
1
r
i r

SIAM J. COMPUT.

Vol. 3. No.4, December 1974

COMPUTATIONALLY RELATED PROBLEMS·

SARTAJ SAHNIt

Abstract. We look at several problems from areas such as network flows, game theory, artificial
intelligence, graph theory, integer programming and nonlinear programming and show that they are \.

related in that anyone of these problems is solvable in polynomial time iff all the others are, too. At i
present, no polynomial time algorithm for these problems is known. These problems extend the
equivalence class of problems known as P-Complete. The problem of deciding whether the class of 1
languages accepted by polynomial time nondeterministic Turing machines is the same as that accepted 1
by polynomial time deterministic Turing machines is related to P-Complete problems in that these two
classes of languages are the same iff each P-Complete problem has a polynomial deterministic solution. l
In view of this, it appears very likely that this equivalence class defines a class of problems that cannot
be solved in deterministic polynomial time.

Key words. complexity, polynomial reducibility, deterministic and nondeterministic algorithms,
network flows, game theory. optimization, AND/OR graphs

1. Introduction. Cook [3J showed that determining whether the class of
languages accepted by nondeterministic Turing machines operating in polynomial
time was the same as that accepted by deterministic polynomial time bounded
Turing machines was as hard as deciding if there was a deterministic polynomial
algorithm for the satisfiability problem of propositional calculas (actually, Cook
showed that there was a polynomial algorithm for satisfiability iff the determin­
istic and nondeterministic polynomial time languages were the same). This problem
about equivalence of the two classes oflanguages is a long-standing open problem
from complexity theory. Intuitively, it seems that the lM'0 classes are not the same.
Consequently there may be no polynomial algorithm for the satisfiability problem.
Further empirical evidence that the two classes may not be the same was provided
by Karp in [5J, where he showed that many other problems like the traveling sales­
man problem, finding the maximum clique of a graph, minimal colorings of graphs,
minimal set covers, etc., had polynomial algorithms iff the two classes of languages
were the same. In view of this relationship amongst all these problems, we can say
that there is strong evidence to believe that there is no polynomial algorithm for
any of the problems given in Karp [5J. However, no formal proof of this (if this is
true) is available at this time.

The equivalence class of problems having the property that each member of
the class has a polynomial algorithm iff nondeterministic and deterministic poly­
nomiallanguages are the same is known as P-Complete. In [5J, Karp presents 21
members of this class. The purpose of this paper is to extend the class of known
P-Complete problems. Specifically, we show that several important problems from

* Received by the editors July 18, 1973, and in revised form April 6, 1974. The research reported
here is part of the author's Ph.D. dissertation, Cornell University. An earlier version of these results
was presented at the 1972 IEEE Annual Conference on Switching and Automata Theory. This research
was supported in part by the National Science Foundation under Grant GJ-33169.

t Department of Computer Science, Cornell University, Ithaca. New York. Now at Department
of Computer, Information, and Control Sciences, University of Minnesota, Minneapolis, Minnesota
55455.

262

264	 SARTAJ SAHNI

There are several ways to show that a problem L is P-Complete. For instance,
one could show L to be P-Equivalent to M, where M is a problem already known
to be P-Complete, or show that L has a polynomial algorithm iff P = NP, etc.
Most of the proofs in the next section will adopt the following approach: (i) show
that "if P = NP, then L" is polynomial solvable, i.e., L IX (P = NP), and (ii) show
M IX L, where M is a problem known to be P-Complete. M will usually be the
satisfiability problem of propositional calculus (see Karp [5J for a formal definition
of this problem).

2. P-Complete and P-Hard problems. In this section we shall show that
several frequently encountered problems in various areas such as network flows,
game theory, graph theory, nonlinear and linear optimization are either P­
Complete or at least P-Hard. The reductions are easily seen to be effective. The
polynomial factors involved in the reduction are small (usually a constant or a
polynomial of degree 1).

2.1. Some known P-Complete problems. To prove some of the reductions, we
shall make use of some known members of Pc. A brief description of these members
is given below. (A more exhaustive list may be found in Karp [5J.)

(i)	 Propositional calculus.
(a)	 Satisfiability. Given a formula from the propositional calculus, in

conjunctive normal form (CNF), is there an assignment of truth values
for which it is "true"?

(b)	 Satisfiability with exactly 3 literals per clause. This is the same as (a),
except that each clause of the formula now has exactly 3 literals.

(c)	 Tautology. Given a formula, from the propositional calculus, in dis­
junctive normal form (DNF), does it have the value "true" for all pos­
sible assignments of truth values.

(ii) Sum of subsets of integers. Given a multiset S = (SI' ... , sr) of positive
integers and a positive integer M, does there exist a submultiset of S that sums to
M? (This problem is called the Knapsack problem in [5]. However, here we shall
denote by "Knapsack problem" a similar integer optimization problem.) Note
that a multiset is a collection of elements that may not necessarily be distinct.

(iii) Maximum independent set. Let G be a graph with vertices V p Vz , ... , vn •

A set of vertices is independent if no two members of the set are adjacent in G. A
maximum independent set is an independent set that has a maximum number of
vertices.

(iv)	 Directed Hamiltonian cycle. Given a directed graph G, does it have a
cycle that includes each vertex exactly once?

THEOREM 2.1. The following problems are in PC:
(i)	 Satisfiability, satisfiability with exactly three literals per clause, tautology;

(ii)	 Sum of subsets of integers;
(iii) Maximum independent set ofa graph;
(iv) Directed Hamiltonian cycle.

Proof (i) is proved in Cook [3]. The rest are proved in Karp [5].

Cook [3J actually shows that satisfiability with at most three literals per

clause is P-Comp1ete. From this result one may trivially show that satisfiability
with exactly three literals per clause is P-Complete. We show how to convert a

,
I.,

I

I
I
I'
I

'..
'.

,
J

COMPUTAT10NALLY RELATED PROBLEMS	 265

two-literal clause into an equivalent pair of three-literal clauses. Let (x I + xz) be
the clause and y a variable not occurring in the formula. Then (XI + X z + y)
/\ (XI + X z + y) is satisfiable iff the two-literal clause is. All two-literal clauses may
be replaced by pairs of three-literal clauses as above. This at most doubles the
number of clauses. Clauses with only one literal can be deleted, the literal determin­
ing the truth assignment to that variable.

2.2. Integer network flows. We define the following network problems.
Problem N(i). Network flows with multipliers. Let G be a directed graph with

vertices sl' 05 z , VI' •.. , Vn and edges (arcs) e l , ez , ... , em' Let w-(v) be the set of
arcs directed into vertex V and w+(v) those arcs directed away from v.

G will be said to denote a network with multipliers if:
(a)	 the source SI of the network has no incoming arcs, i.e., W-(SI) = 0;
(b) the sink Sz has no outgoing arcs, i.e., w+(sz) = 0;
(c)	 to every vertex Vi (excluding the source and sink) there corresponds an

integer hi > 0, called its multiplier.
(d) to each edge ei there corresponds an interval [ai' bJ ;

Conditions (a)-(d) are said to define a transportation network.
We are required to find a flow vector, with integer entries, <I> = (¢I' ¢z,

... , ¢m) such that the following conditions hold.
Condition 1. ai ~ ¢i ~ bi ;

Condition 2. h(v) LiEW-(V) ¢i = LiEw+(V) ¢i for all V E V(G), V =f. SI V =f. sz;
Condition 3. LiEW - (S2) ¢i is maximized.
In what follows, we assume ai = 0.
Problem N(ii). Multicommodity network .flows. The transportation network

is as above, but now h(v) = 1 for all v in V(G). We have, however, several different
commodities c l • cz , ... , Cn' and some arcs may be labeled, i.e., they can carry'
only certain commodities. Each arc is assigned a capacity, and we wish to know
whether a flow R = (r I' rz' ... , rn), where ri is the quantity of the ith commodity,
is feasible in the network.

Problem N(iii). Integer .flows with homologous arcs. The transportation
network remains the same. Also, h(v) = 1 and there is only one commodity.
Certain arcs are paired, and we require that if arcs i, j are paired, then ¢i = ¢j'
We wish to know if a flow of at least F is feasible in the network.

Problem N(iv). Integer .flows with bundles. The arcs in the network are divided
into sets I I' ... , I k (the sets may overlap). Each set is called a bundle, and with
each bundle is associated a capacity C i . We wish to know if a flow ?oF is feasible
in the network:

L ¢i ~ C j , I~j~k
iel j

and

h(v) = 1 VVE V(G).

THEOREM 2.2. Problems N(i)-N(iv) are in Pc.
Prool (a) N(i), N(ii), N(iii) , N(iv) O! PI. The nondeterministic turing machine

(NDTM) just guesses the flows in each arc and then verifies Conditions 1 and 2.
In addition, it does the following:

..

'.".

.

" i
I

f
I
i

, .

i

266	 SARTAJ SAHNI

(i)	 for N(ii) it verifies that the resultant flow is ~ R;
(ii)	 for N(iii) the "homologous conditions" are checked and LiEW-(S'l 4>i ~ F

verified;
(iii) for N(iv) the bundle restrictions are checked and LiEW-(S,) 4>i ~ F

verified.
If in N(i) we replace the max LiEW-(S,) 4>i requirement to:

(2.2.1)	 T: L 4>i ~ F,
iEW-(S,)

then from the above it follows that Ta. PI.2 To see N(i) a. T, we note that if the
length of the input on a Turing machine's tape is n, then the largest number it can
represent is en, for some constant e which depends only on the Turing machine.
Hence the maximum capacity of an arc is bounded by en and so max LiEW-(S2) 4>i

~ kn
, for some constant k. Now, assume there is a polynomial [p(n)] algorithm for

T. Then, using the method of bisection, we can determine max LiEW-(S2) 4>i in at
most log2 kn = n log2 k applications of T. This, therefore, gives a polynomial
algorithm for N(i). Therefore N(i) a. T a. PI, and from the transitivity of a. we
conclude N(i) a. PI. Clearly, this proof technique can be used to show N(iii) and
N(iv) to be complete when they are changed to maximization problems.

(b)	 We now show the reduction for N(i)-N(iv), in the other direction .
(i) Sum of subsets of integers a. N(i). We construct a network flow problem

of type N(i) such that max LiEW- (5,) 4>i = M iff there is a submultiset of S
= {Sl' ... , sr} that sums to M.

{O,M]

Source ---o---+---'D 5!nk
51 52

h
r

FIG. 2.2.1. Construction/or sum of subsets (l N(il

Consider the construction of Fig. 2.2.1 with hi = Si' 1 ~ i ~ r. Clearly

max L 4>i = M
iEW-(S2)

iff some submultiset of S sums to M.
(ii) Tautology a. N(ii). Suppose that the formula P in DNF has n variables

a l , a2 , ..• , an' We shall construct a multicommodity network with n commodities

2 Recall that PI was defined in ~ 1.2 to be the decision problem: is NP = P?

COMPUTATIONALLY RELATED PROBLEMS 267

c t ' C2' ... , Cn such that the flow R(I, ... , 1) is feasible iffP is not a tautology. The
network of Fig. 2.2.2 realizes this.

Discussion.
[A] This section of the" network ensures that there is a flow through only one

of the nodes ai or Qi' In terms of the formula A, a flow through ai means a truth
assignment of 1 to aj while a flow through Qi means an assignment of 0 to ai • J

)
1

I
) a.

~

1 ~) a.
~

[B] For each clause (K;) in P we have a section of the form

1

1

1

aa 11
az

)az ,~2
a

3a
3

C3

If there are j literals in the clause, then arc (ex, f3) is assigned a capacity of j - 1.
This requires that the truth assignments be such that clause k j is false (as at least
one term in it is false). Node f3 is where the "multicommodity" property of the
network is used. Here the flow through IX is correctly separated into its components,
i.e., we are able to get back the truth values of the variables. The components for
each flow are connected in series as in Fig. 2.2.2.

We now want to know if a flow R = (1,1, ... , 1) is feasible. It is easy to see
that such a flow is possible iff there is a truth assignment to at, ... , an for which
each clause is false, i.e., iff P is not a tautology.

(iii) Tautology ex N(iii). The construction is very similar to that for multi­
commodity network flows. The network is as in Fig. 2.2.3. Homologous arcs are
marked with the same subscripted Greek letter.

The arcs (ex, f3) have a capacity that is one less than the number of terms in the
clause, thereby ensuring that truth assignments that would make the preceding
clause "true" cannot occur. The "homologous conditions" permit the separation of
the flow at f3 into the original "truth assignments".

The maximum capacity of the sink is n. Hence there is a flow ~ n iff there is a
consistent assignment of truth values to at, ... , an such that no clause is "true",
and hence P is not a tautology.

(iv) Maximum independent set ex N(iv).3 Let G(V, E) be an undirected graph
for which we want to determine the maximum independent set.

3 The author is grateful to S. Even for pointing out an error in the original proofand for suggesting
the correction.

[lJ t

,.' '. . :":2_ ... ," __ ~ • ____~_,_~_~ _"':"..&0....':'" "_'~ __.. _ .. ~.~_
J

C
n

1)
r

1

a
n

a
n

FIG. 2.2.2. Taulology 0[muilicommodily nelwork flows

~.......,..............-.--.,.... .. _.. ~,.UO\ P. 9 • ;.4« (4 ¢ UP "At .W 44

IJ

or­
-- ----I

I[) I

~ ,
I

270 SARTAJ SAHNI

Construct a network as below:
Let SI' VI' ... ,Vn , S2 be the nodes of the network n = IVI. From the source

node, draw an arc of capacity 1 to each of the nodes Vi' 1 ;£ i ;£ n. From each node
Vi' draw an arc a i to the sink node 52. For each edge in G, define a bundle (ai'~) if
this edge joins vertices Vi and vj in G. These are the only bundles in the network.
Each bundle is assigned a capacity 1. This ensures that if vertex Vj is chosen in the
maximum independent set (i.e., if there is a nonzero flow through it), then there is no
flow through vertices adjacent to Vi (i.e., adjacent vertices are not chosen).

Now there is a flow ~ F iff there is an independent set of cardinality ~ F.
We solve the flow problem for F = n, n - 1, ... , 1, and the first F for which we
get a feasible flow defines a maximum independent set.

Example 2.2.1.

>

G(V,E) Network

FIG. 2.2.4. Example/or maximum independent set IX N(iv)

The largest k for which there is a feasible flow is k = 2, through vertices VI and
V2 • Thus the maximum independent set of G is of size 2, and one such set is
{VI' V2 }· The bundles are: (aI' a4), (a 2 , a3), (a 2 , a4) and (a 3 , a4).

It is interesting to note that all these problems are related to a similar, poly­
nomial time, flow problem (see [1J).

2.3. Graph theory.
Problem G1. Minimal equivalent graph of a digraph. Given a directed graph

G(V, E), we wish to remove as many edges from G as possible, getting a graph G I

such that:
(2.3.1a) In G, there is a path from V j to vj iff there is a path in G I from Vi to Vj;

(2.3.1 b) E(G I) s; E(G) (E(G) is the set of edges of G), i.e., we want the
smallest subset of E(G) such that the transitive closure of GI =

transitive closure of G.
THEOREM 2.3.1. G 1 is in Pc.

Proof (a) G1 ~ PI, Let n = number of vertices in G = IV(G)I; then

2IE(G)I ;£ n(n - 1) < n •

We can easily construct an NDTM, T, which given G and an integer k, determines
if there is a subset of k edges satisfying (2.3.1a,b). T can be constructed so as to
work in O(n3

) time. If NP = P, then there is a deterministic algorithm that does

I
f
r

COMPUTATIONALLY RELATED PROBLEMS 271

this in p(n) time. We find the smallest k ~ n2 for which such a subset exists. After
determining k, the k edges can be determined as below.

Define a sequence Eof maximum length IE(G)I. Set ei = 1 ifedge i is among the
k edges and ei = °otherwise.

Suppose it is already known that E = (i l' ... , i) is a correct "partial" choice;
then we ask if E(i j + 1 = 1) is.

If yes, then set E = (i l' i2' ... , ij' 1).
If no, then set E = (ii' i 2 ,···. ij' 0).
Do this for j = 0, 1. 2, ... , lEI - 1.
(b) Directed Hamilton cycle IX G 1.

N ate. (i) If the directed graph G has a Hamilton cycle, then its transitive closure
is the "complete directed graph" on IV(G)! points. The smallest graph with
this transitive closure is the cycle on IV(G)I points. Thus if there is a
Hamilton cycle, then this cycle forms the minimal equivalent graph of G.

(ii) Conversely, if the minimal equivalent graph is a cycle on IV(G)I points.
then G has a Hamilton cycle.

Therefore G has a Hamiltonian cycle iff the minimal equivalent graph of G is a
Hamiltonian cycle.

Problem G2. Optimal solution to AND/OR graphs. This is a problem frequently
encountered in artificial intelligence; see [2J, [9J and [IOJ. We are given a directed
graph G(V, E). Each node of G represents a sUbproblem. In order to solve this
subproblem, one might have to solve either all of its successors or only one of them.
In the former case the node will be denoted an AND node, while in the latter case
it is an OR node. The arcs are weighted, and the weights represent the cost asso­
ciated with solving the parent node given that the successor (or son) node has been
solved. There is one special node, S, which has no incoming arcs. This node repre­
sents the total problem being solved. The problem then is to find a minimum
solution to S.

As an example, consider the directed graph of Fig. 2.3.1. The problem to be
solved is P l' To do this, one may solve either nodes P2' P 3 or P 7' as PI is an OR
node. The cost incurred is then either 2, 2 or 8 (i.e., cost in addition to that of solving
one of P 2 , P 3 or P 7). To solve P 2 , both P 4 and P 5 have to be solved, as P2 is an
AND node. The total cost to do this is 2. To solve P 3' we may solve either P 5 or
P 6' The minimum cost to do this is 1. P 7 is free. In this example, then, the optimal

FIG. 2.3.1. AND/OR graph

"--/ =:> AND node

'".

272 SARTAJ SAHNI

way to solve P I is first solve P6' then P 3 and finally PI' The total cost for this
solution is 3.

THEOREM 2.3.2. G2 E Pc.
Proof (a) G2 IX (P = NP). The proof for this part is very similar to the part (a)

of the proofs of each of Theorems 2.3.1 and 2.5.1 (see §2.5).
(b) Satisfiability IX G2. We show how to transform a formula P in CNF into an

AND/OR graph such that the AND/OR graph so obtained has a certain minimum
cost solution iff P is satisfiable.

k 3

Let P = 1\ C j , C j = V lj ,
i= 1 j~ I

where the l/s are literals and the variables of P, V(P) are x I' x 2 ' ••. , X n • The
AND/OR graph will then have nodes as follows:

1. There is a special node, S, with no incoming arcs. This node represents the
problem to be solved.

2. S is an AND node with descendent nodes P, x I' X 2 ' ..• , Xn •

3. Each node Xj represents the corresponding variable Xi in the formula P.
Each Xj is an OR node with two descendents denoted TX j and Fxi , respectively. If
TX j is solved, then this will correspond to assigning a truth value of "true" to the
variable Xi' Solving node FXi will then correspond to assigning a truth value of
"false" to Xi'

4. The node P represents the formula P, and is an AND node. It has k de­
scendents CI' C2' ... , Ck' Node C j corresponds to the clause Ci in the formula P.
The nodes C j are OR nodes.

5. Each node of type TX j or FX j has exactly one descendent node which is
terminal (i.e., has no edges leaving it). These terminal nodes shall be denoted
VI' v2 ' •.. , v2n ·

To complete the construction of the AND/OR, graph the following edges and
costs are added:

1. From each node C j an edge (C j , Tx j) is added if x j occurs in clause Ci .

An edge (C j , Fx) is added if xj occurs in the clause C j . This is done for all variables
x j appearing in the clause Ci. C i is designated an OR node.

2. Edges from nodes of type TX j or FXi to their respective terminal nodes are
, assigned a weight or cost I.

.~ 3. All other edges have a cost 0.
In order to solve S, each of the nodes P, x I' x 2 , ••• ,xn must be solved.

Solving nodes XI' x2 ' •.• , xn costs n. To solve P, we must solve all the nodes
C I' C2' ... , Ck • The cost of a node C j is at most 1. However, if one of its descendent
nodes was solved while solving the nodes XI' X 2 ' '" , xn ' then the additional cost
to solve C j is 0, as the edges to its descendent nodes have cost °and one of its
descendents has already been solved. That is, a node Ci can be solved at no cost if
one of the literals occurring in the clause C j has been assigned a value "true."
From this it follows that the entire graph (i.e., node S) can be solved at a cost n if
there is some assignment of truth values to the x;'s such that at least one literal in
each clause is true under that assignment, i.e, if the formula P is satisfiable. If P
is not satisfiable, then the cost is > n.

273 COMPUTATIONALLY RELATED PROBLEMS

We have now shown how to construct an AND/OR graph from a formula P
such that the AND/OR graph so constructed has a solution of cost n iff P is
satisfiable. Otherwise the cost is > n. Hence from the minimum solution to the
AND/OR graph, one can determine if P is satisfiable. The construction clearly
takes only polynomial time. This completes the proof.

Example 2.3.1. Consider

P = (Xl + X 2 + X 3)(X I + x2 + X3)(X I + x 2), V(P) = X I 'X2 'X 3 ' n = 3.

Figure 2.3.2 shows the AND/OR graph obtained by applying the transformation of
Theorem 2.3.2.

The nodes Tx l' Tx 2, Tx 3 can be solved at a total cost of 3. The node P then
costs nothing extra. The node S can then be solved by solving all its descendent
nodes and the nodes Tx l' TX 2 and Tx 3. The total cost for this solution is 3 (which
is n). Assigning the truth value "true" to the variables of P results in P being "true."

AND nodes marked \....J
All other nodes are OR

FIG. 2.3.2. AND/OR graph/or Example 2.3.1

-...r=?
, I

,
. ,

I.

274 SARTAJ SAHNI

2.4. n-person game theory. Following Lucas [7J, we have:
An n-person noncooperative game in normal form consists of a set N of n

players denoted I, 2, ... , n, a finite set N j = 0, I, ... , n, of ni + 1 pure strategies
for each player i EN, and a payoff function F from NIx, .. x N" to R".

A strategy n-tuple (Sj, ... , S:) is said to be an equilibrium n-tuple iff for all
i, i E Nand S i E N i'

(2.4.1)

where F i is the ith component of F. That is, there is no advantage for a player to
unilaterally deviate from an equilibrium point.

Problem GTI. Given a game G = (F, n, N), does it have an equilihrium
point?

THEOREM 2.4. I. GTI E Pc.
Proof (a) GTI a. P I. The nondeterministic Turing machine just guesses an
equilibrium point and verifies that the equilibrium condition (2.4.1) is satisfied.

(b) Satisfiability (3 literals/clause) a. GTI. Let P be the formula in CNF in
n variables. Define an n-person game as below:

Each player has two strategies °and I. Strategy 0 corresponds to assigning a
truth value "false" to the corresponding variable and strategy 1 to a "true" assign­
ment.

Let

where the variables are Xl' X 2 ' ... , x n • Replace each variable in the clause C i by
Xi if Xi E C i and by (l - xJ if Xi E C j

Replace" v" by "+ ", getting C;.
Example. C j = Xi V X 2 V x3 => C; = Xl + x 2 + (1 - x 3) = X'l + x~ + x~.

In order that C; has a (0,1) value, replace x~ + x~ + x~ by

.t;(x') = X'l + x~(1 + X'l) + x~(l - x'l)(1 - x~).

Clearly, .t;(x') = 1 iff Ci(x) is "true", Define

h1(X')j
h1(x') = 2 b1 .t;(x') and F l(X') = : .

[
h 1(x')

From the above definition of F 1(x'), it follows that

222:. if P(x) is satisfiable,
[

I1 oth<rwise.

275 COMPUTATIONALLY RELATED PROBLEMS

Let G2(x], x 2) be a 2-person game with 2 strategies per player and with no
equilibrium point:

G () = [g](x)]
2 x () ,g2 X

Define

g](x)
g2(X)

o
F 2(X) = 0

o
Then F 2(X) defines an n-person game with no equilibrium point. Set

2

2

2

Then F(x) defines an n-person game in which each player has 2 strategies.

For any choice of strategy vector x, we have either (i) or (ii) below.

1

1

o
(i) F(x) = 2F2(X) ~

o
By changing the strategies for either x] or x 2' we can increase the payoff to x] or
x 2 , respectively, as F 2(X) defines a game with no equilibrium point. If such a change
results in

2

2

2

then everyone's payoff increases. In any case, such an x cannot be an equilibrium
point.

2

2

(ii)

2

--,-=:~---------------_.{

276	 SARTAJ SAHNI

Such a point is an equilibrium point, as now

2
2

2
and 2 is the maximum payoff any player can get. So no change from this point,
unilateral or otherwise, would be advantageous to any player. Therefore the
n-person game defined above has an equilibrium point iff P(x) is satisfiable.

As an example for Gz(x j , xz), consider:

Strategy Payoff

(0,0) [0, 1]

(1,0)	 [1,0]
(1, 1) [0, 1]

(0, 1) [1, OJ

gj(x) = (2 - x j - XZ)(x l + XZ),

gz(X) = (1 - X j - xz)z.

Clearly, no x is a stable (equilibrium) point. Set

Gz(x) = [gj(X)/2].
gz(x)/2

2.5. Optimization.

Problem K 1. One-dimensional 0-1 Knapsack problem. The problem is:

(i) maximize I
n

XjPi'
i~ I

subject to I
n

XiWi ~ M
i~ I

Xi = 0, 1, 1 ~ i ~ n,

Pi> 0,

THEOREM 2.5.1. K 1 E Pc.
Proof (a) Kl CL PI. Clearly, the problem is reducible to PI if (i) is replaced by

(i') I XJli ~ 2. Now if the length of the input is n then each Pi < kn for some k.
So u~ing the method of bisection, we can find the optimal Z in logz kn = n logz k
query steps of (i') for some k, k ~ I~I (here I~I = number of letters in the alphabet
for the NDTM above).

(b) Sum of subsets of integers CL Kl. Let S = (5 j ,"', 5) be the multiset ofn

integers. We want to find a subset (if one exists) that sums to M. This may be stated
in the form of a K1 problem as below:

subject to	 I Xi 5i :;;; M,

Xi = 0, 1.

. j

COMPUTATIONALLY RELATED PROBLEMS 277

From this we trivially conclude that the general 0-1 integer programming
problem with nonnegative coefficients is complete. The 0-1 constraint may be
replaced by the inequalities Xi ~ I, I ~ i ~ n.

The remarks of the last paragraph naturally lead us to the question of the
status of the general integer programming problem (i.e., with both negative and
positive coefficients). Here again, we are interested in only nonnegative solutions.

Problem II. Determining if Cx = b has a nonnegative solution is P-Hard.
(Note the entries of C are integer. If C has all entries of the same sign, then the
problem is P-Complete.)

To see this, consider the following formulation of the sum of subsets problem:

n

L WiX i = M,
i~ 1

Wi + Yi = I, 1 ~ i ~ n.

Problem 12. Determining if Cx ~ 0 has any integer solution (i.e., the x;'s are
not constrained to be nonnegative) is P-Hard.

Application of Knuths' algorithm [6, vol. 2, p. 303J for obtaining integer
solutions to Cx = b yields a set of inequalities of the form Dy ~ w. Setting W = 0
restricts the X to be ~O. Hence Dy ~ 0 has an integer solution iff Cx = b has a
nonnegative integer solution. Knuths' algorithm takes only polynomial time, so
this problem is P-Hard. If the sign restriction on x is removed, then Knuths'
algorithm solves Cx = b in polynomial time. (This result was obtained together
with H. B. Hunt III.)

Problem PF. Permutation functions. We are given a function F(i) which is
defined over all permutations of the elements of the vector i = (1,2, ... , n).
We wish to determine that permutation which minimizes F over all permutations.
F is assumed to be polynomially computable.

THEOREM 2.5.2. PF E Pc.
Proof (a) PF ex (P = NP). This part of the proof is very similar to that used in
Theorem 2.5.1.

(b) Sum of subsets ex PF. Define

where Xi is the ith element of i.
We compute min Fk over all permutations of i for k = 1, 2, ... , n. If there is a

subset that sums to M, then it hasj elements in it, and min F j is - M. If, on the other
hand, for some k = I, min F, is - M, then I:~ 1 w(x;) = M. This defines an algorithm
to solve the sum of subsets problem in polynomial time if we have a polynomial
algorithm for PF.

Problem LB. Assembly line balancing. In this problem we are given n jobs
1,2, ... , n. Each job i requires a certain amount of processing time t i • We have
available machines, each having an available process time T We want to determine
the minimum number of machines needed to process all the jobs (the processing of a
job cannot be split up among several machines).

278 SARTAJ SAHNI

THEOREM 2.5.3. LB E Pc.

Proof (a) LB ex (P = NP). This part of the proof is similar to Theorem 2.5.1.

(b) The following known member of PC shall be used (Karp [5J). Given a set

of positive integers S l' S2' .•. , sn' is there a partition I such that

ISj = I sJ2.
iel i= 1

We show how this problem may be formulated as a line balancing problem.
Let

t j = Sj and T = I sJ2;
j= 1

then the jobs 1,2, ... , n can be processed on 2 machines iff there is a partition I
of the jobs such that

I t j = T = I sJ2.
ieJ i::::: 1

This is the minimum number of machines on which the jobs can be processed as
L7=t t j = 2T.

Problem PI. Quadratic programming. Here, the constraints are linear while the
optimization function is quadratic.

THEOREM 2.5.4. PI is P-Hard.
Proof Sum of subsets of integers ex PI.

maximize I Xj(X j - 1) + I XjS j = f(x),

(i) subject to I XiS j ~ M,

o~ X j ~ 1.
. ~:

For 0 < x j < 1, x;(x j - 1) < O. This, together with (i), implies f(x) < M if for
some i, 0 < X j < 1. Thus max f(x) = M iff S has a subset that sums to M.

The following variation of this problem may also be shown to be P-Hard:
linear programming with one nonlinear constraint. Call this problem PI(b). To
show that sum of subsets ex PI(b), just consider the formulation:

maximize I XjS j ,

subject to I XjS j ~ M,

I X;(X j - 1) ~ 0,
j

o~ x j ~ 1.

2.6. Minimal equivalent Boolean form.
Problem HI. Given a formula B from the propositional calculus, we wish to

find the shortest formula equivalent to it.

I
<­ 1

. ~

279 COMPUTAT10NALLY RELATED PROBLEMS

THEOREM 2.6.1. Bl E Pc.
Proof (a) Bl O! PI. Define Blk to be the problem: is there a Boolean form of

length k equivalent to B? We first show that a polynomial algorithm for PI implies
a polynomial algorithm for B1k. For this, we construct a nondeterministic Turing
machine that guesses the Boolean form of length k and then uses the "tautology
algorithm" to check that it is equivalent to B. If PI works in p(n) time, then the
"tautology algorithm" works in P2(n) time (as tautology O! PI), and so the Turing
machine constructed above works in P2(n) time. Hence B1k O! PI. The proof for
Bl O! Blk is similar to part (a) of the proof of Theorem 2.3.1. We note that this proof
relies heavily on our informal notion of P-Reducibility. The proof does not show
that B1 is polynomially related to the other problems in Pc. If the time complexity
of the tautology problem is It (n) and that of PI if 12(n), then this reduction gives a
lij~(n)) algorithm for B1. If It (and consequentlyl2) is exponential, thenI2(ft(n))
is of the form 22". All our other reductions have been of the form p(n)' 12(n) or
12(p(n)) for some polynomial p.4

(b) tautology O! B1. A formula P is a tautology iff its minimal form is "1".

3. Conclusions. We have extended the class of known P-Complete problems
to include some important applications from network fl,?ws, game theory,
artificial intelligence and integer optimization. We have also introduced the
notion of P-Hard. The results indicate that many of the problems for which no
polynomial time bounded algorithm is known are related in terms of time com­
plexity. Indeed, all the evidence to date suggests that there is no polynomial al­
gorithm for any of these problems.

Acknowledgments. I am grateful to Professor Ellis Horowitz for many
stimulating discussions on this subject. This work was motivated by the work of
Cook [3] and Karp [5].

REFERENCES

[1]	 C. BERGE AND GHOUtLA-HoWRI, Programming, Games and Transportation Networks, John Wiley,
New York, 1964.

[2] C.	 L. CHANG AND J. R. SLAGLE, An admissable and optimal algorithm for searching AND/OR
graphs, Artificial Intelligence, 2 (1971), pp. 117-128.

[3]	 S. A. COOK. The complexity of theorem proving procedures, Conference Record of Third ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

[4] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and their Relation to Automata, Addison­
Wesley, Reading, Mass., 1969.

[5]	 R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa­
tions, R. E. Miller and J. W, Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[6]	 D. E. KNUTH, Art of Computer Programming, vols. I and 2, Addison-Wesley, Reading, Mass.,
1969.

[7] W. F. LUCAS, Some recent development in n-person game theory, SIAM Rev., 13 (1971), pp. 491­
523.

[8] D. M.	 MOYLES AND G. L. THOMSON, An algorithm for finding a minimum equivalent graph of a
digraph, J. Assoc. Comput. Mach., 16 (1969), pp. 455-460.

[9] N. J. NILSSON, Problem Solving Methods in Artificial Intelligence, McGraw-Hili, New York, 1971.
[10] R.	 SIMON AND R. C. T. LEE, On the optimal solution of AND/OR series-parallel graphs, J. Assoc.

Comput. Mach., 18 (1971), pp. 354-372.

4 Note that here we are not saying that the best way to solve this problem takes 22" time on a
deterministic machine. In fact one can easily solve it in time bounded by 2"". We are just making the
point that this particular reduction does not show that the two problems are polynomially related.

