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ABSTRACT Reinforcement learning algorithms have been very successful at solving sequential
decision-making problems in many different problem domains. However, their training is often time-
consuming, with training times ranging from multiple hours to weeks. The development of domain-specific
architectures for reinforcement learning promises faster computation times, decreased experiment turn-
around time, and improved energy efficiency. This paper presents a review of hardware architectures for
the acceleration of reinforcement learning algorithms. FPGA-based implementations are the focus of this
work, but GPU-based approaches are considered as well. Both tabular and deep reinforcement learning
algorithms are included in this survey. The techniques employed in different implementations are highlighted
and compared. Finally, possible areas for future work are suggested, based on the preceding discussion of
existing architectures.

INDEX TERMS Domain-specific architectures, machine learning, deep learning, reinforcement learning,
deep reinforcement learning, reconfigurable architectures, FPGA.

I. INTRODUCTION
Recent developments in reinforcement learning (RL) have
shown promising results for the solution of sequential
decision-making problems. With AlphaGo’s success in the
game of Go, the reinforcement learning approach has
attracted much media attention [68]. While its capabilities
have often been demonstrated by learning policies for video
games, such as Atari games [52], Starcraft [80], and Dota [8],
it can be applied to a wide variety of real-world scenar-
ios. For example, RL has been used for scheduling in data
centers [42] and for adaptive power management [12], [27],
[44], [91]. Furthermore, reinforcement learning can also be
applied to many problems in the domain of robotics, for
example, navigation [9] or robotic manipulation [55]. Other
interesting developments are agents with emergent tool use
and cooperative behavior [3], [82].

Reinforcement learning often requires large amounts of
time and computational resources. Hardware acceleration
with GPUs and FPGAs can play a significant part in the
continued progress of RL research and its application to real-
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world problems. GPUs are commonly used to accelerate deep
learning processes. Hence, in Deep Reinforcement Learning
(DRL), where neural networks are used as part of the learning
algorithm, GPUs can easily be used to accelerate neural
network computations.

However, the small batch sizes commonly used during
DRL training can pose a problem for efficient GPU-based
acceleration. Here, Domain-Specific Architectures (DSA)
with specialized memory management and a degree of par-
allelism matching that of the problem domain can be advan-
tageous. DSAs are often implemented on FPGAs due to
their high degree of flexibility, faster development times,
and lower cost when compared to ASICs. When applied to
reinforcement learning, the possibility of fine-grained par-
allelism outside of the neural network updates and efficient
use of on-chip memory in FPGA-based architectures promise
further speed gains. Additionally, while FPGAs might not
always outperform GPUs with respect to computation time,
their utilization often improves energy efficiency.

This survey presents an overview of the state-of-the-
art of reinforcement learning hardware acceleration. First,
Section II introduces the theoretical background of reinforce-
ment learning, followed by a brief examination of GPU-based
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FIGURE 1. The basic reinforcement learning setup. An agent receives
observations of the environment state and chooses actions to take in
response. The environment rewards the agent based on its chosen action.
The goal for the agent is to maximize the accumulated rewards [75].

acceleration of reinforcement learning in Section III. Then,
Section IV presents existing hardware architectures for the
acceleration of tabular and deep reinforcement learning. Sub-
sequently, Section V highlights techniques used in state-of-
the-art implementations, based on which directions for future
work are proposed in SectionVI. Finally, the survey endswith
a conclusion in Section VII.

II. REINFORCEMENT LEARNING
In reinforcement learning, an agent learns to solve sequential
decision-making problems. These problems can be modeled
asMarkov Decision Processes (MDP) [7]. At each timestep t ,
the agent receives an observation of the environment
St ∈ S, where S is the state space, based on which it reacts
by choosing an action At ∈ A(St ), where A(St ) is the set of
all possible actions in state St . As a result of its action, the
agent receives a reward Rt+1. This process is shown in Fig. 1.
In anMDP, the state St+1 and reward Rt+1 depend only on the
previous state St and action At , as described by the following
function p(s′, r|s, a):

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St ,At } (1)

While learning, the agent attempts to maximize the cumula-
tive reward, represented by the expected discounted returnGt
using a discount rate γ :

Gt =
∞∑
k=0

γ kRt+k+1, 0 ≤ γ ≤ 1 (2)

The agent follows a policy π (a|s) which is a mapping from
states to the probabilities of selecting each possible action.
The value vπ (s) of a state is equal to the expected discounted
return while following the policy π :

vπ (s) = Eπ [Gt |St = s] (3)

Similarly, the action-value function qπ (s, a) is defined as the
expected return starting from state s and taking action a:

qπ (s, a) = Eπ [Gt |St = s,At = a] (4)

The optimal action-value function is denoted as q∗:

q∗(s, a) = max
π

qπ (s, a) (5)

The Bellman optimality equation for the action-value func-
tion is:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗(St+1, a′)

∣∣∣∣St = s,At = a
]
(6)

A similar Bellman optimality equation can be derived for the
optimal value function v∗. Reinforcement learning algorithms
use these optimality equations to improve the policy followed
by the agent iteratively [75].

A. TABULAR REINFORCEMENT LEARNING
Classical reinforcement learning works on discrete state and
action spaces, representing the action-value function as a
table. The twomost prominent tabular reinforcement learning
algorithms are Q-Learning and SARSA. Q-Learning was first
introduced in 1989 by Watkins [86], and its convergence was
proven by Watkins and Dayan [85]. The following equation
describes its update step:

Q(St ,At )

← Q(St ,At )+ α[Rt+1 + γ max
a
Q(St+1, a)− Q(St ,At )]

(7)

The quality Q(at , st ) of an action at in state st is updated
by moving it closer to the sum of the received reward Rt
and the expected future value γ maxaQ(st+1, a), assuming
the agent would follow a greedy policy in the future. The
action at is usually chosen by an ε-greedy policy. Many dif-
ferent variations of Q-Learning have since been introduced,
as summarized in [34].

SARSA was introduced by [61] as a modification of the
Q-Learning algorithm. While Q-Learning is an off-policy
algorithm, SARSA is on-policy. An on-policy algorithm
assumes the same policy used to select the current action will
also be used to select future actions.

Q(St ,At )

← Q(St ,At )+ α[Rt+1 + γQ(St+1,At+1)− Q(St ,At )]

(8)

That means, during the update, the value of the actual future
action at+1 is used instead of the maximum future value,
as shown in (8).

B. DEEP REINFORCEMENT LEARNING
This section gives a short overview of a few model-free
deep reinforcement learning (DRL) algorithms. Detailed sur-
veys of state-of-the-art DRL methods can be found in [19],
[46], and [40]. Classical reinforcement learning methods
use tables to represent the value function. For large state
and action spaces, as well as continuous state and action
spaces, this approach is insufficient, as the tables become
exceedingly large. In deep reinforcement learning, neural
networks are used to approximate the value function to solve
this problem. A major breakthrough in this domain were
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Deep Q-Networks (DQN), which learned to play Atari games
from pixel inputs at the level of a human expert [53]. In addi-
tion to replacing the Q-table with a Q-network, multiple
improvements were made to enable stable neural network
training. One problem of training neural networks in the con-
text of sequential decision-making problems is the temporal
correlation of the training data. In DQNs, this problem is
solved by a technique called experience replay. Here, training
samples (consisting of the state St , the action At that was
performed, the reward Rt , and the subsequent state St+1)
are stored in a replay buffer, and the Q-network is trained
from randomly sampled mini-batches from this buffer. Addi-
tionally, the target network, a copy of the Q-network that
is updated periodically, was introduced to hold the expected
future value constant for some time [52]. Many small changes
to the original DQN architecture have been proposed, a lot of
which are combined in the Rainbow DQN algorithm [30].

DQN, as a value-based DRL algorithm, learns an
action-value function from which it derives its policy. In con-
trast to that, policy gradient algorithms are a class of DRL
algorithms that directly learn a policy that maps states to
actions. With DQN, it is possible to apply reinforcement
learning to continuous state and discrete action spaces. Policy
gradient methods additionally extend reinforcement learning
to continuous action spaces. A policy gradient algorithm
learns a parameterized policy by estimating the policy gradi-
ent and using it to optimize the policy directly. The objective
to be optimized, i.e., J (θ ) can be defined as the value of a
starting state s0:

J (θ ) = vπθ (s0) (9)

Here, πθ is the policy characterized by a set of parameters θ .
According to the policy gradient theorem, the gradient of this
objective can be computed as follows:

∇θJ (θ ) ∝
∑
s

µ(s)
∑
a

qπ (s, a)∇θπ (a|s, θ) (10)

In this equation, the on-policy distribution µ(s) represents
the fraction of time spent in state s. In deep reinforcement
learning, the policy π and the value function Qπ (s, a) are
usually represented by neural networks. In these so-called
actor-critic architectures, the policy network π is called the
actor, and the value network Qπ (s, a) is called the critic [75].
Based on the policy gradient theorem, many policy gradi-

ent algorithms have been developed. These algorithms often
use stochastic policies and an actor-critic architecture. One
such algorithm is Trust Region Policy Optimization (TRPO).
It uses a KL-divergence constraint on the optimization prob-
lem to guarantee the monotonic improvement of its policy,
but it is computationally expensive [63]. Actor-Critic using
Kronecker-Factored Trust Region (ACKTR) [89] and Proxi-
mal Policy Optimization (PPO) [62] have been developed as
more computationally efficient alternatives to TRPO.

Asynchronous Advantage Actor-Critic (A3C) is another
policy gradient algorithm, which uses multiple parallel actors

to speed up training [51]. All of the policy gradient algo-
rithms mentioned above are model-free and on-policy and
suffer from high sample complexity, i.e., a large amount of
training samples is necessary for training. The Actor-Critic
with Experience Replay (ACER) algorithm is an extension
of A3C that can be trained off-policy and on discrete as well
as continuous action spaces [83].

An example of an off-policy gradient method with a
deterministic policy is the Deep Deterministic Policy Gra-
dient (DDPG) algorithm [43]. It uses the deterministic pol-
icy gradient theorem to arrive at a similar update rule as
stochastic algorithms but for deterministic policies. Finally,
Soft Actor-Critic (SAC) is a policy gradient algorithm that
combines off-policy updates with stochastic policy optimiza-
tion and mitigates the problem of high sample complexity by
introducing a maximum entropy term into the policy gradient
objective [28].

In recent years, reinforcement learning has been applied
to more and more complex problems, leading to increased
computational demands, which can be met with GPUs or
FPGA-based hardware accelerators. The following section
gives a brief overview of GPU-accelerated reinforcement
learning before the subsequent section presents FPGA-based
hardware architectures for reinforcement learning.

III. GPU-ACCELERATED REINFORCEMENT LEARNING
GPUs are the hardware architecture most commonly used to
accelerate machine learning algorithms and can be applied
to reinforcement learning as well. GPU-based acceleration
is usually applied to deep reinforcement learning rather than
classical tabular reinforcement learning since the increased
computational demands due to the introduction of neural
networks into reinforcement learning make DRL more suit-
able for GPU-based acceleration. Table 1 summarizes the
speed-ups achieved by GPU-based DRL implementations.
However, the results of the individual publications are not
necessarily comparable with each other since they implement
different algorithms and attempt to solve different problems
utilizing various hardware platforms. Furthermore, there is
no common baseline for the speed-ups given by these pub-
lications. Therefore, the table serves as an overview rather
than as a basis for comparisons. Most of the publications
supply multiple performance comparisons. In that case, only
the most relevant comparison was included in the table. The
table also includes a column with selected GPU specifica-
tions for the platform used by the publication. If multiple
identical GPUs were used, the specifications are given for
a single GPU.

Multiple papers present general frameworks for the paral-
lelization of DRL algorithms. Clemente et al. [14] proposed
an algorithm agnostic framework for efficient parallelization
of DRL, which can be efficiently implemented on a GPU. The
training uses multiple instances of the environment to employ
multiple actors synchronously on a single machine. Infer-
ence and training can be batched, which can be efficiently
parallelized and leads to significant speed improvements.
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TABLE 1. GPU-based implementations of deep reinforcement learning.

The systemwas tested with a modified A3C algorithm, called
Parallel Advantage Actor-Critic (PAAC), and reduced the
training time for the Atari domain significantly.

Stooke et al. [73] investigated the optimization of DRL
algorithms for combinations of CPUs and GPUs. They devel-
oped a set of parallelization techniques for DRL, including
synchronized sampling and synchronous, as well as asyn-
chronous, Multi-GPU optimization. These techniques were
tested with multiple DRL algorithms. They found that on
a DGX-1 workstation with 8 GPUs, their techniques lead
to a 6× speed-up compared to an implementation using a
single GPU.

Other publications focus on efficient GPU implementa-
tions of a single DRL algorithm. Postma et al. [59] imple-
mented Fitted Q-Iteration for GPUs. Nair et al. [54] proposed
a massively distributed architecture for DRL called Gorila.
It uses parallel actors and learners, a distributed neu-
ral network, and a distributed store of experience to
implement the DQN algorithm. The GA3C architecture,
introduced by Babaeizadeh et al. [2], is a GPU implemen-
tation of the A3C algorithm. Similarly, the GUNREAL
architecture, introduced by Coppens et al. [15], accelerates
UNREAL (UNsupervised REinforcement and Auxiliary
Learning), an algorithm based on A3C, using techniques
comparable to GA3C. Qt-Opt is a scalable DRL framework
that was implemented on 10Nvidia P100GPUs [35]. The dis-
tributed DRL agent IMPALA (Importance Weighted Actor-
Learner Architecture), proposed by Espeholt et al. [18],
includes an off-policy actor-critic algorithm called V-trace
and can scale to thousands of machines. In a subsequent pub-
lication, the SEED agent [17] was proposed, which is closely
related to IMPALA. Other than an implementation based on
the V-trace algorithm, an implementation based on Recurrent
Replay Distributed DQN (R2D2) [36] was provided as well.
Instead of a GPU, a Tensor Processing Unit (TPU) [23] was
used for the implementation, but any other accelerator could
be used in its place.

Furthermore, there are publications targeting the problems
of experience replay in a setting with CPUs and GPUs.
In [57], the possibility of storing the replay buffer completely
in GPU memory instead of external RAM was explored.
This approach speeds up the training process but is limited

to domains where the replay buffer can fit inside the GPU
memory. The Ape-X architecture uses multiple actors that
contribute to the same share replay memory so that a single
learner executed on a GPU can learn from them [31].

Besides speeding up the training itself, there are also efforts
to speed up the simulation time of environments commonly
used in RL. Liang et al. [41] use NVIDIA FleX [56], a GPU-
based physics engine, to speed up the simulation of robotics
locomotion tasks. Moreover, a CUDA port of the Atari Learn-
ing Environment [6] was implemented by Dalton et al. [16]

GPUs are very suitable to accelerate the training of deep
neural networks. Thus, their application to deep reinforce-
ment learning can lead to significant speed-ups as well. How-
ever, DRL algorithms tend to launch many GPU kernels with
little computation, leading to increased kernel launch over-
head for GPUs. As a promising alternative, FPGAs can be
used to accelerate DRL algorithms, especially when focusing
on energy efficiency. The price of high-end FPGA platforms,
like a Xilinx Alveo U200, is similar to the price of high-end
GPUs, like an Nvidia P100. Additionally, cloud-based FPGA
solutions further increase the accessibility of FPGA hard-
ware. Furthermore, high-level synthesis and OpenCL-based
design flows mitigate the drawback of the increased devel-
opment time when using traditional hardware description
languages. Hence, the following sections are dedicated
to the exploration of FPGA-based reinforcement learning
accelerators.

IV. FPGA IMPLEMENTATIONS OF REINFORCEMENT
LEARNING ALGORITHMS
FPGAs are integrated circuits that can be reconfigured after
manufacturing. Their flexible, distributed on-chip memory
resources – like distributed RAM built from the FPGA’s
Look-Up Tables (LUTs) and dedicated Block RAM – allow
the design of domain-specific architectures that closelymatch
the parallelism of the problem domain to achieve high com-
putation speed and energy efficiency. A survey of FPGA
architectures can be found, e.g., in [38]. Additionally, FPGAs
allow flexible system integration, making it easy to connect
to various external devices and communication protocols,
which is an important requirement, especially for embed-
ded systems. Other key capabilities of FPGAs are dynamic
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FIGURE 2. Q-Learning accelerator architecture implemented by Da
Silva et al. [67].

reconfiguration, i.e., reconfiguration while the FPGA is
active, and partial reconfiguration. A survey of dynamic and
partial reconfiguration of FPGAs can be found in, e.g., [81].

In the domain of deep learning, FPGAs show promising
results for the acceleration of neural network inference,
as summarized in [26]. This section examines FPGA-based
implementations of reinforcement learning algorithms,
starting with architectures for tabular reinforcement learning,
followed by implementations of state-of-the-art deep rein-
forcement learning methods. Table 2 shows the speed-ups
achieved by these implementations. As for the GPUs, this
should be seen as an overview, but not as a comparison
of the different implementations because they implement
different algorithms, use different FPGAs for their imple-
mentations, and different hardware platforms as the reference
for their comparisons. However, most FPGA implementa-
tions achieved a significant speed-up of an order of magni-
tude compared to CPU implementations and outperformed
GPU-based reference implementations as well. When multi-
ple comparisons are given in a publication, the most relevant
one was included in the table. Additionally, the table includes
the LUTs used by each implementation as a reference for the
size of the implemented architecture.

A. TABULAR REINFORCEMENT LEARNING
The first implementation of reinforcement learning on FPGA
was done by Prabha et al. [60]. A SARSA-based architecture
was used to choose between different dynamic power man-
agement policies. Technically, this architecture is an imple-
mentation of a Multi-Armed Bandit, not of generic SARSA,
because it is limited to a boolean state space and 4 actions.

A first complete implementation of an accelerator
for a reinforcement learning algorithm was proposed by
Da Silva et al. [67] The proposed architecture, shown in
Fig. 2, is composed of five main module types. The GA (Gen-
erate Action) module selects random actions, the EN (Enable)
modules decide which state-action pair should be updated,
the RS (Reward Storage) modules store the reward function,

FIGURE 3. Q-Learning accelerator architecture with one on-chip memory
for each action of the action space, implemented by Spanò et al. [72].

FIGURE 4. QTAccel architecture with four pipeline stages to increase the
throughput of the accelerator, implemented by Meng et al. [48].

the S (State) modules compute the Q-value, and the SEL
(Selection of Future State) module selects the future state.
It should be noted that the architecture contains an EN, RS,
and S module for each state of the state space, including
the Q-value computation. The Q-table is stored in registers
in the S module. The state transitions and rewards of the
environment are integrated into the learning system in the
form of the RS and SEL modules. For a simple example
problem with 6 possible states and 4 actions, the system
achieves a throughput of 26.42 Million Samples per second
(MSps) using a Xilinx Virtex-6 FPGA.

Spanò et al. [72] published an improved version of a com-
parable accelerator, shown in Fig. 3. Instead of integrating
the environment into the learning system, states and rewards
are seen as input to the hardware accelerator. The architecture
contains one on-chip memory block per action in the action
space, which stores the Q-values of the respective action for
each state. For a given state, the Q-values for all actions can be
read at the same time. Amax-tree is used to find themaximum
Q-value, as described by Liu et al. [93] in a theoretical paper
about hardware accelerators for Q-Learning. Furthermore,
the multiplications with the learning rate α and decay γ were
found to be the limiting factor for computation speed and have
been replaced with one or two barrel shifters. The possible
values for γ and α were thus limited to powers of two or sums
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TABLE 2. FPGA-based implementations of deep reinforcement learning.

TABLE 3. Comparison of tabular reinforcement learning implementations.

of powers of two, respectively. The environment was imple-
mented in hardware using the Xilinx System Generator [90].
An adaptation of the accelerator for the SARSA algorithm is
shown as well. For an example environment with 8 states and
4 actions, the architecture achieves a throughput of 72 MSps
using a Xilinx Virtex-6 FPGA.

QTAccel is a pipelined architecture for Q-Learning imple-
mented by Meng et al. [48], shown in Fig. 4. It is a four-stage
pipeline with the state transition and reward functions of the
environment integrated into the first pipeline stage. In the first
stage, Q-values and rewards are read from block RAMs, the
action is selected, and the next states are computed based on
the state transition function of the environment. In addition
to the Q-table, QTAccel also uses a Qmax-table that stores
the maximum Q-value for each state. While the additional
Qmax-table increases the resource requirements of the design,
its use enables QTAccel to avoid the more expensive com-
putation of the maximum Q-value using, e.g., a max-tree,
as implemented in the architecture by Spanò et al. In the
second stage, the next action is chosen based on the update-
policy (usually ε-greedy) and corresponding Q-value read
frommemory. The third stage calculates the updated Q-value,
and the last stage stores this value in the Q-table. The archi-
tecture can be implemented for both Q-Learning and SARSA.
The implementation was tested on larger state spaces than
previous implementations and achieved a consistent through-
put of around 180 MSps using a Virtex-7 FPGA.

A comparison of the throughput of the three implemen-
tations can be seen in Fig. 5(a). The implementation by
Spanò et al. achieves higher throughput than the implemen-
tation by Da Silva et al. by using barrel shifters instead of
multiplications, as well as other differences in the overall

TABLE 4. Implementations of neural network Q-learning.

architecture. Due to the use of pipelining, QTAccel’s through-
put is even higher. Fig. 5(b) displays the utilization of DSP
(Digital Signal Processing) blocks, i.e., FPGA resources used
primarily for efficient multiplication, for each of the three
Q-Learning implementations. The number of DSP blocks
used by the implementation by Spanò et al. increases with
the number of states because the Q-value is computed for all
states regardless of the current state. The other implementa-
tions only compute the Q-value for the current state.

As a further comparison, Table 3 shows the resource usage
and throughput of the three implementations for similar state
spaces and reward widths. For better comparisons, it also
includes the throughput per power and throughput per LUT.
Interestingly, QTAccel achieves the highest throughput per
LUT, even though it implements the largest state space.

B. DEEP REINFORCEMENT LEARNING
1) VALUE-BASED DRL IMPLEMENTATIONS
Multiple publications implement Neural Network
Q-Learning (NNQL) architectures where a neural network
replaces the Q-table. However, they usually do not implement
features like experience replay and target networks necessary
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FIGURE 5. Comparison of Q-Learning hardware implementations. Fig. 5(a) shows the throughput of the architectures for state
spaces of increasing size. All implementations displayed in this figure were configured with 4 possible actions and 16 bit Q-values.
The throughput differs dramatically for the three implementations, with QTAccel achieving the highest and Spanò et al. the second
highest throughput. Figures based on data from [48], [67] and [72]. Fig. 5(b) shows the number of DSPs used by each of the
architectures for state spaces of increasing size. It can be seen that the number of DSPs used by the implementation of Da Silva et
al. increases with the number of states, while the DSP usage of the other implementations stays constant and low.

for a full implementation of DQN. In [39], the inference
of the neural network of a reinforcement learning system
was implemented on an FPGA. Due to the lack of data, this
publication was not included in Table 2. In [21] and [22],
a full MLP-based Q-Learning architecture was designed. The
forward and backward passes of the neural network were both
implemented on an FPGA. The neural networks used in this
architecture are very small, with as little as one hidden layer
with four neurons. A significant speed-up was achieved using
this architecture when compared to an Intel i5 CPU.

Another implementation was done by Su et al. [74]. The
proposed architecture includes backpropagation on the FPGA
and an implementation of experience replay with a fixed
batch size of one. The MLP training uses specially designed
processing elements with three different modes for different
parts of the forward and backward passes of the MLP. The
replay buffer is stored in external memory, and the neural
network weights are stored in on-chip BRAM. The evaluation
shows that the implementation on an Arria 10 FPGA can han-
dle up to 580 neurons, limited by available BRAM size, and
achieves a significant speed-up compared to a GPU imple-
mentation on a GTX 760. The authors conclude that FPGA
implementations of deep reinforcement learning algorithms
can be advantageous compared to GPU-based implementa-
tions, especially for small neural networks.

One of the most recent implementations of a simple neural-
network-based reinforcement learning architecture uses an
extreme learning machine (ELM) [33] or online sequential
ELM (OS-ELM) [32] to replace the neural network in a
DQN [84]. The goal was to design a lightweight on-device
reinforcement learning system for resource-limited FPGAs.
By using ELM, the implementation does not need to rely
on backpropagation, computing the neural network weights
analytically instead. Multiple other changes were made to the

DQN algorithm to stabilize the training, such as Q-Value clip-
ping, spectral normalization, and L2 regularization. Instead
of implementing experience replay, the proposed algorithm
randomly determines whether or not to update at each time
step to break the temporal correlation of training inputs. The
system was implemented on a PYNQ-Z1 development board,
utilizing a Xilinx Zynq XC7Z020 FPGA. Open AI Gym [10]
was integrated as the reinforcement learning environment.
A significant speed-up was achieved when compared to an
implementation on the ARM core of the development board.

Table 4 summarizes the features implemented in the dif-
ferent NNQL or DQN implementations. Only three out of
four designs implement the training of their reinforcement
learning model in hardware. Furthermore, no design imple-
ments experience replay as described in the DQN papers [52],
[53]. Instead, they either implement experience replay with a
constant batch size of one, or they opt to implement simplified
methods to break the temporal correlation of their training
samples.

2) IMPLEMENTATIONS OF POLICY GRADIENT ALGORITHMS
Multiple hardware accelerators for other state-of-the-art deep
reinforcement learning algorithms have been implemented.
The first hardware implementation of a policy gradient algo-
rithm, namely TRPO, was proposed by Shao et al. [65]. The
most computationally intensive part of the TRPO algorithm
is the computation of the Fisher Vector Product as part of
the conjugate gradient. The proposed architecture imple-
ments this in hardware by employing a customized version
of Pearlmutter Propagation [58], reducing the problem to
dense matrix-vector multiplications, which can be imple-
mented efficiently using blocked matrix-vector multiplica-
tions [24]. The overall architecture consists of a conjugate
gradient solver written in C with the Fisher Vector Product
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TABLE 5. Comparison of deep reinforcement learning implementations.

TABLE 6. Comparison of CPU- and FPGA-based DRL implementations.

computed on an FPGA. The system was evaluated on an Intel
Stratix-V FPGA using two MuJoCo benchmarks [78] from
OpenAI Gym [10]. In a subsequent publication [66], the same
authors explored the design space with respect to the loop
unrolling factors of neural network computations, leading to
a 4.65 times speed-up compared to a Tesla C2070 GPU. Fur-
thermore, it applied the system to robotic control. Using the
TRPO algorithm, a reinforcement learning agent was trained
in simulation, accelerated by an FPGA, and then tested on a
real robot arm, running on a CPU.

A similar approach to robotic control was taken by
Guo et al. [25]. The proposed architecture is an accelerator
for the DDPG algorithm. A CPU streams network parame-
ters and state transitions to the FPGA, which computes the
gradients and sends them back to the CPU to update the
networks. As part of the proposed architecture, the method
from [65] was adapted to matrix-matrix multiplications. The
system achieved substantial acceleration compared to a CPU
implementation, despite communication overhead.

The A3C algorithm was implemented by Cho et al. [13]
in an architecture called FA3C. The architecture consists of
a host CPU that writes data into a DRAM via PCIe DMA,
which can then be accessed by the FPGA-based accelerator.
A memory hierarchy was designed to efficiently supply the
Compute Units in the design with data. The data stored in
the off-chip DRAM, like training images and neural net-
work parameters, is buffered in on-chip memory. Addition-
ally, line buffers consisting of registers are employed, which
prefetch elements from different locations of the on-chip
buffer. The compute units, shown in Fig. 6, perform inference
or training across all layers of the neural networks. Multiply-
accumulates are employed as their basic Processing Elements
(PEs), which are arranged in a one-dimensional array, and an
RMSProp module is utilized to apply the computed gradients

to the global parameters. Two compute units are used to bal-
ance off-chip data bandwidth. The system was evaluated on
Atari games using the Arcade Learning Environment [6]. The
evaluation has shown that the proposed architecture, using
a Xilinx VCU1525 FPGA, surpasses state-of-the-art GPU-
based implementations like GA3C [2], executed on an Nvidia
Tesla P100GPU,with respect to performance and energy effi-
ciency. The authors argue that an FPGA-based implementa-
tion has several advantages over GPU-based implementations
due to the small batch sizes commonly used for the algorithm
and the kernel launch overhead of GPUs.

Another heterogeneous architecture was implemented by
Meng et al. [47] for the PPO algorithm. It is composed of a
host CPU doing the loss and advantage computations and an
FPGA, doing the forward propagation, backward propaga-
tion, and weight update. They communicate via PCIe. Each
of the two neural networks of the PPO algorithm has its own
compute unit in the FPGA architecture. The compute unit
is used for inference and training. Different training times
between the networks are accounted for by a load balancing
module that enables the compute units to be used for both
networks as necessary. The compute units shown in Fig. 7 use
2D systolic arrays of PEs for matrix multiplications. Addi-
tionally, the compute units contain a weight update module
and various buffers. The MLP weights are stored in on-chip
memory. A special memory layout was designed to enable the
architecture to read the weight matrices and their transposes
quickly, which is necessary for the forward and backward
pass of the gradient computation. The weight matrices are
divided into blocks, which are saved in different BRAMs.
The same set of BRAMs can store multiple weight matrices.
The architecture was compared to a state-of-the-art GPU
implementation using MuJoCo benchmarks. The system was
implemented on an Intel Xeon 5120 CPUwith a Xilinx Alveo
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FIGURE 6. The compute unit of FA3C. Processing elements are arranged
in an array. A buffer control unit handles buffers for network parameters,
feature-maps and gradients [13].

FIGURE 7. The compute unit of the PPO architecture. Processing elements
are arranged in a matrix. Additionally, the compute unit contains buffers
for the output and updates of neural network layers [47].

U200 FPGA accelerator card. It was compared to a Titan Xp
GPU hosted by the same CPU. The proposed architecture had
an up to 27.5 times higher throughput than the GPU baseline.

3) COMPARISON OF POLICY GRADIENT IMPLEMENTATIONS
To compare these implementations of policy gradient DRL
algorithms, Table 5 summarizes the resource usage and effi-
ciency reported in their publications. One major difference
between these implementations is that the TRPO and DDPG
designs only implement the gradient computations in hard-
ware, while the A3C and PPO architectures implement the
full DRL training on the FPGA. As expected, the resource
usage of the A3C and PPO implementations is much higher.

As a measure of efficiency for the accelerators
focused on gradient computation, the table includes the
column 1/(Tgrad · LUT), where Tgrad is the time needed for
one gradient computation. The DDPG accelerator achieves
slightly higher efficiency than the TRPO architecture accord-
ing to this measure. For the accelerators implementing full
DRL training, the column IPS/LUT provides a point of
comparison. IPS (Inferences per Second) is a speed metric
commonly used in DRL, which is computed by dividing the
number of samples collected during the inference phase by
the time taken in the inference (including environment inter-
actions) and training phase. Here, the PPO design appears to
achieve slightly better efficiency than FA3C. However, FA3C
uses a much larger neural network with 684K parameters,
while the network used by the PPO design only has 57K
parameters. The last column of Table 5 shows the IPS/LUT
scaled by the number of network parameters. It shows that
FA3C is more efficient than the PPO design if the network
size is taken into account.

In addition to comparing FPGA architectures with each
other, they can also be compared to GPU-based rein-
forcement learning. Of the existing publications, only
Cho et al. [13] and Meng et al. [47] compare their results
to GPU-based implementations. Cho et al. [13] compare
their FA3C architecture to a cuDNN-based A3C implementa-
tion, as well as a TensorFlow implementation of GA3C [2].
A Xilinx VCU1525 FPGA is used for FA3C, and an Nvidia
Tesla P100 GPU is used for the GPU-based approaches.
The cuDNN-based A3C implementation is the fastest
GPU-based implementation in their evaluation, only outper-
formed by FA3C itself. FA3C achieved 27.9% higher IPS
than the fastest GPU-based implementation. Meng et al. [47]
compare their FPGA implementation of PPO using a
Xilinx Alveo U200 to the OpenAI baseline implementa-
tion of PPO on an Nvidia Titan Xp GPU. In all of their
evaluations, the FPGA implementation achieves the high-
est throughput. Depending on the hyperparameters of the
algorithm, the speed-up ranges from 2× up to 27.5×. The
speed-up compared to the GPU increases as the minibatch
size decreases and the number of parallel agents increases,
as would be expected due to the kernel launch overhead of
the GPU.

As an additional comparison, Table 6 shows the speed-up
achieved by the GPU and FPGA implementations of policy
gradient algorithms which compared their results to CPU
implementations, as well as the throughput achieved by
these architectures. Furthermore, the manufacturing process
size of each of the hardware platforms used is given in
parenthesis to enable fair comparisons. It can be seen that
FPGA-based implementations achieve similar performance
gains as achieved by GPU-based implementations.

C. NEURAL NETWORKS IN FPGA-BASED DRL
IMPLEMENTATIONS
The implementation of efficient accelerators for the train-
ing of deep neural networks is an important prerequisite
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for the implementation of DRL architectures since the
neural network update is often a performance bottleneck. This
includes the training of different types of layers, such as CNN
(Convolutional Neural Network) or RNN (Recurrent Neural
Network) layers. An overview of CNN inference accelerators
on FPGA can be found, for example, in [1], while a survey of
accelerators for recurrent neural networks, including LSTMs,
can be found in [50]. In addition to publications that focus
on the acceleration of DNN inference, some publications
tackle the problem of implementing backpropagation for neu-
ral network training on FPGAs as well. For example, [92]
and [29] implement frameworks for CNN training on FPGAs,
and [76] explores the training of LSTM layers on FPGAs.
With approaches like these, it would be possible to implement
FPGA-based DRL architectures with models including CNN
and LSTM layers.

Methods like quantization and model pruning are used
to enable deep learning at the edge, and some publications
have explored their use for deep reinforcement learning [37],
[87]. Quantization can happen after training has finished or
via quantization-aware training. Krishnan et al. [37] applied
post-training quantization and quantization-aware training to
a few different DRL algorithms, reducing training time for
a pong environment by 50% and achieving 18× inference
speed-up for a robot navigation policy by using weights quan-
tized to 6-8 bits. A more detailed evaluation of the benefits
of quantization was done by Guo [88] and concludes that
8 bit quantization reduces model size, increases throughput
up to 16× while maintaining an accuracy within 1% of
the floating-point model accuracy. Wu et al. [87] propose
a pruned reinforcement learning method that reduces the
worst-case latency of the learned policy by 32.5% – 68.6%
over a policy without pruning.

While post-training quantization and model pruning is
possible with all FPGA-based DRL accelerators, this does
not differ from quantization or pruning based on models
trained with other hardware. Quantization-aware training
could be implemented on the FPGA but has not been imple-
mented in practice. For quantization-aware training, both the
floating-point and quantized model are needed, which leads
to high resource requirements. The resulting quantized model
could be employed on the same FPGA for its advantages in
computation speed or on a different FPGA with more limited
resources.

V. ANALYSIS OF CURRENT PRACTICE
This section explores the techniques used in existing pub-
lications and highlights important recurring implementation
strategies.

A. CLASSICAL REINFORCEMENT LEARNING
Current publications focus on the implementation of
Q-Learning but also suggest modifications to their proposed
architectures to support SARSA [48], [67], [72]. The follow-
ing paragraphs present similarities and differences between
these architectures.

1) ENVIRONMENTS
The reinforcement learning environment is usually imple-
mented in reconfigurable logic [67], [72] and is some-
times tightly integrated with the overall architecture. This
approach introduces no significant communication overhead,
thus allowing high throughput, but limits the flexibility of the
architectures, as each new problem needs to be implemented
in hardware, and popular collections of reinforcement learn-
ing environments cannot be used easily.

2) Q-TABLE
In tabular reinforcement learning, an important design deci-
sion is how to represent the Q-table and how to compute the
maximumQ-value for the future state. It can be saved contin-
uously in one large on-chip memory block, as implemented
in [48]. In this case, a Qmax-table, storing the maximum
Q-value for each state, is an efficient way to access these
maximum values for the future state. Another approach is
to the Q-table into one on-chip memory block per action in
the action space, as demonstrated by [72]. This enables the
system to read the Q-values of all actions simultaneously
so that the maximum Q-value can be computed by a max-
tree. While this approach may lead to lower throughput due
to the max-tree, it also reduces the memory requirements
as no additional Qmax-table is necessary. Independently of
these design choices, the actual implementation of theQ-table
can be described in a high-level fashion, leaving decisions
such as the choice of memory resource (e.g., Block RAM
or Distributed RAM utilizing the LUTs of the FPGA) to the
synthesis tool.

3) HARDWARE ARCHITECTURE OPTIMIZATIONS
Multiplications are a significant part of the computations nec-
essary for these classical reinforcement learning algorithms.
Two of the existing architectures use DSPs to implement the
multiplications [48], [67], while one architecture replaced
the multiplications with barrel shifters to improve perfor-
mance [72]. Another way to optimize the implementations
is to introduce pipelining. Of the existing implementations,
only [48] is a pipelined architecture, explaining its higher
throughput compared to its predecessors and competitors.

B. DEEP REINFORCEMENT LEARNING
Accelerators for DRL target many different DRL algo-
rithms. Some publications present architectures for a simple
Q-Learning algorithm with a neural network to replace the
Q-table. Others implement accelerators for state-of-the-art
algorithms such as DQN, TRPO, DDPG, A3C, and PPO,
often with higher resource requirements.

1) ENVIRONMENTS
Since DRL algorithms can solve more complex prob-
lems, which are typically implemented in software, their
FPGA-based implementations usually rely on existing collec-
tions of reinforcement learning environments. This approach
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introduces additional communication overhead, but since
DRL algorithms are much more compute-intensive, signifi-
cant speed-ups can still be achieved. The utilization of soft-
ware environments eliminates the need to implement differ-
ent environments in hardware and makes fair comparisons
between CPU, GPU, and FPGA implementations easier.

2) NEURAL NETWORK TRAINING
All DRL architectures need to train neural networks, which
is usually done by implementing backpropagation on the
FPGA [13], [21], [47], [74]. Alternatively, some of the pro-
posed architectures replace the neural network with another
machine learning model, like ELM, that can be trained on
the FPGA without backpropagation [84]. All current FPGA
implementations are limited to neural networks without spe-
cial layers, such as CNN or LSTM layers. In contrast to
GPUs, which are commonly used for neural network training,
the training process is expensive to implement on FPGAs.
The inclusion of additional layer types would make the neural
network training even more complex.

3) LOCATION OF NETWORK PARAMETERS
The utilization of neural networks in DRL introduces the
architectural decision of where to store the network param-
eters: either on-chip on the FPGA or off-chip in external
memory. The FPGA implementations that implement only
gradient computations on the FPGA tend to store the network
parameters off-chip since they are also needed for off-chip
computations [25], [65]. When the complete DRL training
is implemented on the FPGA, both storage locations can be
viable when the networks are small enough. The FA3C archi-
tecture [13] uses neural networks with 684K parameters,
stored in an off-chip DRAM on the FPGA side, and loads
them into the FPGA on-demand. The FPGA implementation
of PPO [47], on the other hand, uses smaller neural networks
with just 57K parameters and stores all network parameters
on-chip. Both of these implementations use multiple neural
networks since they train multiple agents in parallel, which
leads to large memory requirements if the parameters are
stored on-chip. Thus, storing parameters on-chip is some-
times not feasible, even though it reduces communication
overhead.

4) HARDWARE/SOFTWARE PARTITIONING
When designing heterogeneous systems with CPUs and
FPGAs, one of the most important design decisions is which
part to accelerate on the FPGA. The architectures proposed
by the existing publications have explored different ways
to partition the algorithm into hardware and software. For
example, two accelerator architectures implement just the
computation of the gradient on the FPGA [25], [66], while
two other publications propose implementations of full DRL
training on the FPGA [13], [47]. Implementing only parts
of the DRL algorithm in hardware typically increases com-
munication overhead since the intermediate results computed
by the FPGA need to be sent back to the CPU for further

processing. On the other hand, full FPGA implementations
require larger FPGAs as their resource usage is much higher,
as can be seen in Table 5.

5) EXPERIENCE REPLAY
Accelerators of algorithms that rely on experience replay cur-
rently avoid the implementation of experience replay in their
architecture due to the memory requirements of the technique
and the communication overhead introduced by storing the
replay buffer in off-chip memory. In [74], a replay buffer was
stored in external memory, but training only happened with
a batch size of 1. Another implementation avoids experience
replay by only updating its networks on some of the observed
state transitions to break temporal correlation [84]. However,
this significantly reduces sample efficiency.

6) MEMORY MANAGEMENT
The usage of on-chip memory resources, like Block RAM
and Distributed RAM, with flexible, parallel memory access
is a key feature of FPGA implementations, enabling high
levels of parallelism in FPGA-based DSAs. To efficiently
train DRL agents, implementations include memory manage-
ment schemes that enable efficient use of off-chip RAM and
different kinds of on-chip memory resources [13], [47].

VI. DIRECTIONS FOR FUTURE RESEARCH
Based on the analysis of current practice and current trends in
deep reinforcement learning research, the following research
challenges can be identified:

A. PERFORMANCE COMPARISON
In future work, an in-depth comparison between CPU-, GPU-
and FPGA-based implementations of reinforcement learning,
with respect to their energy consumption and throughput,
would be beneficial. While some publications argue that the
small batch sizes usually employed in deep reinforcement
learning algorithms would favor FPGA implementations [13]
due to the kernel launch overhead introduced by GPU imple-
mentations, others argue that these algorithms could be used
with larger batch sizes as well to mitigate this drawback
of GPUs [73].

B. IMPLEMENTATION OF ADDITIONAL ALGORITHMS
Many variations of the original DQN algorithm have been
suggested in the RL literature [30]. Which of these would
benefit from being implemented on FPGAs should be inves-
tigated as well. Some state-of-the-art deep reinforcement
learning algorithms have not been implemented in hard-
ware yet, for example, ACKTR [89], ACER [83], SAC [28],
and TD3 [20]. While new implementations of all of these
algorithms might generate new insights and open up new
possibilities for faster and more efficient architectures, espe-
cially implementations for recently published DRL algo-
rithms are needed to keep up with current developments in
DRL research. New implementations could be inspired by
new techniques introduced in recent hardware architectures
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for DRL, like using OS-ELM instead of a neural network [84]
or employing Pearlmutter propagation [65].

C. ADDITIONAL LAYER TYPES
While current DRL implementations are limited to fully con-
nected layers in their neural networks, it would be useful
for many problems to allow CNN and RNN layers. To keep
up with current developments in DRL, future accelerators
targeting DRL algorithms should aim to support these layer
types as well. For added flexibility, future implementations
could attempt to implement DRL accelerators with a modular
design that can interface to loosely-coupled DNN accelera-
tors on the same FPGA for their neural network updates. This
way, the type of neural network could be changedmore easily,
and the DRL accelerator could be used for a larger variety
of application scenarios. Additionally, this would also enable
DRL hardware designs to benefit from newly developedDNN
accelerators. However, efficient communication between the
different modules would be important to ensure effective
acceleration.

D. QUANTIZATION-AWARE TRAINING
Quantized neural network models are popular for resource-
limited edge applications. Existing DRL accelerators use
32 bit floating-point numbers for training on the FPGA,
producingmodels that are not quantized. The implementation
of quantization-aware training of DNN models on FPGAs
could be explored so that the resultingmodel can be employed
on different hardware platforms with limited resources. Het-
erogeneous systems combining FPGAs with GPUs and CPUs
might be beneficial for this use case, so the design can
leverage the fast floating-point computation capabilities of a
GPU while using the FPGA to accelerate other parts of the
algorithm.

E. EXPERIENCE REPLAY
Most implementations of neural network Q-Learning do not
implement experience replay as suggested by the original
DQN algorithm [52]. However, experience replay is impor-
tant to ensure successful training by breaking the tempo-
ral correlation of training data. Alternatives to full experi-
ence replay suggested by existing implementations [74], [84]
are less sample efficient. The implementation of experience
replay on FPGAs using on-chip memory to store the replay
memory or as a buffer for a replay memory stored in external
RAM could be explored.

F. HARDWARE/SOFTWARE INTEGRATION
The integration of reinforcement learning modules in a
hardware/software environment needs further research to
determine how an RL hardware module can most effi-
ciently be connected to a software-based RL environment
like, for example, OpenAI GYM [10], ALE [6], ELF [77],
or DMLab [5]. Connecting to these commonly used environ-
ments would be highly useful since it enables fair compar-
isons to CPU and GPU implementations. However, efficient

integration is a problem, especially for accelerators of clas-
sical reinforcement learning, since their low computational
complexity does not allow much communication overhead.

An alternative or supplementary approach would be to
implement a flexible set of RL environments in hardware
to be able to benchmark new architectures independently of
communication to CPUs. This enables significant reduction
of the communication overhead, which is especially impor-
tant for tabular reinforcement learning. However, this will
likely not be feasible for more complex RL environments,
such as simulations of robotic manipulators. High-level
synthesis-based implementations can be a possible approach
to bridge the gap between simple HDL-based designs and
pure software solutions.

G. TOOLFLOW AND DESIGN PRODUCTIVITY
FPGA implementations can be built with different toolflows.
RTL designs can be createdwith traditional hardware descrip-
tion languages like Verilog or VHDL. While this approach
usually leads to the highest resource efficiency, it is very
development-intensive and cannot be easily adapted to new
requirements. However, other approaches like hardware
design with high-level synthesis based on programming lan-
guages like C++, or hardware development with OpenCL
promise faster development times and increased flexibility
of the resulting designs. For example, high-level synthesis
libraries can be developed in C++ to encourage code reuse
and to allow easy reproduction of architectures by different
developers. This approach is already used for neural network
inference [79] and can be extended to reinforcement learning
in the future.

H. NEAR- AND IN-MEMORY COMPUTING
Recently, near- and in-memory architectures are becoming
increasingly popular for the acceleration of deep learning
applications. In Near-Memory Computing (NMC) architec-
tures, additional compute units are placed close to memory
to reduce memory latencies and to increase effective mem-
ory bandwidth. A survey of near-memory computing can be
found, e.g., in [69], [70]. Its viability in deep learning has
been shown, for example, by Brown et al. [11], with a high-
performance near-memory accelerator for CNNs.

One step further than that, In-Memory Computing (IMC)
moves processing units directly into the memory itself.
Shafiee et al. [64] implemented a neural network inference
accelerator based on memristor crossbars to store weights
and compute analog dot-products. Song et al. [71] propose
a ReRAM-based accelerator for both training and inference
of neural networks. While IMC reduces off-chip memory
accesses, it also increases the volume of on-chip commu-
nication and communication latency. Mandal et al. [45]
introduce a custom network-on-chip and scheduling method,
which reduces the communication latency by 20%-80%.
More detailed surveys of the application of IMC to deep
learning can be found in [4] and [49]. The successful
application of NMC and IMC in deep learning suggests that
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it will also be useful for deep reinforcement learning in the
future.

Overall, there are many exciting directions in which future
research could develop. While the utilization of FPGAs is
a promising endeavor, CPUs and GPUs have their advan-
tages as well. Therefore, heterogeneous systems consisting
of CPUs, GPUs, and FPGAs could be explored as well,
to benefit from each of their advantages.

VII. CONCLUSION
Reinforcement learning has shown considerable potential in
solving sequential decision-making problems, with applica-
tions in a wide range of domains. However, RL training is
often time-consuming, with training times ranging from mul-
tiple hours to weeks. Domain-specific architectures can play
an important role in the future of reinforcement learning by
speeding up the training process and decreasing experiment
turn-around time.

Some accelerators for classical and deep reinforcement
learning already exist and have shown the capability to
improve training time significantly. However, many opportu-
nities for progress remain. Not all RL algorithms have been
implemented in hardware, and new algorithms are devel-
oped frequently. New hardware implementations of these
algorithms could open up new perspectives and possibil-
ities. Commonly used techniques, like experience replay
and multi-actor learning, need more research to be imple-
mented efficiently. Finally, heterogeneous architectures,
enabling efficient interplay of CPUs, GPUs, and FPGAs in
the domain of Reinforcement Learning, should be further
investigated.
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