ; 

Condition 2. h(v) LiEW-(V) ¢i = LiEw+(V) ¢i for all V E V(G), V =f. SI V =f. sz; 
Condition 3. LiEW - (S2) ¢i is maximized. 
In what follows, we assume ai = 0. 
Problem N(ii). Multicommodity network .flows. The transportation network 

is as above, but now h(v) = 1 for all v in V(G). We have, however, several different 
commodities c l • cz , ... , Cn' and some arcs may be labeled, i.e., they can carry' 
only certain commodities. Each arc is assigned a capacity, and we wish to know 
whether a flow R = (r I' rz' ... , rn ), where ri is the quantity of the ith commodity, 
is feasible in the network. 

Problem N(iii). Integer .flows with homologous arcs. The transportation 
network remains the same. Also, h(v) = 1 and there is only one commodity. 
Certain arcs are paired, and we require that if arcs i, j are paired, then ¢i = ¢j' 
We wish to know if a flow of at least F is feasible in the network. 

Problem N(iv). Integer .flows with bundles. The arcs in the network are divided 
into sets I I' ... , I k (the sets may overlap). Each set is called a bundle, and with 
each bundle is associated a capacity C i . We wish to know if a flow ?oF is feasible 
in the network: 

L ¢i ~ C j , I~j~k 
iel j 

and 

h(v) = 1 VVE V(G). 

THEOREM 2.2. Problems N(i)-N(iv) are in Pc. 
Prool (a) N(i), N(ii), N(iii) , N(iv) O! PI. The nondeterministic turing machine 

(NDTM) just guesses the flows in each arc and then verifies Conditions 1 and 2. 
In addition, it does the following: 
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(i)	 for N(ii) it verifies that the resultant flow is ~ R; 
(ii)	 for N(iii) the "homologous conditions" are checked and LiEW-(S'l 4>i ~ F 

verified; 
(iii) for N(iv) the bundle restrictions are checked and LiEW-(S,) 4>i ~ F 

verified. 
If in N(i) we replace the max LiEW-(S,) 4>i requirement to: 

(2.2.1)	 T: L 4>i ~ F, 
iEW-(S,) 

then from the above it follows that Ta. PI.2 To see N(i) a. T, we note that if the 
length of the input on a Turing machine's tape is n, then the largest number it can 
represent is en, for some constant e which depends only on the Turing machine. 
Hence the maximum capacity of an arc is bounded by en and so max LiEW-(S2) 4>i 

~ kn
, for some constant k. Now, assume there is a polynomial [p(n)] algorithm for 

T. Then, using the method of bisection, we can determine max LiEW-(S2) 4>i in at 
most log2 kn = n log2 k applications of T. This, therefore, gives a polynomial 
algorithm for N(i). Therefore N(i) a. T a. PI, and from the transitivity of a. we 
conclude N(i) a. PI. Clearly, this proof technique can be used to show N(iii) and 
N(iv) to be complete when they are changed to maximization problems. 

(b)	 We now show the reduction for N(i)-N(iv), in the other direction . 
(i) Sum of subsets of integers a. N(i). We construct a network flow problem 

of type N(i) such that max LiEW- (5,) 4>i = M iff there is a submultiset of S 
= {Sl' ... , sr} that sums to M. 

{O,M] 

Source ---o---+---'D 5!nk 
51 52 

h 
r 

FIG. 2.2.1. Construction/or sum of subsets (l N(il 

Consider the construction of Fig. 2.2.1 with hi = Si' 1 ~ i ~ r. Clearly 

max L 4>i = M 
iEW-(S2) 

iff some submultiset of S sums to M. 
(ii) Tautology a. N(ii). Suppose that the formula P in DNF has n variables 

a l , a2 , ..• , an' We shall construct a multicommodity network with n commodities 

2 Recall that PI was defined in ~ 1.2 to be the decision problem: is NP = P? 
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c t ' C2' ... , Cn such that the flow R(I, ... , 1) is feasible iffP is not a tautology. The 
network of Fig. 2.2.2 realizes this. 

Discussion. 
[A] This section of the" network ensures that there is a flow through only one 

of the nodes ai or Qi' In terms of the formula A, a flow through ai means a truth 
assignment of 1 to aj while a flow through Qi means an assignment of 0 to ai • J 

) 
1 

I
) a. 

~ 

1 ~ ) a. 
~ 

[B] For each clause (K;) in P we have a section of the form 

1 

1 

1 

aa 11 
az 

)az ,~2 
a 

3a
3 

C3 

If there are j literals in the clause, then arc (ex, f3) is assigned a capacity of j - 1. 
This requires that the truth assignments be such that clause k j is false (as at least 
one term in it is false). Node f3 is where the "multicommodity" property of the 
network is used. Here the flow through IX is correctly separated into its components, 
i.e., we are able to get back the truth values of the variables. The components for 
each flow are connected in series as in Fig. 2.2.2. 

We now want to know if a flow R = (1,1, ... , 1) is feasible. It is easy to see 
that such a flow is possible iff there is a truth assignment to at, ... , an for which 
each clause is false, i.e., iff P is not a tautology. 

(iii) Tautology ex N(iii). The construction is very similar to that for multi­
commodity network flows. The network is as in Fig. 2.2.3. Homologous arcs are 
marked with the same subscripted Greek letter. 

The arcs (ex, f3) have a capacity that is one less than the number of terms in the 
clause, thereby ensuring that truth assignments that would make the preceding 
clause "true" cannot occur. The "homologous conditions" permit the separation of 
the flow at f3 into the original "truth assignments". 

The maximum capacity of the sink is n. Hence there is a flow ~ n iff there is a 
consistent assignment of truth values to at, ... , an such that no clause is "true", 
and hence P is not a tautology. 

(iv) Maximum independent set ex N(iv).3 Let G(V, E) be an undirected graph 
for which we want to determine the maximum independent set. 

3 The author is grateful to S. Even for pointing out an error in the original proofand for suggesting 
the correction. 
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270 SARTAJ SAHNI 

Construct a network as below: 
Let SI' VI' ... ,Vn , S2 be the nodes of the network n = IVI. From the source 

node, draw an arc of capacity 1 to each of the nodes Vi' 1 ;£ i ;£ n. From each node 
Vi' draw an arc a i to the sink node 52. For each edge in G, define a bundle (ai'~) if 
this edge joins vertices Vi and vj in G. These are the only bundles in the network. 
Each bundle is assigned a capacity 1. This ensures that if vertex Vj is chosen in the 
maximum independent set (i.e., if there is a nonzero flow through it), then there is no 
flow through vertices adjacent to Vi (i.e., adjacent vertices are not chosen). 

Now there is a flow ~ F iff there is an independent set of cardinality ~ F. 
We solve the flow problem for F = n, n - 1, ... , 1, and the first F for which we 
get a feasible flow defines a maximum independent set. 

Example 2.2.1. 

>
 

G(V,E) Network 

FIG. 2.2.4. Example/or maximum independent set IX N(iv) 

The largest k for which there is a feasible flow is k = 2, through vertices VI and 
V2 • Thus the maximum independent set of G is of size 2, and one such set is 
{VI' V2 }· The bundles are: (aI' a4 ), (a 2 , a3 ), (a 2 , a4 ) and (a 3 , a4 ). 

It is interesting to note that all these problems are related to a similar, poly­
nomial time, flow problem (see [1J). 

2.3. Graph theory. 
Problem G1. Minimal equivalent graph of a digraph. Given a directed graph 

G(V, E), we wish to remove as many edges from G as possible, getting a graph G I 

such that: 
(2.3.1a) In G, there is a path from V j to vj iff there is a path in G I from Vi to Vj; 

(2.3.1 b) E(G I ) s; E(G) (E(G) is the set of edges of G), i.e., we want the 
smallest subset of E(G) such that the transitive closure of GI = 

transitive closure of G. 
THEOREM 2.3.1. G 1 is in Pc.
 
Proof (a) G1 ~ PI, Let n = number of vertices in G = IV(G)I; then
 

2IE(G)I ;£ n(n - 1) < n • 

We can easily construct an NDTM, T, which given G and an integer k, determines 
if there is a subset of k edges satisfying (2.3.1a,b). T can be constructed so as to 
work in O(n3

) time. If NP = P, then there is a deterministic algorithm that does 
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this in p(n) time. We find the smallest k ~ n2 for which such a subset exists. After 
determining k, the k edges can be determined as below. 

Define a sequence Eof maximum length IE(G)I. Set ei = 1 ifedge i is among the 
k edges and ei = °otherwise. 

Suppose it is already known that E = (i l' ... , i) is a correct "partial" choice; 
then we ask if E(i j + 1 = 1) is. 

If yes, then set E = (i l' i2' ... , ij' 1). 
If no, then set E = (ii' i 2 ,···. ij' 0). 
Do this for j = 0, 1. 2, ... , lEI - 1. 
(b) Directed Hamilton cycle IX G 1. 

N ate. (i) If the directed graph G has a Hamilton cycle, then its transitive closure 
is the "complete directed graph" on IV(G)! points. The smallest graph with 
this transitive closure is the cycle on IV(G)I points. Thus if there is a 
Hamilton cycle, then this cycle forms the minimal equivalent graph of G. 

(ii) Conversely, if the minimal equivalent graph is a cycle on IV(G)I points. 
then G has a Hamilton cycle. 

Therefore G has a Hamiltonian cycle iff the minimal equivalent graph of G is a 
Hamiltonian cycle. 

Problem G2. Optimal solution to AND/OR graphs. This is a problem frequently 
encountered in artificial intelligence; see [2J, [9J and [IOJ. We are given a directed 
graph G(V, E). Each node of G represents a sUbproblem. In order to solve this 
subproblem, one might have to solve either all of its successors or only one of them. 
In the former case the node will be denoted an AND node, while in the latter case 
it is an OR node. The arcs are weighted, and the weights represent the cost asso­
ciated with solving the parent node given that the successor (or son) node has been 
solved. There is one special node, S, which has no incoming arcs. This node repre­
sents the total problem being solved. The problem then is to find a minimum 
solution to S. 

As an example, consider the directed graph of Fig. 2.3.1. The problem to be 
solved is P l' To do this, one may solve either nodes P2' P 3 or P 7' as PI is an OR 
node. The cost incurred is then either 2, 2 or 8 (i.e., cost in addition to that of solving 
one of P 2 , P 3 or P 7 ). To solve P 2 , both P 4 and P 5 have to be solved, as P2 is an 
AND node. The total cost to do this is 2. To solve P 3' we may solve either P 5 or 
P 6' The minimum cost to do this is 1. P 7 is free. In this example, then, the optimal 

FIG. 2.3.1. AND/OR graph 

"--/ =:> AND node 
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way to solve P I is first solve P6' then P 3 and finally PI' The total cost for this 
solution is 3. 

THEOREM 2.3.2. G2 E Pc. 
Proof (a) G2 IX (P = NP). The proof for this part is very similar to the part (a) 

of the proofs of each of Theorems 2.3.1 and 2.5.1 (see §2.5). 
(b) Satisfiability IX G2. We show how to transform a formula P in CNF into an 

AND/OR graph such that the AND/OR graph so obtained has a certain minimum 
cost solution iff P is satisfiable. 

k 3 

Let P = 1\ C j , C j = V lj , 
i= 1 j~ I 

where the l/s are literals and the variables of P, V(P) are x I' x 2 ' ••. , X n • The 
AND/OR graph will then have nodes as follows: 

1. There is a special node, S, with no incoming arcs. This node represents the 
problem to be solved. 

2. S is an AND node with descendent nodes P, x I' X 2 ' ..• , Xn • 

3. Each node Xj represents the corresponding variable Xi in the formula P. 
Each Xj is an OR node with two descendents denoted TX j and Fxi , respectively. If 
TX j is solved, then this will correspond to assigning a truth value of "true" to the 
variable Xi' Solving node FXi will then correspond to assigning a truth value of 
"false" to Xi' 

4. The node P represents the formula P, and is an AND node. It has k de­
scendents CI' C2' ... , Ck' Node C j corresponds to the clause Ci in the formula P. 
The nodes C j are OR nodes. 

5. Each node of type TX j or FX j has exactly one descendent node which is 
terminal (i.e., has no edges leaving it). These terminal nodes shall be denoted 
VI' v2 ' •.. , v2n · 

To complete the construction of the AND/OR, graph the following edges and 
costs are added: 

1. From each node C j an edge (C j , Tx j ) is added if x j occurs in clause Ci . 

An edge (C j , Fx) is added if xj occurs in the clause C j . This is done for all variables 
x j appearing in the clause Ci. C i is designated an OR node. 

2. Edges from nodes of type TX j or FXi to their respective terminal nodes are 
, assigned a weight or cost I. 

.~ 3. All other edges have a cost 0. 
In order to solve S, each of the nodes P, x I' x 2 , ••• ,xn must be solved. 

Solving nodes XI' x2 ' •.• , xn costs n. To solve P, we must solve all the nodes 
C I' C2' ... , Ck • The cost of a node C j is at most 1. However, if one of its descendent 
nodes was solved while solving the nodes XI' X 2 ' '" , xn ' then the additional cost 
to solve C j is 0, as the edges to its descendent nodes have cost °and one of its 
descendents has already been solved. That is, a node Ci can be solved at no cost if 
one of the literals occurring in the clause C j has been assigned a value "true." 
From this it follows that the entire graph (i.e., node S) can be solved at a cost n if 
there is some assignment of truth values to the x;'s such that at least one literal in 
each clause is true under that assignment, i.e, if the formula P is satisfiable. If P 
is not satisfiable, then the cost is > n. 
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We have now shown how to construct an AND/OR graph from a formula P 
such that the AND/OR graph so constructed has a solution of cost n iff P is 
satisfiable. Otherwise the cost is > n. Hence from the minimum solution to the 
AND/OR graph, one can determine if P is satisfiable. The construction clearly 
takes only polynomial time. This completes the proof. 

Example 2.3.1. Consider 

P = (Xl + X 2 + X 3)(X I + x2 + X3)(X I + x 2 ), V(P) = X I 'X2 'X 3 ' n = 3. 

Figure 2.3.2 shows the AND/OR graph obtained by applying the transformation of 
Theorem 2.3.2. 

The nodes Tx l' Tx 2, Tx 3 can be solved at a total cost of 3. The node P then 
costs nothing extra. The node S can then be solved by solving all its descendent 
nodes and the nodes Tx l' TX 2 and Tx 3. The total cost for this solution is 3 (which 
is n). Assigning the truth value "true" to the variables of P results in P being "true." 

AND nodes marked \....J 
All other nodes are OR 

FIG. 2.3.2. AND/OR graph/or Example 2.3.1 
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2.4. n-person game theory. Following Lucas [7J, we have: 
An n-person noncooperative game in normal form consists of a set N of n 

players denoted I, 2, ... , n, a finite set N j = 0, I, ... , n, of ni + 1 pure strategies 
for each player i EN, and a payoff function F from NIx, .. x N" to R". 

A strategy n-tuple (Sj, ... , S:) is said to be an equilibrium n-tuple iff for all 
i, i E Nand S i E N i' 

(2.4.1 ) 

where F i is the ith component of F. That is, there is no advantage for a player to 
unilaterally deviate from an equilibrium point. 

Problem GTI. Given a game G = (F, n, N), does it have an equilihrium 
point? 

THEOREM 2.4. I. GTI E Pc. 
Proof (a) GTI a. P I. The nondeterministic Turing machine just guesses an 
equilibrium point and verifies that the equilibrium condition (2.4.1) is satisfied. 

(b) Satisfiability (3 literals/clause) a. GTI. Let P be the formula in CNF in 
n variables. Define an n-person game as below: 

Each player has two strategies °and I. Strategy 0 corresponds to assigning a 
truth value "false" to the corresponding variable and strategy 1 to a "true" assign­
ment. 

Let 

where the variables are Xl' X 2 ' ... , x n • Replace each variable in the clause C i by 
Xi if Xi E C i and by (l - xJ if Xi E C j 

Replace" v" by "+ ", getting C;. 
Example. C j = Xi V X 2 V x3 => C; = Xl + x 2 + (1 - x 3 ) = X'l + x~ + x~. 

In order that C; has a (0,1) value, replace x~ + x~ + x~ by 

.t;(x') = X'l + x~(1 + X'l) + x~(l - x'l)(1 - x~). 

Clearly, .t;(x') = 1 iff Ci(x) is "true", Define 

h1(X')j 
h1(x') = 2 b1 .t;(x') and F l(X') = : . 

[ 
h 1(x') 

From the above definition of F 1(x'), it follows that 

222:. if P(x) is satisfiable, 
[ 

I1 oth<rwise. 
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Let G2(x], x 2 ) be a 2-person game with 2 strategies per player and with no 
equilibrium point: 

G ( ) = [g](x)]
2 x ( ) ,g2 X 

Define 

g](x) 
g2(X) 

o 
F 2(X) = 0 

o 
Then F 2(X) defines an n-person game with no equilibrium point. Set 

2 

2 

2 

Then F(x) defines an n-person game in which each player has 2 strategies.
 
For any choice of strategy vector x, we have either (i) or (ii) below.
 

1 

1 

o
(i) F(x) = 2F2(X) ~ 

o 
By changing the strategies for either x] or x 2' we can increase the payoff to x] or 
x 2 , respectively, as F 2(X) defines a game with no equilibrium point. If such a change 
results in 

2 

2 

2 

then everyone's payoff increases. In any case, such an x cannot be an equilibrium 
point. 

2 

2 

(ii) 

2 
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Such a point is an equilibrium point, as now 

2 
2 

2 
and 2 is the maximum payoff any player can get. So no change from this point, 
unilateral or otherwise, would be advantageous to any player. Therefore the 
n-person game defined above has an equilibrium point iff P(x) is satisfiable. 

As an example for Gz(x j , xz), consider: 

Strategy Payoff 

(0,0) [0, 1] 

(1,0)	 [1,0] 
(1, 1) [0, 1] 

(0, 1) [1, OJ 

gj(x) = (2 - x j - XZ)(x l + XZ), 

gz(X) = (1 - X j - xz)z. 

Clearly, no x is a stable (equilibrium) point. Set 

Gz(x) = [gj(X)/2]. 
gz(x)/2 

2.5. Optimization.
 
Problem K 1. One-dimensional 0-1 Knapsack problem. The problem is:
 

(i) maximize I
n 

XjPi' 
i~ I 

subject to I
n 

XiWi ~ M 
i~ I 

Xi = 0, 1, 1 ~ i ~ n, 

Pi> 0, 

THEOREM 2.5.1. K 1 E Pc. 
Proof (a) Kl CL PI. Clearly, the problem is reducible to PI if (i) is replaced by 

(i') I XJli ~ 2. Now if the length of the input is n then each Pi < kn for some k. 
So u~ing the method of bisection, we can find the optimal Z in logz kn = n logz k 
query steps of (i') for some k, k ~ I~I (here I~I = number of letters in the alphabet 
for the NDTM above). 

(b) Sum of subsets of integers CL Kl. Let S = (5 j ,"', 5 ) be the multiset ofn

integers. We want to find a subset (if one exists) that sums to M. This may be stated 
in the form of a K1 problem as below: 

subject to	 I Xi 5i :;;; M, 

Xi = 0, 1. 

. j 
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From this we trivially conclude that the general 0-1 integer programming 
problem with nonnegative coefficients is complete. The 0-1 constraint may be 
replaced by the inequalities Xi ~ I, I ~ i ~ n. 

The remarks of the last paragraph naturally lead us to the question of the 
status of the general integer programming problem (i.e., with both negative and 
positive coefficients). Here again, we are interested in only nonnegative solutions. 

Problem II. Determining if Cx = b has a nonnegative solution is P-Hard. 
(Note the entries of C are integer. If C has all entries of the same sign, then the 
problem is P-Complete.) 

To see this, consider the following formulation of the sum of subsets problem: 

n 

L WiX i = M, 
i~ 1 

Wi + Yi = I, 1 ~ i ~ n. 

Problem 12. Determining if Cx ~ 0 has any integer solution (i.e., the x;'s are 
not constrained to be nonnegative) is P-Hard. 

Application of Knuths' algorithm [6, vol. 2, p. 303J for obtaining integer 
solutions to Cx = b yields a set of inequalities of the form Dy ~ w. Setting W = 0 
restricts the X to be ~O. Hence Dy ~ 0 has an integer solution iff Cx = b has a 
nonnegative integer solution. Knuths' algorithm takes only polynomial time, so 
this problem is P-Hard. If the sign restriction on x is removed, then Knuths' 
algorithm solves Cx = b in polynomial time. (This result was obtained together 
with H. B. Hunt III.) 

Problem PF. Permutation functions. We are given a function F(i) which is 
defined over all permutations of the elements of the vector i = (1,2, ... , n). 
We wish to determine that permutation which minimizes F over all permutations. 
F is assumed to be polynomially computable. 

THEOREM 2.5.2. PF E Pc. 
Proof (a) PF ex (P = NP). This part of the proof is very similar to that used in 
Theorem 2.5.1. 

(b) Sum of subsets ex PF. Define 

where Xi is the ith element of i. 
We compute min Fk over all permutations of i for k = 1, 2, ... , n. If there is a 

subset that sums to M, then it hasj elements in it, and min F j is - M. If, on the other 
hand, for some k = I, min F, is - M, then I:~ 1 w(x;) = M. This defines an algorithm 
to solve the sum of subsets problem in polynomial time if we have a polynomial 
algorithm for PF. 

Problem LB. Assembly line balancing. In this problem we are given n jobs 
1,2, ... , n. Each job i requires a certain amount of processing time t i • We have 
available machines, each having an available process time T We want to determine 
the minimum number of machines needed to process all the jobs (the processing of a 
job cannot be split up among several machines). 
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THEOREM 2.5.3. LB E Pc.
 
Proof (a) LB ex (P = NP). This part of the proof is similar to Theorem 2.5.1.
 
(b) The following known member of PC shall be used (Karp [5J). Given a set 

of positive integers S l' S2' .•. , sn' is there a partition I such that 

ISj = I sJ2. 
iel i= 1 

We show how this problem may be formulated as a line balancing problem. 
Let 

t j = Sj and T = I sJ2; 
j= 1 

then the jobs 1,2, ... , n can be processed on 2 machines iff there is a partition I 
of the jobs such that 

I t j = T = I sJ2. 
ieJ i::::: 1 

This is the minimum number of machines on which the jobs can be processed as 
L7=t t j = 2T. 

Problem PI. Quadratic programming. Here, the constraints are linear while the 
optimization function is quadratic. 

THEOREM 2.5.4. PI is P-Hard. 
Proof Sum of subsets of integers ex PI. 

maximize I Xj(X j - 1) + I XjS j = f(x), 

(i) subject to I XiS j ~ M, 

o~ X j ~ 1. 
. ~: 

For 0 < x j < 1, x;(x j - 1) < O. This, together with (i), implies f(x) < M if for 
some i, 0 < X j < 1. Thus max f(x) = M iff S has a subset that sums to M. 

The following variation of this problem may also be shown to be P-Hard: 
linear programming with one nonlinear constraint. Call this problem PI(b). To 
show that sum of subsets ex PI(b), just consider the formulation: 

maximize I XjS j , 

subject to I XjS j ~ M, 

I X;(X j - 1) ~ 0, 
j 

o~ x j ~ 1. 

2.6. Minimal equivalent Boolean form. 
Problem HI. Given a formula B from the propositional calculus, we wish to 

find the shortest formula equivalent to it. 

I 
<­ 1 

. ~ 
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THEOREM 2.6.1. Bl E Pc. 
Proof (a) Bl O! PI. Define Blk to be the problem: is there a Boolean form of 

length k equivalent to B? We first show that a polynomial algorithm for PI implies 
a polynomial algorithm for B1k. For this, we construct a nondeterministic Turing 
machine that guesses the Boolean form of length k and then uses the "tautology 
algorithm" to check that it is equivalent to B. If PI works in p(n) time, then the 
"tautology algorithm" works in P2(n) time (as tautology O! PI), and so the Turing 
machine constructed above works in P2(n) time. Hence B1k O! PI. The proof for 
Bl O! Blk is similar to part (a) of the proof of Theorem 2.3.1. We note that this proof 
relies heavily on our informal notion of P-Reducibility. The proof does not show 
that B1 is polynomially related to the other problems in Pc. If the time complexity 
of the tautology problem is It (n) and that of PI if 12(n), then this reduction gives a 
lij~(n)) algorithm for B1. If It (and consequentlyl2) is exponential, thenI2(ft(n)) 
is of the form 22". All our other reductions have been of the form p(n)' 12(n) or 
12(p(n)) for some polynomial p.4 

(b) tautology O! B1. A formula P is a tautology iff its minimal form is "1". 

3. Conclusions. We have extended the class of known P-Complete problems 
to include some important applications from network fl,?ws, game theory, 
artificial intelligence and integer optimization. We have also introduced the 
notion of P-Hard. The results indicate that many of the problems for which no 
polynomial time bounded algorithm is known are related in terms of time com­
plexity. Indeed, all the evidence to date suggests that there is no polynomial al­
gorithm for any of these problems. 
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