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Abstract: In the last decade, exploration for unconventional hydrocarbon (shale gas) reservoirs has
been carried out in Poland. The drilling of wells in prospective shale gas areas supplies numerous
physicochemical measurements from rock and reservoir fluid samples. The objective of this paper is
to present the method that has been developed for finding similarities between individual geological
structures in terms of their hydrocarbon generation properties and hydrocarbon resources. The
measurements and geochemical investigations of six wells located in the Ordovician, Silurian, and
Cambrian formations of the Polish part of the East European Platform are used. Cluster analysis is
used to compare and classify objects described by multiple attributes. The focus is on the issue of
generating clusters that group samples within the gas, condensate, and oil windows. The vitrinite
reflectance value (Ro) is adopted as the criterion for classifying individual samples into the respective
windows. An additional issue was determining other characteristic geochemical properties of the
samples classified into the selected clusters. Two variants of cluster analysis are applied—the furthest
neighbor method and Ward’s method—which resulted in 10 and 11 clusters, respectively. Particular
attention was paid to the mean Ro values (within each cluster), allowing the classification of samples
from a given cluster into one of the windows (gas, condensate, or oil). Using these methods, the
samples were effectively classified into individual windows, and their percentage share within the
Silurian, Ordovician, and Cambrian units is determined.

Keywords: unconventional resources; shale gas; oil gas; total organic carbon (TOC); cluster analysis;
genetic type of kerogen

1. Introduction

In nature, there are no two identical natural gas and crude oil reservoirs. In spite of
this, all natural gas reservoirs can be divided into two groups:

- conventional (traditional) reservoirs,
- unconventional reservoirs [1].

The classification of a reservoir as belonging to a specific group requires adopting
selection criteria. Because the profitability of an investment depends largely on the in-
come from gas sales, the primary selection criterion is the permeability of reservoir rock,
since it directly affects the well output. In the petroleum industry, it has been assumed
that reservoirs with permeability exceeding 0.1–0.5 mD are categorized as conventional
reservoirs. The remaining reservoirs are in turn included in the group of unconventional
reservoirs. The group of unconventional reservoirs can be divided into the following types
of reservoirs:

- tight gas,
- shale gas,
- gas reservoirs in coal seams,
- reservoirs of gas trapped in hydrates [2].
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In order to perform the challenges that are faced by researchers, it should be pointed
out that the term: ‘shale gas’ is used very broadly in the world. Lithological diversity in
reservoirs of the shale gas-type indicates that natural gas is present not just in shales, but
also in a broad range of rocks with diverse lithology and texture, from siltstones to very
fine-grained sandstones; each of them can have silicates or carbonates in its composition [3].
What is being generally referred to as shale is very often siltstone or fine-grained sandstone,
or a heterogeneous type of rock, such assiltstone laminae interlayered with shale laminae
or located in a shale “matrix” [4]. The presence of different types of rocks rich in organic
matter indicates that there are various mechanisms of gas storage in these rocks [5]. Gas
can be adsorbed in organic matter, and it can be present as free gas in micropores.

Gasiferous shales are characterized by:

- variable lithology, from ‘pure’ shales, to shales with siltstone insets,
- variable porosity, from relatively high, to low,
- variable TOC, from high to low,
- variable ratio of adsorbed to free gas, from high, to low values,
- variable quartz content and type,
- the rock can be solid or/and naturally fractured [6].

Conventional reservoirs, which are virtually the only ones currently undergoing
extraction in Poland, are characterized by the following parameters:

- medium or small surface area,
- medium or small thickness,
- very good and good porosity of the reservoir rock,
- very good and good permeability of the reservoir rock,
- high and medium well outputs [7].

Very good physical and petrophysical parameters of conventional reservoirs allow for
their relatively easy development and extraction. As a consequence, economic extraction
of conventional reservoirs requires the use of traditional extraction technology, based on
relatively cheap vertical boreholes. Unfortunately, natural gas resources from conventional
reservoirs are close to depletion, since these reservoirs have been undergoing extraction for
several decades. On the other hand, there are unconventional reservoirs, the parameters
of which are radically different from that of conventional reservoirs. Unconventional
reservoirs are characterized by the following:

- very large or large surface area,
- large and medium thickness,
- low porosity of the reservoir rock,
- very low permeability of the reservoir rock,
- low well outputs [8–11].

The weak parameters of the reservoir rock result in the infeasibility of extraction of this
type of reservoirs in a traditional manner, i.e., using vertical or directional boreholes. This
situation is caused primarily by the insufficiently high output of vertical wells. Because of
this, the only method allowing for economic extraction of reservoirs of the shale and tight
gas-type involves the use of the latest approaches, which are based on:

- horizontal well technology,
- slim hole technology,
- multi-section fracturing technology [12].

Considering that unconventional natural gas reservoirs of the shale and tight gas-
type stand out due to their large variability of all reservoir parameters, it is very difficult
to make the investment decisions that are necessary to access, and, therefore, extract
unconventional reservoirs located in Poland. The making of investment decisions based
on limited amounts of data is burdened with a considerable risk of failure [13]. Currently,
only several dozen boreholes have been drilled in Poland in order to search for gasiferous
shale formations. Because of this, there is little information allowing for proper estimation
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of both the resources and the investment possibilities. It should be pointed out that the
existence of a very large number of wells is necessary for the performed estimations to have
acceptable precision. On the other hand, there is an extensive amount of information that
was acquired during the prospecting, drilling exploration and extraction of unconventional
reservoirs of the shale and tight gas-type located in the USA and in Canada [14]. The
ability to use the experience gained in the USA and in Canada would be very helpful as
regards the implementation of investments related to the exploration, development, and
extraction of gas from shale reservoirs in Poland, especially in the initial phase of searching,
when there is no sufficient data. Unfortunately, it is difficult to directly benefit from this
experience, since there are no two identical reservoirs of the shale gas-type in Poland, the
USA, or Canada. Basically, one can only notice certain similarities, which can be helpful in
the process of exploring, accessing, and extracting gas from shale formations.

An important emerging research challenge involves the development of methods
and tools that would be helpful when analysing the research results originating from the
explored geological structures in terms of seeking and assessing similarities to data origi-
nating from identified and documented geological structures. These tools, supplemented
by the developed investment risk assessment methods, will be helpful in decision-making,
whether in the stage of exploration, accessing or developing unconventional reservoirs.
Vast possibilities related to the characterization of unconventional reservoirs are offered
by artificial intelligence methods. Simple summaries and the comparison of data in tables,
based on an intuitive quality assessment of the analyzed data, can be unreliable, and often
impossible. This is caused by the necessity to perform an analysis involving a very large
data set. The use of a more intuitive approach in a comparative analysis, without the
application of quantitative measure and similarity criteria, can result in a failure to identify
numerous significant similarities in the analyzed datasets.

Artificial intelligence (AI) can be considered as being a set of man-made analytical
tools that imitate natural intelligent behavior [15]. AI techniques exhibit the ability to learn
and cope in new situations. Artificial neural networks (ANN), programming based on
evolution algorithms and fuzzy set logic function among models that have been categorized
as AI. These techniques have one or more ‘sentient’ features, such as the possibility of
learning, discovering, assembling, and abstraction. Over the last decade, as part of the
development of artificial intelligence, sets of analytical tools were developed to facilitate
the solving of problems that had previously been difficult or impossible to solve [1].

AI is already being used in multiple branches of economy. Currently, there is a general
trend to integrate individual AI tools into more complex systems. In the petroleum industry,
individual AI methods are used in various ways, among others, as:

- neural networks, which are applied to analyzea large amount of data on geology,
geophysics, and extraction,

- genetic algorithms, which are used to analyze geological and petrophysical data, for
reservoir simulations and to plan the fracturing procedures,

- fuzzy set logic, which is employed for petrophysical analyses, characterization of
reservoir parameters, drilling exploration of reservoirs, planning the stimulation pro-
cedures, increasing the depletion ratio of the reservoirs, and for analyses supporting
the making of investment decisions.

Computer systems utilizing AI support exploration, drilling, planning of production
wells, the performance of stimulation procedures and the making of investment decisions.
They are being applied in the petroleum industry with an increasing frequency, since they
allow for reducing the operating risk of companies.

The area of research is located in the N part of Poland and includes Lower Paleozoic
formations occurring in the area of Peribaltic syneclysis. Peribaltic syneclysis is a sub-
permian unit bordered on the south by the Masurian-Belarusian elevation. In the substrate
of Peribaltic syneclysis, there are crystalline Precambrian rocks, covered by sedimentary
and meta-sedimentary Precambrian-Paleozoic rocks. These rocks consist of formations
of the Vendian, Cambrian, Ordovician, locally Ordovician, and Permian. The subject of
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research included: Cambrian sediments developed as detrital, sandstone and siltstone
formations, Ordovician sediments developed as carbonate and loamy formations and Sil-
urian sediments developed as graptolites. Above the Paleozoic rocks, there are formations
belonging to other structural and tectonic units: Triassic, Jurassic, Cretaceous, Tertiary, and
Quaternary [16].

The main task is to assess the potential of unconventional hydrocarbon resources in
selected geological structures in Poland. The assessment of the potential of hydrocarbon
resources is based on total organic carbon (TOC) data, the thermal maturity of the organic
matter and the genetic type of kerogen [17,18]. The carried-out studies show that shale type
of geological structures are characterized by high sedimentological variability and high
variability of the physicochemical properties of the organic matter [19–22]. Geochemical
and petrophysical studies analyzed by other authors have shown that the upper parts of
the Silurian are characterized by a low level of the thermal maturity [23–25]. In turn, high
maturity for the generation of hydrocarbons level is achieved by the lower parts of the
Silurian, Ordovician, and Cambrian deposits [26–28]. The results presented in this article,
obtained through methods using artificial intelligence, may be a valuable supplement to
these results [29].

The research method, cluster analysis, can be used to search for analogies between the
reservoirs under study and other geological structures with unconventional natural gas
deposits which are known and well documented in terms of measurements and research
results. This article not only attempts to isolate clusters that group samples with similar
geochemical parameters, but it also focuses on identifying clusters that are characteristic of
particular windows featuring the thermal maturity of kerogen, namely gas, condensate,
and oil windows. The method of generating clusters, in the multidimensional space of
geochemical parameters to describe rocks, has never been combined with the method of
assigning them to windows (condensate, oil, and gas) in studies on this topic. The use of
cluster analysis to describe reservoirs has a long history [30–32]. This method has been
used to determine the permeability of rocks based on analogies with other petrophys-
ical parameters (e.g., porosity) of rocks with well-recognized geological structures [33]
or the separation of electrofacies based on clusters grouped by similar petrophysical pa-
rameters [34,35]. Interesting results related to the identification of gas, condensate, and
oil windows, corresponding to the methods presented in this article, have already been
presented by other authors [36–38]. Cluster analysis methods have also been applied to
investigate the similarity of samples described with geochemical parameters. One of the
key issues presented in these works was the identification of rocks with similar total organic
carbon (TOC) values [39–41]. The results demonstrated that it is possible to group the
samples assigned to gas, condensate, and oil windows through cluster analysis. Addition-
ally, information was obtained on the remaining geomechanical properties of the samples
assigned to the selected windows.

2. Materials and Methods
2.1. Materials

The generation potential of rocks can be determined using an appropriately selected
set of physicochemical parameters. Geochemical data were selected at the laboratory stage.
The results of measurements taken on cores from six wells of Silurian, Ordovician, and
Cambrian units were selected: Gd-1 (36 samples), Go-1 (13 samples), Ke1 (7 samples), Ma-1
(10 samples), Ol-1 (8 samples), and Pr-1 (12 samples).

The test samples are described by the set of seven parameters: Total organic carbon
TOC (% by weight); the temperature at which the maximum quantity of hydrocarbons is
produced during kerogen cracking Tmax(◦C); free hydrocarbon content S1(mg HC/g of
rock); the amount of hydrocarbons released during kerogen cracking S2(mg HC/g of rock);
hydrogen index HI (mg HC/g TOC); oxygen index OI (mg CO2/g TOC); and vitrinite
reflectance Ro(%).The parameters listed are from the Rock-Eval pyrolysis analysis with the
exception of Ro.
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2.2. Methods

A wide group of data segmentation methods is executed by dividing a set of data
(observations, test results) into subsets (classes) containing ‘similar’ elements (according to
a predetermined similarity principle). This task is being implemented via identification
of natural groups that contain elements similar in terms of a predetermined measure
of similarity. Mutually similar objects are placed in one group, while objects that vary
significantly are in different groups. The number of groups created in this manner is not
known a priori, which distinguishes this method from standard classification, in which
objects are assigned to groups with predetermined properties.

The choice of an efficient data segmentation method has been made in order to answer
the question whether the examined geological structures are similar in terms of generation
properties and hydrocarbon resources. An assumption has been made that the studied
geological structures can be considered as analogues, if the samples representing them
(described by combining the results of various types of measurements, but affecting the
generation properties and hydrocarbon resources) are put in the same groups (subsets)
generated using the data segmentation method.

The group of methods referred to by their collective name ‘cluster analysis’ is one of the
most efficient data segmentation methods. These methods are characterized by the ability
to compare and categorize objects described by means of multiple attributes. Depending
on detailed solutions, these procedures allow for the creation of groups (clusters) of objects
which are ‘least distant from each other’ or ‘most similar to each other’. These objects are
considered to be points in a multidimensional space, wherein the dimension of the space is
determined by the number of variables describing the given objects.

The following types of cluster analysis can be distinguished based on the applied data
processing methods:

• optimizing-iterative, involving the division of a set of objects into a specified number
of k subsets, following one of the optimising criteria:

- K-means—the groups are represented by a ‘center of gravity’.
- K-medoids—the groups are represented by one of the objects.

• hierarchical, under which clusters of a higher level contain clusters of a lower level.
Hierarchical methods include agglomerative and divisive techniques.

In agglomerative techniques, the starting point consists of individual objects, each of
which constitutes a separate group—a single-element cluster. The objects are combined
into more numerous groups, until a single group is developed in the end that includes all
objects. The divisive techniques initially assume that the entire set of objects constitutes
a single group. This group is subsequently divided into an increasing number of groups,
until single-element groups are generated.

Hierarchical agglomerate grouping is considered to be one of the more efficient object-
grouping methods. In this method, new clusters are formed by merging existing clusters.
The condition of merging the clusters is their adequate distance.

The grouping algorithm involves:

1. selecting the initial set of clusters,
2. finding the closest pair of clusters and merging them into one,
3. repeating step 2 until fulfilling the rule of completion.

The rule of completion is (usually):

- the lack of cluster pairs located less than a given threshold distance apart (dmax),
- merging of all clusters into a single set.

A properly defined measure of length is applied in order to determine the mutual
distance between individual objects in a multidimensional space. The distance may be
defined in multiple ways, depending on the type of attributes describing the individual
data (quantitative, qualitative data, ranks). Among the most frequently employed are:
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- Euclidean distance described by Formula (1):

dik =

√√√√ m

∑
j=1

(x′ij − x′kj)
2 (1)

- City block (Manhattan) distance described by Formula (2):

dik =
m

∑
j=1

∣∣∣x′ij − x′kj

∣∣∣ (2)

- Chebyshev distance described by Formula (3) [42]:

dik = maxj

∣∣∣x′ij − x′kj

∣∣∣ (3)

The individual variants of cluster analysis differ in the manner of determining the
distance between clusters.

1. The nearest neighbor method (single linkage)—the distance between clusters is the
distance between the two closest objects.

2. The farthest neighbor method (complete linkage)—the distance between clusters is
the distance between the two most distant objects.

3. The median method—the distance between two clusters is the median of the distance
between the units of the first and the second cluster.

4. The group average method—the distance between two clusters is the average distance
between the units of the first and the second cluster.

5. The center of gravity method—the distance between two clusters is the distance
between the centres of gravity of the first and the second cluster.

6. The Ward method—sampling the merging of all cluster pairs and selecting such
merging in which the variance of distance inside a formed cluster is the smallest.

Cluster analysis was chosen to study the similarities of rocks in terms of their geo-
chemical properties. The choice of this method was dictated by its high efficiency in solving
problems related to the study of the similarities of objects described in multidimensional
state spaces and the simplicity of applying and controlling the results [43,44]. The nominal
values of the various parameters describing the objects may vary by orders of magnitude.
To avoid negative numerical effects during the calculations, the data were standardized
using Formula (4):

x′i =
xi − x

sx
(4)

where xi is the attribute value, is the mean, and sx is the standard deviation from the mean
for the data series describing the attribute. The clustering method involves grouping objects
into clusters. The criterion for combining objects into clusters is that the distance between
the objects does not exceed the predefined dmax value. From the various distance measures,
the Euclidean distance described by Formula (1) was selected,

dik =

√√√√ 1
m

m

∑
j=1

(x′ij − x′kj)
2 (5)

where m is the size of the space (number of attributes) and x′ij and x′kj are the corresponding
attribute values (j) for the objects (i and k). This method has many variants that differ in
the way objects are selected for clustering. For this study, the authors selected the furthest
neighbor method, which defines the distance between two clusters as the distance between
the two furthest members in the clusters, and Ward’s method, which groups objects so
that the within-cluster distance variance is the lowest while meeting the condition of the
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maximum distance of objects in one cluster. During numerical experiments on clustering,
the maximum distances between clusters were selected using multiples of the standard
deviation calculated from a series of all the distances of the test samples. The algorithm
was implemented for distances within one, two, or three standard deviations.

3. Results and Discussion

Datasets describing the analyzed samples were prepared and the data were stan-
dardized. The following results were obtained from numerical experiments based on the
application of cluster analysis. The best results, in the case of the furthest neighbor method,
were obtained for a maximum distance dmax of 3.2 (two standard deviations from the
standardized distance series) and with Ward’s method for a dmax of 4.8 (on the order of
three standard deviations from the standardized distance series).

After many tests, it was found that the best results, due to the optimal number of
clusters (10–20), were obtained for a maximum distance dmax of 3.2 (two standard deviations
from the set of standardized distances) for the furthest neighbor method and a dmax of 4.8
(on the order of three standard deviations for the set of standardized distances) in the case
of Ward’s method. In this analysis variant, particular attention was paid to the mean Ro
values (within each cluster), allowing the classification of samples from a given cluster
into one of the windows (gas, condensate, or oil). The following assumption was made:
0.6 ≤ Ro ≤ 0.8% is classified as an oil window, 0.8% < Ro ≤ 1.25% as a condensate window,
and 1.25 < Ro ≤ 2.4% as a gas window. Intervals < 0.6% = immature window and > 2.4%
= overmature deposits [45]. To estimate the uncertainty of classifying samples from a
given cluster into the correct window, standard deviations (S) were calculated for the mean
values of Ro. It was assumed that if the values of Ro − S and Ro + S are within the limits
of a given window, it can be assumed that the samples belonging to this cluster belong
to this window with a probability of 68.2%. In addition, the percentage of samples in a
given cluster within each unit (Silurian, Ordovician, and Cambrian) was determined. The
analysis of the results indicated that the samples in particular clusters (based on similarities
in all analyzed parameters), have a high probability of belonging to particular hydrocarbon
generation windows. The results obtained are presented in Tables 1 and 2, in which the
mean values of the parameters under study are given.

Table 1. Results of furthest neighbor cluster analysis.

Cluster
No.

Number of
Elements TOC Tmax S1 S2 HI OI Ro Cluster Characteristics

1 14 0.25 432 0.16 2.01 169.85 101.25 0.77
Ro = 0.77% − oil window; Ro + S = 0.91% −
part in the condensate window. Silurian =
57%; Ordovician = 7%; Cambrian = 36%

2 12 1.31 449 1.22 1.43 22.02 13.04 1.11

Ro = 1.11%; Ro − S = 0.95% − condensate
window; Ro + S = 1.27% − part in the gas

window. Silurian = 83%; Ordovician = 17%;
Cambrian = 0%

3 23 0.81 446 0.40 0.58 50.08 41.80 1.25

Ro = 1.25%; Ro − S = 1.13% − condensate
window; Ro + S = 1.36% − part in the gas

window. Silurian = 83%; Ordovician = 13%;
Cambrian = 4%

4 5 6.29 456 2.27 5.20 2.96 2.96 1.30
Ro = 1.30%; Ro − S = 1.28% − gas window.

Silurian = 80%; Ordovician = 20%;
Cambrian = 0%

5 4 0.15 493 0.05 0.50 100.05 133.97 1.44
Ro = 1.44%; Ro − S = 1.33% − gas window.
Silurian = 0%; Ordovician = 0%; Cambrian

= 100%
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Table 1. Cont.

Cluster
No.

Number of
Elements TOC Tmax S1 S2 HI OI Ro Cluster Characteristics

6 7 0.46 425 1.59 28.05 351.17 71.98 0.71
Ro = 0.71%; Ro + S = 0.78% − oil window.

Silurian = 0%; Ordovician = 57%;
Cambrian = 43%

8 4 0.13 437 0.30 4.50 339.66 275.61 0.77
Ro = 0.77% − oil window; Ro + S = 0.85% −
part in the condensate window. Silurian =
25%; Ordovician = 0%; Cambrian = 75%

Mean 1.34 448 0.86 6.04 147.97 91.52 1.05

Table 2. Results of Ward’s method cluster analysis.

Cluster
No.

Number of
Elements TOC Tmax S1 S2 HI OI Ro Cluster Characteristics

1 10 0.24 433 0.07 0.47 171.04 105.88 0.72
Ro = 0.72%; Ro + S = 0.79% − oil window.

Silurian = 60%; Ordovician = 10%;
Cambrian = 30%

2 14 1.28 448 1.14 1.35 32.17 13.24 1.11
Ro = 1.11%; Ro − S = 0.96%; Ro + S = 1.25%
− condensate window. Silurian = 86%;

Ordovician = 14%; Cambrian = 0%

3 11 0.59 435 0.34 0.46 77.96 81.40 1.20

Ro = 1.20%; Ro − S = 1.07% − condensate
window; Ro + S = 1.32% − part in the gas

window. Silurian = 73%; Ordovician = 18%;
Cambrian = 9%

4 12 0.90 454 0.36 0.62 26.99 28.16 1.29
Ro = 1.29% − gas window; Ro − S = 1.20%
− part in the condensate window. Silurian
= 92%; Ordovician = 8%; Cambrian = 8%

5 5 6.29 456 2.27 5.20 2.96 2.96 1.30
Ro = 1.30%; Ro − S = 1.28% − gas window.

Silurian = 80%; Ordovician = 20%;
Cambrian = 0%

6 4 0.15 493 0.05 0.50 100.05 133.97 1.44
Ro = 1.44%; Ro − S = 1.33% − gas window.

Silurian = 0%; Ordovician = 0%;
Cambrian = 100%

7 8 0.13 422 1.08 19.90 278.67 28.25 0.77
Ro = 0.77%; Ro + S = 0.78% − oil window.

Silurian = 0%; Ordovician = 0%;
Cambrian = 100%

8 4 0.69 427 1.76 29.84 381.63 105.16 0.67
Ro = 0.67%; Ro + S = 0.73% − oil window.

Silurian = 0%; Ordovician = 100%;
Cambrian = 0%

10 4 0.13 437 0.30 4.50 339.66 275.61 0.77
Ro = 0.77% − oil window; Ro + S = 0.85% −
part in the condensate window. Silurian =
25%; Ordovician = 0%; Cambrian = 75%

11 4 0.21 417 0.03 0.06 137. 06 287.87 1.33
Ro = 1.33% − gas window; Ro − S = 1.02%
− part in the condensate window. Silurian
= 50%; Ordovician = 0%; Cambrian = 50%

Mean 1.06 442 0.74 6.29 154.82 106.25 1.06

The results illustrating the proportion of samples in each of the generated clusters are
presented in Figures 1–6.
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Figure 2. Results of Ward’s method cluster analysis. Oil window.

Samples qualified for the oil window were grouped in 3 clusters in the farthest neigh-
bor method (1, 6, 8) and in 4 clusters in Ward’s cluster method (1, 7, 8, 10). Some of these
clusters contain samples classified for both oil and condensate windows. Only cluster 1
subjected to the farthest neighbor method and clusters 1 and 8 to Ward’s method contain
samples solely from the oil window. The samples presented in these clusters are charac-
terized by low values for TOC and Tmax and high values for S2, HI, and OI. Compared
to the other windows (condensate and gas), the clusters generated using both methods
contain the largest number of samples from Cambrian formations. Silurian formations are
the least represented.
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Figure 3. Results of furthest neighbor cluster analysis. Condensate window.
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Figure 4. Results of Ward’s method cluster analysis. Condensate window.

Samples qualified for the condensate window were grouped in four clusters in the
farthest neighbor method (1, 2, 3, 8) and in five clusters in Ward’s cluster method (1, 2, 3,
4, 10, 11). Some of these clusters contain samples classified for both oil, condensate, and
gas windows. Only cluster 2 subjected to the Ward’s method contain samples solely from
the condensate window. The samples presented in these clusters are characterized by low
values for S2, OI, and HI and high values for S1. Compared to the other windows (oil and
gas), the clusters generated using both methods contain the largest number of samples
from Silurian formations.
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Figure 5. Results of furthest neighbor cluster analysis. Gas window.
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Figure 6. Results of Ward’s method cluster analysis. Gas window.

Samples qualified for the gas window were grouped in 4 clusters in the farthest neigh-
bor method (2, 3, 4, 5) and in 5 clusters in Ward’s cluster method (3, 4, 5, 6, 11). Some of these
clusters contain samples classified for both condensate and gas windows. Only clusters
4 and 5 subjected to the farthest neighbor method and clusters 5 and 6 to Ward’s method
contain samples solely from the gas window. The samples presented in these clusters are
characterised by low values for HI and high values for Tmax. The clusters generated using
both methods contain the largest number of samples from Silurian formations.
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4. Conclusions

The cluster analysis method can be an effective tool for grouping samples characterized
by geochemical parameters obtained using the Rock-Eval method supplemented by the
results of microscopic studies of vitrinite reflectivity. The use of cluster analysis not only
allowed the samples to be classified into clusters specific to each window (oil, condensate,
and gas) but also allowed the authors of the research to assign characteristic geochemical
parameter values to them. Not in all cases was it possible to obtain unambiguous results.
This applies particularly to the average TOC and HI values for the gas window where in
two different clusters containing samples from this window extremely different average
values of the mentioned parameters were obtained. This can be explained by too small
a random sample used in the study. An important factor in achieving acceptable results
is the adequate calibration of the parameters for the methods used carried out through
multiple numerical experiments. One such parameter is to determine optimal (in terms
of the effective grouping process)values of maximum distances between objects (in this
case samples) that must be maintained in order for the samples to be qualified to the same
window. The method used is complementary to the work of other scientists involved in
research on the classification of rock samples based on kerogen maturity [16,45–48].
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Nomenclature

TOC total organic carbon, % by weight

Tmax
temperature at which the maximum quantity of hydrocarbons is produced
during kerogen cracking, ◦C

S1 free hydrocarbon content, mg HC/g of rock
S2 amount of hydrocarbons released during kerogen cracking, mg HC/g of rock
HI hydrogen index, mg HC/g TOC
OI oxygen index, mg CO2/g TOC
Ro vitrinite reflectance, %
S standard deviations were calculated for the mean values of Ro, %
dmax maximum distance between the objects described by the standardized data
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