
Graph Homomorphisms and Universal Algebra

Course Notes

Manuel Bodirsky,
Institut für Algebra, TU Dresden,
Manuel.Bodirsky@tu-dresden.de

November 13, 2021

Disclaimer: these are course notes in draft state, and they probably contain many
mistakes; please report them to manuel.bodirsky@tu-dresden.de.

Contents

1 The Basics 3
1.1 Graphs and Digraphs . 3
1.2 Graph Homomorphisms . 5
1.3 The H-colouring Problem and Variants . 8
1.4 Cores . 10
1.5 Polymorphisms . 13

2 The Arc-consistency Procedure 13
2.1 The Power Graph . 16
2.2 Tree Duality . 17
2.3 Totally Symmetric Polymorphisms . 19
2.4 Semilattice Polymorphisms . 20

3 The Path-consistency Procedure 22
3.1 Majority Polymorphisms . 23
3.2 Testing for Majority Polymorphisms . 26
3.3 Digraphs with a Maltsev Polymorphism . 27

4 Logic 30
4.1 Primitive positive formulas . 31
4.2 From Structures to Formulas . 32
4.3 From Formulas to Structures . 32
4.4 Primitive Positive Definability . 33
4.5 Cores and Constants . 34
4.6 Primitive Positive Interpretations . 35
4.7 Reduction to Binary Signatures . 39
4.8 The Structure-Building Operators H, C, and I 40

1

5 Relations and Operations 43
5.1 Operation Clones . 43
5.2 Inv-Pol . 43
5.3 Essentially Unary Clones . 44
5.4 Minimal Clones . 45
5.5 Schaefer’s Theorem . 49

6 Maltsev Polymorphisms 52
6.1 Examples . 52
6.2 Compact Representations of Relations . 53
6.3 The Bulatov-Dalmau Algorithm . 54

7 Universal Algebra 58
7.1 Algebras and Clones . 58
7.2 Subalgebras, Products, Homomorphic Images 60
7.3 Pseudovarieties and Varieties . 62
7.4 Birkhoff’s Theorem . 63
7.5 (Abstract) Clones . 65
7.6 Taylor Terms . 66
7.7 The Tractability Conjecture . 71

8 Undirected Graphs 73
8.1 The Hell-Nešetřil Theorem . 73
8.2 Siggers Operations of Arity 6 . 76

9 Congruence Lattices 77
9.1 Congruence Permutability . 78
9.2 Congruence Distributivity . 78
9.3 Congruence Modularity . 82
9.4 Congruence Semidistributivity . 84
9.5 Abelian Algebras . 84

10 Absorption 86
10.1 Absorption Transfer . 86
10.2 The Absorption Theorem . 87
10.3 Hereditarily Absorption-Free Algebras . 87
10.4 n-Absorption . 88
10.5 Near Unanimity Polymorphisms . 88

11 Cyclic Polymorphisms 88
11.1 Cyclic Terms . 88
11.2 Cyclic Relations . 89
11.3 Digraphs without Sources and Sinks . 91
11.4 The Cyclic Term Theorem . 91
11.5 Siggers Operations of Arity 4 . 92

12 Open Problems 92

2

A O-notation 98

B Basics of Complexity Theory 98

Prerequisites. This course is designed for students of mathematics or computer science
that already had an introduction to discrete structures. Almost all notions that we use
in this text will be formally introduced, with the notable exception of basic concepts from
complexity theory. For example, we do not formally introduce the class of polynomial-time
computable functions and NP-completeness, even though these concepts are used when we
discuss computational aspects of graph homomorphisms. Here we refer to an introduction to
the theory of computation as for instance the book of Papadimitriou [63]. Many thanks to
Mark Siggers and the participants of the course in the Corona spring semester 2020 for their
bug reports.

The text contains 114 exercises; the ones with a star are harder.

1 The Basics

1.1 Graphs and Digraphs

The concepts in this section are probably known to most students, and can safely be skipped;
the section fixes standard terminology and conventions from graph theory and can be con-
sulted later if needed. Almost all definitions in this section have generalisations to relational
structures, which will be introduced in Section 4; however, we focus exclusively on graphs in
this section since they allow to reach the key ideas of the underlying theory with a minimum
of notation.

A directed graph (also digraph) G is a pair (V,E) of a set V = V (G) of vertices and a
binary relation E = E(G) on V . Note that in general we allow that V is an infinite set. For
some definitions and results, we require that V is finite, in which case we say that G is a finite
digraph. However, since this course deals exclusively with finite digraphs, we will omit this
most of the time. The elements (u, v) of E are called the arcs (or directed edges) of G. Note
that we allow loops, i.e., arcs of the form (u, u); a digraph without loops is called loopless. If
(u, v) ∈ E(G) is an arc, and w ∈ V (G) is a vertex such that w = u or w = v, then we say
that (u, v) and w are incident.

An (undirected) graph is a pair (V,E) of a set V = V (G) of vertices and a set E = E(G) of
edges, each of which is an unordered pair of (not necessarily distinct) elements of V . In other
words, we explicitly allow loops, which are edges that link a vertex with itself. Undirected
graphs can be viewed as symmetric digraphs: a digraph G = (V,E) is called symmetric if
(u, v) ∈ E if and only if (v, u) ∈ E. For a digraph G, we say that G′ is the undirected graph of
G if G′ is the undirected graph with V (G′) = V (G) and where {u, v} ∈ E(G′) if (u, v) ∈ E(G)
or (v, u) ∈ E(G). For an undirected graph G, we say that G′ is an orientation of G if G′ is
a directed graph such that V (G′) = V (G) and E(G′) contains for each edge {u, v} ∈ E(G)
either the arc (u, v) or the arc (v, u), and no other arcs.

For some notions for digraphs G one can just use the corresponding notions for undirected
graphs applied to the undirected graph of G; conversely, most notions for directed graphs,
specialised to symmetric graphs, translate to notions for the respective undirected graphs.

3

1.1.1 Examples of graphs, and corresponding notation

• The complete graph on n vertices {1, . . . , n}, denoted by Kn. This is an undirected
graph on n vertices in which every vertex is joined with any other distinct vertex (so
Kn contains no loops).

• The cyclic graph on n vertices, denoted by Cn; this is the undirected graph with the
vertex set {0, . . . , n− 1} and edge set{

{0, 1}, . . . , {n− 2, n− 1}, {n− 1, 0}
}

=
{
{u, v} : |u− v| = 1 mod n

}
.

• The directed cycle on n vertices, denoted by ~Cn; this is the digraph with the vertex set
{0, . . . , n− 1} and the arcs

{
(0, 1), . . . , (n− 2, n− 1), (n− 1, 0)

}
.

• The path with n + 1 vertices and n edges, denoted by Pn; this is an undirected graph
with the vertex set {0, . . . , n} and edge set

{
{0, 1}, . . . , {n− 1, n}

}
.

• The directed path with n+ 1 vertices and n edges, denoted by ~Pn; this is a digraph with
the vertex set {0, . . . , n} and edge set {(0, 1), . . . , (n− 1, n)}.

• A tournament is a directed loopless graph G with the property that for all distinct
vertices x, y either (x, y) or (y, x) is an edge of G, but not both.

• The transitive tournament on n ≥ 2 vertices, denoted by Tn; this is a directed graph
with the vertex set {1, . . . , n} where (i, j) is an arc if and only if i < j.

Let G and H be graphs (we define the following notions both for directed and for undi-
rected graphs). Then G]H denotes the disjoint union of G and H, which is the graph with
vertex set V (G) ∪ V (H) (we assume that the two vertex sets are disjoint; if they are not,
we take a copy of H on a disjoint set of vertices and form the disjoint union of G with the
copy of H) and edge set E(G) ∪ E(H). A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). A graph G′ is an induced subgraph of G if V ′ = V (G′) ⊆ V (G) and
(u, v) ∈ E(G′) if and only if (u, v) ∈ E(G) for all u, v ∈ V ′. We also say that G′ is induced by
V ′ in G, and write G[V ′] for G′. We write G− u for G[V (G) \ {u}], i.e., for the subgraph of
G where the vertex u and all incident arcs are removed.

We call |V (G)|+ |E(G)| the size of a graph G. This quantity will be important when we
analyse the efficiency of algorithms on graphs.

1.1.2 Paths and Cycles

We start with definitions for directed paths; the corresponding terminology is then also used
for undirected graphs as explained in the beginning of this section.

A path P (from u1 to uk in G) is a sequence (u1, . . . , uk) of vertices of G and a sequence
(e1, . . . , ek−1) of edges of G such that ei = (ui, ui+1) or ei = (ui+1, ui) ∈ E(G), for every
1 ≤ i < k. The vertex u1 is called the start vertex and the vertex uk is called the terminal
vertex of P , and we say that P is a path from u1 to uk. Edges (ui, ui+1) are called forward
edges and edges (ui+1, ui) are called backward edges. If all edges are forward edges then the
path is called directed. If u1, . . . , uk are pairwise distinct then the path is called simple. We
write |P | := k − 1 for the length of P (i.e., we count the number of edges of P). The net

4

length of P is the difference between the number of forward and the number of backward
edges. Hence, a path is directed if and only if its length equals its net length.

A sequence (u0, . . . , uk−1) of vertices and a sequence of edges (e0, . . . , ek−1) is called a
cycle (of G) if (u0, . . . , uk−1, u0) and (e0, . . . , ek−1) form a path. If all the vertices of the cycle
are pairwise distinct then the cycle is called simple. We write |C| := k for the length of the
cycle C = (u0, . . . , uk−1). The net length of C is the net length of the corresponding path
(u0, . . . , uk−1, u0). The cycle C is called directed if the corresponding path is a directed path.

A digraph G is called (weakly) connected if there is a path in G from any vertex to any
other vertex in G. Equivalently, G is connected if and only if it cannot be written as H1]H2

for digraphs H1, H2 with at least one vertex each. A connected component of G is a maximal
(with respect to inclusion of the vertex sets) connected induced subgraph of G. A digraph G
is called strongly connected if for all vertices x, y ∈ V (G) there is a directed path from x to y
in G. Two vertices u, v ∈ V (G) are at distance k in G if the shortest path from u to v in G
has length k.

Some particular notions for undirected graphs G. A (simple) cycle of G is a sequence
(v1, . . . , vk) of k ≥ 3 pairwise distinct vertices of G such that {v1, vk} ∈ E(G) and {vi, vi+1} ∈
E(G) for all 1 ≤ i ≤ k−1. An undirected graph is called acyclic if it does not contain a cycle.
A sequence u1, . . . , uk ∈ V (G) is called a (simple) path from u1 to uk in G if {ui, ui+1} ∈ E(G)
for all 1 ≤ i < k and if all vertices u1, . . . , uk are pairwise distinct. We allow the case that
k = 1, in which case the path consists of a single vertex and no edges. Two vertices u, v ∈ G
are at distance k in G if the shortest path in G from u to v has length k. We say that an
undirected graph G is connected if for all vertices u, v ∈ V (G) there is a path from u to v.
The connected components of G are the maximal connected induced subgraphs of G. A forest
is an undirected acyclic graph, a tree is a connected forest.

1.2 Graph Homomorphisms

Let G and H be directed graphs. A homomorphism from G to H is a mapping h : V (G) →
V (H) such that (h(u), h(v)) ∈ E(H) whenever (u, v) ∈ E(G). If such a homomorphism exists
between G and H we say that G homomorphically maps to H, and write G → H. Two
directed graphs G and H are homomorphically equivalent if G→ H and H → G.

A homomorphism from G to H is sometimes also called an H-colouring of G. This termi-
nology originates from the observation that H-colourings generalise classical colourings in the
sense that a graph is n-colourable if and only if it has a Kn-colouring. Graph n-colorability
is not the only natural graph property that can be described in terms of homomorphisms:

• a digraph is called balanced (in some articles: layered) if it homomorphically maps to a
directed path ~Pn;

• a digraph is called acyclic if it homomorphically maps to a transitive tournament Tn.

The equivalence classes of finite digraphs with respect to homomorphic equivalence will
be denoted by D. Let ≤ be a binary relation defined on D as follows: we set C1 ≤ C2 if
there exists a digraph H1 ∈ C1 and a digraph H2 ∈ C2 such that H1 → H2 (note that this
definition does not depend on the choice of the representatives H1 of C1 and H2 of C2). If
f is a homomorphism from H1 to H2, and g is a homomorphism from H2 to H3, then the
composition f ◦ g of these functions is a homomorphism from H1 to H3, and therefore the
relation ≤ is transitive. Since every graph H homomorphically maps to H, the order ≤ is also

5

reflexive. Finally, ≤ is antisymmetric since its elements are equivalence classes of directed
graphs with respect to homomorphic equivalence. Define C1 < C2 if C1 ≤ C2 and C1 6= C2.
We call (D,≤) the homomorphism order of finite digraphs.

The homomorphism order on digraphs turns out to be a lattice where every two elements
have a supremum (also called join) and an infimum (also called meet ; see Example 7.5). In
the proof of this result, we need the notion of direct products of graphs. This notion of graph
product1 can be seen as a special case of the notion of direct product as it is used in model
theory [51]. The class of all graphs with respect to homomorphisms forms an interesting
category in the sense of category theory [47] where the product introduced above is the
product in the sense of category theory, which is why this product is sometimes also called
the categorical graph product.

Definition 1.1 (direct product). Let H1 and H2 be two graphs. Then the (direct-, cross-,
categorical-) product H1×H2 of H1 and H2 is the graph with vertex set V (H1)×V (H2); the
pair ((u1, u2), (v1, v2)) is in E(H1 ×H2) if (u1, v1) ∈ E(H1) and (u2, v2) ∈ E(H2).

Note that the product is symmetric and associative in the sense that H1×H2 is isomorphic
to H2 ×H1 and H1 × (H2 ×H3) is isomorphic to (H1 ×H2) ×H3, and we therefore do not
specify the order of multiplication when multiplying more than two graphs. The n-th power
Hn of a graph H is inductively defined as follows. H1 is by definition H. If H i is already
defined, then H i+1 is H i ×H.

Proposition 1.2. The homomorphism order (D,≤) is a lattice; i.e., for all A1, A2 ∈ D

• there exists an element A1 ∨A2 ∈ D, the join of A1 and A2, such that A1 ≤ (A1 ∨A2)
and A2 ≤ (A1 ∨A2), and such that for every U ∈ D with A1 ≤ U and A2 ≤ U we have
A1 ∨A2 ≤ U .

• there exists an element A1 ∧A2 ∈ D, the meet of A1 and A2, such that (A1 ∧A2) ≤ A1

and (A1 ∧A2) ≤ A2, and such that for every U ∈ D with U ≤ A1 and U ≤ A2 we have
U ≤ A1 ∧A2.

Proof. Let H1 ∈ A1 and H2 ∈ A2. For the join, the equivalence class of the disjoint union
H1]H2 has the desired properties. For the meet, the equivalence class of H1 ×H2 has the
desired properties.

With the seemingly simple definitions of graph homomorphisms and direct products we
can already formulate very difficult combinatorial questions.

Conjecture 1 (Hedetniemi). Let G and H be finite graphs, and suppose that G×H → Kn.
Then G→ Kn or H → Kn.

The smallest n ∈ N such that G → Kn is also called the chromatic number of G, and
denoted by χ(G). Clearly, χ(G × H) ≤ min(χ(G), χ(H)). Hedetniemi’s conjecture can be
rephrased as

χ(G×H) = min(χ(G), χ(H)) .

This conjecture is easy for n = 1 and n = 2 (Exercise 4), and has been solved for n = 3 by El
Zahar and Sauer [37]. The conjecture has been refuted in 2019 by Yaroslav Shitov [68].

1Warning: there are several other notions of graph products that have been studied; see e.g. [47].

6

Clearly, (D,≤) has infinite ascending chains, that is, sequences E1, E2, . . . such that Ei <
Ei+1 for all i ∈ N. Take for instance the equivalence class of ~Pi for Ei. More interestingly,
(D,≤) also has infinite descending chains.

Proposition 1.3. The lattice (D,≤) contains infinite descending chains E1 > E2 > · · · .

Proof. For this we use the following directed graphs, called zig-zags, which are frequently
used in the theory of graph homomorphisms. We may write an orientation of a path P as a
sequence of 0’s and 1’s, where 0 represents a forward arc and 1 represents a backward arc.
For two orientations of paths P and Q with the representation P = p0, . . . , pn ∈ {0, 1}∗ and
Q = q0, . . . , qm ∈ {0, 1}∗, respectively, the concatenation P ◦Q of P and Q is the oriented path
represented by p0, . . . , pn, q0, . . . , qm. For k ≥ 1, the zig-zag of order k, denoted by Zk, is the
orientation of a path represented by 11(01)k−11. We recommend the reader to draw pictures
of Zk where forward arcs point up and backward arcs point down. Now, the equivalence
classes of the graphs Z1, Z2, . . . form an infinite descending chain.

Proposition 1.4. The lattice (D,≤) contains infinite antichains, that is, sets of pairwise
incomparable elements of D with respect to ≤.

Proof. Again, it suffices to work with orientations of paths. For k, l ≥ 1, the k, l multi zig-zag,

denoted by Zk,l, is the orientation of a path represented by 1
(
1(01)k

)l
1. Our infinite antichain

now consists of the equivalence classes containing the graphs Zk,k for k ≥ 1.

A strong homomorphism from a digraph G to a digraph H is a function from V (G) to
V (H) such that (f(u), f(v)) ∈ E(H) if and only if (u, v) ∈ E(G) for all u, v ∈ V (G). An
isomorphism between two directed graphs G and H is an bijective strong homomorphism
from G to H. Note that a homomorphism h : G → H is an isomorphism if and only if it is
bijective, and h−1 is a homomorphism from H to G.

Exercises.

1. How many connected components do we have in (P3)3?

2. How many weakly and strongly connected components do we have in (~C3)3?

3. Let G and H be digraphs. Prove that G×H has a directed cycle if and only if both G
and H have a directed cycle.

4. Prove the Hedetniemi conjecture for n = 1 and n = 2.

5. Show that the Hedetniemi conjecture is equivalent to each of the following two state-
ments.

• Let n be a positive integer. If for two graphs G and H we have G 6→ Kn and
H 6→ Kn, then G×H 6→ Kn.

• Let G and H be graphs with χ(G) = χ(H) = m. Then there exists a graph K
with χ(K) = m such that K → G and K → H.

6. Show that Hedetniemi’s conjecture is false for directed graphs.
Hint: there are counterexamples G, H with four vertices each.

7

7. Show that for every k ∈ N, every pair of adjacent vertices of (K3)k has exactly one
common neighbour (that is, every edge lies in a unique subgraph of (K3)k isomorphic
to K3).

8. Show that for every k ∈ N, every pair of non-adjacent vertices in (K3)k has at least two
common neighbours.

9. Show that a digraph G homomorphically maps to ~P1 = T2 if and only if ~P2 does not
homomorphically map to G.

10. Construct an orientation of a tree that is not homomorphically equivalent to an orien-
tation of a path.

11. Construct a balanced orientation of a cycle that is not homomorphically equivalent to
an orientation of a path.

12. Show that for all digraphs G we have G→ T3 if and only if ~P3 6→ G.

13. Show that G → ~Pn, for some n ≥ 1, if and only if any two paths in G that start and
end in the same vertex have the same net length.

14. Show that G → ~Cn, for some n ≥ 1, if and only if any two paths in G that start and
end in the same vertex have the same net length modulo n.

15. Let a be an automorphism of Kk
n. Show that there are permutations p1, . . . , pk of

{1, . . . , n} and a permutation q of {1, . . . , k} such that

a(x1, . . . , xk) = (p1(xq(1)), . . . , pk(xq(k))).

1.3 The H-colouring Problem and Variants

When does a given digraph G homomorphically map to a digraph H? For every digraph H,
this question defines a computational problem, called the H-colouring problem. The input
of this problem consists of a finite digraph G, and the question is whether there exists a
homomorphism from G to H.

There are many variants of this problem. In the precoloured H-colouring problem, the
input consists of a finite digraph G, together with a mapping f from a subset of V (G) to
V (H). The question is whether there exists an extension of f to all of V (G) which is a
homomorphism from G to H. In the list H-colouring problem, the input consists of a finite
digraph G, together with a set Sx ⊆ V (H) for every vertex x ∈ V (G). The question is
whether there exists a homomorphism h from G to H such that h(x) ∈ Sx for all x ∈ V (G).
It is clear that the H-colouring problem reduces to the precoloured H-colouring problem (it
is a special case: the partial map might have an empty domain), and that the precoloured
H-colouring problem reduces to the list H-colouring problem (for vertices x in the domain of
f , we set Sx := {f(x)}, and for vertices x outside the domain of f , we set Sx := V (H)).

The constraint satisfaction problem is a common generalisation of all these problems, and
many more. It is defined not only for digraphs H, but more generally for relational structures
S. Relational structures are the generalisation of graphs that can have many relations of
arbitrary arity instead of just one binary edge relation. The constraint satisfaction problem
will be introduced formally in Section 4. If H is a digraph, then the constraint satisfaction

8

problem for H, also denoted CSP(H), is precisely the H-colouring problem and we use the
terminology interchangeably. Note that since graphs can be seen as a special case of digraphs,
H-colouring is also defined for undirected graphs H. In this case we obtain essentially the
same computational problem if we only allow undirected graphs in the input; this is made
precise in Exercise 18.

For every finite graph H, the H-colouring problem is obviously in NP, because for every
graph G it can be verified in polynomial time whether a given mapping from V (G) to V (H)
is a homomorphism from G to H or not. Clearly, the same holds for the precoloured and the
list H-colouring problem. We have also seen that the Kn-colouring problem is the classical
n-colouring problem, which is NP-complete [42] for n ≥ 3, and therefore, no polynomial-time
algorithm exists for Kn-colouring with n ≥ 3, unless P=NP. However, for many graphs and
digraphs H (see Exercise 19 and 9) the H-colouring problem can be solved in polynomial
time. Since the 1990s, researchers have studied the question: for which digraphs H can the
H-colouring problem be solved in polynomial time? It has been conjectured by Feder and
Vardi [40] that H-colouring is for any finite digraph H either NP-complete or can be solved
in polynomial time. This is the so-called dichotomy conjecture. It was shown by Ladner that
unless P=NP there are infinitely many complexity classes between P and NP; so the conjecture
states that for H-colouring these intermediate complexities do not appear. Feder and Vardi
also showed that if the dichotomy conjecture holds for H-colouring problems, then also the
more general class of CSPs for finite relational structures exhibits a complexity dichotomy.

The list H-colouring problem, on the other hand, is quickly NP-hard, and therefore less
difficult to classify. And indeed, a complete classification has been obtained by Bulatov [21]
already in 2003. Alternative proofs can be found in [5, 23]. Also for finite undirected graphs,
it is known since 1990 that the dichotomy conjecture holds; this course fully covers the proof
of the following.

Theorem 1.5 (of [45]). Let H be a finite undirected graph. If H homomorphically maps
to K2, or contains a loop, then H-colouring can be solved in polynomial time. Otherwise,
H-colouring is NP-complete.

The case that H homomorphically maps to K2 will be the topic of Exercise 19. The entire
proof of Theorem 1.5 can be found in Section 8.

The dichotomy conjecture has been confirmed in 2017, independently by Bulatov [24] and
by Zhuk [71].

Exercices.

16. Let H be a finite directed graph. Find an algorithm that decides whether there is a
strong homomorphism from a given graph G to the fixed graph H. The running time
of the algorithm should be polynomial in the size of G (note that we consider |V (H)|
to be constant).

17. Let H be a finite digraph such that CSP(H) can be solved in polynomial time. Find a
polynomial-time algorithm that constructs for a given finite digraph G a homomorphism
to H, if such a homomorphism exists.

18. Let G and H be directed graphs, and suppose that H is symmetric. Show that
f : V (G) → V (H) is a homomorphism from G to H if and only if f is a homomor-
phism from the undirected graph of G to the undirected graph of H.

9

19. Show that for any graph H that homomorphically maps to K2 the constraint satisfaction
problem for H can be solved in polynomial time.

20. Prove that CSP(T3) can be solved in polynomial time.

21. Prove that CSP(~C3) can be solved in polynomial time.

22. Let N be the set {Z1, Z2, Z3, . . . }. Show that a digraph G homomorphically maps to
~P2 if and only if no digraph in N homomorphically maps to G.

23. Suppose that CSP(G) and CSP(H), for two digraphs G and H, can be solved in poly-
nomial time. Show that CSP(G × H) and CSP(G] H) can be solved in polynomial
time as well.

24. Suppose that G and H are homomorphically incomparable, and suppose that CSP(G]
H) can be solved in polynomial time. Show that CSP(G) and CSP(H) can be solved
in polynomial time as well.

25. (∗) Find digraphs G and H such that CSP(G ×H) can be solved in polynomial time,
but CSP(G) and CSP(H) are NP-hard.

26. Suppose that G and H are homomorphically incomparable. Give a polynomial-time
reduction from CSP(G) to CSP(G) ∪ CSP(H).

1.4 Cores

An endomorphism of a digraph H is a homomorphism from H to H. An automorphism of
a digraph H is an isomorphism from H to H. A finite digraph H is called a core if every
endomorphism of H is an automorphism. A subgraph G of H is called a core of H if H is
homomorphically equivalent to G and G is a core.

Proposition 1.6. Every finite digraph H has a core, which is unique up to isomorphism.

Proof. Any finite digraph H has a core, since we can select an endomorphism e of H such that
the image of e has smallest cardinality; the subgraph of H induced by e(V (H)) is a core of
H. Let G1 and G2 be cores of H, and f1 : H → G1 and f2 : H → G2 be homomorphisms. Let
e1 be the restriction of f1 to V (G2). We claim that e1 is the desired isomorphism. Suppose
for contradiction that e1 is not injective, i.e., there are distinct x, y in V (G2) such that
e1(x) = e1(y). It follows that f2 ◦ e1 cannot be injective, too. But f2 ◦ e1 is an endomorphism
of G2, contradicting the assumption that G2 is a core. Similarly, the restriction e2 of f2 to
V (G1) is an injective homomorphism from G1 to G2, and it follows that |V (G1)| = |V (G2)|
and both e1 and e2 are bijective.

Now, since |V (G2)| is finite, e2◦e1◦· · ·◦e2◦e1 = (e2◦e1)n = id for large enough n. Hence,
e2 ◦ e1 ◦ · · · ◦ e2 = (e1)−1, so the inverse of e1 is a homomorphism, and hence an isomorphism
between G1 and G2.

Since a core G of a finite digraph H is unique up to isomorphism, we call G the core of H.
We want to mention without proof that it is NP-complete to decide whether a given digraph
H is not a core [46].

Cores can be characterised in many different ways; for some of them, see Exercise 28.
There are examples of infinite digraphs that do not have a core in the sense defined above;

10

see Exercise 31. Since a digraph H and its core have the same CSP, it suffices to study
CSP(H) for core digraphs H only. Working with cores has advantages; one of them is shown
in Proposition 1.8 below. In the proof of this proposition, we need a concept that we will use
again in later sections.

Definition 1.7. Let H be a digraph and let u, v ∈ V (H) be vertices of H. Then the digraph
H/{u, v} obtained from H by contracting u, v is defined to be the digraph with vertex set
V (H)\{u, v}∪

{
{u, v}

}
and the edge set obtained from E(H) by replacing each edge in E(H)

of the form (x, u) or (x, v), for x ∈ V (H), by the edge (x, {u, v}), and each edge in E(H) of
the form (u, x) or (v, x), for x ∈ V (H), by the edge ({u, v}, x).

Proposition 1.8. Let H be a core. Then CSP(H) and precoloured CSP(H) are linear-time
equivalent.

Proof. The reduction from CSP(H) to precoloured CSP(H) is trivial, because an instance G
of CSP(H) is equivalent to the instance (G, c) of precoloured CSP(H) where c is everywhere
undefined.

We show the converse reduction by induction on the size of the image of the partial
mapping c in instances of precoloured CSP(H). Let (G, c) be an instance of precoloured
CSP(H) where c has an image of size k ≥ 1. We show how to reduce the problem to one
where the partial mapping has an image of size k−1. If we compose all these reductions (note
that the size of the image is bounded by |V (H)|), we finally obtain a reduction to CSP(H).

Let x ∈ V (G) and u ∈ V (H) be such that c(x) = u. We first contract all vertices y of
G such that c(y) = u with x. Then we create a copy of H, and attach the copy to G by
contracting x ∈ V (G) with u ∈ V (H). Let G′ be the resulting graph, and let c′ be the partial
map obtained from c by restricting it such that it is undefined on x, and then extending it so
that c(v) = v for all v ∈ V (H), v 6= u, that appear in the image of c. Note that the size of G′

and the size of G only differ by a constant.
We claim that (G′, c′) has a solution if and only if (G, c) has a solution. If f is a homo-

morphism from G to H that extends c, we further extend f to the copy of H that is attached
in G′ by setting f(v′) to v if vertex v′ is a copy of a vertex v ∈ V (H). This extension of f
clearly is a homomorphism from G′ to H and extends c′.

Now, suppose that f ′ is a homomorphism from G′ to H that extends c′. The restriction
of f ′ to the vertices from the copy of H that is attached to x in G′ is an endomorphism of H,
and because H is a core, it is an automorphism α of H. Moreover, α fixes v for all v ∈ V (H)
in the image of c′. Let β be the inverse of α, i.e., let β be the automorphism of H such that
β(α(v)) = v for all v ∈ V (H). Let f be the mapping from V (G) to V (H) that maps vertices
that were identified with x to β(f ′(x)), and all other vertices y ∈ V (G) to β(f ′(y)). Clearly,
f is a homomorphism from G to H. Moreover, f maps vertices y ∈ V (G), y 6= x, where c is
defined to c(y), since the same is true for f ′ and for α. Moreover, because x in G′ is identified
to u in the copy of H, we have that f(x) = β(f ′(x)) = β(f ′(u)) = u, and therefore f is an
extension of c.

Corollary 1.9. If for every finite digraph H, the precoloured H-colouring problem is in P or
NP-complete, then CSP(H) is in P or NP-complete for every finite digraph H as well.

We have already seen in Exercise 17 that the computational problem to construct a ho-
momorphism from G to H, for fixed H and given G, can be reduced in polynomial-time to
the problem of deciding whether there exists a homomorphism from G to H. The intended

11

solution of Exercise 17 requires in the worst-case |V (G)|2 many executions of the decision pro-
cedure for CSP(H). Using the concept of cores and the precoloured CSP (and its equivalence
to the CSP) we can give a faster method to construct homomorphisms.

Proposition 1.10. If there is an algorithm that decides CSP(H) in time T , then there
is an algorithm that constructs a homomorphism from a given digraph G to H (if such a
homomorphism exists) which runs in time O(|V (G)|T).

Proof. We may assume without loss of generality that H is a core (since H and its core have
the same CSP). By Proposition 1.8, there is an algorithm B for precoloured CSP(H) with a
running time in O(T). For given G, we first apply B to (G, c) for the everywhere undefined
function c to decide whether there exists a homomorphism from G to H. If no, there is
nothing to show. If yes, we select some x ∈ V (G), and extend c by defining c(x) = u for some
u ∈ V (H). Then we use algorithm B to decide whether there is a homomorphism from G to
H that extends c. If no, we try another vertex u ∈ V (H). Clearly, for some u the algorithm
must give the answer “yes”. We proceed with the extension c where c(x) = u, and repeat the
procedure with another vertex x from V (G). At the end, c is defined for all vertices x of G,
and c is a homomorphism from G to H. Clearly, since H is fixed, algorithm B is executed at
most O(|V (G)|) many times.

Exercises.

27. Show that Zk,l is a core for all k, l ≥ 2.

28. Prove that for every finite digraph G the following is equivalent:

• G is a core.

• Every endomorphism of G is injective.

• Every endomorphism of G is surjective.

29. Show that the three properties in the previous exercise are no longer equivalent if G is
infinite.

30. Prove that the core of a strongly connected digraph is strongly connected.

31. Show that the infinite tournament (Q;<) has endomorphisms that are not automor-
phisms. Show that every digraph that is homomorphically equivalent to (Q;<) also has
endomorphisms that are not automorphisms.

32. Let H be a core of G. Show that there exists a retraction from G to H, i.e., a homo-
morphism e from G to H such that e(x) = x for all x ∈ V (H).

33. The set of automorphisms of a digraph G forms a group; this group is called transitive
if for all a, b ∈ V (G) there is an automorphism f of G such that f(a) = b. Show
that if G has a transitive automorphism group, then the core of G also has a transitive
automorphism group.

34. Show that the connected components of a core are cores that form an antichain in
(D,≤); conversely, the disjoint union of an antichain of cores is a core.

35. Prove that the core of a digraph with a transitive automorphism group is connected.

12

36. Determine the computational complexity of CSP(H) for

H :=
(
Z; {(x, y) : |x− y| ∈ {1, 2}}

)
.

1.5 Polymorphisms

Polymorphisms are a powerful tool for analysing the computational complexity of constraint
satisfaction problems; as we will see, they are useful both for NP-hardness proofs and for
proving the correctness of polynomial-time algorithms for CSPs. Polymorphisms can be seen
as multi-dimensional variants of endomorphisms.

Definition 1.11. Let H be a digraph and k ≥ 1. Then a polymorphism of H of arity k is a
homomorphism from Hk to H.

In other words, a mapping f : V (H)k → V (H) is a polymorphism of H if and only if
(f(u1, . . . , uk), f(v1, . . . , vk)) ∈ E(H) whenever (u1, v1), . . . , (uk, vk) are arcs in E(H). Note
that any digraph H has all projections as polymorphisms, i.e., all mappings p : V (H)k →
V (H) that satisfy for some i the equation p(x1, . . . , xk) = xi for all x1, . . . , xk ∈ V (H).

Example 1.12. The operation (x, y) 7→ min(x, y) is a polymorphism of the digraph ~Tn =
({1, . . . , n};<). 4

An operation f : V (H)k → V (H) is called

• idempotent if f(x, . . . , x) = x for all x ∈ V (H).

• conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk} for all x1, . . . , xk ∈ V (H).

Definition 1.13. A digraph H is called projective if every idempotent polymorphism is a
projection.

The following will be shown in Section 7.

Proposition 1.14. For all n ≥ 3, the graph Kn is projective.

Exercises.

37. Show that if f : Hk → H is a polymorphism of a digraph H, then f̂(x) := f(x, . . . , x)
is an endomorphism of H.

38. Show that if H is a finite core digraph with a symmetric binary polymorphism f , that
is, f(x, y) = f(y, x) for all x, y ∈ V (H), then H also has an idempotent symmetric
polymorphism.

2 The Arc-consistency Procedure

The arc-consistency procedure is one of the most fundamental and well-studied algorithms
that are applied for CSPs. This procedure was first discovered for constraint satisfaction
problems in artificial intelligence [60,62]; in the graph homomorphism literature, the algorithm
is sometimes called the consistency check algorithm.

13

ACH(G)
Input: a finite digraph G.
Data structure: a list L(x) ⊆ V (H) for each vertex x ∈ V (G).

Set L(x) := V (H) for all x ∈ V (G).
Do

For each (x, y) ∈ E(G):
Remove u from L(x) if there is no v ∈ L(y) with (u, v) ∈ E(H).
Remove v from L(y) if there is no u ∈ L(x) with (u, v) ∈ E(H).
If L(x) is empty for some vertex x ∈ V (G) then reject

Loop until no list changes

Figure 1: The arc-consistency procedure for CSP(H).

Let H be a finite digraph, and let G be an instance of CSP(H). The idea of the procedure
is to maintain for each vertex in G a list of vertices of H, and each element in the list of x
represents a candidate for an image of x under a homomorphism from G to H. The algorithm
successively removes vertices from these lists; it only removes a vertex u ∈ V (H) from the
list for x ∈ V (G), if there is no homomorphism from G to H that maps x to u. To detect
vertices x, u such that u can be removed from the list for x, the algorithm uses two rules (in
fact, one rule and a symmetric version of the same rule): if (x, y) is an edge in G, then

• remove u from L(x) if there is no v ∈ L(y) with (u, v) ∈ E(H);

• remove v from L(y) if there is no u ∈ L(x) with (u, v) ∈ E(H).

If eventually we cannot remove any vertex from any list with these rules any more, the
digraph G together with the lists for each vertex is called arc-consistent. The pseudo-code of
the entire arc-consistency procedure is displayed in Figure 1.

Clearly, if the algorithm removes all vertices from one of the lists, then there is no ho-
momorphism from G to H. It follows that if ACH rejects an instance of CSP(H), it has no
solution. The converse implication does not hold in general. For instance, let H be K2, and
let G be K3. In this case, ACH does not remove any vertex from any list, but obviously there
is no homomorphism from K3 to K2.

However, there are digraphs H where the ACH is a complete decision procedure for
CSP(H) in the sense that it rejects an instance G of CSP(H) if and only if G does not
homomorphically map to H. In this case we say that AC solves CSP(H).

Implementation. The running time of ACH is for any fixed digraph H polynomial in the
size of G. In a naive implementation of the procedure, the inner loop of the algorithm would
go over all edges of the digraph, in which case the running time of the algorithm is quadratic
in the size of G. In the following we describe an implementation of the arc-consistency
procedure, called AC-3, which is due to Mackworth [60], and has a worst-case running time
that is linear in the size of G. Several other implementations of the arc-consistency procedure
have been proposed in the Artificial Intelligence literature, aiming at reducing the costs of
the algorithm in terms of the number of vertices of both G and H. But here we consider the

14

size of H to be fixed, and therefore we do not follow this line of research. With AC-3, we
rather present one of the simplest implementations of the arc-consistency procedure with a
linear running time.

AC-3H(G)
Input: a finite digraph G.
Data structure: a list L(x) of vertices of H for each x ∈ V (G).

the worklist W : a list of arcs of G.

Subroutine Revise((x0, x1), i)
Input: an arc (x0, x1) ∈ E(G), an index i ∈ {0, 1}.

change = false
for each ui in L(xi)

If there is no u1−i ∈ L(x1−i) such that (u0, u1) ∈ E(H) then
remove ui from L(xi)
change = true

end if
end for
If change = true then

If L(xi) = ∅ then reject
else

For all arcs (z0, z1) ∈ E(G) with z0 = xi or z1 = xi add (z0, z1) to W
end if

W := E(G)
Do

remove an arc (x0, x1) from W
Revise((x0, x1), 0)
Revise((x0, x1), 1)

while W 6= ∅

Figure 2: The AC-3 implementation of the arc-consistency procedure for CSP(H).

The idea of AC-3 is to maintain a worklist, which contains a list of arcs (x0, x1) of G that
might help to remove a value from L(x0) or L(x1). Whenever we remove a value from a list
L(x), we add all arcs that are in G incident to x. Note that then any arc in G might be added
at most 2|V (H)| many times to the worklist, which is a constant in the size of G. Hence, the
while loop of the implementation is iterated for at most a linear number of times. Altogether,
the running time is linear in the size of G as well.

Arc-consistency for pruning search. Suppose that H is such that AC does not solve
CSP(H). Even in this situation the arc-consistency procedure might be useful for pruning
the search space in exhaustive approaches to solve CSP(H). In such an approach we might
use the arc-consistency procedure as a subroutine as follows. Initially, we run ACH on the
input instance G. If it computes an empty list, we reject. Otherwise, we select some vertex
x ∈ V (G), and set L(x) to {u} for some u ∈ L(x). Then we proceed recursively with the
resulting lists. If ACH now detects an empty list, we backtrack, but remove u from L(x).
Finally, if the algorithm does not detect an empty list at the first level of the recursion, we
end up with singleton lists for each vertex x ∈ V (G), which gives rise to a homomorphism

15

from G to H.

2.1 The Power Graph

For which H does the Arc-Consistency procedure solve CSP(H)? In this section we present
an elegant and effective characterisation of those finite digraphs H where AC solves CSP(H),
found by Feder and Vardi [40].

Definition 2.1. For a digraph H, the power graph P (H) is the digraph whose vertices are
non-empty subsets of V (H) and where two subsets U and V are joined by an arc if the
following holds:

• for every vertex u ∈ U , there exists a vertex v ∈ V such that (u, v) ∈ E(H), and

• for every vertex v ∈ V , there exists a vertex u ∈ U such that (u, v) ∈ E(H).

The definition of the power graph resembles the arc-consistency algorithm, and indeed,
we have the following lemma which describes the correspondence.

Lemma 2.2. ACH rejects G if and only if G 6→ P (H).

Proof. Suppose first that ACH does not reject G. For u ∈ V (G), let L(u) be the list derived
at the final stage of the algorithm. Then by definition of E(P (H)), the map x 7→ L(x) is a
homomorphism from G to P (H).

Conversely, suppose that f : G→ P (H) is a homomorphism. We prove by induction over
the execution of ACH that for all x ∈ V (G) the elements of f(x) are never removed from
L(x). To see that, let (a, b) ∈ E(G) be arbitrary. Then ((f(a), f(b)) ∈ E(P (H)), and hence
for every u ∈ f(a) there exists a v ∈ f(b) such that (u, v) ∈ E(H). By inductive assumption,
v ∈ L(b), and hence u will not be removed from L(a). This concludes the inductive step.

Theorem 2.3. Let H be a finite digraph. Then AC solves CSP(H) if and only if P (H)
homomorphically maps to H.

Proof. Suppose first that AC solves CSP(H). Apply ACH to P (H). Since P (H)→ P (H), the
previous lemma shows that ACH does not reject P (H). Hence, P (H)→ H by assumption.

Conversely, suppose that P (H)→ H. If ACH rejects a digraph G then G 6→ H. If ACH

does accept G, then the lemma asserts that G → P (H). Composing homomorphisms, we
obtain that G→ H.

Observation 2.4. Let H be a core digraph. Note that if P (H) homomorphically maps to H,
then there also exists a homomorphism that maps {x} to x for all x ∈ V (H) (here we use the
assumption that H is a core!). We claim that in this case the precoloured CSP for H can be
solved by the modification of ACH which starts with L(x) := {c(x)} for all x ∈ V (G) in the
range of the precolouring function c, instead of L(x) := V (H). This is a direct consequence
of the proof of Theorem 2.3. If the modified version of ACH solves the precoloured CSP for
H, then the classical version of ACH solves CSP(H). Hence, it follows that the following are
equivalent:

• AC solves CSP(H);

• the above modification of ACH solves the precoloured CSP for H;

16

• P (H)→ H.

Note that the condition given in Theorem 2.3 can be used to decide algorithmically
whether AC solves CSP(H), because it suffices to test whether P (H) homomorphically maps
to H. Such problems about deciding properties of CSP(H) for given H are often called al-
gorithmic meta-problems. A naive algorithm for the above test would be to first construct
P (H), and then to search non-deterministically for a homomorphism from P (H) to H, which
puts the meta-problem for solvability of CSP(H) by AC into the complexity class NExpTime
(Non-deterministic Exponential Time). This can be improved.

Proposition 2.5. There exists a deterministic exponential time algorithm that tests for a
given finite core digraph H whether P (H) homomorphically maps to H.

Proof. We first explicitly construct P (H), and then apply ACH to P (H). If ACH rejects,
then there is certainly no homomorphism from P (H)→ H by the properties of ACH , and we
return ‘false’. If ACH accepts, then we cannot argue right away that P (H) homomorphically
maps to H, since we do not know yet whether ACH is correct for CSP(H).

But here is the trick. What we do in this case is to pick an arbitrary x ∈ V (P (H)), and
remove all but one value u from L(x), and continue with the execution of ACH . If ACH then
derives the empty list, we try the same with another value u′ from L(x). If we obtain failure
for all values of L(x), then clearly there is no homomorphism from P (H) to H, and we return
‘false’. Otherwise, if ACH does not derive the empty list after removing all values but u from
L(x), we continue with another element y of V (P (H)), setting L(y) to {v} for some v ∈ L(y).
We repeat this procedure until at the end we have constructed a homomorphism from P (H)
to H. In this case we return ‘true’.

If ACH rejects for some x ∈ V (P (H)) when L(x) = {u} for all possible u ∈ V (H), then
the adaptation of ACH for the precoloured CSP would have given an incorrect answer for the
previously selected variable (it said yes while it should have said no). By Observation 2.4,
this means that P (H) does not homomorphically map to H. Again, we return ‘false’.

The precise computational complexity to decide for a given digraph H whether P (H)→ H
is not known; we refer to [31] for related questions and results.

Question 1. What is the computational complexity to decide for a given core digraph H
whether P (H)→ H? Is this problem in P?

2.2 Tree Duality

Another mathematical notion that is closely related to the arc-consistency procedure is tree
duality. The idea of this concept is that when a digraph H has tree duality, then we can show
that there is no homomorphism from a digraph G to H by exhibiting a tree obstruction in G.
This is formalized in the following definition.

Definition 2.6. A digraph H has tree duality if there exists a (not necessarily finite) set N

of orientations of finite trees such that for all digraphs G there is a homomorphism from G
to H if and only if no digraph in N homomorphically maps to G.

We refer to the set N in Definition 2.6 as an obstruction set for CSP(H). Note that no
T ∈ N homomorphically maps to H. The pair (N, H) is called a duality pair. We have
already encountered such an obstruction set in Exercise 9, where H = T2, and N = {~P2}. In

17

other words, ({~P2}, T2) is a duality pair. Other duality pairs are ({~P3}, T3) (Exercise 12), and
({Z1, Z2, . . . }, ~P2) (Exercise 22).

Theorem 2.7 is a surprising link between the completeness of the arc-consistency proce-
dure, tree duality, and the power graph, and was discovered by Feder and Vardi [39] in the
more general context of constraint satisfaction problems.

Theorem 2.7. Let H be a finite digraph. Then the following are equivalent.

1. H has tree duality;

2. P (H) homomorphically maps to H;

3. AC solves CSP(H).

4. If every orientation of a tree that homomorphically maps to G also homomorphically
maps to H, then G homomorphically maps to H;

Proof. The equivalence 2 ⇔ 3 has been shown in the previous section. We show 3 ⇒ 1,
1⇒ 4, and 4⇒ 2.

3⇒ 1: Suppose that AC solves CSP(H). We have to show that H has tree duality. Let N
be the set of all orientations of trees that do not homomorphically map to H. We claim that if
a digraph G does not homomorphically map to H, then there is T ∈ N that homomorphically
maps to G.

By assumption, the arc-consistency procedure applied to G eventually derives the empty
list for some vertex of G. We use the computation of the procedure to construct an orientation
T of a tree, following the exposition in [57]. When deleting a vertex u ∈ V (H) from the list
of a vertex x ∈ V (G), we define an orientation of a rooted tree Tx,u with root rx,u such that

1. there is a homomorphism from Tx,u to G mapping rx,u to x;

2. there is no homomorphism from Tx,u to H mapping rx,u to u.

Assume that the vertex u is deleted from the list of x because we found an arc (x, y) ∈
E(H) such that there is no arc (u, v) ∈ E(H) with v ∈ L(y); if it was deleted because of an
arc (y, x) ∈ E(H) the proof follows with the obvious changes.

If E(H) does not contain any arc (u, v), we define Tx,u to be the tree that just contains an
arc (p, q) with root rx,u = p; clearly, Tx,u satisfies property (1) and (2). Otherwise, for every
arc (u, v) ∈ E(H) the vertex v has already been removed from the list L(y), and hence by
induction Ty,v having properties (1) and (2) is already defined. We then add a copy of Ty,v
to Tx,u and add an edge between rx,u and the root ry,v of Ty,v.

We verify that the resulting orientation of a tree Tx,u satisfies (1) and (2). Let f be the
homomorphism from Ty,v mapping ry,v to v, which exists due to (1). The extension of f to
V (Tx,u) that maps rx,u to x is a homomorphism from Tx,u to G, and this shows that (1) holds
for Tx,u. But any homomorphism from Tx,u to H that maps rx,u to u would also map the
root of Ty,v to v, which is impossible, and this shows that (2) holds for Tx,u. When the list
L(x) of some vertex x ∈ V (G) becomes empty, we can construct an orientation of a tree T
by contracting the roots of all Tx,u into a vertex r. We then find a homomorphism from T
to G by mapping r to x and extending the homomorphism independently on each Tx,u. But
any homomorphism from T to H must map r to some element u ∈ V (H), and hence there is
a homomorphism from Tx,u to H that maps x to u, a contradiction.

18

1⇒ 4: If H has an obstruction set N consisting of orientations of trees, and if G does not
homomorphically map to H, there exists an orientation of a tree T ∈ N that maps to G but
not to H.

4 ⇒ 2: To show that P (H) homomorphically maps to H, it suffices to prove that every
orientation T of a tree that homomorphically maps to P (H) also homomorphically maps to
H. Let f be a homomorphism from T to P (H), and let x be any vertex of T . We construct
a sequence f0, . . . , fn, for n = |V (T)|, where fi is a homomorphism from the subgraph of T
induced by the vertices at distance at most i to x in T , and fi+1 is an extension of fi for all
0 ≤ i < n. The mapping f0 maps x to some vertex from f(x). Suppose inductively that we
have already defined fi. Let y be a vertex at distance i+1 from x in T . Since T is an orientation
of a tree, there is a unique y′ ∈ V (T) of distance i from x in T such that (y, y′) ∈ E(T) or
(y′, y) ∈ E(T). Note that u = fi(y

′) is already defined. In case that (y′, y) ∈ E(T), there
must be a vertex v in f(y) such that (u, v) ∈ E(H), since (f(y′), f(y)) must be an arc in
P (H), and by definition of P (H). We then set fi+1(y) = v. In case that (y, y′) ∈ E(T) we
can proceed analogously. By construction, the mapping fn is a homomorphism from T to H.

2.3 Totally Symmetric Polymorphisms

There is also a characterisation of the power of the arc-consistency procedure which is based
on polymorphisms, due to [34].

Definition 2.8. A function f : Dk → D is called totally symmetric if

f(x1, . . . , xk) = f(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}.

Theorem 2.9. Let H be a finite digraph. Then the following are equivalent.

1. P (H) homomorphically maps to H;

2. H has totally symmetric polymorphisms of all arities;

3. H has a totally symmetric polymorphism of arity 2|V (H)|.

Proof. 1. ⇒ 2.: Suppose that g is a homomorphism from P (H) to H, and let k ∈ N be ar-
bitrary. Let f be defined by f(x1, . . . , xk) = g({x1, . . . , xk}). If (x1, y1), . . . , (xk, yk) ∈ E(H),
then {x1, . . . , xk} is adjacent to {y1, . . . , yk} in P (H), and hence (f(x1, . . . , xk), f(y1, . . . , yk)) ∈
E(H). Therefore, f is a polymorphism of H, and it is clearly totally symmetric.

The implication 2. ⇒ 3. is trivial. To prove that 3. ⇒ 1., suppose that f is a totally
symmetric polymorphism of arity 2|V (H)|. Let g : V (P (H))→ V (H) be defined by

g({x1, . . . , xn}) := f(x1, . . . , xn−1, xn, xn, . . . , xn)

which is well-defined because f is totally symmetric. Let (U,W) ∈ E(P (H)), and let
x1, . . . , xp be an enumeration of the elements of U , and y1, . . . , yq be an enumeration of the el-
ements of W . The properties of P (H) imply that there are y′1, . . . , y

′
p ∈W and x′1, . . . , x

′
q ∈ U

such that (x1, y
′
1), . . . , (xp, y

′
p) ∈ E(H) and (x′1, y1), . . . , (x′q, yq) ∈ E(H). Since f preserves E,

g(U) = g({x1, . . . , xp}) = f(x1, . . . , xp, x
′
1, . . . , x

′
q, x1, . . . , x1)

is adjacent to

g(W) = g({y1, . . . , yq}) = f(y′1, . . . , y
′
p, y1, . . . , yq, y

′
1, . . . , y

′
1) .

19

Given Theorem 2.9, it is natural to ask whether there exists a k so that the existence of
a totally symmetric polymorphism of arity k implies totally symmetric polymorphisms of all
arities. The following example shows that this is not the case.

Example 2.10. For every prime p ≥ 3, the digraph ~Cp clearly does not have a totally
symmetric polymorphism of arity p: if f : {0, . . . , p−1}p → {0, . . . , p−1} is a totally symmetric
operation, then f(0, 1, . . . , p− 1) = f(1, . . . , p− 1, 0), and hence f does not preserve the edge
relation. On the other hand, if n < p then ~Cp has the totally symmetric polymorphism

f(x1, . . . , xn) := |S|−1
∑
x∈S

x mod p

where S = {x1, . . . , xn}. (Note that |S| < p and hence has a multiplicative inverse.) The
operation is clearly totally symmetric; the verification that it preserves the edge relation of
~Cp is Exercise 47. 4

2.4 Semilattice Polymorphisms

Some digraphs have a single binary polymorphism that generates operations satisfying the
conditions in the previous theorem, as in the following statement. A binary operation
f : D2 → D is called commutative if it satisfies

f(x, y) = f(y, x) for all x, y ∈ D.

It is called associative if it satisfies

f(x, f(y, z)) = f(f(x, y), z) for all x, y, z ∈ D.

Definition 2.11. A binary operation is called a semilattice operation f if it is associative,
commutative, and idempotent.

Examples of semilattice operations are functions from D2 → D defined as (x, y) 7→
min(x, y); here the minimum is taken with respect to any fixed linear order of D.

Theorem 2.12. Let H be a finite digraph. Then P (H) → H if and only if H is homomor-
phically equivalent to a digraph with a semilattice polymorphism.

Proof. Suppose first that P (H) → H. Thus, H and P (H) are homomorphically equivalent,
and it suffices to show that P (H) has a semilattice polymorphism. The mapping (X,Y) 7→
X ∪ Y is clearly a semilattice operation; we claim that it preserves the edges of P (H). Let
(U, V) and (A,B) be edges in P (H). Then for every u ∈ U there is a v ∈ V such that
(u, v) ∈ E(H), and for every u ∈ A there is a v ∈ B such that (u, v) ∈ E(H). Hence, for
every u ∈ U ∪ A there is a v ∈ V ∪ B such that (u, v) ∈ E(H). Similarly, we can verify that
for every v ∈ V ∪B there is a u ∈ U ∪A such that (u, v) ∈ E(H). This proves the claim.

For the converse, suppose that H is homomorphically equivalent to a digraph G with
a semilattice polymorphism f . Let h be the homomorphism from H to G. The operation
(x1, . . . , xn) 7→ f(x1, f(x2, f(. . . , f(xn−1, xn) . . .))) is a totally symmetric polymorphism of G.
Then Theorem 2.9 implies that P (G)→ G. The map S 7→ {h(u) | u ∈ S} is a homomorphism
from P (H) to P (G). Therefore, P (H)→ P (G)→ G→ H, as desired.

20

3

2

1

0

4

5

9

8

7

6

12

11

10

14

13

15

Figure 3: An orientation of a tree H with an NP-complete H-colouring problem [41].

By verifying the existence of semilattice polymorphisms for a concrete class of digraphs,
we obtain the following consequence.

Corollary 2.13. AC solves CSP(H) if H is an orientation of a path.

Proof. Suppose that 1, . . . , n are the vertices of H such that either (i, i+ 1) or (i+ 1, i) is an
arc in E(H) for all i < n. It is straightforward to verify that the mapping (x, y) 7→ min(x, y)
is a polymorphism of H. The statement now follows from Theorem 2.12.

We want to remark that there are orientations of trees H with an NP-complete H-colouring
problem (the smallest known example has 30 vertices, found by Jana Fischer [41]; see Fig-
ure 3). So, unless P=NP, this shows that there are orientations of trees H that do not have
tree-duality.

Exercises.

39. Recall that a digraph is called balanced if it homomorphically maps to a directed path.
Let H be a digraph.

• Prove: if H is balanced, then P (H) is balanced;

• Disprove: if H is an orientation of a tree, then P (H) is an orientation of a forest.

40. Up to isomorphism, there is only one unbalanced cycle H on four vertices that is a core
and not the directed cycle. Show that AC does not solve CSP(H).

41. Does the digraph

({0, 1, 2, 3, 4, 5}; {(0, 1), (1, 2), (0, 2), (3, 2), (3, 4), (4, 5), (3, 5), (0, 5)})

have tree duality?

21

42. Show that AC solves CSP(Tn), for every n ≥ 1.

43. Let H be a finite digraph. Show that P (H) contains a loop if and only if H contains a
directed cycle.

44. Show that the previous statement is false for infinite digraphs H.

45. Let G and H be finite digraphs that are homomorphically incomparable and suppose
that CSP(G) is NP-hard or CSP(H) is NP-hard. Show that CSP(G]H) is also NP-hard.

46. Show that an orientation of a tree homomorphically maps to H if and only if it homo-
morphically maps to P (H).

47. Prove the final statement in Example 2.10.

48. Let H be a finite digraph. Then ACH rejects an orientation of a tree T if and only if
there is no homomorphism from T to H (in other words, AC solves CSP(H) if the input
is restricted to orientations of trees).

49. Show that there is a linear-time algorithm that tests whether a given orientation of a
tree is a core (the author thanks Florian Starke and Lea Bänder for the idea for this
exercise).

50. Show that the core of an orientation of a tree can be computed in polynomial time.

3 The Path-consistency Procedure

The path-consistency procedure is a well-studied generalization of the arc-consistency proce-
dure from artificial intelligence. The path-consistency procedure is also known as the pair-
consistency check algorithm in the graph theory literature.

Many CSPs that can not be solved by the arc-consistency procedure can still be solved
in polynomial time by the path-consistency procedure. The simplest examples are H = K2

(see Exercise 19) and H = ~C3 (see Exercise 21). The idea is to maintain a list of pairs from
V (H)2 for each pair of elements from V (G) (similarly to the arc-consistency procedure, where
we maintained a list of vertices from V (H) for each vertex in V (G)). We successively remove
pairs from these lists when the pairs can be excluded locally. Some authors maintain a list
only for each pair of distinct vertices of V (G), and they refer to our (stronger) variant as the
strong path-consistency procedure. Our procedure (where vertices need not be distinct) has
the advantage that it is at least as strong as the arc-consistency procedure, because the lists
L(x, x) and the rules of the path-consistency procedure for x = y simulate the rules of the
arc-consistency procedure.

In Subsection 3.1 we will see many examples of digraphs H where the path-consistency
procedure solves the H-colouring problem, but the arc-consistency procedure does not. The
greater power of the path-consistency procedure comes at the price of a bigger worst-case
running time: while the arc-consistency procedure has linear-time implementations, the best
known implementations of the path-consistency procedure require cubic time in the size of
the input (see Exercise 51).

22

PCH(G)
Input: a finite digraph G.
Data structure: for all x, y ∈ V (G) a list L(x, y) of elements of V (H)2

For each (x, y) ∈ V (G)2

If (x, y) ∈ E(G) then L(x, y) := E(H),
else L(x, y) := V (H)2.
If x = y then L(x, y) := L(x, y) ∩ {(u, u) | u ∈ V (H)}.

Do
For all vertices x, y, z ∈ V (G):

For each (u,w) ∈ L(x, z):
If there is no v ∈ V (H) such that (u, v) ∈ L(x, y) and (v, w) ∈ L(y, z) then

Remove (u,w) from L(x, z)
If L(x, z) is empty then reject

Loop until no list changes

Figure 4: The strong path-consistency procedure for CSP(H).

The k-consistency procedure. The path-consistency procedure can be generalised fur-
ther to the k-consistency procedure. In fact, arc- and path-consistency procedure are just a
special case of the k-consistency for k = 2 and k = 3, respectively. In other words, for digraphs
H the path-consistency procedure is the 3-consistency procedure and the arc-consistency pro-
cedure is the 2-consistency procedure.

The idea of k-consistency is to maintain sets of (k−1)-tuples from V (H)k−1 for each (k−1)-
tuple from V (G)k−1, and to successively remove tuples by local inference. It is straightforward
to generalise also the details of the path-consistency procedure. For fixed H and fixed k, the
running time of the k-consistency procedure is still polynomial in the size of G. But the
dependency of the running time on k is clearly exponential.

However, we would like to point out that path consistency alias 3-consistency is of partic-
ular theoretical importance, due to the following recent result.

Theorem 3.1 (Barto and Kozik [7]). If CSP(H) can be solved by k-consistency for some
k ≥ 3, then CSP(H) can also be solved by 3-consistency.

Exercises

51. Show that the path-consistency procedure for CSP(H) can (for fixed H) be implemented
such that the worst-case running time is cubic in the size of the input digraph. (Hint:
use a worklist as in AC-3.)

52. Show that if path consistency solves CSP(H1) and path consistency solves CSP(H2),
then path consistency solves CSP(H1]H2).

3.1 Majority Polymorphisms

In this section, we present a powerful criterion that shows that for certain digraphs H the
path-consistency procedure solves the H-colouring problem. Again, this condition was first

23

discovered in more general form by Feder and Vardi [40]; it subsumes many criteria that were
studied in artificial intelligence and in graph theory before.

Definition 3.2. Let D be a set. A function f from D3 to D is called a majority function if
f satisfies the following equations, for all x, y ∈ D:

f(x, x, y) = f(x, y, x) = f(y, x, x) = x

Example 3.3. As an example, let D be {1, . . . , n}, and consider the ternary median opera-
tion, which is defined as follows. Let x, y be three elements fromD. We define median(x, x, y) =
median(x, y, x) = median(y, x, x) := x. If x, y, z are pairwise distinct elements of D, suppose
that {x, y, z} = {a, b, c}, where a < b < c. Then median(x, y, z) is defined to be b. 4

If a digraph H has a polymorphism f that is a majority operation, then f is called a
majority polymorphism of H.

Example 3.4. Let H be the transitive tournament on n vertices, Tn. Suppose the vertices
of Tn are the first natural numbers, {1, . . . , n}, and (u, v) ∈ E(Tn) if and only if u < v. Then
the median operation is a polymorphism of Tn, because if u1 < v1, u2 < v2, and u3 < v3, then
clearly median(u1, u2, u3) < median(v1, v2, v3). This yields a new proof that the H-colouring
problem for H = Tn is tractable. 4

Theorem 3.5 (of [40]). Let H be a finite digraph. If H has a majority polymorphism, then
the H-colouring problem can be solved in polynomial time (by the path-consistency procedure).

For the proof of Theorem 3.5 we need the following lemma.

Lemma 3.6. Let G and H be finite digraphs. Let f be a polymorphism of H of arity k and let
L := L(x, z) be the final list computed by the path-consistency procedure for x, z ∈ V (G). Then
f preserves L, i.e., if (u1, w1), . . . , (uk, wk) ∈ L, then (f(u1, . . . , uk), f(w1, . . . , wk)) ∈ L.

Proof. Let (u1, w1), . . . , (uk, wk) ∈ L. We prove by induction over the execution of PCH on G
that at all times the pair (u,w) := (f(u1, . . . , uk), f(w1, . . . , wk)) is contained in L. Initially,
this is true because f is a polymorphism of H. For the inductive step, let y ∈ V (G). By
definition of the procedure, for each i ∈ {1, . . . , k} there exists vi such that (ui, vi) ∈ L(x, y)
and (vi, wi) ∈ L(y, z). By the inductive assumption, (f(u1, . . . , uk), f(v1, . . . , vk)) ∈ L(x, y)
and (f(v1, . . . , vk), f(w1, . . . , wk)) ∈ L(y, z). Hence, (f(u1, . . . , uk), f(w1, . . . , wk)) will not be
removed in the next step of the algorithm.

Proof of Theorem 3.5. Let f : V (H)3 → V (H) be a majority polymorphism of H. Clearly, if
the path-consistency procedure derives the empty list for some pair (x, z) from V (G)2, then
there is no homomorphism from G to H.

Now suppose that after running the path-consistency procedure on G the list L(x, z) is
non-empty for all pairs (x, z) from V (G)2. We have to show that there exists a homomorphism
from G to H. A homomorphism h from an induced subgraph G′ of G to H is said to preserve
the lists if (h(x), h(z)) ∈ L(x, z) for all x, z ∈ V (G′). The proof shows by induction on i that
every homomorphism from a subgraph of G with i vertices that preserves the lists can be
extended to any other vertex in G such that the resulting mapping is a homomorphism to H
that again preserves the lists.

For the base case of the induction, observe that for all vertices x, z ∈ V (G) every mapping
h from {x, z} to V (H) such that (h(x), h(z)) ∈ L(x, z) can be extended to every y ∈ V (G) such

24

that (h(x), h(y)) ∈ L(x, y) and (h(y), h(z)) ∈ L(y, z) (and hence preserves the lists), because
otherwise the path-consistency procedure would have removed (h(x), h(z)) from L(x, z).

For the inductive step, let h′ be any homomorphism from a subgraph G′ of G on i ≥ 3
vertices to H that preserves the lists, and let x be any vertex of G not in G′. Let x1, x2,
and x3 be some vertices of G′, and h′j be the restriction of h′ to V (G′) \ {xj}, for 1 ≤ j ≤ 3.
By inductive assumption, h′j can be extended to x such that the resulting mapping hj is a
homomorphism to H that preserves the lists. We claim that the extension h of h′ that maps
x to f(h1(x), h2(x), h3(x)) is a homomorphism to H that preserves the lists.

For all y ∈ V (G′), we have to show that (h(x), h(y)) ∈ L(x, y) (and that (h(y), h(x)) ∈
L(y, x), which can be shown analogously). If y /∈ {x1, x2, x3}, then h(y) = h′(y) = f(h′(y),
h′(y), h′(y)) = f(h1(y), h2(y), h3(y)), by the properties of f . Since (hi(x), hi(y)) ∈ L(x, y) for
all i ∈ {1, 2, 3}, and since f preserves L(x, y) by Lemma 3.6, we have (h(x), h(y)) ∈ L(x, y),
and are done in this case.

Clearly, y can be equal to at most one of {x1, x2, x3}. Suppose that y = x1 (the other
two cases are analogous). There must be a vertex v ∈ V (H) such that (h1(x), v) ∈ L(x, y)
(otherwise the path-consistency procedure would have removed (h1(x), h1(x1)) from L(x, x1)).
By the properties of f , we have h(y) = h′(y) = f(v, h′(y), h′(y)) = f(v, h2(y), h3(y)). Because
(h1(x), v), (h2(x), h2(y)), (h3(x), h3(y)) are in L(x, y), Lemma 3.6 implies that (h(x), h(y)) =
(f(h1(x), h2(x), h3(x)), f(v, h2(y), h3(y))) is in L(x, y), and we are done.

We conclude that G has a homomorphism to H.

Corollary 3.7. The path-consistency procedure solves the H-colouring problem for H = Tn.

Another class of examples of digraphs having a majority polymorphism are unbalanced
cycles, i.e., orientations of Cn that do not homomorphically map to a directed path [38]. We
only prove a weaker result here.

Proposition 3.8. Directed cycles have a majority polymorphism.

Proof. Let ~Cn be a directed cycle. Let f be the ternary operation on the vertices of ~Cn that
maps u, v, w to u if u, v, w are pairwise distinct, and otherwise acts as a majority operation. We
claim that f is a polymorphism of ~Cn. Let (u, u′), (v, v′), (w,w′) ∈ E(~Cn) be arcs. If u, v, w are
all distinct, then u′, v′, w′ are clearly all distinct as well, and hence (f(u, v, w), f(u′, v′, w′)) =
(u, u′) ∈ E(~Cn). Otherwise, if two elements of u, v, w are equal, say u = v, then u′ and v′

must be equal as well, and hence (f(u, v, w), f(u′, v′, w′)) = (u, u′) ∈ E(~Cn).

Exercises.

53. Show that every orientation of a path has a majority polymorphism.

54. A quasi majority operation is an operation from V 3 to V satisfying

f(x, x, y) = f(x, y, x) = f(y, x, x) = f(x, x, x)

for all x, y ∈ V . Use Theorem 1.5 to show that a finite undirected graph H has an
H-colouring problem that can be solved in polynomial time if H has a quasi majority
polymorphism, and is NP-complete otherwise.

55. There is only one unbalanced cycle H on four vertices that is a core and not the directed
cycle (we have seen this digraph already in Exercise 40). Show that for this digraph H
the H-colouring problem can be solved by the path-consistency procedure.

25

56. (∗) Show that every unbalanced orientation of a cycle has a majority polymorphism.

57. Modify the path-consistency procedure such that it can deal with instances of the pre-
coloured H-colouring problem. Show that if H has a majority polymorphism, then the
modified path-consistency procedure solves the precoloured H-colouring problem.

58. Modify the path-consistency procedure such that it can deal with instances of the list
H-colouring problem. Show that if H has a conservative majority polymorphism, then
the modified path-consistency procedure solves the list H-colouring problem.

59. An interval graph H is an (undirected) graph H = (V ;E) such that there is an interval
Ix of the real numbers for each x ∈ V , and (x, y) ∈ E if and only if Ix and Iy have a
non-empty intersection. Note that with this definition interval graphs are necessarily
reflexive, i.e., (x, x) ∈ E. Show that the precoloured H-colouring problem for interval
graphs H can be solved in polynomial time. Hint: use the modified path-consistency
procedure in Exercise 57.

60. (∗) Let H be an (irreflexive) graph. Show that H has a conservative majority polymor-
phism if and only if H is an interval graph.

61. (∗) Let H be a reflexive graph. Show that H has a conservative majority polymorphism
if and only if H is a circular arc graph, i.e., H can be represented by arcs on a circle so
that two vertices are adjacent if and only if the corresponding arcs intersect.

62. Show that the digraph (Z; {(x, y) | x− y = 1}) has a majority polymorphism.

63. Prove that H-colouring can be solved in polynomial time when H is the digraph from
the previous exercise.

64. Show that the digraph H = (Z; {(x, y) | x− y ∈ {1, 3}}) has a majority polymorphism,
and give a polynomial time algorithm for its H-colouring problem.

3.2 Testing for Majority Polymorphisms

In this section we show that the question whether a given digraph has a majority polymor-
phism can be decided in polynomial time.

Theorem 3.9. There is a polynomial-time algorithm to decide whether a given digraph H
has a majority polymorphism.

Proof. The pseudo-code of the procedure can be found in Figure 5. Given H, we construct
a new digraph G as follows. We start from the third power H3, and precolour all vertices of
the form (u, u, v), (u, v, u), (v, u, u), and (u, u, u) with u. Let G be the resulting precoloured
digraph. Note that there exists a homomorphism from G to H that respects the colours if and
only if H has a majority polymorphism. To decide whether G has a homomorphism to H, we
run the modification of PCH for the precoloured H-colouring problem on G (see Exercise 57).
If this algorithm rejects, then we can be sure that there is no homomorphism from G to H
that respects the colours, and hence H has no majority polymorphism. Otherwise, we use the
same idea as in the proof of Proposition 2.5: pick x ∈ V (G) and remove all but one pair (u, u)
from L(x, x). Then we continue with the execution of PCH . If PCH derives the empty list, we
try the same with another pair (v, v) from L(x, x). If we obtain failure for all pairs in L(x, x),

26

Majority-Test(H)
Input: a finite digraph H.

Let G := H3.
For all u, v ∈ V (H), precolour the vertices (u, u, v), (u, v, u), (v, u, u), (u, u, u) with u.
If PCH(G) derives the empty list, reject.
For each x ∈ V (G)

For each (u, u) ∈ L(x, x)
Found := False.
For all y, z ∈ V (G), let L′(y, z) be a copy of L(y, z).
L′(x, x) := {(u, u)}.
Run PCH(G) with the lists L′.
If this run does not derive the empty list

For all y, z ∈ V (G), set L(y, z) := L′(y, z).
Found := True.

End For.
If Found = False then reject.

End For.
Accept.

Figure 5: A polynomial-time algorithm to find majority polymorphisms.

then clearly there is no homomorphism from G to H, and we return ‘false’. Otherwise, if PCH

does not derive the empty list after removing all pairs but (u, u) from L(x, x), we continue
with another vertex y ∈ V (G), setting L(y, y) to {(u, u)} for some (u, u) ∈ L(y, y). We repeat
this procedure until eventually all lists for pairs of the form (x, x) are singleton sets {(u, u)};
the map that sends x to u is a homomorphism from G to H that respects the colours. In
this case we return ‘true’. If there exists u ∈ V (G) such that PCH detects an empty list for
all (u, u) ∈ L(x, x) then the adaptation of PCH for the precoloured CSP would have given an
incorrect answer for the previously selected variable: PCH did not detect the empty list even
though the input was unsatisfiable. Hence, H cannot have a majority polymorphism. It is
easy to see that the procedure described above has polynomial running time.

Exercises.

65. Modify the algorithm ‘Majority-Test’ to obtain an algorithm that tests whether a given
digraph H has a quasi majority polymorphism.

3.3 Digraphs with a Maltsev Polymorphism

If a digraph H has a majority polymorphism, then the path-consistency procedure solves
CSP(H). How about digraphs H with a minority polymorphisms of H? It turns out that
this is an even stronger restriction.

Definition 3.10. A ternary function f : D3 → D is called

27

• a minority operation if it satisfies

∀x, y ∈ D. f(y, x, x) = f(x, y, x) = f(x, x, y) = y

• and a Maltsev operation if it satisfies

∀x, y ∈ D. f(y, x, x) = f(x, x, y) = y.

Example 3.11. Let D := {0, . . . , n− 1}. Then the function f : D3 → D given by (x, y, z) 7→
x − y + z mod n is a Maltsev operation, since x − x + z = z and x − z + z = x. For
n = 2, this is even a minority operation. If n > 2, this function is not a minority, since then
1 − 2 + 1 = 0 6≡ 2 mod n. Note that f is a polymorphism of ~Cn. To see this, suppose that
u1 − v1 ≡ 1 mod n, u2 − v2 ≡ 1 mod n, and u3 − v3 ≡ 1 mod n. Then

f(u1, u2, u3) ≡ u1 − u2 + u3 ≡ (v1 + 1)− (v2 + 1) + (v3 + 1)

≡ f(v1, v2, v3) + 1 mod n . 4

The following result appeared in 2011.

Theorem 3.12 (Kazda [54]). If a digraph G has a Maltsev polymorphism then G also has a
majority polymorphism.

Hence, for digraphs H with a Maltsev polymorphism, the strong path-consistency proce-
dure solves the H-colouring problem, and in fact even the precoloured H-colouring problem.
Theorem 3.12 is an immediate consequence of Theorem 3.18 below; to state it, we need the
following concepts.

Definition 3.13. A digraph G is called rectangular if (x, y), (x′, y), (x′, y′) ∈ E(G) implies
that (x, y′) ∈ E(G).

We start with the fundamental observation: digraphs with a Maltsev polymorphism m are
rectangular. This follows immediately from the definition of polymorphisms: we must have
(m(x, x′, x′),m(y, y, y′)) ∈ E(G), but m(x, x′, x′) = x and m(y, y, y′) = y′, so (x, y′) ∈ E(G).
The converse does not hold, as the following example shows.

Example 3.14. The digraph
(
{a, b, c}; {(a, a), (a, b), (b, c), (c, c)}

)
is rectangular (draw a pic-

ture!), but has no Maltsev polymorphism m. Indeed, such an m would have to satisfy
m(a, a, c) = c and m(a, c, c) = a. Note that

(m(a, a, c),m(a, b, c)) ∈ E(G)

and (m(a, b, c),m(a, c, c)) ∈ E(G),

but G has no vertex x such that (c, x) ∈ E(G) and (x, a) ∈ E(G). 4

We are therefore interested in stronger consequences of the existence of a Maltsev poly-
morphism.

Definition 3.15. A digraph G is called k-rectangular if whenever G contains directed paths
of length k from x to y, from x′ to y, and from x′ to y′, then also from x to y′. A digraph G
is called totally rectangular if it is k-rectangular for all k ≥ 1.

28

3

2

1

4 5

8

7

6

Figure 6: A totally rectangular digraph.

Lemma 3.16. Every digraph with a Maltsev polymorphism m is totally rectangular.

Proof. Let k ≥ 1, and suppose that that G is a digraph with directed paths (x1, . . . , xk),
(y1, . . . , yk), and (z1, . . . , zk) such that xk = yk and y1 = z1. We have to show that there
exists a directed path (u1, . . . , uk) in G with u1 = x1 and uk = zk. It can be verified that
ui := m(xi, yi, zi) has the desired properties.

An example of a totally rectangular digraph is given in Figure 6. The next lemma points
out an important consequence of k-rectangularity.

Lemma 3.17. Let G be a finite totally rectangular digraph with a cycle of net length d > 0.
Then G contains a directed cycle of length d.

Proof. Let C = (u0, . . . , uk−1) be a cycle of G of net length d; we prove the statement by
induction on k. Clearly, C can be decomposed into maximal directed paths, that is, there
is a minimal set D of directed paths such that each pair (u0, u1), (u1, u2), . . . , (uk−1, u0) is
contained in exactly one of the paths of D. If the decomposition D consists of a single directed
path then we have found a directed cycle and are done. Let P be the shortest directed path
of D, leading from u to v in G. Then there are directed paths Q and Q′ in D such that Q
starts in u and Q′ ends in v, and P 6= Q or P 6= Q′. By assumption, |Q|, |Q′| ≥ ` := |P |. By
`-rectangularity, there exists a directed path P ′ of length ` from the vertex s of Q′ at position
|Q′| − ` to the vertex t of Q at position `. Now we distinguish the following cases.

• Q = Q′: the cycle that starts in s, follows the path Q until t, and then returns to s via
the path P ′ is shorter than C but still has net length d.

• Q 6= Q′: the cycle starting in s, following Q for the final |Q| − ` vertices of Q, the cycle
C until Q′, the first |Q′|− ` vertices of Q′ until t, and then P ′ back to s is a cycle which
is shorter than C but still has net length d.

In both cases, the statement follows by induction.

The following is a strengthening of Theorem 3.12; we only prove that 1 implies 2, and 2
implies 3, which suffices for the already mentioned consequence that for digraphs H with a
Maltsev polymorphism, path consistency solves the H-colouring problem (cf. Exercise 52).

Theorem 3.18 (Theorem 3.3 and Corollary 4.12 in [30]). Let G be a finite digraph. Then
the following are equivalent.

1. G has a Maltsev polymorphism.

29

2. G is totally rectangular.

3. If G is acyclic, then the core of G is a directed path. Otherwise, the core of G is a
disjoint union of directed cycles.

4. G has a minority and a majority polymorphism.

Proof. The implication from 4 to 1 is trivial since every minority operation is in particular
a Maltsev operation. The implication from 1 to 2 is Lemma 3.16. For the implication from
2 to 3, let us assume that G is connected. The general case then follows by applying the
following argument to each of its connected components, and the observation that directed
paths homomorphically map to longer directed paths and to directed cycles.

We first consider the case that G is acyclic, and claim that in this case G is balanced, i.e.,
there exists a surjective homomorphism h from G to ~Pn for some n ≥ 1. Otherwise, there
exist u, v ∈ V (G) and two paths P and Q from u to v of different net lengths `1 and `2 (see
Exercise 13). Put these two paths together at u and v to form an unbalanced cycle C. Then
Lemma 3.17 implies that G contains a directed cycle contrary to our assumptions.

Now, choose n with G→ ~Pn minimal, and fix u ∈ h−1(0) and v ∈ h−1(n). Then it is easy
to see from total rectangularity that there must exist a path of length n in G from u to v,
and hence the core of G is ~Pn.

Now suppose that G contains a directed cycle; let C be the shortest directed cycle of G.
We prove that G homomorphically maps to C. It is easy to see that it suffices to show that
for any two vertices u, v of G and for any two paths P and Q from u to v we have that their
net lengths are congruent modulo m := |C| (see Exercise 14). Suppose for contradiction that
there are paths of net length `1 and `2 from u to v in G such that d := `1 − `2 6= 0 modulo
m; without loss of generality, `2 < `1, so d > 0. We can assume that u is an element of C,
since otherwise we can choose a path S from a vertex of C to u by connectivity of G, and
append S to both P and Q. We can also assume that d < m because if not, we can append
C to Q to increase the length of Q by a multiple of m, until d = `1 − `2 < m. Lemma 3.17
then implies that G contains a directed cycle of length d, a contradiction to the choice of C.

For the missing implication from 3 to 4, we refer to [30] (Corollary 4.11).

Exercises.

66. Let H be the digraph ({0, 1, . . . , 6}; {(0, 1), (1, 2), (3, 2), (4, 3), (4, 5), (5, 6)}). For which
k is it k-rectangular?

4 Logic

A signature is a set of relation and function symbols. The relation symbols are typically
denoted by R,S, T, . . . and the function symbols are typically denoted by f, g, h, . . . ; each
relation and function symbol is equipped with an arity from N. A τ -structure A consists of
a set A (the domain or base set ; we typically use the same letter in a different font) together
with a relation RA ⊆ Ak for each relation symbol R of arity k from τ , and an operation
fA : Ak → A for each function symbol f of arity k from τ . Functions of arity 0 are allowed;
they are also called constants. In this text it causes no harm to allow structures whose domain
is empty. A τ -structure A is called finite if its domain A is finite.

30

A homomorphism h from a τ -structure A to a τ -structure B is a function from A to B
that preserves each relation and each function: that is,

• if (a1, . . . , ak) is in RA, then (h(a1), . . . , h(ak)) must be in RB;

• for all a1, . . . , ak ∈ A we have h(fA(a1, . . . , ak)) = fB(h(a1), . . . , h(ak)).

An isomorphism is a bijective homomorphism h such that the inverse mapping h−1 : B → A
that sends h(x) to x is a homomorphism, too.

A relational structure is a τ -structure where τ only contains relation symbols, and an
algebra (in the sense of universal algebra) is a τ -structure where τ only contains function
symbols. In this section, we will work with relational structures only; algebras will appear in
Section 7.

4.1 Primitive positive formulas

A first-order τ -formula φ(x1, . . . , xn) is called primitive positive (in database theory also
conjunctive query) if it is of the form

∃xn+1, . . . , x`(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic τ -formulas, i.e., formulas of the form R(y1, . . . , yk) with R ∈ τ
and yi ∈ {x1, . . . , x`}, of the form y = y′ for y, y′ ∈ {x1, . . . , x`}, or > and ⊥ (for true and
false). As usual, formulas without free variables are called sentences. If A is a τ -structure
and φ a τ -sentence, then we write A |= φ if A satisfies φ (i.e., φ holds in A).

Note that if we would require that all our structures have a non-empty domain, we would
not need the symbol > since we can use the primitive positive sentence ∃x. x = x to express
it. It is possible to rephrase the H-colouring problem and its variants using primitive positive
sentences.

Definition 4.1. Let B be a structure with a finite relational signature τ . Then CSP(B) is
the computational problem of deciding whether a given primitive positive τ -sentence φ is true
in B.

The given primitive positive τ -sentence φ is also called an instance of CSP(B). The
conjuncts of an instance φ are called the constraints of φ. A mapping from the variables of
φ to the elements of B that is a satisfying assignment for the quantifier-free part of φ is also
called a solution to φ.

Example 4.2 (Disequality constraints). Consider the problem CSP({1, 2, . . . , n}; 6=). An
instance of this problem can be viewed as an (existentially quantified) set of variables, some
linked by disequality2 constraints. Such an instance holds in ({1, 2, . . . , n}; 6=) if and only if
the graph whose vertices are the variables, and whose edges are the disequality constraints,
has a homomorphism to Kn. 4

2We deliberately use the word disequality instead of inequality, since we reserve the word inequality for the
relation x ≤ y.

31

Exercises.

67. Show that CSP
(
{0, 1}; {(0, 1), (1, 0), (0, 0)}, {(0, 1), (1, 0), (1, 1)}, {(1, 1), (1, 0), (0, 0)}

)
can

be solved in polynomial time.

68. Generalise the notion of direct products from digraphs (Definition 1.1) to general rela-
tional τ -structures.

69. Generalise the arc-consistency procedure from digraphs to general relational structures.

70. Does the arc-consistency procedure solve CSP(B) where B has domain B = {0, 1, 2, 3},
the unary relation UB

i for every i ∈ B, and the binary relations B4 \ {(0, 0)} and
{(1, 2), (2, 3), (3, 1), (0, 0)}?

71. Generalise the path-consistency procedure from digraphs to general relational struc-
tures.

72. Verify that the structure B from Exercise 70 has the binary idempotent commutative
polymorphism ∗ defined as 1∗2 = 2, 2∗3 = 3, 3∗1 = 1, and 0∗b = b for all b ∈ {1, 2, 3}.
Verify that ∗ satisfies ‘restricted associativity’, i.e., x∗(x∗y) = (x∗x)∗y for all x, y ∈ B
(and since it is additionally idempotent and commutative it is called a 2-semilattice).

73. Does the structure B from Exercise 70 have a majority polymorphism?

74. (∗) Does the path-consistency procedure solve CSP(B) for the structure B from Exer-
cise 70?

4.2 From Structures to Formulas

To every finite relational τ -structure A we can associate a τ -sentence, called the canonical
conjunctive query of A, and denoted by φ(A). The variables of this sentence are the elements
of A, all of which are existentially quantified in the quantifier prefix of the formula, which is
followed by the conjunction of all formulas of the form R(a1, . . . , ak) for R ∈ τ and tuples
(a1, . . . , ak) ∈ RA.

For example, the canonical conjunctive query φ(K3) of the complete graph on three ver-
tices K3 is the formula

∃u∃v∃w
(
E(u, v) ∧ E(v, u) ∧ E(v, w) ∧ E(w, v) ∧ E(u,w) ∧ E(w, u)

)
.

The proof of the following proposition is straightforward.

Proposition 4.3. Let B be a structure with finite relational signature τ , and let A be a finite
τ -structure. Then there is a homomorphism from A to B if and only if B |= φ(A).

4.3 From Formulas to Structures

To present a converse of Proposition 4.3, we define the canonical structure S(φ) (in database
theory this structure is called the canonical database) of a primitive positive τ -sentence,
which is a relational τ -structure defined as follows. We require that φ does not contain ⊥.
If φ contains an atomic formula of the form x = y, we remove it from φ, and replace all

32

occurrences of x in φ by y. Repeating this step if necessary, we may assume that φ does not
contain atomic formulas of the form x = y.

Then the domain of S(φ) is the set of variables that occur in φ. There is a tuple (v1, . . . , vk)
in a relation R of S(φ) if and only if φ contains the conjunct R(v1, . . . , vk). The following is
similarly straightforward as Proposition 4.3.

Proposition 4.4. Let B be a relational τ -structure and let φ be a primitive positive τ -sentence
that does not contain ⊥. Then B |= φ if and only if S(φ) homomorphically maps to B.

Due to Proposition 4.4 and Proposition 4.3, we may freely switch between the homo-
morphism and the logic perspective whenever this is convenient. In particular, instances of
CSP(B) can from now on be either finite structures A or primitive positive sentences φ.

Note that the H-colouring problem, the precoloured H-colouring problem, and the list H-
colouring problem can be viewed as constraint satisfaction problems for appropriately chosen
relational structures.

4.4 Primitive Positive Definability

Let A be a τ -structure, and let A′ be a τ ′-structure with τ ⊆ τ ′. If A and A′ have the same
domain and RA = RA′ for all R ∈ τ , then A is called the τ -reduct (or simply reduct) of A′,
and A′ is called a τ ′-expansion (or simply expansion) of A. If A is a structure, and R is a
relation over the domain of A, then we denote the expansion of A by R by (A, R).

If A is a τ -structure, and φ(x1, . . . , xk) is a formula with k free variables x1, . . . , xk, then
the relation defined by φ is the relation

{(a1, . . . , ak) | A |= φ(a1, . . . , ak)} .

If the formula is primitive positive, then this relation is called primitive positive definable.

Example 4.5. The relation {(a, b) ∈ {0, 1, 2, 3, 4}2 | a 6= b} is primitive positive definable in
C5: the primitive positive definition is

∃p1, p2

(
E(x1, p1) ∧ E(p1, p2) ∧ E(p2, x2)

)
4

Example 4.6. The non-negative integers are primitively positively definable in (Z; 0, 1,+, ∗),
namely by the following formula φ(x) which states that x is the sum of four squares:

∃x1, x2, x3, x4(x = x2
1 + x2

2 + x2
3 + x2

4).

Clearly, every integer that satisfies φ(x) is non-negative; the converse is the famous four-square
theorem of Lagrange [44]. 4

The following lemma says that we can expand structures by primitive positive definable
relations without changing the complexity of the corresponding CSP. Hence, primitive positive
definitions are an important tool to prove NP-hardness: to show that CSP(B) is NP-hard,
it suffices to show that there is a primitive positive definition of a relation R such that
CSP(B, R) is already known to be NP-hard. Stronger tools to prove NP-hardness of CSPs
will be introduced in Sections 4.6 and 4.8.

Lemma 4.7 (Jeavons, Cohen, Gyssens [52]). Let B be a structure with finite relational
signature, and let R be a relation that has a primitive positive definition in B. Then CSP(B)
and CSP(B, R) are linear-time equivalent.

33

Proof. It is clear that CSP(B) reduces to the new problem. So suppose that φ is an instance
of CSP((B, R)). Replace each conjunct R(x1, . . . , xl) of φ by its primitive positive definition
ψ(x1, . . . , xl). Move all quantifiers to the front, such that the resulting formula is in prenex
normal form and hence primitive positive. Finally, equalities can be eliminated one by one:
for equality x = y, remove y from the quantifier prefix, and replace all remaining occurrences
of y by x. Let φ′ be the formula obtained in this way.

It is straightforward to verify that φ is true in (B, R) if and only if φ′ is true in B, and it
is also clear that φ′ can be constructed in linear time in the representation size of φ.

Recall from Section 1.3 that CSP(K5) is NP-hard. Since the edge relation of K5 is
primitively positively definable in C5 (Example 4.5), Lemma 4.7 implies that CSP(C5) is
NP-hard, too.

Exercises.

75. Show that the relation R := {(a, b, c) ∈ {1, 2, 3}3 | a = b or b = c or a = c} has a
primitive positive definition over K3.

76. Show that the relation 6= on {1, 2, 3} has a primitive positive definition in the structure
({1, 2, 3};R, {1}, {2}, {3}) where R is the relation from the previous exercise.

77. Let R+, R∗ be the relations defined as follows.

R+ := {(x, y, z) ∈ Q3 | x+ y = z}
R∗ := {(x, y, z) ∈ Q3 | x ∗ y = z}.

Show that R∗ is primitive positive definable in the structure (Q;R+, {(x, y) | y = x2}).

78. Let B be any set, and for n ∈ N define the relation P 2n
B of arity 2n as follows.

P 2n
B := {(x1, y1, x2, y2, . . . , xn, yn) ∈ B2n |

∨
i∈{1,...,n}

xi = yi}

Show that for every n the relation P 2n
B has a primitive positive definition in (B;P 4

B).

79. (∗) Let n ≥ 4. Is there a primitive positive definition of 6= over the structure

Mn := ({1, . . . , n};R, {1}, {2}, . . . , {n})
where R := {(1, . . . , 1), (2, . . . , 2), . . . , (n, . . . , n), (1, 2, . . . , n)}?

4.5 Cores and Constants

An automorphism of a structure B with domain B is an isomorphism between B and itself.
The set of all automorphisms α of B is denoted by Aut(B), and forms a permutation group.
When G is a permutation group on a set B, and b ∈ B, then a set of the form

S = {α(b) | α ∈ G}

is called an orbit of G (the orbit of b). Let (b1, . . . , bk) be a k-tuple of elements of B. A set
of the form

S = {(αb1, . . . , αbk) | α ∈ Aut(B)}
is called an orbit of k-tuples of B; it is an orbit of the componentwise action of G on the set
Bk of k-tuples from B.

34

Lemma 4.8. Let B be a structure with a finite relational signature and domain B, and let
R = {(b1, . . . , bk)} be a k-ary relation that only contains one tuple (b1, . . . , bk) ∈ Bk. If
the orbit of (b1, . . . , bk) in B is primitive positive definable, then there is a polynomial-time
reduction from CSP(B, R) to CSP(B).

Proof. Let φ be an instance of CSP(B, R) with variable set V . If φ contains two constraints
R(x1, . . . , xk) and R(y1, . . . , yk), then replace each occurrence of y1 by x1, then each occur-
rence of y2 by x2, and so on, and finally each occurrence of yk by xk. We repeat this step
until all constrains that involve R are imposed on the same tuple of variables (x1, . . . , xk).
Replace R(x1, . . . , xk) by the primitive positive definition θ of its orbit in B. Finally, move
all quantifiers to the front, such that the resulting formula ψ is in prenex normal form and
thus an instance of CSP(B). Clearly, ψ can be computed from φ in polynomial time. We
claim that φ is true in (B, R) if and only if ψ is true in B.

Suppose φ has a solution s : V → B. Since (b1, . . . , bk) satisfies θ, we can extend s
to the existentially quantified variables of θ to obtain a solution for ψ. In the opposite
direction, suppose that s′ is a solution to ψ over B. Let s be the restriction of s′ to V . Since
(s(x1), . . . , s(xk)) satisfies θ, it lies in the same orbit as (b1, . . . , bk). Thus, there exists an
automorphism α of B that maps (s(x1), . . . , s(xk)) to (b1, . . . , bk). Then the extension of the
map x 7→ αs(x) that maps variables yi of φ that have been replaced by xi in ψ to the value
bi is a solution to φ over (B, R).

The definition of cores can be extended from finite digraphs to finite structures: as in
the case of finite digraphs, we require that every endomorphism be an automorphism. All
results we proved for cores of digraphs remain valid for cores of structures. In particular,
every finite structure C is homomorphically equivalent to a core structure B, which is unique
up to isomorphism (see Section 1.4). The following proposition can be shown as in the proof
of Proposition 1.8.

Proposition 4.9. Let B be a finite core structure. Then the orbits of k-tuples of B are
primitive positive definable.

Proposition 4.9 and Lemma 4.8 have the following consequence.

Corollary 4.10. Let B be a finite core with a finite relational signature. Let b1, . . . , bn ∈ B.
Then CSP(B) and CSP(B, {b1}, . . . , {bn}) are polynomial time equivalent.

Exercises.

80. Show that if m is the number of orbits of k-tuples of a finite structure A, and C is the
core of A, then C has at most m orbits of k-tuples.

81. Show that if A is a finite structure, and C its core, and if A and C have the same number
of orbits of pairs, then A and C are isomorphic.

4.6 Primitive Positive Interpretations

Primitive positive interpretations are a powerful generalisation of primitive positive definabil-
ity that can be used to also relate structures with different domains. They are a special case
of (first-order) interpretations that play an important role in model theory (see, e.g., [50]).

35

If C and D are sets and g : C → D is a map, then the kernel of g is the equivalence relation
E on C where (c, c′) ∈ E if g(c) = g(c′). For c ∈ C, we denote by c/E the equivalence class
of c in E, and by C/E the set of all equivalence classes of elements of C. The index of E is
defined to be |C/E|.

Definition 4.11. Let σ and τ be relational signatures, let A be a τ -structure, and let B be
a σ-structure. A primitive positive interpretation I of B in A consists of

• a natural number d, called the dimension of I,

• a primitive positive τ -formula δI(x1, . . . , xd), called the domain formula,

• for each atomic σ-formula φ(y1, . . . , yk) a primitive positive τ -formula φI(x1, . . . , xk),
called the defining formulas, and

• the coordinate map: a surjective map h : D → B where

D := {(a1, . . . , ad) ∈ Ad | A |= δI(a1, . . . , ad)}

such that for all atomic σ-formulas φ and all tuples ai ∈ D

B |= φ(h(a1), . . . , h(ak)) ⇔ A |= φI(a1, . . . , ak) .

Sometimes, the same symbol is used for the interpretation I and the coordinate map. Note
that the dimension d, the set D, and the coordinate map h determine the defining formulas
up to logical equivalence; hence, we sometimes denote an interpretation by I = (d,D, h).
Note that the kernel of h coincides with the relation defined by (y1 = y2)I , for which we
also write =I , the defining formula for equality. Also note that the structures A and B
and the coordinate map determine the defining formulas of the interpretation up to logical
equivalence.

Example 4.12. Let G be a digraph and let F be an equivalence relation on V (G). Then
G/F is the digraph whose vertices are the equivalence classes of F , and where S and T are
adjacent if there are s ∈ S and t ∈ T such that {s, t} ∈ E(G). If F has a primitive positive
definition in G, then G/F has a primitive positive interpretation in G. 4

Example 4.13. The field of rational numbers (Q; 0, 1,+, ∗) has a primitive positive 2-
dimensional interpretation I in (Z; 0, 1,+, ∗). Example 4.6 presented a primitive positive
definition φ(x) of the set of non-negative integers. The interpretation is now given as follows.

• The domain formula δI(x, y) is y ≥ 1 (using φ(x), it is straightforward to express this
with a primitive positive formula);

• The formula =I (x1, y1, x2, y2) is x1y2 = x2y1;

• The formula 0I(x, y) is x = 0, the formula 1I(x, y) is x = y;

• The formula +I(x1, y1, x2, y2, x3, y3) is y3 ∗ (x1 ∗ y2 + x2 ∗ y1) = x3 ∗ y1 ∗ y2;

• The formula ∗I(x1, y1, x2, y2, x3, y3) is x1 ∗ x2 ∗ y3 = x3 ∗ y1 ∗ y2. 4

36

Theorem 4.14. Let B and C be structures with finite relational signatures. If there is a
primitive positive interpretation of B in C, then there is a polynomial-time reduction from
CSP(B) to CSP(C).

Proof. Let d be the dimension of the primitive positive interpretation I of the τ -structure B
in the σ-structure C, let δI(x1, . . . , xd) be the domain formula, and let h : δI(C

d)→ D(B) be
the coordinate map. Let φ be an instance of CSP(B) with variable set U = {x1, . . . , xn}. We
construct an instance ψ of CSP(C) as follows. For distinct variables V := {y1

1, . . . , y
d
n}, we set

ψ1 to be the formula ∧
1≤i≤n

δI(y
1
i , . . . , y

d
i) .

Let ψ2 be the conjunction of the formulas θI(y
1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) over all conjuncts

θ = R(xi1 , . . . , xik) of φ. By moving existential quantifiers to the front, the sentence

∃y1
1, . . . , y

d
n (ψ1 ∧ ψ2)

can be re-written to a primitive positive σ-sentence ψ, and clearly ψ can be constructed in
polynomial time in the size of φ.

We claim that φ is true in B if and only if ψ is true in C. Suppose that f : V → C satisfies
all conjuncts of ψ in C. Hence, by construction of ψ, if φ has a conjunct θ = R(xi1 , . . . , xik),
then

C |= θI
(
(f(y1

i1), . . . , f(ydi1)), . . . , (f(y1
ik

), . . . , f(ydik))
)
.

By the definition of interpretations, this implies that

B |= R
(
h(f(y1

i1), . . . , f(ydi1)), . . . , h(f(y1
ik

), . . . , f(ydik))
)
.

Hence, the mapping g : U → B that sends xi to h(f(y1
i), . . . , f(ydi)) satisfies all conjuncts of

φ in B.
Now, suppose that f : U → B satisfies all conjuncts of φ over B. Since h is a surjective

mapping from δI(C
d) to B, there are elements c1

i , . . . , c
d
i in C such that h(c1

i , . . . , c
d
i) = f(xi),

for all i ∈ {1, . . . , n}. We claim that the mapping g : V → C that maps yji to cji satis-
fies ψ in C. By construction, any constraint in ψ either comes from ψ1 or from ψ2. If it
comes from ψ1 then it must be of the form δI(y

1
i , . . . , y

d
i), and is satisfied since the pre-image

of h is δI(C
d). If the constraint comes from ψ2, then it must be a conjunct of a formula

θI(y
1
i1
, . . . , ydi1 , . . . , y

1
ik
, . . . , ydik) that was introduced for a constraint θ = R(xi1 , . . . , xik) in φ.

It therefore suffices to show that

C |= θI
(
g(y1

i1), . . . , g(ydi1), . . . , g(y1
ik

), . . . , g(ydik)
)
.

By assumption, R(f(xi1), . . . , f(xik)) holds in B. By the choice of c1
1, . . . , c

d
n, this shows that

R(h(c1
i1
, . . . , cdi1), . . . , h(c1

ik
, . . . , cdik)) holds in C. By the definition of interpretations, this is

the case if and only if θI(c
1
i1
, . . . , cdi1 , . . . , c

1
ik
, . . . , cdik) holds in C, which is what we had to

show.

In many hardness proofs we use Theorem 4.14 in the following way.

Corollary 4.15. Let B be a finite relational structure. If there is a primitive positive inter-
pretation of K3 in B, then CSP(B) is NP-hard.

37

Proof. This is a direct consequence of Theorem 4.14 and the fact that CSP(K3) is NP-hard
(see, e.g., [42]).

Indeed, K3 is one of the most expressive finite structures, in the following sense.

Theorem 4.16. If n ≥ 3 then every finite structure has a primitive positive interpretation
in Kn.

Proof. Let A be a finite τ -structure with the domain A = {1, . . . , k}. Our interpretation I of
A in Kn is 2k-dimensional. The domain formula δI(x1, . . . , xk, x

′
1, . . . , x

′
k) expresses that for

exactly one i ≤ k we have xi = x′i. Note that this formula is preserved by all permutations of
{1, . . . , k}. We will see in Proposition 5.12 that every such formula is equivalent to a primitive
positive formula over Kn. Equality is interpreted by the formula

=I (x1, . . . , xk, x
′
1, . . . , x

′
k, y1, . . . , yk, y

′
1, . . . , y

′
k) :=

k∧
i=1

(
(xi = x′i)⇔ (yi = y′i)

)
Note that =I defines an equivalence relation on the set of all 2k-tuples (u1, . . . , uk, u

′
1, . . . , u

′
k)

that satisfy δI . The coordinate map sends this tuple to i if and only if ui = u′i. When R ∈ τ is
m-ary, then the formula R(x1, . . . , xm)I is any primitive positive formula which is equivalent
to the following disjunction of conjunctions with 2mk variables x1,1, . . . , xm,k, x

′
1,1, . . . , x

′
m,k:

for each tuple (t1, . . . , tm) ∈ RA the disjunction contains the conjunct
∧
i≤m xi,ti = x′i,ti ; again,

Proposition 5.12 implies that such a primitive positive formula exists.

Primitive positive interpretations can be composed: if

• C1 has a d1-dimensional pp-interpretation I1 in C2, and

• C2 has an d2-dimensional pp-interpretation I2 in C3,

then C1 has a natural (d1d2)-dimensional pp-interpretation in C3, which we denote by I1 ◦ I2.
To formally describe I1 ◦ I2, suppose that the signature of Ci is τi for i = 1, 2, 3, and that
I1 = (d1, S1, h1) and I2 = (d2, S2, h2). When φ is a primitive positive τ2-formula, let φI2
denote the τ3-formula obtained from φ by replacing each atomic τ2-formula ψ in φ by the
τ3-formula ψI2 . Note that φI2 is again primitive positive. The coordinate map of I1 ◦ I2 is
defined by

(a1
1, . . . , a

1
d2 , . . . , a

d1
1 , . . . , a

d1
d2

) 7→ h1

(
h2(a1

1, . . . , a
1
d2), . . . , h2(ad11 , . . . , a

d1
d2

)
)
.

Two pp-interpretations I1 and I2 of B in A are called homotopic3 if the relation

{(x̄, ȳ) | I1(x̄) = I2(ȳ)}

of arity d1 + d2 is pp-definable in A. Note that idC is a pp-interpretation of C in C, called the
identity interpretation of C (in C).

Definition 4.17. Two structures A and B with an interpretation I of B in A and an in-
terpretation J of A in B are called mutually pp-interpretable. If both I ◦ J and J ◦ I are
homotopic to the identity interpretation (of A and of B, respectively), then we say that A
and B are primitively positively bi-interpretable (via I and J).

3We follow the terminology from [2].

38

4.7 Reduction to Binary Signatures

In this section we prove that every structure C with a relational signature of maximal arity
m ∈ N is primitively positively bi-interpretable with a binary structure B, i.e., a relational
structure where every relation symbol has arity at most two. Moreover, if C has a finite
signature, then B can be chosen to have a finite signature, too. It follows from Theorem 4.14
that every CSP is polynomial-time equivalent to a binary CSP. This transformation is known
under the name dual encoding [32, 35]. We want to stress that the transformation works for
relational structures with domains of arbitrary cardinality.

A d-dimensional primitive positive interpretation I of B in A is called full if for every
R ⊆ Bk we have that R is primitively positively definable in B if and only if the relation
I−1(R) of arity kd is primitively positively definable in A. Note that every structure with a
primitive positive interpretation in A is a reduct of a structure with a full primitive positive
interpretation in A.

Definition 4.18. Let C be a structure and d ∈ N. Then a d-th full power of C is a structure
D with domain Cd such that the identity map on Cd is a full d-dimensional primitive positive
interpretation of D in C.

In particular, for all i, j ∈ {1, . . . , d} the relation

Ei,j :=
{

((x1, . . . , xd), (y1, . . . , yd)) | x1, . . . , xd, y1, . . . , yd ∈ C and xi = yj
}

is primitively positively definable in D.

Proposition 4.19. Let C be a structure and D a d-th full power of C for d ≥ 1. Then C and
D are primitively positively bi-interpretable.

Proof. Let I be the identity map on Cd which is a full interpretation of D in C. Our in-
terpretation J of C in D is one-dimensional and the coordinate map is the first projection.
The domain formula is true and the pre-image of the equality relation in C under the coordi-
nate map has the primitive positive definition E1,1(x, y). To define the pre-image of a k-ary
relation R of C under the coordinate map it suffices to observe that the k-ary relation

S :=
{

((a1,1, . . . , a1,d), . . . , (ak,1, . . . , ak,d)) | (a1,1, . . . , ak,1) ∈ R
}

is primitively positively definable in D and J(S) = R.
To show that C and D are primitively positive bi-interpretable we prove that I ◦ J and

J ◦ I are pp-homotopic to the identity interpretation. The relation{
(u0, u1, . . . , uk) | u0 = I(J(u1), . . . , J(uk)), u1, . . . , uk ∈ Ck+1

}
has the primitive positive definition

∧
i∈{1,...,k}Ei,1(u0, ui) and the relation{

(v0, v1, . . . , vk) | v0 = J(I(v1, . . . , vk)), v1, . . . , vk ∈ Dk+1
}

has the primitive positive definition v0 = v1.

Note that for every relation R of arity k ≤ d of C, in a d-th full power D of C the unary
relation

R′ := {(a1, . . . , ad) | (a1, . . . , ak) ∈ R}

must be primitively positively definable. We now define a particular full power.

39

Definition 4.20. Let C be a relational structure with maximal arity m and let d ≥ m. Then
the structure B := C[d] with domain Cd is defined as follows:

• for every relation R ⊆ Ck of C the structure B has the unary relation R′ ⊆ B = Cd

defined above, and

• for all i, j ∈ {1, . . . , d} the structure B has the binary relation symbol Ei,j .

It is clear that the signature of B is finite if the signature of C is finite. Also note that
the signature of C[d] is always binary.

Lemma 4.21. Let C be a relational structure with maximal arity m and let d ≥ m. Then the
binary structure C[d] is a full power of C.

Proof. The identity map is a d-dimensional primitive positive interpretation I of B := C[d]

in C. Our interpretation J of C in B is one-dimensional and the coordinate map is the first
projection. The domain formula is true and the pre-image of the equality relation in C under
the coordinate map has the primitive positive definition E1,1(x, y). The pre-image of the
relation R of C under the coordinate map is defined by the primitive positive formula

∃y
(∧
i∈{1,...,k}

E1,i(xi, y) ∧R′(y)
)
.

The proof that I ◦ J and J ◦ I are pp-homotopic to the identity interpretation is as in the
proof of Proposition 4.19.

Corollary 4.22. For every structure C with maximal arity m there exists a structure B with
maximal arity 2 such that B and C are primitively positively bi-interpretable. If the signature
of C is finite, then the signature of B can be chosen to be finite, too.

Proof. An immediate consequence of Lemma 4.21 and Proposition 4.19.

4.8 The Structure-Building Operators H, C, and I

In the previous three sections we have seen several conditions on A and B that imply that
CSP(A) reduces to CSP(B); in this section we compare them. Let C be a class of structures.
We write

1. H(C) for the class of structures homomorphically equivalent to structures in C.

2. C(C) for the class of all structures obtained by expanding a core structure in C by
singleton relations {a}. In the setting of relational structures, they play the role of
constants (which formally are operation symbols of arity 0).

3. I(C) for the class of all structures with a primitive positive interpretation in a structure
from C.

Let D be the smallest class containing C and closed under H, C, and I. Barto, Opršal, and
Pinsker [12] showed that D = H(I(C)). In other words, if there is a chain of applications of the
three operators H, C, and I to derive A from B, then there is also a two-step chain to derive
A from B, namely by interpreting a structure B′ that is homomorphically equivalent to A.
This insight is conceptually important for the CSP since it leads to a better understanding
of the power of the available tools.

40

Proposition 4.23 (from [12]). Suppose that B is a core, and that C is the expansion of B
by a relation of the form {c} for c ∈ B. Then C is homomorphically equivalent to a structure
with a primitive positive interpretation in B. In symbols,

C(C) ⊆ H(I(C)) .

Proof. By Proposition 4.9, the orbit O of c has a primitive positive definition φ(x) in B. We
give a 2-dimensional primitive positive interpretation of a structure A with the same signature
τ as C. The domain formula δI(x1, x2) for A is φ(x2). Let R ∈ τ . If R is from the signature
of B and has arity k then

RA := {((a1, b1), . . . , (ak, bk)) ∈ Ak | (a1, . . . , ak) ∈ RB and b1 = · · · = bk ∈ O}.

Otherwise, RC is of the form {c} and we define RA := {(a, a) | a ∈ O}. It is clear that A has
a primitive positive interpretation in B.

We claim that A and C are homomorphically equivalent. The homomorphism from C to
A is given by a 7→ (a, c):

• if (a1, . . . , ak) ∈ RC = RB then ((a1, c), . . . , (ak, c)) ∈ RA;

• the relation RC = {c} is preserved since (c, c) ∈ RA.

To define a homomorphism h from A to C we pick for each a ∈ O an automorphism
αa ∈ Aut(B) such that αa(a) = c. Note that b ∈ O since B |= δ(a, b), and we define
h(a, b) := αb(a). To check that this is indeed a homomorphism, let R ∈ τ be k-ary, and
let t = ((a1, b1), . . . , (ak, bk)) ∈ RA. Then b1 = · · · = bk =: b ∈ O and we have that
h(t) = (αb(a1), . . . , αb(ak)) is in RC since (a1, . . . , ak) ∈ RB = RC and αb preserves RB = RC.
If RA = {(a, a) | a ∈ O}, then R is preserved as well, because h((a, a)) = αa(a) = c ∈ {c} =
RC.

Theorem 4.24 (from [12]). Suppose that A can be obtained from C by applying H, C, and I.
Then A ∈ H(I(C)). That is, A is homomorphically equivalent to a structure with a primitive
positive interpretation in a structure from C.

Proof. We have to show that H(I(C)) is closed under H, C, and I. Homomorphic equivalence
is transitive so H(H(C)) ⊆ H(C).

We show that if A and B are homomorphically equivalent, and C has a d-dimensional
primitive positive interpretation I1 in B, then C is homomorphically equivalent to a structure
D with a d-dimensional primitive positive interpretation I2 in A. Let h1 : A → B be the
homomorphism from A to B, and h2 the homomorphism from B to A. The interpreting
formulas of I2 are the same as the interpreting formulas of I1; this describes the structure D
up to isomorphism. We claim that the map g1(I2(a1, . . . , ad)) := I1(h1(a1), . . . , h1(ad)) is a
homomorphism from D to C. Indeed, for a k-ary relation symbol from the signature of C and
D, let ((a1

1, . . . , a
1
d), . . . , (a

k
1, . . . , a

k
d)) ∈ RD; hence, the dk-tuple (a1

1, . . . , a
1
d, . . . , a

k
1, . . . , a

k
d)

satisfies the primitive positive defining formula for R(x1
1, . . . , x

k
d), and

(h1(a1
1), . . . , h1(a1

d), . . . , h1(ak1), . . . , h1(akd))

satisfies this formula, too. This in turn implies that

(I1(h1(a1
1), . . . , h1(a1

d)), . . . , I1(h1(ak1), . . . , h1(akd))) ∈ RC.

41

Similarly, g2(I1(b1, . . . , bd)) := I2(h2(b1), . . . , h2(bd)) is a homomorphism from C to D. So we
conclude that

I(H(I(C))) ⊆ H(I(I(C)))

⊆ H(I(C))

because primitive positive interpretability is transitive, too. Finally, Proposition 4.23 shows
that

C(H(I(C))) ⊆ H(I(H(I(C))))

⊆ H(I(C)

where the last inclusion again follows from the observations above.

There are finite structures B all of whose polymorphisms are idempotent such that
H(I(B)) is strictly larger than I(B).

Example 4.25. Let B be the structure with domain (Z2)2 and signature {Ra,b | a, b ∈ Z2}
such that

RB
a,b := {(x, y, z) ∈ ((Z2)2)3 | x+ y + z = (a, b)}.

Let B′ be the reduct of B with the signature τ := {R0,0, R1,0}. Let A be the τ -structure with
domain Z2 such that for a = 0 and a = 1

RA
a,0 := {(x, y, z) ∈ (Z2)3 | x+ y + z = a} .

Now observe that

• (x1, x2) 7→ x1 is a homomorphism from B′ to A, and x 7→ (x, 0) is a homomorphism
from A to B′. Therefore A ∈ H(B′).

• Trivially, B′ ∈ I(B) and consequently A ∈ H(I(B)).

• All polymorphisms of B are idempotent.

We finally show that A /∈ I(B). Suppose for contradiction that there is a pp-interpretation
of A in B with coordinate map c : C → A where C ⊆ Bn is primitive positive definable
in B. The kernel K of c has a primitive positive definition φ in B. The two equivalence
classes of K are pp-definable relations over B, too: the formula ∃x(φ(x, y) ∧Ra,b(x)) defines
the equivalence class of (a, b). But the relations with a primitive positive definition in B are
precisely affine linear subspaces of the vector space (Z2)2, so their cardinality must be a power
of 4. And two powers of 4 cannot add up to a power of 4. 4

We will revisit primitive positive interpretations in Section 7 where we study them from
a universal-algebraic perspective.

42

5 Relations and Operations

5.1 Operation Clones

For n ≥ 1 and a set D (the domain), denote by O
(n)
D the set DDn

:= (Dn → D) of n-ary

functions on D. The elements of O
(n)
D will typically be called the operations of arity n on

D, and D will be called the domain. The set of all operations on D of finite arity will be

denoted by OD :=
⋃
n≥1 O

(n)
D . An operation clone (over D) is a subset C of OD satisfying

the following two properties:

• C contains all projections, that is, for all 1 ≤ k ≤ n it contains the operation πnk ∈ O
(n)
D

defined by πnk (x1, . . . , xn) = xk, and

• C is closed under composition, that is, for all f ∈ C ∩ O
(n)
D and g1, . . . , gn ∈ C ∩ O

(m)
D

it contains the operation f(g1, . . . , gn) ∈ O
(m)
D defined by

(x1, . . . , xm) 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) .

A clone is an abstraction of an operation clone that will be introduced later in the course.
In the literature, operation clones are often called clones, or concrete clones; we prefer to use
the terms ‘operation clone’ and ‘clone’ in analogy to ‘permutation group’ and ‘group’.

If C is an operation clone, then C ′ is called a subclone of C if C ′ is an operation clone
and C ′ ⊆ C . If F is a set of functions, we write 〈F 〉 for the smallest operation clone C
which contains F , and call C the clone generated by F . Note that the set of all clones over
a set B forms a lattice: the meet of two operation clones C and D is their intersection C ∩D
(which is again a clone!); the join of C and D is the clone generated by their union, 〈C ∪D〉.

5.2 Inv-Pol

The most important source of operation clones in this text are polymorphism clones of di-
graphs and, more generally, structures. For simplicity, we only discuss relational structures;
the step to structures that also involve function symbols is straightforward.

Let f be from O
(n)
B , and let R ⊆ Bm be a relation. Then we say that f preserves R (and

that R is invariant under f) if f(r1, . . . , rn) ∈ R whenever r1, . . . , rn ∈ R, where f(r1, . . . , rn)
is calculated componentwise. If B is a relational structure with domain B then Pol(B)
contains precisely those operations that preserve B. It is easy to verify that Pol(B) is an
operation clone. Conversely, if F is a set of operations on B, then we write Inv(F) for the
set of all relations on B that are invariant under all functions in F . It will be convenient
to define the operator Pol also for sets R of relations over B, writing Pol(R) for the set of
operations of OB that preserve all relations from R.

Proposition 5.1. Let B be any relational structure. Then Inv(Pol(B)) contains the set of
all relations that are primitive positive definable in B.

Proof. Suppose that R is k-ary, has a primitive positive definition ψ(x1, . . . , xk), and let f be
an l-ary polymorphism of B. To show that f preserves R, let t1, . . . , tl be k-tuples from R.
Let xk+1, . . . , xn be the existentially quantified variables of ψ. Write si for the n-tuple which
extends the k-tuple ti such that si satisfies the quantifier-free part ψ′(x1, . . . , xk, xk+1, . . . , xn)
of ψ. Then the tuple f(s1, . . . , sl) satisfies ψ′ since f is a polymorphism. This shows that
B |= ψ(f(t1, . . . , tl)) which is what we had to show.

43

Theorem 5.2 (of [20,43]). Let B be a finite relational structure. A relation R has a primitive
positive definition in B if and only if R is preserved by all polymorphisms of B.

Proof. One direction has been shown in Proposition 5.1. For the other direction, let

(a1
1, . . . , a

1
k), . . . , (a

w
1 , . . . , a

w
k)

be an enumeration of R. Let b1, b2, . . . , b` be an enumeration of Bw. Let ψ be the canonical
query of Bw (see Exercise 68 for the definition of Bw and Section 4.2 for the definition of
canonical queries). We claim that the primitive positive formula ψ′(x1, . . . , xk) obtained from
ψ by adding the conjuncts xi = bj if (a1

i , . . . , a
w
i) = bj is a primitive positive definition of

R. Indeed, for every (a1, . . . , ak) ∈ R there exists a j ∈ {1, . . . , w} such that (a1, . . . , ak) =
(bj1, . . . , b

j
k). Then the elements bj1, . . . , b

j
` provide witnesses for the existentially quantified

variables showing that (a1, . . . , ak) = (bj1, . . . , b
j
k) satisfies the formula.

Conversely, suppose that (a1, . . . , ak) satisfies ψ′. Then (a1, . . . , ak) = (bj1, . . . , b
j
k) for some

j ≤ `, and ψ′ contains the conjuncts xi = bj . The witnesses for the existentially quantified
variables b1, . . . , b` define a homomorphism f from Bw to B. Then f is a polymorphism of
B and by assumption preserves R. Since the tuples (a1

1, . . . , a
1
k), . . . , (a

w
1 , . . . , a

w
k) are from R

and f((a1
1, . . . , a

1
k), . . . , (a

w
1 , . . . , a

w
k)) = (a1, . . . , ak), we obtain that (a1, . . . , ak) ∈ R.

Corollary 5.3. The complexity of CSP(B) only depends on Pol(B). If C is such that
Pol(B) ⊆ Pol(C), then CSP(C) reduces in linear time to CSP(B).

Proof. Direct consequence of Theorem 5.2 and Lemma 4.7.

Exercises.

82. Let R+, R∗ be the relations as defined in Exercise 77. Show that R∗ is not primitively
positively definable in the structure (Q;R+, {(x, y) | y ≥ x2}).

5.3 Essentially Unary Clones

We say that an operation f : Bk → B is essentially unary if there is an i ∈ {1, . . . , k} and a
unary operation f0 such that f(x1, . . . , xk) = f0(xi) for all x1, . . . , xk ∈ B. Operations that
are not essentially unary are called essential.4 We say that f depends on argument i if there
are r, s ∈ Bk such that f(r) 6= f(s) and rj = sj for all j ∈ {1, . . . , k} \ {i}.

Lemma 5.4. Let f ∈ OB be an operation. Then the following are equivalent.

1. f is essentially unary.

2. f preserves P 3
B :=

{
(a, b, c) ∈ B3 | a = b or b = c

}
.

3. f preserves P 4
B :=

{
(a, b, c, d) ∈ B4 | a = b or c = d

}
.

4. f depends on at most one argument.

4This is standard in clone theory, and it makes sense also when studying the complexity of CSPs, since the
essential operations are those that are essential for complexity classification.

44

Proof. Let k be the arity of f . The implication from (1) to (2) is obvious, since unary
operations clearly preserve P 3

B.
To show the implication from (2) to (3), we show the contrapositive, and assume that f vio-

lates P 4
B. By permuting arguments of f , we can assume that there are 4-tuples a1, . . . , ak ∈ P 4

B

with f(a1, . . . , ak) /∈ P 4
B and l ≤ k such that in a1, . . . , al the first two coordinates are equal,

and in al+1, . . . , ak the last two coordinates are equal. Let c := (a1
1, . . . , a

l
1, a

l+1
4 , . . . , ak4). Since

f(a1, . . . , ak) /∈ P 4
B we have f(a1

1, . . . , a
k
1) 6= f(a1

2, . . . , a
k
2), and therefore f(c) 6= f(a1

1, . . . , a
k
1)

or f(c) 6= f(a1
2, . . . , a

k
2). Let d = (a1

1, . . . , a
k
1) in the first case, and d = (a1

2, . . . , a
k
2) in

the second case. Likewise, we have f(c) 6= f(a1
3, . . . , a

k
3) or f(c) 6= f(a1

4, . . . , a
k
4), and let

e = (a1
3, . . . , a

k
3) in the first, and e = (a1

4, . . . , a
k
4) in the second case. Then for each i ≤ k, the

tuple (di, ci, ei) is from P 3
B, but (f(d), f(c), f(e)) /∈ P 3

B.
The proof of the implication from (3) to (4) is again by contraposition. Suppose f depends

on the i-th and j-th argument, 1 ≤ i 6= j ≤ k. Hence there exist tuples a1, b1, a2, b2 ∈ Bk

such that a1, b1 and a2, b2 only differ at the entries i and j, respectively, and such that
f(a1) 6= f(b1) and f(a2) 6= f(b2). Then (a1(l), b1(l), a2(l), b2(l)) ∈ P 4

B for all l ≤ k, but
(f(a1), f(b1), f(a2), f(b2)) /∈ P 4

B, which shows that f violates P 4
B.

For the implication from (4) to (1), suppose that f depends only on the first argument.
Let i ≤ k be minimal such that there is an operation g with f(x1, . . . , xk) = g(x1, . . . , xi).
If i = 1 then f is essentially unary and we are done. Otherwise, observe that since f does
not depend on the i-th argument, neither does g, and so there is an (i − 1)-ary operation
g′ such that for all x1, . . . , xn ∈ B we have f(x1, . . . , xn) = g(x1, . . . , xi) = g′(x1, . . . , xi−1),
contradicting the choice of i.

5.4 Minimal Clones

A trivial clone is a clone all of whose operations are projections. Note that it follows from
Lemma 5.4 that for any set B = {b1, . . . , bn} the clone Pol(B;P 4

B, {b1}, . . . , {bn}) is trivial.

Definition 5.5. A clone C is minimal if it is non-trivial, and for every non-trivial E ⊆ C we
have E = C .

Recall that the smallest clone that contains a set of operations F is called the clone
generated by F, and denoted by 〈F〉; if g ∈ 〈F 〉 and F = {f}, then we say that f generates g.

Definition 5.6. An operation f ∈ OB is minimal if f is not a projection and of minimal
arity such that every g generated by f is either a projection or generates f .

The following is straightforward from the definitions.

Proposition 5.7. Every minimal f generates a minimal clone, and every minimal clone is
generated by a minimal operation.

Theorem 5.8. Every non-trivial operation clone C ⊆ OB over a finite set B contains a
minimal operation.

Proof. Consider the set of all clones contained in C , partially ordered by inclusion. From this
poset we remove the trivial clone; the resulting poset will be denoted by P . We use Zorn’s
lemma to show that P contains a minimal element. Observe that in P , all chains (Ci)i∈κ that
are descending, i.e., Ci ⊇ Cj for i < j, are bounded, i.e., for all such chains there exists a D ∈ P
such that Ci ⊇ D for all i ∈ κ. To see this, observe that the set

⋃
i∈κ Inv(Ci) is closed under

45

primitive positive definability in the sense that it is the set of relations that is primitively
positively definable over some relational structure B (since only a finite number of relations
can be mentioned in a formula, and since Inv(Ci) is closed under primitive positive definability,
for each i ∈ κ). Moreover, one of the relations P 4

B, {b1}, . . . , {bn}, for B = {b1, . . . , bn}, is not
contained in

⋃
i∈κ Inv(Ci); otherwise, there would be a j ∈ κ such that Inv(Cj) contains all

these relations, and hence Cj is the trivial clone contrary to our assumptions. Hence, Pol(B)
is a non-trivial lower bound of the descending chain (Ci)i∈κ. By Zorn’s lemma, P contains a
minimal element, and this element contains a minimal operation in C .

Remark 5.9. Note that the statement above would be false if B is infinite: take for example
the clone over the domain B := N of the integers generated by the operation x 7→ x + 1.
Every operation in this clone is essentially unary, and every unary operation in this clone is
of the form x 7→ x + c for c ∈ N. Note that for c > 0, the operation x 7→ x + c generates
x 7→ x+ 2c, but not vice versa, so the clone does not contain a minimal operation.

In the remainder of this section, we show that a minimal operation has one out of the
following five types, due to Rosenberg [65]. An n-ary operation f is called a semiprojection
if there exists an i ≤ n such that f(x1, . . . , xn) = xi whenever |{x1, . . . , xn}| < n. For the
purpose of proving the next lemma, we call an n-ary operation f a weak semiprojection if for
all distinct i, j ∈ {1, . . . , n} there exists an index s(i, j) and a unary non-constant operation
gi,j such that ∀x1, . . . , xn : f(x1, . . . , xn) = gi,j(xs(i,j)) holds whenever xi and xj are the same
variable. In the proof of the following lemma the following notation for weak semiprojections
will be practical. Let f be a weak semiprojection, let S ⊆ {1, . . . , n} be of cardinality at
least two, and let (x1, . . . , xn) be a tuple of variables such that xi = xj for all i, j ∈ S.
Then for some k ∈ {1, . . . , n} it holds that ∀x1, . . . , xn : f(x1, . . . , xn) = gi,j(xk). If k ∈ S
define E(S) := S. Otherwise, define E(S) := {k}. Note that if S ⊆ T ⊆ {1, . . . , n}, then
E(S) ⊆ E(T). Also note that if there exists a k ∈ {1, . . . , n} such that k ∈ E(S) for every
S ⊆ {1, . . . , n} with at least two elements, then f is a quasi semiprojection.

Lemma 5.10. Let f be a weak semiprojection of arity at least n ≥ 4. Then f is a quasi
semiprojection.

Proof. We first show that E({1, 2}) ∩ E({3, 4}) 6= ∅. If E({1, 2, 3, 4}) = {`} for some
` /∈ {1, 2, 3, 4}, then E({1, 2}) = {`} = E({3, 4}) and we are done. So we assume that
E({1, 2, 3, 4}) = {1, 2, 3, 4}. First consider the case that E({1, 2}) = {i} ⊆ {3, 4}. If
E({3, 4}) = {j} ⊆ {1, 2} then f(x, x, y, y, x5, . . . , xn) = g1,2(xi) and f(x, x, y, y, x5, . . . , xn) =
g3,4(xj) for i 6= j, which is a contradiction since g1,2 and g3,4 are non-constant. Hence,
E({3, 4}) = {3, 4} and we have found i ∈ E({1, 2}) ∩ E({3, 4}). Similarly we can treat the
case that that E({3, 4}) = {i} ⊆ {1, 2}. If E({1, 2}) = {1, 2} and E({3, 4}) = {3, 4} then
f(x, x, y, y, x5, . . . , xn) = g1,2(x) because of E({1, 2}) ⊆ {1, 2} and f(x, x, y, y, x5, . . . , xn) =
g3,4(y) because of E({3, 4}) ⊆ {3, 4}, which is a contradiction since g1,2 and g3,4 are non-
constant.

Let i ∈ E({1, 2}) ∩ E({3, 4}). Note that if i /∈ {1, 2}, then E({1, 2}) = {i}. Similarly,
if i /∈ {3, 4} then E({3, 4}) = {i}. We therefore have a set S ⊆ {1, . . . , n} of size two with
E(S) = {i}. Let T ⊆ {1, . . . , n} be of cardinality at least two. We will show that i ∈ E(T).
Observe that if T ⊆ {1, . . . , n} \ {i}, then E(T) = E({1, . . . , n} \ {i}) = E(S) = {i}. Now
suppose that T = {i, j} for some j ∈ {1, . . . , n} \ {i}. Then {1, . . . , n} \ T has at least two
elements (since n ≥ 4). We can therefore apply the argument from the first paragraph, up

46

to renaming argument, to conclude that E({i, j})∩E({1, . . . , n} \ {i, j}) contains an element
k. If k /∈ {i, j}, then E({1, . . . , n} \ {i, j}) = {1, . . . , n} \ {i, j}, which is in contradiction
to E({1, . . . , n} \ {i}) = {i}. Hence, E({i, j}) = {i, j}. This implies that E(T) = T for all
T ⊆ {1, . . . , n} of cardinality at least 2 containing i. We conclude that i ∈ E(T) for every
T ⊆ {1, . . . , n} with at least two elements, so f is a semiprojection.

Theorem 5.11 (Rosenberg’s five types theorem). Let f be a minimal operation. Then f has
one of the following types:

1. a unary operation, which is either a permutation such that fp(x) = x, for some prime
p, or satisfies f(f(x)) = f(x) for all x;

2. a binary idempotent operation;

3. a majority operation;

4. a minority operation;

5. a k-ary semiprojection, for k ≥ 3, which is not a projection.

Proof. The statement is easy to prove if f is unary. If f is at least binary, then f̂ (see
Exercise 37) must be the identity by the minimality of f , and hence f is idempotent. In
particular, we are done if f is binary. If f is ternary, we have to show that f is majority,
Maltsev, or a semiprojection. By minimality of f , the binary operation f1(x, y) := f(y, x, x)
is a projection, that is, f1(x, y) = x or f1(x, y) = y. Note that in particular f(x, x, x) = x.
Similarly, the other operations f2(x, y) := f(x, y, x), and f3(x, y) := f(x, x, y) obtained by
identifications of two variables must be projections. We therefore distinguish eight cases.

1. f(y, x, x) = x, f(x, y, x) = x, f(x, x, y) = x.
In this case, f is a majority.

2. f(y, x, x) = x, f(x, y, x) = x, f(x, x, y) = y.
In this case, f is a semiprojection.

3. f(y, x, x) = x, f(x, y, x) = y, f(x, x, y) = x.
In this case, f is a semiprojection.

4. f(y, x, x) = x, f(x, y, x) = y, f(x, x, y) = y.
The operation g(x, y, z) := f(y, x, z) is a Maltsev operation.

5. f(y, x, x) = y, f(x, y, x) = x, f(x, x, y) = x.
In this case, f is a semiprojection.

6. f(y, x, x) = y, f(x, y, x) = x, f(x, x, y) = y.
In this case, f is a Maltsev operation.

7. f(y, x, x) = y, f(x, y, x) = y, f(x, x, y) = x.
The operation g(x, y, z) := f(x, z, y) is a Maltsev operation.

8. f(y, x, x) = y, f(x, y, x) = y, f(x, x, y) = y.
In this case, f is a Maltsev operation.

47

We claim that if f is a Maltsev operation, then either it is a minority operation (and we
are done) or it generates a Majority operation. Indeed, if f is not a minority then mini-
mality of f implies that f(x, y, x) = x. Now consider the function g defined by g(x, y, z) =
f(x, f(x, y, z), z). We have

g(x, x, y) = f(x, f(x, x, y), y) = f(x, y, y) = x

g(x, y, x) = f(x, f(x, y, x), x) = f(x, x, x) = x

g(y, x, x) = f(y, f(y, x, x), x) = f(y, y, x) = x .

Note that every ternary function generated by a majority is again a majority. Also note that
a function cannot be a majority and a minority at the same time unless the domain has only
one element, so we obtain in this case a contradiction to the minimality of f .

Finally, let f be k-ary, where k ≥ 4. By minimality of f , the operations obtained from f
by identifications of arguments of g must be projections. The lemma of Świerczkowski implies
that f is a semiprojection.

Proposition 5.12. For all n ≥ 3, the graph Kn is projective (i.e., all idempotent polymor-
phisms of Kn are projections). All relations that are preserved by Sym({0, . . . , n − 1}) are
primitive positive definable in Kn.

This provides for example a solution to Exercise 75.

Proof. By Theorem 5.8, it suffices to show that the clone of idempotent polymorphisms of Kn

does not contain a minimal operation. Hence, by Theorem 5.11, we have to verify that Pol(Kn)
does not contain a binary idempotent, a Maltsev, a majority, or a k-ary semiprojection for
k ≥ 3.

1. Let f be a binary idempotent polymorphism of Kn.

Observation 1. f(u, v) ∈ {u, v}: otherwise, i := f(u, v) is adjacent to both u and v,
but f(i, i) = i is not adjacent to i, in contradiction to f being a polymorphism.

Observation 2. If f(u, v) = u, then f(v, u) = v: this is clear if u = v, and if u 6= v it
follows from f being a polymorphism.

By Observation 1, it suffices to show that there cannot be distinct u, v and distinct u′, v′

such that f(u, v) = u and f(u′, v′) = v′. Suppose for contradiction that there are such
u, v, u′, v′.

Case 1. u = u′. Since f(u, v′) = f(u′, v′) = v′, we have f(v′, u) = u by Observation 2.
This is in contradiction to f(u, v) = u since u = u′ is adjacent to v′, and E(v, u).

Case 2. u 6= u′.
Case 2.1. f(u′, u) = u: this is impossible because f(u, v) = u, E(u, u′), and E(u, v).
Case 2.2. f(u′, u) = u′: this is impossible because f(v′, u′) = u′, E(u′, v′), and E(u′, u).

2. Since (1, 0), (1, 2), (0, 2) ∈ E(Kn), but (0, 0) /∈ E(Kn), the graph Kn has no Maltsev
polymorphism (it is not rectangular; see Section 3.3).

3. If f is a majority, note that f(0, 1, 2) = f(x0, x1, x2) where xi is some element distinct
from i if f(0, 1, 2) = i, and xi := f(0, 1, 2) otherwise. But (i, xi) ∈ E(Kn), so f is not a
polymorphism of Kn.

48

4. Finally, let f be a k-ary semiprojection for k ≥ 3 which is not a projection. Suppose
without loss of generality that f(x1, . . . , xk) = x1 whenever |{x1, . . . , xk}| < k (other-
wise, permute the arguments of f). Since f is not a projection, there exist pairwise
distinct a1, . . . , ak ∈ V (Kn) such that c := f(a1, . . . , ak) 6= a1. Let b1, . . . , bk be such
that bi is any element of V (Kn) \ {c} if c = ai, and bi := c otherwise. Note that b1 = a1

since c 6= a1, and that f(b1, . . . , bk) = b1 = a1 because f is a semiprojection. But
(ai, bi) ∈ E(Kn) for all i ≤ k, so f is not a polymorphism of Kn.

The second part of the statement follows from Theorem 5.2.

5.5 Schaefer’s Theorem

Schaefer’s theorem states that every CSP for a 2-element structure is either in P or NP-hard.
By the general results in Section 5.2, most of the classification arguments in Schaefer’s article
follow from earlier work of Post [64], who classified all clones on a two-element domain. We
present a short proof of Schaefer’s theorem here.

Note that on Boolean domains, there is precisely one minority operation, and precisely
one majority operation.

Theorem 5.13 (Post [64]). Every minimal operation on {0, 1} is among one of the following:

• a unary constant function.

• the unary function x 7→ 1− x.

• the binary function (x, y) 7→ min(x, y).

• the binary function (x, y) 7→ max(x, y).

• the Boolean minority operation.

• the Boolean majority operation.

Proof. If f is unary the statement is trivial, so let f be a minimal at least binary idempotent
function above C . There are only four binary idempotent operations on {0, 1}, two of which
are projections and therefore cannot be minimal. The other two operations are min and
max. Next, note that a semiprojection of arity at least three on a Boolean domain must be a
projection. Thus, Theorem 5.11 implies that f is the majority or a minority operation.

A Boolean relation R ⊆ {0, 1}n is called affine if it is the solution space of a system of
linear equalities modulo 2.

Lemma 5.14. A Boolean relation is affine if and only if it is preserved by the Boolean
minority operation.

Proof. This statement follows from basic facts in linear algebra. Let R be n-ary. We view
R as a subset of the Boolean vector space {0, 1}n. It is well-known that affine spaces are
precisely those that are closed under affine combinations, i.e., linear combinations of the form
α1x1 + · · ·+αkxk such that α1 + · · ·+αk = 1. In particular, if R is affine then it is preserved
by (x1, x2, x3) 7→ x1 + x2 + x3 which is the minority operation. Conversely, if R is preserved
by the minority operation, then x1 + · · ·+ xk, for odd k, can be written as

minority(x1, x2,minority(x3, x4, . . .minority(xn−2, xk−1, xk) . . .))

and hence R is preserved by all affine combinations, and thus affine.

49

It is well-known and easy to see (see, for example, [15]) that for every relation R ⊆ {0, 1}n
there exists a propositional formula φ(x1, . . . , xn) that defines R, and that φ can even be
chosen to be in conjunctive normal form (CNF). That is, there is a conjunction of disjunctions
of variables or negated variables from x1, . . . , xn such that a tuple (t1, . . . , tn) ∈ {0, 1}n is in
R if and only if the formula φ evaluates to true after replacing xi by ti, for i ∈ {1, . . . , n}.
The following definition is useful for proving that certain Boolean relations R can be defined
in syntactically restricted propositional logic.

Definition 5.15. When φ is a propositional formula in CNF that defines a Boolean relation
R, we say that φ is reduced if the following holds: whenever we remove a literal from a clause
in φ, then the resulting formula no longer defines R.

Clearly, every Boolean relation has a reduced definition: simply remove literals from any
definition in CNF until the formula becomes reduced. A propositional formula in CNF is
called Horn if every clause contains at most one positive literal.

Lemma 5.16. A Boolean relation R has a Horn definition if and only if R is preserved by
min.

Proof. It is easy to see that min preserves every relation defined by clauses that contains at
most one positive literal, and hence every relation with a Horn definition. Conversely, let R
be a Boolean relation preserved by min. Let φ be a reduced propositional formula in CNF
that defines R. Now suppose for contradiction that φ contains a clause C with two positive
literals u and v. Since φ is reduced, there is an assignment s1 that satisfies φ such that
s1(u) = 1, and such that all other literals of C evaluate to 0. Similarly, there is a satisfying
assignment s2 for φ such that s2(v) = 1 and all other literals of C evaluate to 0. Then
s0 : x 7→ min(s1(x), s2(y)) does not satisfy C, and does not satisfy φ, in contradiction to the
assumption that min preserves R.

A binary relation is called bijunctive if it can be defined by a propositional formula in
CNF where each disjunction has at most two disjuncts.

Lemma 5.17. A Boolean relation R is bijunctive if and only if it is preserved by the Boolean
majority operation.

Proof. It is easy to see that the majority operation preserves every Boolean relation of arity
two, and hence every bijunctive Boolean relation. We present the proof that if R is preserved
by majority, and φ is a reduced definition of R, then all clauses C have at most two literals.
Suppose for contradiction that C has three literals l1, l2, l3. Since φ is reduced, there must be
satisfying assignments s1, s2, s3 to φ such that under si all literals of C evaluate to 0 except for
li. Then the mapping s0 : x 7→ majority(s1(x), s2(x), s3(x)) does not satisfy C and therefore
does not satisfy φ, in contradiction to the assumption that majority preserves R.

The following relation is called the (Boolean) not-all-equal relation.

NAE := {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

Theorem 5.18 (Schaefer [66]). Let B be a structure over the two-element universe {0, 1}.
Then either ({0, 1}; NAE) has a primitive positive definition in B, and CSP(B) is NP-
complete, or

50

1. B is preserved by a constant operation.

2. B is preserved by min. Equivalently, every relation of B has a definition by a proposi-
tional Horn formula.

3. B is preserved by max. Equivalently, every relation of B has a definition by a dual-
Horn formula, that is, by a propositional formula in CNF where every clause contains
at most one negative literal.

4. B is preserved by the majority operation. Equivalently, every relation of B is bijunctive.

5. B is preserved by the minority operation. Equivalently, every relation of B can be
defined by a conjunction of linear equations modulo 2.

In case (1) to case (5), then for every finite-signature reduct B′ of B the problem CSP(B′)
can be solved in polynomial time.

Proof. If Pol(B) contains a constant operation, then we are in case one; so suppose in the
following that this is not the case. If NAE is primitive positive definable in B, then CSP(B)
is NP-hard by reduction from positive not-all-equal-3SAT [42]. Otherwise, by Theorem 5.2
there is an operation f ∈ Pol(B) that violates NAE. If f̂ defined as x 7→ f(x, . . . , x) equals the
identity then f is idempotent. Otherwise, f̂ equals ¬. But then ¬f ∈ Pol(B) is idempotent
and also violates NAE. So let us assume in the following that f is idempotent. Then f
generates an at least binary minimal operation g ∈ Pol(B).

By Theorem 5.13, the operation g equals min, max, the Boolean minority, or the Boolean
majority function.

• g = min or g = max. By Lemma 5.16, the relations of B are preserved by min if and
only if they can be defined by propositional Horn formulas. It is well-known that positive
unit-resolution is a polynomial-time decision procedure for the satisfiability problem of
propositional Horn-clauses [67]. The case that g = max is dual to this case.

• g = majority. By Lemma 5.17, the relations of B are preserved by majority if and only
if they are bijunctive. Hence, in this case the instances of CSP(B) can be viewed as
instances of the 2SAT problem, and can be solved in linear time [3].

• g = minority. By Lemma 5.14 every relation of B has a definition by a conjunction of
linear equalities modulo 2. Then CSP(B) can be solved in polynomial time by Gaussian
elimination.

This concludes the proof of the statement.

Exercises.

83. The Rosenberg theorem is only a preclassification in the sense that not every operation
which has one of the five types is minimal. For each of the following five questions,
either present a proof or give a counterexample.

(a) Is every unary operation which is a permutation such that fp(x) = x for some
prime p, or satisfies f(f(x)) = f(x), minimal?

(b) Is every binary idempotent operation minimal?

51

(c) Is every majority operation minimal?

(d) Is every minority operation minimal?

(e) Is every k-ary semiprojection, for k ≥ 3, which is not a projection, minimal?

84. Determine the complexity of the following CSPs.

CSP({0, 1}; {(0, 0, 1, 1), (1, 1, 0, 0)})
CSP({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, {(0, 1), (1, 0)})
CSP({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {(0, 1), (1, 0)}).

85. Show that a Boolean relation R ⊆ {0, 1}k can be defined by a propositional Horn formula
if and only if it is primitively positively definable in ({0, 1}; {0, 1}3\{(1, 1, 0)}, {0}, {1}).

6 Maltsev Polymorphisms

Recall from Section 3.3 the definition of a Maltsev operation: a ternary operation f : D3 → D
satisfying

∀x, y ∈ D. f(y, x, x) = f(x, x, y) = y .

As we have seen in Theorem 3.18, every digraph with a Maltsev polymorphism can be solved
by the path-consistency procedure. However, when considering arbitrary relational structures
then there are many examples with a Maltsev polymorphism that cannot be solved by the
path-consistency procedure [4]. In this section, we present the algorithm of Bulatov and
Dalmau for CSP(A) when A is preserved by a Maltsev polymorphism [25].

Theorem 6.1. Let A be a finite structure with finite relational signature and a Maltsev
polymorphism. Then CSP(A) can be solved in polynomial time.

6.1 Examples

The most prominent class of structures A with a Maltsev polymorphism comes from groups.
For any group G, the operation m given by (x, y, z) 7→ x+ y−1 + z is obviously Maltsev and
called an affine Maltsev operation. Note that if the group G is F = (Zp; +, 0) then the k-ary
relations preserved by m are precisely the affine subspaces of F k (with the same argument as
given for Lemma 5.14 in the Boolean case). In this case one can use Gaussian elimination to
solve CSP(A). If G is abelian, then A is called affine Maltsev.

For general finite groups G, and if all relations of A are cosets gH := {gh | h ∈ H} of
subgroups H of Gk, then Feder and Vardi [40] showed how to solve CSP(A) in polynomial time
using a previously known algorithm to find small generating sets for a permutation group.
We will not discuss this approach, but rather present the more general algorithm of Bulatov
and Dalmau which works for all finite structures preserved by a Maltsev polymorphism. First
we have a look at two examples of Maltsev polymorphisms that do not come from groups in
the way described above.

Example 6.2. On the domain {0, 1, 2}, let m be a minority, and define m(x, y, z) = 2
whenever |{x, y, z}| = 3. Note that m preserves the equivalence relation with the equivalence
classes {2} and {0, 1}. Also note that m preserves all relations of the form (for i ∈ {0, 1})

{(2, . . . , 2)} ∪ {(x1, . . . , xn) ∈ {0, 1}n | x1 + x2 + · · ·+ xn = i mod 2} . 4

52

Example 6.3. On the domain {0, 1, 2}, let m be a minority, and define m(x, y, z) = x
whenever |{x, y, z}| = 3. Then m preserves for every permutation π of {0, 1, 2} the relation
{(x, y) | π(x) = y}. Moreover, m preserves the binary relations R that are maximal with the
property that |pr1R|, |pr2R| ≤ 2. 4

Exercises.

86. Check the claims made in Example 6.2. Are all relations that are preserved by m
primitive positive definable over the given relations?

87. Check the claims made in Example 6.3. Are all relations that are preserved by m
primitive positive definable over the given relations?

88. Show that if a Maltsev operation m preserves the digraph {(x, y, z, u) | m′(x, y, z) = u}
of a Malsev operation m′ on the same domain, then m = m′.

6.2 Compact Representations of Relations

Our presentation of the proof closely follows that of Bulatov and Dalmau [25].

Definition 6.4 (Forks and Representations). Let R ⊆ An be a relation.

• A fork of R is a triple (i, a, b) such that there exist s, t ∈ R with (s1, . . . , si−1) =
(t1, . . . , ti−1), si = a, and ti = b. We say that s and t witness (i, a, b).

• R′ ⊆ R is called a representation of R if every fork of R is also a fork of R′.

• A representation R′ of R is called compact if its cardinality is at most twice the number
of forks of R.

Clearly, every relation has a compact representation.

Definition 6.5. For i1, . . . , ik ∈ {1, . . . , n}, we write pri1,...,ik for the function from An → Ak

defined by pri1,...,ik(t) := (ti1 , . . . , tik).

If R ⊆ An, we write pri1,...,ik(R) for {pri1,...,ik(t) | t ∈ R}. For an operation m : Ak → A
and a relation R on A, we write 〈R〉m for the smallest relation that contains R and is preserved
by m.

Lemma 6.6. Let A be a finite set and let m : A3 → A be a Maltsev operation. Let R ⊆ Ak

be a relation preserved by m, and let R′ be a representation of R. Then R = 〈R′〉m.

Proof. We show by induction on i ∈ {1, . . . , n} that pr1,...,i〈R′〉m = pr1,...,i(R). Clearly,
pr1,...,i〈R′〉m ⊆ pr1,...,i(R), so we only need to show the converse inclusion. The case i = 1
follows from that fact that R has for every t ∈ R the fork (1, t1, t1), and since R′ must also
have this fork it must contain a tuple t′ such that t′1 = t1.

So let us assume that the statement holds for i < n. We have to show that for every
t ∈ R we have (t1, . . . , ti+1) ∈ pr1,...,i+1〈R′〉m. By induction hypothesis there exists a tuple
s ∈ 〈R′〉m such that (s1, . . . , si) = (t1, . . . , ti). Then (i+ 1, si+1, ti+1) is a fork of R, so there
exist tuples s′, s′′ ∈ R′ witnessing it. Then the tuple t′ := m(s, s′, s′′) ∈ 〈R′〉m is such that

(t′1, . . . , t
′
i, t
′
i+1) = (m(t1, s

′
1, s
′′
1), . . . ,m(ti, s

′
i, s
′′
i),m(si+1, si+1, ti+1))

= (t1, . . . , ti, ti+1) (since s′i = s′′i).

Hence, (t1, . . . , ti, ti+1) is a tuple from pr1,...,i+1〈R′〉m, as required.

53

Procedure Nonempty(R′, i1, . . . , ik, S).

Set U := R′.
While ∃r, s, t ∈ U such that pri1,...,ik m(r, s, t) /∈ pri1,...,ik U :

Set U := U ∪ {m(r, s, t)}
If ∃t ∈ U such that (ti1 , . . . , tik) ∈ S then return t
else return ‘No’.

Figure 7: The procedure Nonempty.

Exercises.

89. Let A be a finite set. How many forks does the n-ary relation R := An have? Explicitly
construct a compact representation for R.

90. Let R be the relation {(x, y, z, u) ∈ {0, 1}4 | x + y + z = 1 mod 2}. Find a smallest
possible representation R′ for R. Explicitly compute 〈R′〉m where m is the Boolean
minority.

6.3 The Bulatov-Dalmau Algorithm

Let ∃x1, . . . , xn(φ1 ∧ · · · ∧ φn) be an instance of CSP(A). For ` ≤ n, we write R` for the
relation

{(s1, . . . , sn) ∈ An | A |= (φ1 ∧ · · · ∧ φ`)(s1, . . . , sn)}.

The idea of the algorithm is to inductively construct a compact representation R′` of R`,
adding constraints one by one. Initially, for ` = 0, we have R` = An, and it is easy to
come up with a compact representation for this relation. Note that when we manage to
compute the compact representation R′n for Rn, we can decide satisfiability of the instance: it
is unsatisfiable if and only if R′n is empty. For the inductive step, we need a procedure called
Next which is more involved; we first introduce two auxiliary procedures.

The procedure Nonempty

The procedure Nonempty receives as input

• a compact representation R′ of a relation R,

• a sequence i1, . . . , ik of elements in [n] where n is the arity of R, and

• a k-ary relation S which is also preserved by m.

The output of the procedure is either a tuple t ∈ R such that (ti1 , . . . , tik) ∈ S, or ‘No’ if no
such tuple exists. The procedure can be found in Figure 7. For its correctness we note the
following:

• R′ ⊆ U ⊆ R: initially we start from U := R′ ⊆ R, and only add tuples to U obtained
by applying m to tuples in U , so the added tuples are again in R.

54

• It follows that if Nonempty returns a tuple (ti1 , . . . , tik), then this tuple is indeed from
pri1,...,ik R and the output of the algorithm is correct.

• When the algorithm exits the while loop then pri1,...,ik〈U〉m = pri1,...,ik U . Since R′ ⊆ U
we have that 〈U〉m = R. Hence, every tuple t ∈ pri1,...,ik R = pri1,...,ik〈U〉m is contained
in pri1,...,ik U , and so the answer of the algorithm is also correct when it returns ‘No’.

We mention that this procedure does not use the particular properties of a Maltsev poly-
morphism, but works for any explicitly given polymorphism.

Running time. The number of iterations of the while loop can be bounded by the size
|U | of the set U at the end of the execution of the procedure. Hence, when we want to use this
procedure to obtain a polynomial-time running time, we have to make sure that the size of U
remains polynomial in the input size. The way this is done in the Bulatov-Dalmau algorithm
is to guarantee that at each call of Nonempty the size L of pri1,...,ik R is polynomial in the
input size. Then |U | is bounded by L+ |R′| which is also polynomial.

We have to test all tuples r, s, t ∈ U ; this can be implemented so that |U |3 steps suffice.
In each step we have to compute m(r, s, t) and test whether pri1,...,ik m(r, s, t) ∈ pri1,...,ik U ,
which can be done in O(kL). In the important case that L is bounded by a constant in the
size of the input N , the running time of Nonempty is in O(N4).

The procedure Fix-values

The procedure Fix-values receives as input

• a compact representation R′ of an n-ary relation R preserved by m, and

• a sequence c1, . . . , ck ∈ A for k ≤ n.

The output of Fix-values is a compact representation of the relation

R ∩ ({c1} × · · · × {ck} ×A× · · · ×A).

The procedure can be found in Figure 8. The algorithm computes inductively a compact
representation Uj of the relation

Rj = R ∩ ({c1} × · · · × {cj} ×A× · · · ×A)

This is immediate for U0 = R′, and the set Uk is the relation that we have to compute.
For its correctness, suppose inductively that Uj is a compact representation of Rj . We

have to show that the set Uj+1 computed by the procedure is a compact representation of
Rj+1:

1. Uj+1 ⊆ Rj+1. Suppose that the procedure adds {r,m(r, s, t)} to Uj+1, where r and s
witness the fork (i, a, b) of Uj processed in the for-loop of the procedure. Note that
r ∈ Rj+1 since r ∈ Uj ⊆ Rj and rj+1 = cj+1. Since m preserves R and is idempotent,
it also preserves Rj , and since r, s, t ∈ Rj it follows that m(r, s, t) ∈ Rj . To show that
m(r, s, t) ∈ Rj+1 it suffices to show that sj+1 = tj+1 because then m(r, s, t)j+1 = rj+1 =
cj+1 since m is Maltsev. If i > j + 1 then we have that sj+1 = tj+1 since s, t witness
(i, a, b). Otherwise, we must have a = b = ci because of the innermost if-clause of the
procedure. But then s = t by the stipulation of the algorithm on the choice of s and t.

55

Procedure Fix-values(R′, c1, . . . , ck).

Set j := 0; Uj := R′.
While j < k do:

Set Uj+1 := ∅.
For each (i, a, b) ∈ [n]×A2:

If ∃s, t ∈ Uj witnessing (i, a, b) (assuming s = t if a = b):
If r := Nonempty(Uj , j + 1, i, {(cj+1, a)}) 6= ‘No’

If (i > j + 1) or (a = b = ci):
Set Uj+1 := Uj+1 ∪ {r,m(r, s, t)}

Set j := j + 1.
Return Uk.

Figure 8: The procedure Fix-values.

2. All forks (i, a, b) of Rj+1 are forks of Uj+1. If Rj+1 has the fork (i, a, b), then by
inductive assumption Uj must contain witnesses s, t for (i, a, b). Therefore, the first
if-clause of the procedure is positive. Moreover, sj+1 = cj+1 and si = a, so r :=
Nonempty(Uj , j+1, i, {(cj+1, a)}) 6= ‘No’. Also note that if i ≤ j+1, then a = si = ci =
ti = b. So all the if-clauses of the procedure are positive, and the procedure adds r and
m(r, s, t) to Uj+1. The tuples r and m(r, s, t) witness (i, a, b). Since s, t witness (i, a, b)
we have that (s1, . . . , si−1) = (t1, . . . , ti−1). Hence, pr1,...,i−1(m(r, s, t)) = (r1, . . . , ri−1).
Furthermore, we have that pri(m(r, s, t)) = m(a, a, b) = b.

3. The representation Uj+1 of Rj+1 is compact since at most two tuples are added to Uj+1

for each fork of Rj+1.

Running time. The while loop is performed k ≤ n times; the inner for-loop is executed
for each (i, a, b) ∈ [n]×A2, which is linear for fixed A. The cost of each iteration is dominated
by the cost of calling the procedure Nonempty. Note that when calling Nonempty, the size of
prj+1,i Uj is polynomial in the input size (even constant size when A is fixed), so the cost of
Nonempty is in O(N4) where N is the size of the input. Therefore, the total time complexity
of the procedure Fix-values is polynomial in the input size (for fixed A it is in O(N5)).

The procedure Next

Now comes the heart of the algorithm, which is the procedure Next that updates a compact
representation of the solution space when constraints are added one by one. The input of the
procedure is

• a compact representation R′ of a relation R ⊆ An that is preserved by m,

• a sequence i1, . . . , ik of elements from [n],

• a k-ary relation S which is also preserved by m.

The output of the procedure is a compact representation of the relation

R∗ := {t ∈ R | (ti1 , . . . , tik) ∈ S}.

56

Procedure Next(R′, i1, . . . , ik, S).

Set U := ∅.
For each (i, a, b) ∈ [n]×A2:

If Nonempty(R′, i1, . . . , ik, i, S × {a}) =: t 6= ‘No’:
If Nonempty(Fix-values(R′, t1, . . . , ti−1), i1, . . . , ik, i, S × {b}) =: t′ 6= ‘No’:

Set U := U ∪ {t, t′}.
Return Uk.

Figure 9: The procedure Next.

The procedure Next can be found in Figure 9. Observe that

• the condition Nonempty(R′, i1, . . . , ik, i, S × {a}) 6= ‘No’ from the first if-clause is sat-
isfied if and only if there exists a tuple t ∈ R such that (ti1 , . . . , tik) ∈ S and ti = a.
Hence, if such a tuple does not exist, then (i, a, b) cannot be a fork of R∗, and nothing
needs to be done.

• the condition Nonempty(Fix-values(R′, t1, . . . , ti−1), i1, . . . , ik, i, S × {b}) 6= ‘No’ from
the second if-clause is satisfied if and only if there exists a tuple t′ ∈ R such that

– (t′1, . . . , t
′
i−1) = (t1, . . . , ti−1),

– (t′i1 , . . . , t
′
ik

) ∈ S, and

– t′i = b.

If this condition holds, and since ti = a, we have that t and t′ witness (i, a, b). It only
remains to show that if (i, a, b) is a fork of R∗, then such a tuple t′ must exist. So let
r and s be witnesses for (i, a, b) in R∗. Then the tuple t′ := m(t, r, s) has the desired
properties:

– for j < i we have that t′j = m(tj , rj , sj) = tj ;

– t′ ∈ S because (ri1 , . . . , rik), (si1 , . . . , sik), (ti1 , . . . , tik) ∈ S and m preserves S.

– t′i = m(ti, ri, si) = m(a, a, b) = b.

• The cardinality of U is bounded by twice the number of forks of R∗, so the representation
computed by the algorithm is compact.

Running time. The for-loop of the procedure Next is performed n|A|2 times and the cost
of each iteration is polynomial in the cost of Nonempty and Fix-values. Also note that k is
bounded by the maximal arity of the relations in A, so constant for fixed A. It follows that
pri1,...,ik,i(R) is polynomial, so the running time of the calls to Nonempty are polynomial. For
fixed A, the global running time of the procedure Next is in O(N6) where N is the size of the
input.

Proof of Theorem 6.1. Starting from an empty list of constraints, we add constraints on the
variables x1, . . . , xn one by one, and maintain a compact representation of the n-ary relation
defined by the constraints considered so far. Initially, we start with a compact representation

57

of the full relation An. In later steps, we use the procedure Next to compute a compact
representation when a constraint is added, in O(N6) for fixed A and N the size of the input.
The instance is unsatisfiable if and only if at the final stage we end up with an empty
representation. The entire running time of the algorithm is in O(N7).

Exercises.

91. Let A be the structure ({0, 1};L0, L1) where Li := {(x, y, z) | x + y + z = i mod 2},
which has the Boolean minority m as polymorphism. Consider the instance

∃x1, . . . , x5

(
L1(x1, x2, x3) ∧ L1(x2, x3, x4) ∧ L1(x3, x4, x5) ∧ L0(x1, x3, x5)

)
Compute compact representations R′` of R`, for ` ∈ {1, 2, 3, 4}.

92. (∗) Let B be a structure with a Maltsev polymorphism f and an infinite relational
signature. Note that we have defined CSP(B) only if B has a finite signature. If we
want to define CSP(B) also for structures B with an infinite signature, it is important
to discuss how the relation symbols in the signature of B are represented in the input.
We choose to represent a relation symbol R from B by listing the tuples in RB. Adapt
the Dalmau algorithm such that it can solve CSP(B) in polynomial time for this choice
of representing the relations in B.

93. (∗) The graph isomorphism problem (GI) is a famous computational problem that is
neither known to be solvable in polynomial time, nor expected to be NP-hard. An
instance of GI consists of two graphs G and H, and the question is to decide whether G
and H are isomorphic. Consider the variant of the graph-isomorphism problem where
the vertices are coloured, each color appears at most k times for some constant k, and
the isomorphism between H and G that we are looking for is required to additionally
preserve the colours. Show that this problem can be solved in polynomial time using
Dalmau’s algorithm (use the previous exercise).

7 Universal Algebra

7.1 Algebras and Clones

In universal algebra, an algebra is simply a structure with a purely functional signature. We
will typically use bold font letters, like A, to denote algebras, and the corresponding capital
roman letters, like A, to denote their domain.

Example 7.1 (Group). A group is an algebra with a binary function symbol ◦ for com-
position, a unary function symbol −1 for taking the inverse, and a constant denoted by e,
satisfying

• ∀x, y, z. x ◦ (y ◦ z) = (x ◦ y) ◦ z,

• ∀x. x ◦ x−1 = e,

• ∀x. e ◦ x = x, and ∀x. x ◦ e = x.

58

Note that all axioms are universal in the sense that all the variables are universally quantified
(more on that comes later). The group is called abelian if it additionally satisfies

∀x, y. x ◦ y = y ◦ x. 4

Example 7.2 (Ring). A (commutative) ring is an algebra A with the signature {·,+,−, 0, 1}
where ·,+ are binary, − is unary, and 0, 1 are constants, such that (A; +,−, 0) is an abelian
group and additionally

∀x, y, z. (xy)z = x(yz) (associativity)

∀x. 1 · x = x (multiplicative unit)

∀x, y. xy = yx (commutativity)

∀x, y, z. x(y + z) = xy + xz (distributivity) 4

Example 7.3 (Module). Let R be a ring. An R-module is an algebra M with the signature
{+,−, 0} ∪ {fr | r ∈ R} such that (M ; +,−, 0) is an abelian group and

∀x, y. fr(x+ y) = fr(x) + fr(y) holds for every r ∈ R
∀x. fr+s(x) = fr(x) + fs(x) holds for all r, s ∈ R
∀x. fr(fs(x)) = frs(x) holds for all r, s ∈ R.

An R-module is called unitary if it additionally satisfies ∀x.f1(x) = x. 4

Example 7.4 (Semilattice). A meet-semilattice S is a {≤}-structure with domain S such
that ≤S denotes a partial order where any two u, v ∈ S have a (unique) greatest lower bound
u ∧ v, i.e., an element w such that w ≤ u, w ≤ v, and for all w′ with w′ ≤ u and w ≤ v we
have w′ ≤ w. Dually, a join-semilattice is a partial order with least upper bounds, denoted by
u ∨ v. A semilattice is a meet-semilattice or a join-semilattice where the distinction between
meet and join is either not essential or clear from the context.

Semilattices can also be characterised as {∧}-algebras where ∧ is a binary operation that
must satisfy the following axioms

∀x, y, z : x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity)

∀x, y : x ∧ y = y ∧ x (commutativity)

∀x : x ∧ x = x (idempotency, or idempotence).

Clearly, the operation ∧S, defined as above in a semilattice S viewed as a poset, satisfies
these axioms. Conversely, if (S;∧) is a semilattice, then the formula x ∧ y = x defines a
partial order on S which is a meet-semilattice (and x ∧ y = y defines a partial order on S
which is a join-semilattice).

Note that the two ways of formalising semilattices differ when it comes to the notion of a
substructure; a subsemilattice is referring to the substructure of a semilattice when formalised
as an algebraic structure. 4

Example 7.5 (Lattice). A lattice L is a {≤}-structure with domain L such that ≤L denotes
a partial order such that any two u, v ∈ L have a largest lower bound u∧ v and a least upper
bound, denoted by u ∨ v. Lattices can also be characterised as {∧,∨}-algebras where ∧ and
∨ are semilattice operations (Example 7.4) that additionally satisfy

∀x, y : x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption).

59

If L is a lattice and the operations ∧ and ∨ are defined as above for semilattices, then these
two operations also satisfy the absorption axiom. Conversely, if we are given an algebra
(S;∧,∨) satisfying the mentioned axioms, then the formula x ∧ y = x (equivalently, the
formula x∨y = y) defines a partial order on S which is a lattice. Of course, there is potential
danger of confusion of the symbols for lattice operations ∧ and ∨ with the propositional
connectives ∧ for conjunction and ∨ for disjunction (which can be seen as lattice operations
on the set {0, 1}) which luckily should not cause trouble here. A lattice L = (L;∧,∨) is called
distributive if it satisfies

∀x, y : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributivity). 4

The clone of an algebra. If A is an algebra with the signature τ , then a τ -term t(x1, . . . , xn)
gives rise to a term function tA : An → A; the value of tA at a1, . . . , an ∈ A can be obtained
by replacing the variables x1, . . . , xn by a1, . . . , an and evaluating in A.

Example 7.6. If A is a group, then the term function for the term (x ◦ y−1) ◦ z is a Maltsev
operation on A. 4
Example 7.7. If t(x1, x2) is the term that just consists of the variable x1, then tA equals
the projection π2

1. 4
Algebras give rise to clones in the following way. We denote by Clo(A) the set of all term

functions of A. Clearly, Clo(A) is an operation clone since it is closed under compositions,
and contains the projections.

Polymorphism algebras. In the context of complexity classification of CSPs, algebras
arise as follows.

Definition 7.8. Let B be a relational structure with domain B. An algebra B with domain
B such that Clo(B) = Pol(B) is called a polymorphism algebra of B.

Note that a structure B has many different polymorphism algebras, since Definition 7.8
does not prescribe how to assign function symbols to the polymorphisms of B.

Any clone C on a set D can be viewed as an algebra A with domain D whose signature
consists of the operations of C themselves; that is, if f ∈ C, then fA := f . We will therefore use
concepts defined for algebras also for clones. In particular, the polymorphism clone Pol(B) of
a structure B might be viewed as an algebra, which we refer to as the polymorphism algebra
of B. Note that the signature of the polymorphism algebra is always infinite, since we have
polymorphisms of arbitrary finite arity.

7.2 Subalgebras, Products, Homomorphic Images

In this section we recall some basic universal-algebraic facts that will be used in the following
subsections.

Subalgebras. Let A be a τ -algebra with domain A. A τ -algebra B with domain B ⊆ A is
called a subalgebra of A if for each f ∈ τ of arity k we have fB(b1, . . . , bk) = fA(b1, . . . , bk)
for all b1, . . . , bk ∈ B; in this case, we write B ≤ A. A subuniverse of A is the domain of some
subalgebra of A. The smallest subuniverse of A that contains a given set S ⊆ A is called the
subuniverse of A generated by S, and the corresponding subalgebra is called the subalgebra
of A generated by S.

60

Products. Let A,B be τ -algebras with domain A and B, respectively. Then the prod-
uct A × B is the τ -algebra with domain A × B such that for each f ∈ τ of arity k we
have fA×B

(
(a1, b1), . . . , (ak, bk)

)
=
(
fA(a1, . . . , ak), f

B(b1, . . . , bk)
)

for all a1, . . . , ak ∈ A and
b1, . . . , bk ∈ B. More generally, when (Ai)i∈I is a sequence of τ -algebras, indexed by some set
I, then

∏
i∈I Ai is the τ -algebra A with domain

∏
i∈I Ai such that fA

(
(a1
i)i∈I , . . . , (a

k
i)i∈I

)
=(

fAi(a1
i , . . . , a

k
i)
)
i∈I for a1

i , . . . , a
k
i ∈ Ai.

Lemma 7.9. Let A be the polymorphism algebra of a finite structure A. Then the (domains
of the) subalgebras of Ak are precisely the relations that have a primitive positive definition
in A.

Proof. A relation R ⊆ Ak is a subalgebra of Ak if and only if for all m-ary f in the signature
of A and t1, . . . , tm ∈ R, we have

(
f(t11, . . . , t

m
1), . . . , f(t1k, . . . , t

m
k)
)
∈ R, which is the case if

and only if R is preserved by all polymorphisms of A, which is the case if and only if R is
primitive positive definable in A by Theorem 5.2.

Homomorphic Images. Let A and B be τ -algebras. Then a homomorphism from A to
B is a mapping h : A→ B such that for all k-ary f ∈ τ and a1, . . . , ak ∈ A we have

h
(
fA(a1, . . . , ak)

)
= fB

(
h(a1), . . . , h(ak)

)
.

Note that if h is a homomorphism from A to B then the image of h is the domain of a
subalgebra of B; this subalgebra is called a homomorphic image of A.

Definition 7.10. A congruence of an algebra A is an equivalence relation that is preserved
by all operations in A.

Lemma 7.11. Let B be a finite structure, and B be a polymorphism algebra of B. Then the
congruences of B are exactly the primitive positive definable equivalence relations over B.

Proof. A direct consequence of Theorem 5.2.

Proposition 7.12 (see [29]). Let A be an algebra. Then E is a congruence of A if and only
if E is the kernel of a homomorphism from A to some other algebra B.

Example 7.13. Let G = (V,E) be the undirected graph with V = {a1, . . . , a4, b1, . . . , b4}
such that a1, . . . , a4 and b1, . . . , b4 induce a clique, for each i ∈ {1, . . . , 4} there is an edge
between ai and bi, and otherwise there are no edges in G. Let A be a polymorphism algebra
of G. Then A homomorphically maps to a two-element algebra B. By Proposition 7.12, it
suffices to show that A has a congruence with two equivalence classes. By Lemma 7.11, it
suffices to show that an equivalence relation of index two is primitive positive definable. Here
is the primitive positive definition:

∃u, v
(
E(x, u) ∧ E(y, u) ∧ E(x, v) ∧ E(y, v) ∧ E(u, v)

)
The equivalence classes of this relation are precisely {a1, . . . , a4} and {b1, . . . , b4}. 4

Example 7.14. Let A be the algebra with domainA := S3 =
{

id, (231), (312), (12), (23), (13)
}

(the symmetric group on three elements), and a single binary operation, the composition func-
tion of permutations. Note that A has the subalgebra induced by

{
id, (123), (321)}. Also

note that A homomorphically maps to ({0, 1},+) where + is addition modulo 2: the preimage
of 0 is {id, (123), (321)} and the preimage of 1 is {(12), (23), (13)}. 4

61

When A is a τ -algebra, and h : A → B is a mapping such that the kernel of h is a
congruence of A, we define the quotient algebra A/h of A under h to be the algebra with
domain h(A) where

fA/h(h(a1), . . . , h(ak)) = h(fA(a1, . . . , ak))

where a1, . . . , ak ∈ A and f ∈ τ is k-ary. This is well-defined since the kernel of h is preserved
by all operations of A. Note that h is a surjective homomorphism from A to A/h. The
following is well known (see e.g. Theorem 6.3 in [29]).

Lemma 7.15. Let A and B be algebras with the same signature, and let h : A → B be a
homomorphism. Then the image of any subalgebra A′ of A under h is a subalgebra of B, and
the preimage of any subalgebra B′ of B under h is a subalgebra of A.

Proof. Let f ∈ τ be k-ary. Then for all a1, . . . , ak ∈ A′,

fB(h(a1), . . . , h(ak)) = h(fA(a1, . . . , ak)) ∈ h(A′) ,

so h(A′) is a subalgebra of B. Now suppose that h(a1), . . . , h(ak) are elements of B′; then
fB(h(a1), . . . , h(ak)) ∈ B′ and hence h(fA(a1, . . . , ak)) ∈ B′. So, fA(a1, . . . , ak) ∈ h−1(B′)
which shows that h−1(B′) induces a subalgebra of A.

7.3 Pseudovarieties and Varieties

Varieties are a fascinatingly powerful concept to study classes of algebras. The fundamental
result about varieties is Birkhoff’s theorem, which links varieties with equational theories
(Section 7.4). By Birkhoff’s theorem, there is also a close relationship between varieties and
the concept of an abstract clone (Section 7.5).

If K is a class of algebras of the same signature, then

• P(K) denotes the class of all products of algebras from K.

• Pfin(K) denotes the class of all finite products of algebras from K.

• S(K) denotes the class of all subalgebras of algebras from K.

• H(K) denotes the class of all homomorphic images of algebras from K.

Note that closure under homomorphic images implies in particular closure under isomorphism.
For the operators P, Pfin, S and H we often omit the brackets when applying them to single
singleton classes that just contain one algebra, i.e., we write H(A) instead of H({A}). The
elements of HS(A) are also called the factors of A.

A class V of algebras with the same signature τ is called a pseudovariety if V contains all
homomorphic images, subalgebras, and direct products of algebras in V, i.e., H(V) = S(V) =
Pfin(V) = V. The class V is called a variety if V also contains all (finite and infinite) prod-
ucts of algebras in V. So the only difference between pseudovarieties and varieties is that
pseudovarieties need not be closed under direct products of infinite cardinality. The small-
est pseudovariety (variety) that contains an algebra A is called the pseudovariety (variety)
generated by A.

Lemma 7.16 (HSP lemma). Let A be an algebra.

62

• The pseudovariety generated by A equals HSPfin(A).

• The variety generated by A equals HSP(A).

Proof. Clearly, HSPfin(A) is contained in the pseudovariety generated by A, and HSP(A) is
contained in the variety generated by A. For the converse inclusion, it suffices to verify that
HSPfin(A) is closed under H, S, and Pfin. It is clear that H(HSPfin(A)) = HSPfin(A). The
second part of Lemma 7.15 implies that S(HSPfin(A)) ⊆ HS(SPfin(A)) = HSPfin(A). Finally,

Pfin(HSPfin(A)) ⊆ H Pfin S Pfin(A) ⊆ HSPfin Pfin(A) = HSPfin(A) .

The proof that HSP(A) is closed under H, S, and P is analogous.

Pseudo-varieties are linked to the logic concepts from Section 4.

Theorem 7.17. Let C be a finite structure with polymorphism algebra C. Then B ∈ I(C) if
and only if there exists B ∈ HSPfin(C) such that Clo(B) ⊆ Pol(B).

Proof. We only prove the ‘if’ part of the statement here; the proof of the ‘only if’ part is
similarly easy. There exists a finite number d ≥ 1, a subalgebra D of Cd, and a surjective
homomorphism h from D to B. We claim that B has a primitive positive interpretation I of
dimension d in C. All operations of C preserve D (viewed as a d-ary relation over C), since D
is a subalgebra of Cd. By Theorem 5.2, this implies that D has a primitive positive definition
δ(x1, . . . , xd) in C, which becomes the domain formula δI of I. As coordinate map we choose
the mapping h. Since h is an algebra homomorphism, the kernel K of h is a congruence
of D. It follows that K, viewed as a 2d-ary relation over C, is preserved by all operations
from C. Theorem 5.2 implies that K has a primitive positive definition in C. This definition
becomes the formula =I . Finally, let R be a relation of B and let f be a function symbol
from the signature of B. By assumption, fB preserves R. It is easy to verify that then fC

preserves h−1(R). Hence, all polymorphisms of C preserve h−1(R), and the relation h−1(R)
has a primitive positive definition in C (Theorem 5.2), which becomes the defining formula
for the atomic formula R(x1, . . . , xk) in I. This concludes our construction of the primitive
positive interpretation I of B in C.

Exercices.

94. LetB be a subuniverse of an algebra A generated by S ⊆ A. Show that an element a ∈ A
belongs to B if and only if there exists a term t(x1, . . . , xk) and elements s1, . . . , sk ∈ S
such that a = tA(s1, . . . , sk).

95. Show that the operators HS and SH are distinct.

96. Show that the operators SP and PS are distinct.

7.4 Birkhoff’s Theorem

A sentence in a functional signature is called an identity if it is of the form

∀x1, . . . , xn : s = t

where s and t are τ -terms. We present Birkhoff’s theorem for the special case of varieties
generated by a single finite algebra.

63

Theorem 7.18 (Birkhoff [13]; see e.g. [50] or [29]). Let τ be a functional signature, and A
and B finite algebras with signature τ . Then the following are equivalent.

1. All identities that hold in B also hold in A;

2. A ∈ HSPfin(B);

3. A ∈ HSP(B).

Proof. Trivially, 2. implies 3. To show that 3. implies 1., let φ = ∀x1, . . . , xn. s = t be an
identity that holds in B. Then φ is preserved in powers A = BI of B. To see this, let
a1, . . . , an ∈ A be arbitrary. Since B |= φ we have sB(a1[j], . . . , an[j]) = tB(a1[j], . . . , an[j])
for all j ∈ I, and thus sA(a1, . . . , an) = tA(a1, . . . , an) by the definition of products. Since
a1, . . . , an were chosen arbitrarily, we have A |= φ. Moreover, φ is true in subalgebras of
algebras that satisfy φ (this is true for universal sentences in general). Finally, suppose that
B is an algebra that satisfies φ, and µ is a surjective homomorphism from B to some algebra
A. Let a1, . . . , an ∈ A; by surjectivity of µ we can choose b1, . . . , bn such that µ(bi) = ai for
all i ≤ n. Then

sB(b1, . . . , bn) = tB(b1, . . . , bn)⇒ µ(sB(b1, . . . , bn)) = µ(tB(b1, . . . , bn))

⇒ tA(µ(b1), . . . , µ(bn)) = sA(µ(b1), . . . , µ(bn))

⇒ tA(a1, . . . , an) = sA(a1, . . . , an) .

1. implies 2.: Let a1, . . . , ak be the elements of A, define m := |B|k, and let C be Bk.
Let c1, . . . , cm be the elements of C; write ci for (c1

i , . . . , c
m
i). Let S be the smallest subal-

gebra of Bm that contains c1, . . . , ck; so the elements of S are precisely those of the form
tB

m
(c1, . . . , ck), for a k-ary τ -term t. Define µ : S → A by

µ(tB
m

(c1, . . . , ck)) := tA(a1, . . . , ak).

Claim 1: µ is well-defined. Suppose that tB
m

(c1, . . . , ck) = sB
m

(c1, . . . , ck); then tB = sB

by the choice of S, and by assumption we have tA(a1, . . . , ak) = sA(a1, . . . , ak).
Claim 2: µ is surjective. For all i ≤ k, the element ci is mapped to ai.
Claim 3: µ is a homomorphism from S to A. Let f ∈ τ be of arity n and let s1, . . . , sn ∈ S.

For i ≤ n, write si = tSi (c1, . . . , ck) for some τ -term ti. Then

µ
(
fS(s1, . . . , sn)

)
=µ
(
fS(tS1 (c1, . . . , ck), . . . , t

S
n(c1, . . . , ck))

)
=µ
(
fS(tS1 , . . . , t

S
n)(c1, . . . , ck)

)
=µ
(
(f(t1, . . . , tn))S(c1, . . . , ck)

)
=
(
f(t1, . . . , tn)

)A
(a1, . . . , ak)

= fA
(
tA1 (a1, . . . , ak), . . . , t

A
n (a1, . . . , ak)

)
= fA(µ(s1), . . . , µ(sn)).

Therefore, A is the homomorphic image of the subalgebra S of Bm, and so A ∈ HSPfin(B).

Theorem 7.18 is important for analysing the constraint satisfaction problem for a structure
B, since it can be used to transform the ‘negative’ statement of not interpreting certain finite
structures into a ‘positive’ statement of having polymorphisms satisfying non-trivial identities:
this will be the content of Section 7.5 and Section 7.6.

64

7.5 (Abstract) Clones

Clones (in the literature often abstract clones) relate to operation clones in the same way as
(abstract) groups relate to permutation groups: the elements of a clone correspond to the
functions of an operation clone, and the signature contains composition symbols to code how
functions compose. Since an operation clone contains functions of various arities, a clone will
be formalized as a multi-sorted structure, with a sort for each arity.

Definition 7.19. A clone C is a multi-sorted structure with sorts {C(i) | i ∈ N} and the
signature {πki | 1 ≤ i ≤ k} ∪ {compkl | k, l ≥ 1}. The elements of the sort C(k) will be called
the k-ary operations of C. We denote a clone by

C = (C(0), C(1), . . . ; (πki)1≤i≤k, (compkl)k,l≥1)

and require that πki is a constant in C(k), and that compkl : C(k)×(C(l))k → C(l) is an operation
of arity k + 1. Moreover, it holds that

compkk(f, π
k
1 , . . . , π

k
k) = f (1)

compkl (π
k
i , f1, . . . , fk) = fi (2)

compkl
(
f, compml (g1, h1, . . . , hm), . . . , compml (gk, h1, . . . , hm)

)
=

compml
(

compkm(f, g1, . . . , gk), h1, . . . , hm
)
. (3)

The final equation generalises associativity in groups and monoids, and we therefore refer
to it by associativity. We also write f(g1, . . . , gk) instead of compkl (f, g1, . . . , gk) when l is
clear from the context. So associativity might be more readable as

f(g1(h1, . . . , hm), . . . , gk(h1, . . . , hm)) = f(g1, . . . , gk)(h1, . . . , hm) .

Every operation clone C gives rise to an abstract clone C in the obvious way: πki ∈ C(k)

denotes the k-ary i-th projection in C , and compkl (f, g1, . . . , gk) ∈ C(l) denotes the composed
function (x1, . . . , xl) 7→ f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) ∈ C .

Example 7.20. ∀x1, x2 : f(x1, x2) = f(x2, x1) holds in an algebra A if and only if

Clo(A) |= comp2
2(fA, π2

1, π
2
2) = comp2

2(fA, π2
2, π

2
1). 4

In the following, we will also use the term ‘abstract clone’ in situations where we want to
stress that we are working with a clone and not with an operation clone.

Definition 7.21. Let C and D be clones. A function ξ : C → D is called a (clone) homo-
morphism if

• ξ preserves arities of functions, i.e., ξ(C(i)) ⊆ D(i) for all i ∈ N;

• ξ((πki)C) = (πki)D for all 1 ≤ i ≤ k;

• ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)) for all n,m ≥ 1, f ∈ C(n), and g1, . . . , gn ∈
C(m).

Example 7.22. We write Proj for the abstract clone of an algebra with at least two elements
all of whose operations are projections; note that any such algebra has the same abstract clone
(up to isomorphism), and that Proj has a homomorphism into any other clone. 4

65

Example 7.23. All abstract clones of an algebra on a one-element are isomorphic, too, but
of course not isomorphic to Proj. Any clone homomorphically maps to this trivial clone. 4

Proposition 7.24 (Formulation of Birkhoff’s theorem for clones). Let C and D be operation
clones on finite sets. Then the following are equivalent.

1. There is a surjective clone homomorphism from C to D ;

2. there are algebras A and B with the same signature τ such that Clo(A) = D , Clo(B) =
C , and all universal conjunctive τ -sentences that hold in B also hold in A;

3. there are algebras A and B with the same signature such that Clo(A) = D , Clo(B) = C ,
and A ∈ HSPfin(B) (equivalently, A ∈ HSP(B)).

In the study of the complexity of CSPs, the equivalence between (1) and (3) in the above
is the most relevant, since (3) is related to our most important tool to prove NP-hardness
of CSPs (because of the link between pseudovarieties and primitive positive interpretations
from Theorem 7.17), and since (1) is the universal-algebraic property that will be used in the
following (see e.g. Theorem 7.30 below).

The following lemma is central for our applications of abstract clones when studying the
complexity of CSPs.

Lemma 7.25. Let C be a clone and let F be the clone of a finite algebra such that there
is no clone homomorphism from C to F. Then there is a primitive positive sentence in the
language τ of (abstract) clones that holds in C but not in F.

Proof. Let E be the expansion of C by constant symbols such that every element e of E is
named by a constant ce. Let V be the set of atomic sentences that hold in E. Let U be the
first-order theory of F. Suppose that U ∪ V has a model M. There might be elements in M
outside of

⋃
iM

(i). But the τ -reduct of the restriction of M to
⋃
iM

(i) must be isomorphic
to F, since each of the M (i) is finite; we identify it with F. Note that for all constants ce we
have that cMe ∈ F. Since M satisfies all atomic formulas that hold in E, we have that the
mapping e 7→ cMe , for e an element of E, is a homomorphism from C to F, in contradiction
to our assumptions.

So U∪V is unsatisfiable, and by compactness of first-order logic there exists a finite subset
V ′ of V such that V ′ ∪U is unsatisfiable. Replace each of the new constant symbols in V ′ by
an existentially quantified variable; then the conjunction of the resulting sentences from V is
a primitive positive sentence, and it must be false in F.

A set of identities Σ is called trivial if there exists an algebra A that satisfies Σ and
Clo(A) is isomorphic to Proj.

Corollary 7.26. Let A be an algebra. If there is no clone homomorphism from Clo(A) to
Proj, then there exists a non-trivial finite set of identities that holds in A.

7.6 Taylor Terms

The following goes back to Walter Taylor [70]. We slightly deviate from the historic definition
in that we do not require idempotency – this allows us to give stronger formulations of several
results in the following.

66

Definition 7.27 (Taylor operations). A function f : Bn → B, for n ≥ 2, is called a Taylor
operation if for each 1 ≤ i ≤ n there are variables z1, . . . , zn, z

′
1, . . . , z

′
n ∈ {x, y} with zi 6= z′i

such that for all x, y ∈ B

f(z1, . . . , zn) = f(z′1, . . . , z
′
n) .

Examples for Taylor operations are binary commutative operations, majority operations,
and Maltsev operations. We do not insist on idempotency for Taylor operations; so also quasi
majority operations (Exercise 54) are examples of Taylor operations. Note that an n-ary
operation f is Taylor if and only if it satisfies a set of n equations that can be written as

f

x ? ? · · · ?

? x ?
...

... ?
. . .

. . .
...

...
. . . x ?

? · · · · · · ? x

= f

y ? ? · · · ?

? y ?
...

... ?
. . .

. . .
...

...
. . . y ?

? · · · · · · ? y

where f is applied row-wise and ? stands for either x or y.

Definition 7.28 (Taylor terms). Let B be a τ -algebra. A Taylor term of B is a τ -term
t(x1, . . . , xn), for n ≥ 2, such that tB is a Taylor operation.

Note that a term t(x1, . . . , xn) is a Taylor term in B if and only if Clo(B) |= Φn(tB),
where Φn(f) is the sentence∧

i≤n
∃z, z′ ∈ {π2

1, π
2
2}n

(
zi 6= z′i ∧ compn2 (f, z1, . . . , zn) = compn2 (f, z′1, . . . , z

′
n)
)
. (4)

The following lemma is entirely obvious and I don’t know why the formal proof is so long,
there must be a better way of presenting it (if giving a proof is necessary at all).

Lemma 7.29. Φn(f) is equivalent to∧
i≤n
∃v, v′ ∈ {πn1 , . . . , πnn}n

(
vi 6= v′i ∧ compnn(f, v1, . . . , vn) = compnn(f, v′1, . . . , v

′
n)
)
.

Proof. Let i ∈ {1, . . . , n} be arbitrary. Suppose that z, z′ ∈ {π2
1, π

2
2}n are as in Equation 1.

Then define v, v′ ∈ {πn1 , . . . , πnn}n as follows: if zj = π2
k for k ∈ {1, 2}, then vj := πnk , and

similarly if z′j = π2
k for k ∈ {1, 2}, then v′j := πnk . Then v and v′ witness that the formula

given in the statement is true: zi 6= z′i implies that vi 6= v′i. Moreover, compn2 (f, z1, . . . , zi) =
compn2 (f, z′1, . . . , z

′
n) implies that

comp2
n(compn2 (f, z1, . . . , zn), πn1 , π

n
2) = comp2

n(compn2 (f, z′1, . . . , z
′
n), πn1 , π

n
2)

We compute

comp2
n(compn2 (f, z1, . . . , zn), πn1 , π

n
2)

= comp2
n(f, comp2

n(z1, π
n
1 , π

n
2), . . . , comp2

n(zn, π
n
1 , π

n
2))

= compnn(f, v1, . . . , vn)

67

and similarly comp2
n(compn2 (f, z′1, . . . , z

′
n), πn1 , π

n
2) = compnn(f, v′1, . . . , v

′
n) and hence

compnn(f, v1, . . . , vn) = compnn(f, v′1, . . . , v
′
n)

as required.
Conversely, let i ≤ n, and suppose that v, v′ ∈ {πn1 , . . . , πnn}n are as in the formula above.

Define z, z′ ∈ {π2
1, π

2
2}n as follows. If vj = vi define zj := π2

1, and zj := π2
2 otherwise.

Similarly, if v′j = v′i then z′j := π2
1, and z′j := π2

2 otherwise. Then z and z′ witness that Φn(f)
is true: since vi 6= v′i we have zi 6= z′i, and

compn2 (compnn(f, v1, . . . , vn), z1, . . . , zn)

= compn2 (f, compn2 (v1, z1, . . . , zn), . . . , compn2 (vn, z1, . . . , zn))

= compn2 (f, z1, . . . , zn)

Similarly, compn2 (compnn(f, v′1, . . . , v
′
n), z′1, . . . , z

′
n) = compn2 (f, z′1, . . . , z

′
n). Hence,

compn2 (f, z1, . . . , zn) = compn2 (f, z′1, . . . , z
′
n)

as required.

Walter Taylor did not just introduce Taylor operations, but he proved a beautiful state-
ment about their existence. The following is a slightly expanded presentation of the proof of
Lemma 9.4 in [49]. An algebra is called idempotent if all of its operations are idempotent.

Theorem 7.30. Let B be an idempotent algebra. Then the following are equivalent.

(1) there is no homomorphism from Clo(B) to Proj;

(2) B has a Taylor term.

Proof. To show the easy implication from (2) to (1), suppose for contradiction that there is
a homomorphism ξ from Clo(B) to Proj. Let f be the element of Clo(B) that is denoted by
tB. By definition of Proj we have ξ(f) = πnl for some l ≤ n. By assumption, B satisfies

∀x, y. t(z1, . . . , zn) = t(z′1, . . . , z
′
n) (5)

for z1, . . . , zn, z
′
1, . . . , z

′
n ∈ {x, y} such that zl 6= z′l. Then Clo(B) satisfies

compn2 (f, π2
i1 , . . . , π

2
in) = compn2 (f, π2

j1 , . . . , π
2
jn) (6)

for i1, . . . , in, j1, . . . , jn ∈ {1, 2} such that il = 1 if and only if zl = x, jl = 1 if and only if
z′l = x, and il 6= jl. Since ξ(f) = πnl we therefore obtain that π2

1 = π2
2, which does not hold

in Proj, a contradiction.
To show the implication from (1) to (2), suppose that Clo(B) does not homomorphically

map to Proj. Then Lemma 7.25 implies that there is a primitive positive sentence in the
language of clones that holds in Clo(B) but not in Proj. Note that by introducing new
existentially quantified variables we can assume that this sentence is of the form ∃u1, . . . , ur. φ
where φ is a conjunction of atoms of the form y = compml (x0, x1, . . . , xm) or of the form y = πml
for y, x0, x1, . . . , xm ∈ {u1, . . . , ur} and l,m ∈ N. For example the equation

comp2
2(u, comp2

2(u, π2
2, π

2
1)) = comp2

2(comp2
2(u, π2

2, π
2
1), u)

68

involving the free variable u is equivalent to

∃u1, u2, u3 (u1 = comp2
2(u, π2

2, π
2
1)

∧ u2 = comp2
2(f, u, u1)

∧ u3 = comp2
2(u, u1, u)

∧ u2 = u3) .

For l,m ∈ N and n = lm we write f ∗ g as a shortcut for

compln(f, compmn (g, πn1 , . . . , π
n
m), . . . , compmn (g, πn(l−1)m+1, . . . , π

n
n)) .

Note that

Clo(B) |=
(
g = compnl (f ∗ g, πl1, . . . , πll , πl1, . . . , πll , . . . , πl1, . . . , πll)

)
(7)

and Clo(B) |=
(
f = compnm(f ∗ g, πl1, . . . , πl1, πl2, . . . , πl2, . . . , πll , . . . , πll)

)
(8)

since B is idempotent. For i ∈ {1, . . . , r}, let ki ∈ N be the arity of ui, and define

u := u1 ∗ (u2 ∗ (. . . (ur−1 ∗ ur) . . .)) . (9)

Observe that for each i we can obtain ui from u by composing u with projections. In order to
formalise this, we need a compact notation for strings of arguments consisting of projection
constants. In this notation, (7) reads as y = compnl (x ∗ y, (1, . . . , l)m), and (8) reads as
x = compnm(x ∗ y, 1m, . . . , lm). Similarly, setting k := k1 · · · kr we have

ui = compkki(u, p̄i) where p̄i := (1k1···ki−1 , . . . , k
k1···ki−1

i)ki+1···kn ∈ {πki1 , . . . , π
ki
ki
}k.

Let n := k2. Then every term of the form

t := compkil (ui, ui1 , . . . , uiki)

can be written as
compnl (u ∗ u, q̄t)

for q̄t ∈ {πl1, . . . , πll}n obtained from p̄i by replacing character l ≤ ki by the string p̄il ; see
Figure 10 for an illustration. Similarly, every term of the form t := ui can be written as
compnki(u ∗ u, q̄

t) for q̄t ∈ {πki1 , . . . , π
ki
ki
}n obtained by k times concatenating p̄i with itself. In

this way, every conjunct of φ of the form

uj = compkikj (ui, ui1 , . . . , uiki)

can we written in the form

compnkj (u ∗ u, q̄
t1) = compnkj (u ∗ u, q̄

t2)

for t1 := uj and t2 := compkikj (ui, ui1 , . . . , uiki). Conjuncts of φ of the form uj = πml can be
rewritten similarly. Let ψ be the conjunction of all these equations; note that φ implies ψ. Let
θ be the formula obtained from ψ by replacing each occurrence of u ∗ u by a variable symbol
f . Note that the sentence ∃f.θ holds in Clo(B). It suffices to show that every f ∈ Clo(B)
that satisfies θ is a Taylor operation.

69

f f

g

x11 x12 x13 x14

u

f f

g

x21 x22 x23 x24

u

f f

g

x31 x32 x33 x34

u

f f

g

x41 x42 x43 x44

u

f f

gu*u

f(g(x,y),g(y,x))

Now Repeat

g(x,y) g(y,x)

f(g(x,y),g(y,x)) f(g(x,y),g(y,x))

x x y y x xy y

Figure 10: An illustration of u ∗ u and u := f ∗ g for the proof of Taylor’s theorem, and how
to recover the composed term f(g(x, y), g(y, x)) from u ∗ u by identifying arguments.

Suppose for contradiction that for ` ∈ {1, . . . , n} there are no v̄, v̄′ ∈ {πm1 , . . . , πmm}n, for
some m ≤ n with v̄` 6= v̄′` such that compnm(f, v̄) = compnm(f, v̄′) (otherwise, f is a Taylor
operation by the argument from Lemma 7.29).

We claim that the assignment ρ that maps us to compnks(π
n
` , q̄

us) = q̄us` , for s ∈ {1, . . . , r},
satisfies all conjuncts of φ, contradicting our assumptions. First note that q̄us` = p̄s`1 where
`1 ∈ {1, . . . , k} is such that ` = (`1 − 1)k + `2 for some `2 ∈ {1, . . . , k}. Indeed, consider a
conjunct of φ

uj = t for t = compkikj (ui, ui1 , . . . , uiki).

By construction, θ contains the conjunct

comp(f, q̄uj) = comp(f, q̄t).

So by assumption we must have

comp(πn` , q̄
uj) = q̄

uj
` = q̄t` = comp(πn` , q̄

t). (10)

Then ρ satisfies this conjunct since

compkikj (ρ(ui), ρ(ui1), . . .) = compkikj (q̄
ui
` , q̄

ui1
` , . . .)

= compkikj (p̄
i
`1 , p̄

i1
`1
, . . .)

= q̄t` (by definition of q̄t)

= q̄
uj
` (by (10))

= ρ(uj)

Lemma 7.31. Let B and C be homomorphically equivalent structures. Then B has a Taylor
polymorphism if and only if C has a Taylor polymorphism.

70

Proof. Let h be a homomorphism from B to C, and g be a homomorphism from C to B.
Suppose that f is a Taylor polymorphism for B of arity n. It suffices to show that the
operation f ′ given by (x1, . . . , xn) 7→ h(f(g(x1), . . . , g(xn))) is a Taylor polymorphism of C.
Indeed, for all i ≤ n we have that

f ′(v1,i, . . . , vn,i) = h
(
f(g(v1,i), . . . , g(vn,i))

)
= h

(
f(g(v′1,i), . . . , g(v′n,i))

)
= f ′(v′1,i, . . . , v

′
n,i)

Lemma 7.32. Let B ∈ C(C) and suppose that C has a Taylor polymorphism. Then B has a
Taylor polymorphism.

Proof. Suppose that C is a core and that B has been obtained by expanding C by adding
unary singleton relations. Let f be the Taylor polymorphism of C. Then f̂ (see Exercise 37)
is an automorphism with inverse i ∈ Pol(C). The function i(f(x, . . . , x)) is a Taylor operation
and idempotent, and therefore a polymorphism of B.

Alternatively, one can prove Lemma 7.32 using the fact that C(C) ⊆ H(I(C)), the obser-
vation that any B′ ∈ I(C) has a Taylor polymorphism, and Lemma 7.31.

Corollary 7.33. Let B be a finite structure. Then the following are equivalent.

• K3 /∈ H(I(B))

• B has a Taylor polymorphism.

Proof. If B has a Taylor polymorphism, then so has any structure in I(B), and so has any
structure in H(I(B)) by Lemma 7.31. But all polymorphisms of K3 are essentially unary
(Proposition 5.12), so K3 /∈ H(I(B)).

Conversely, suppose that K3 /∈ H(I(B)). If B′ is the core of B, and C is the expansion of
B′ by all unary singleton relations, then C(H(B)) ⊆ H(I(B)) implies that K3 is not primitive
positive interpretable in C. Hence, the idempotent clone Pol(C) does not homomorphically
map to Proj. Theorem 7.30 shows that C and thus also B′ must have a Taylor polymorphism.
Lemma 7.31 implies that B has a Taylor polymorphism.

Corollary 7.34. Let B be a finite structure. Then B has a Taylor polymorphism, or CSP(B)
is NP-hard.

Proof. If K3 ∈ H(I(B)) then CSP(B) is NP-hard by Corollary 4.15. Otherwise, B has a
Taylor polymorphism by Corollary 7.33.

7.7 The Tractability Conjecture

The following has been conjectured (in slightly different, but equivalent form) by Bulatov,
Jeavons, and Krokhin in [27], and is known under the name tractability conjecture. Two
solutions to this conjecture have been announced in 2017 by Bulatov [24] and by Zhuk [71].

Conjecture 2 (Tractability Conjecture). Let B be a finite relational structure. If Pol(B)
contains a Taylor polymorphism, then CSP(B) is in P.

71

For idempotent algebras A there is yet another characterisation for the existence of Taylor
polymorphisms that follows from the following result of Bulatov and Jeavons [26] (Proposition
4.14).

Theorem 7.35. Let B be an idempotent algebra. Then HSPfin(B) contains an at least 2-
element algebra all of whose operations are projections if and only if HS(B) does.

Proof. Suppose that C ∈ S(Bd) for some d ∈ N has a congruence K such that all operations
of A := C/K are projections. Let I ⊆ {1, . . . , d} be a maximal set such that for each i ∈ I
there exists bi ∈ B such that the set

C((bi)i∈I) := {c ∈ C | ci = bi for all i ∈ I}

is not contained in a class of K. Note that such a set exists because for I = ∅ we have that
C((bi)i∈I) = C is not contained in one class of K since C/K has at least two elements.

Without loss of generality, we may assume that {1, . . . , d} \ I = {1, . . . , k}. Since B is
idempotent, C((bi)i∈I) is the domain of a subalgebra C′ of C. Let K ′ := K ∩ (C ′)2. All
operations of A′ := C′/K ′ are restrictions of operations in A and hence projections. Let

B′ := {b ∈ B | (b1, . . . , bd) ∈ C ′}.

Then B′ is the domain of a subalgebra B′ of B. The image

K ′′ := {(ck, ek) ∈ (B′)2 | (c, e) ∈ K ′}

of K ′ under the k-th projection is a congruence of B′, and it must have more than one
equivalence class: otherwise there would be b1, . . . , bd, b

′
1, . . . , b

′
k−1 ∈ B such that the tu-

ples (b1, . . . , bk−1, bk, bk+1, . . . , bd) and (b′1, . . . , b
′
k−1, bk, bk+1, . . . , bd) are in different K ′-classes.

But then I ∪ {k} is such that C((bi)i∈I∪{k}) is not contained in one class of K, contradicting
the maximality of I. Therefore, B′/K ′′ ∈ HS(B) is an algebra with at least two elements all
whose operations are projections.

Since the size of the algebras in HS(B) is bounded by the size of B, this leads to an
algorithm that decides whether a given finite structure B satisfies the equivalent conditions
in Theorem 7.30. We summarise various equivalent conditions for finite idempotent algebras
that were treated in this chapter.

Corollary 7.36. Let B be a finite idempotent algebra. Then the following are equivalent.

1. B has a Taylor term.

2. there is no homomorphism from Clo(B) to Proj.

3. B satisfies some non-trivial finite set of identities.

4. HSP(B) does not contain an at least 2-element algebra all of whose operations are
projections.

5. HS(B) does not contain an at least 2-element algebra all of whose operations are pro-
jections.

Proof. The equivalence of (1) and (2) is Theorem 7.30.
The equivalence of (2) and (3) follows from Corollary 7.26.
The equivalence of (2) and (4) follows from Proposition 7.24.
The equivalence of (4) and (5) follows from Theorem 7.18 combined with Theorem 7.35.

72

Exercises.

97. Let A be a finite idempotent algebra. Then there exists an operation f ∈ Clo(A)(k)

such that for every B ⊆ A and every b0 in the subalgebra of A generated by B there
exist b1, . . . , bk ∈ B such that b0 = f(b1, . . . , bk).

8 Undirected Graphs

This section contains a proof of the dichotomy for finite undirected graphs of Hell and Nešetřil,
Theorem 1.5. We prove something stronger, namely that the tractability conjecture (Conjec-
ture 2) is true for finite undirected graphs B [22]. More specifically, the following is true.

Theorem 8.1. Let B be a finite undirected graph. Then either

• B is bipartite (i.e., homomorphic to K2) or has a loop, or

• H(I(B)) contains all finite structures.

Note that in combination with Corollary 7.33, this theorem implies that the tractability
conjecture (Conjecture 2) holds for undirected graphs. This theorem also has a remarkable
consequence in universal algebra, whose significance goes beyond the study of the complexity
of CSPs, and which provides a strengthening of Taylor’s theorem (Theorem 7.30), discovered
by Siggers in 2010 (see Section 8.2).

8.1 The Hell-Nešetřil Theorem

The graph K4 − {0, 1} (a clique with four vertices where one edge is missing) is called a
diamond. A graph is called diamond-free if it does not contain a copy of a diamond as a
(not necessarily induced) subgraph. For every ` ∈ N, the graph (K3)` is an example of a
diamond-free graph.

Lemma 8.2. Let B be a finite undirected loopless graph which is not bipartite. Then B
interprets primitively positively a graph that is homomorphically equivalent to a diamond-free
core containing a triangle.

Proof. For a binary relations R1, R2 ⊂ B2, define R1 ◦R2 to be the binary relation{
(x, y) | ∃z(R1(x, z) ∧R2(z, y))

}
.

For R ⊆ B2 and k ≥ 1, define R1 := R and Rk+1 := Rk ◦ R. Note that Rk is primitively
positively definable in (B;R). We may assume that

1. H(I(B)) does not contain a non-bipartite loopless graph with fewer vertices than B,
since otherwise we could replace B by this graph. In particular, B must then be a core.

2. B = (V ;E) contains a triangle: if the length of the shortest odd cycle in B is k, then
(B;Ek−2) is a graph and contains a triangle, so it can replace B.

Claim 1. Every vertex of B is contained in a triangle: Otherwise, we can replace B by
the subgraph of B induced by set defined by the primitive positive formula ∃u, v (E(x, u) ∧
E(x, v) ∧ E(u, v)) which still contains a triangle, contradicting our first assumption.

73

... ...
a1 ak+1

uk+1

vk+1

an-1

u1

v1

a0 an

Figure 11: Diagram for the proof of Lemma 8.2.

Claim 2. B does not contain a copy of K4. Otherwise, if a is an element from a copy
of K4, then the subgraph of B induced by the set defined by the primitive positive formula
E(a, x) is a non-bipartite graph A, which has strictly less vertices than B because a /∈ A.
Moreover, A is by Theorem 4.24 homomorphically equivalent to a graph with a primitive
positive interpretation in B, contrary to our initial assumption.

Claim 3. The graph B must also be diamond-free. To see this, let R be the binary
relation with the primitive positive definition

R(x, y) :⇔ ∃u, v
(
E(x, u) ∧ E(x, v) ∧ E(u, v) ∧ E(u, y) ∧ E(v, y)

)
and let T be the transitive closure of R. The relation T is clearly symmetric, and since every
vertex of B is contained in a triangle, it is also reflexive, and hence an equivalence relation of
B. Since B is finite, for some n the formula ∃u1, . . . , un

(
R(x, u1)∧R(u1, u2)∧ · · · ∧R(un, y)

)
defines T , showing that T is primitively positively definable in B.

We claim that the graph B/T (see Example 4.12) does not contain loops. It suffices to
show that T ∩ E = ∅. Otherwise, let (a, b) ∈ T ∩ E. Choose (a, b) in such a way that the
shortest sequence a = a0, a1, . . . , an = b with R(a0, a1), R(a1, a2), . . . , R(an−1, an) in B is
shortest possible; see Figure 11. This chain cannot have the form R(a0, a1) because B does
not contain K4 subgraphs. Suppose first that n = 2k is even. Let the vertices u1, v1, uk+1

and vk+1 be as depicted in Figure 11. Let S be the set defined by

∃x1, . . . , xk
(
E(uk+1, x1) ∧ E(vk+1, x1) ∧R(x1, x2) ∧ · · · ∧R(xk−1, xk) ∧ E(xk, x)

)
.

Note that a0, u1, v1 ∈ S form a triangle. If an ∈ S then we obtain a contradiction to the
minimal choice of n. Hence, the subgraph induced by the primitively positively definable set
S is non-bipartite and strictly smaller than B, in contradiction to the initial assumption.

If n = 2k + 1 is odd, we can argue analogously with the set S defined by the formula

∃x1, . . . , xk
(
R(ak+1, x1) ∧R(x1, x2) ∧ · · · ∧R(xk−1, xk) ∧ E(xk, x)

)
and again obtain a contradiction. So we conclude that B/T does not contain loops. It also
follows that B/T contains a triangle, because B contains a triangle.

Thus, the initial assumption on B then implies that T must be the trivial equivalence
relation, which in turn implies that B does not contain any diamonds.

Lemma 8.3 (from [22]). Let B be a diamond-free undirected graph and let h : (K3)k → B be
a homomorphism. Then the image of h is isomorphic to (K3)m for some m ≤ k.

Proof. Let I ⊆ {1, . . . , k} be a maximal set such that ker(h) ⊆ ker(prI). Note that prI is
defined even if I = ∅ (Definition 6.5). Such a set exists, because ker(pr∅) is the total relation.
We claim that ker(h) = ker(prI); this clearly implies the statement.

74

x

y

(z,zk)

(z,z'k)

t

r

(s,xk)

(r, zk)

Figure 12: Diagram for the proof of Lemma 8.3.

By the maximality of I, for every j ∈ {1, . . . , k} \ I there are x, y ∈ (K3)k such that
h(x) = h(y) and xj 6= yj . We have to show that for all z1, . . . , zk, z

′
j ∈ {0, 1, 2}

h(z1, . . . , zj , . . . , zk) = h(z1, . . . , zj−1, z
′
j , zj+1, . . . , zk).

We may suppose that zj 6= xj and z′j = xj . To simplify notation, we assume that j = k. As

we have seen in Exercises 7 and 8, any two vertices in (K3)k have a common neighbour.

• Let r be a common neighbour of x and (z, zk) := (z1, . . . , zk). Note that r and (z, z′k)
are adjacent, too.

• For all i 6= k we choose an element si of K3 that is distinct from both ri and yi. Since
xk is distinct from rk and yk we have that (s, xk) := (s1, . . . , sk−1, xk) is a common
neighbour of r and y.

• The tuple (r, zk) := (r1, . . . , rk−1, zk) is a common neighbour of both x and (s, xk).

• Finally, for i 6= k choose ti to be distinct from zi and ri, and choose tk to be distinct
from zk and from z′k. Then t := (t1, . . . , tk−1, tk) is a common neighbour of (z, zk), of
(z, z′k), and of (r, zk).

The situation is illustrated in Figure 12. Since B is diamond-free, h(x) = h(y) implies that
h(r) = h(r, zk) and for the same reason h(z, zk) = h(z, z′k) which completes the proof.

Lemma 8.4 (from [22]). If a finite diamond-free graph B contains a triangle, then for some
k ∈ N there is a primitive positive interpretation of (K3)k with constants in B.

Proof. We construct a strictly increasing sequence of subgraphs G1 ⊂ G2 ⊂ · · · of B such that
Gi is isomorphic to (K3)ki for some ki ∈ N. Let G1 be any triangle in B. Suppose now that Gi
has already been constructed. If the domain of Gi is primitively positively definable in B with
constants, then we are done. Otherwise, there exists an idempotent polymorphism f of B and
v1, . . . , vk ∈ Gi such that f(v1, . . . , vk) /∈ Gi. The restriction of f to Gi is a homomorphism
from (K3)ki to the diamond-free graph B. Lemma 8.3 shows that Gi+1 := f((Gi)

k) induces
a copy of (K3)ki+1 for some ki+1 ≤ k. Since f is idempotent, we have that Gi ⊆ Gi+1, and
by the choice of f the containment is strict. Since B is finite, for some m the set Gm must
have a primitive positive definition in B with constants.

75

Proof of Theorem 8.1. Let B be a finite undirected graph that is not bipartite. By Lemma 8.2
B interprets primitively positively a graph that is homomorphically equivalent to a diamond-
free core C containing a triangle. Then Lemma 8.4 applied to C implies that for some k ∈ N
there is a primitive positive interpretation of (K3)k with constants in C. Since C is a core, and
since (K3)k is homomorphically equivalent to K3, it follows that there is a primitive positive
interpretation of a structure that is homomorphically equivalent to K3 in C. The structure K3

interprets all finite structures primitive positively (Theorem 4.16), so Theorem 4.24 implies
that H(I(B)) contains all finite structures.

8.2 Siggers Operations of Arity 6

An operation s : B6 → B is called Siggers operation if

s(x, y, x, z, y, z) = s(y, x, z, x, z, y)

holds for all x, y, z ∈ B.

Theorem 8.5 (from [69]). Let B be a finite structure. Then either B interprets all finite
structures up to homomorphic equivalence, or B has a Siggers polymorphism.

Proof. Pick k ≥ 1 and a, b, c ∈ Bk such that {(ai, bi, ci) | i ≤ k} = B3. Let R be the binary
relation on Bk such that (u, v) ∈ R if and only if there exists a 6-ary s ∈ Pol(B) such that
u = s(a, b, a, c, b, c) and v = s(b, a, c, a, c, b). We make the following series of observations.

• The vertices a, b, c ∈ Bk induce in (Bk;R) a copy of K3: each of the six edges of K3 is
witnessed by one of the six 6-ary projections from Pol(B).

• The relation R is symmetric: Suppose that (u, v) ∈ R and let s ∈ Pol(B) be such that
u = s(a, b, a, c, b, c) and v = s(b, a, c, a, c, b). Define s′ ∈ Pol(B) by s′(x1, . . . , x6) :=
s(x2, x1, x4, x3, x6, x5); then

v = s(b, a, c, a, c, b) = s′(a, b, a, c, b, c)

u = s(a, b, a, c, b, c) = s′(b, a, c, a, c, b)

and hence s′ witnesses that (v, u) ∈ R.

• If the graph (Bk;R) contains a loop (w,w) ∈ R, then there exists a 6-ary s ∈ Pol(B)
such that

s(a, b, a, c, b, c) = w = s(b, a, c, a, c, b) .

The operation s is Siggers: for all x, y, z ∈ B there exists an i ≤ k such that (x, y, z) =
(ai, bi, ci), and the above implies that

s(ai, bi, ai, ci, bi, ci) = s(bi, ai, ci, ai, ci, bi)

and we are done in this case.

So we may assume in the following that (Bk;R) is a simple (i.e., undirected and loopless)
graph that contains a copy of K3. The relation R (as a 2k-ary relation over B) is preserved
by Pol(B), and hence (Bk;R) has a primitive positive interpretation in B. By Theorem 8.1
applied to the undirected graph (Bk;R), there is a primitive positive interpretation in (Bk;R)
of all finite structures up to homomorphic equivalence, and hence also in B, and this concludes
the proof.

76

9 Congruence Lattices

Let A be a τ -Algebra. We write Con(A) for the set of all congruences of A (Definition 7.10).
Clearly, Con(A) is closed under arbitrary intersections. On the other hand, the union of two
congruences is in general not a congruence.

Definition 9.1. Let R and S be binary relations. Then the composition of R and S is the
binary relation R ◦ S := {(x, z) | ∃y (R(x, y) ∧R(y, z))}.

Lemma 9.2. Let A be an algebra. Then (Con(A),⊆) is a complete lattice (Example 7.5).

Proof. Let (Ei)i∈I be a sequence of congruences of A. Define∨
i∈I

Ei =
⋃{

Ei1 ◦ · · · ◦ Eik | i1, . . . , ik ∈ I, k ∈ N
}

Note that this is the smallest (with respect to inclusion) equivalence relation that contains all
the Ei. Let f ∈ τ be n-ary and (a1, b1), . . . , (an, bn) ∈ E. Then there are i1, . . . , ik ∈ I such
that for all j ∈ {1, . . . , n}

(aj , bj) ∈ Ei1 ◦ · · · ◦ Eik .

Hence, (f(a1, . . . , an), f(b1, . . . , bn)) ∈ Ei1 ◦ · · · ◦ Eik and E ∈ Con(A).

Every algebra has the following two congruences.

• ∆A: the diagonal relation {(a, a) | a ∈ A}.

• ∇A: the universal relation A2.

Congruences that are different from ∇A are called proper. Algebras A where ∆A and ∇A are
the only congruences are called simple. For example, groups that are simple in the sense of
group theory are simple in our more general sense. We present another example.

Example 9.3. Let G be a permutation group on the set A. Let A be the algebra with
domain A and signature G, und define gA := g for all g ∈ G. Then A is simple if and only if
G is primitive as a permutation group. 4

Definition 9.4. Two algebras A1,A2 with the same domain A are called polynomially equiv-
alent if the expansions of A1,A2 by constant operations for each element of A have the same
term operations.

Exercises.

98. Show that if A is an idempotent algebra and C a congruence of A, then every congruence
class of C is a subalgebra of A.

99. Show that if A is an idempotent algebra, and B is polynomially equivalent to A, then
A and B have the same congruence lattice.

100. Show that Clo(A) and Clo(1)(A) have the same congruence lattice.

77

9.1 Congruence Permutability

Two congruences C1, C2 ∈ Con(A) permute if

C1 ◦ C2 = C2 ◦ C1.

An algebra A is called congruence permutable if all pairs of congruences of A permute.

Lemma 9.5. Let A be an algebra such that Clo(A) contains a Maltsev operation p. Then A
is congruence permutable.

Note that the congruences of most classical algebras, such as groups, rings, fields, etc., do
have a Maltsev term operation, and hence are congruence permutable.

Proof. Let C,E ∈ Con(A) and let (a, b) ∈ C ◦ E. Then there exists c ∈ A with (a, c) ∈ C
und (c, b) ∈ E. Note that

b = pA(c, c, b) C pA(a, c, b) E pA(a, b, b) = a

and thus (b, a) ∈ C ◦ E and (a, b) ∈ E ◦ C.

Theorem 9.6 (Maltsev). Let K be a class of τ -algebras. Then all the algebras in HSP(K) are
congruences permutable if and only if there exists a τ -term t(x, y, z) such that every algebra
in K satisfies ∀x, y. t(y, x, x) = t(x, x, y) = y.

Proof. ⇐: if every algebra in K has a Maltsev term operation, then so does HSP(K), and
hence the statement follows from Lemma 9.5.
⇒. Let F := FK({x, y, z}). For F := FK(X) und u, v ∈ {x, y, z} we write C(u, v) for

the smallest congruence of F that contains (u, v). Let C1 := C(x, y) ∈ Con(F) and C2 :=
C(y, z) ∈ Con(F). Since (x, z) ∈ C1 ◦ C2 = C2 ◦ C1 there exists b ∈ F with (x, b) ∈ C2 and
(b, z) ∈ C1. Since F is generated by {x, y, z}, there is a τ -term p(x, y, z) with b = pF(x, y, z).
We will show that K |= ∀x, y. p(x, x, y) = y. Let A ∈ K and u, v ∈ A. Let f : F → A be a
homomorphism with f(x) = u, f(y) = u, and f(z) = v. Then f(pF (x, y, z)) = pA(u, u, v).
Since (x, y) ∈ Ker(f) we have C1 ⊆ Ker(f). Thus, (b, z) ∈ Ker(f) and

v = f(z) = f(b) = f
(
pF (x, y, z)

)
= pA(u, u, v).

K |= ∀x, y. p(y, x, x) = y can be shown similarly.

9.2 Congruence Distributivity

A lattice (P ;∧,∨, 0, 1) is called distributive if

∀x, y, z
(
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)

)
∧
(
(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

)
.

An example of a distributive lattice is the set of subsets of a set S, ordered by inclusion:
(P(S);⊆). If the congruence lattice of A is distributive, we call A congruence distributive.

Lemma 9.7. Every algebra with a majority term operation is congruence distributive.

78

Proof. Seien C,D,E ∈ Con(A) und (a, b) ∈ C ∧ (D ∨ E).
Dann: (a, b) ∈ C und es gibt c1, . . . , cn mit aDc1Ec2Dc3 . . . cnEb.
Für alle c ∈ A gilt

mA(a, c, b)CmA(a, c, a)︸ ︷︷ ︸
=a

Damit

a = mA(a, a, b)(C ∧D)mA(a, c1, b) (zwei Mal Beobachtung)

(C ∧ E)mA(a, c2, b)

· · ·
(C ∧D)mA(a, cn, b)

(C ∧ E)mA(a, b, b) = b

Also (a, b) ∈ (C ∧D) ∨ (C ∧ E).

Example 9.8. Sei A durch < linear geordnet. Betrachte A := (A; f) mit

fA(x, y, z) := min(max(x, y),max(x, z),max(y, z))

(die Medianfunktion). 4

Example 9.9. Sei A beliebige Menge. Betrachte A := (A; f) mit

fA(x, y, z) :=

{
z falls y = z

x sonst
4

Theorem 9.10 (Jónsson). Die Algebren in HSP (K) sind genau dann kongruenzdistributiv,
wenn es ein n ∈ N und τ -Terme p0, . . . , pn gibt so dass

K |= ∀x, y. pi(x, y, x) = x für i ∈ {1, . . . , n}
p0(x, y, z) = x

pi(x, x, y) = pi+1(x, x, y) für i gerade

pi(x, y, y) = pi+1(x, y, y) für i ungerade

pn(x, y, z) = z

Proof. “⇒”. Sei F := FK({x, y, z}).

C(x, z) ∧
(
C(x, y) ∨ C(y, z)

)
=
(
C(x, z) ∧ C(x, y)

)
∨
(
C(x, z) ∧ C(y, z)

)
also (x, z) ∈

(
C(x, z) ∧ C(x, y)

)
∨
(
C(x, z) ∧ C(y, z)

)
in F .

Also gibt es p1, . . . , pn−1 ∈ F mit

x
(
C(x, z) ∧ C(x, y)

)
p1 x = p1(x, y, x) = p1(x, x, y),

p1

(
C(x, z) ∧ C(y, z)

)
p2 p1(x, y, x) = p2(x, y, x),

p1(x, y, y) = p2(x, y, y),

...

pn−1

(
C(x, z) ∧ C(y, z)

)
z pn−1(x, y, x) = pn−1(x, y, y) = z

79

“⇐”. Seien C1, C2, C3 ∈ Con(A) für A ∈ HSP (K). R.Z.Z:

C1 ∧ (C2 ∨ C3) ⊆ (C1 ∧ C2) ∨ (C1 ∧ C3)

⊇ gilt in jedem Verband

Sei (a, b) ∈ C1 ∧ (C2 ∨ C3). D.h., es gibt c1, . . . , ct mit

aC2c1C3c2C2 · · · ctC3b

Also für i ∈ {1, . . . , n}:

pi(a, a, b)C2pi(a, c1, b)C3pi(a, c2, b) · · ·C3pi(a, b, b)

und wegen pi(a, c, b)C1pi(a, c, a) = a:

pi(a, a, b)(C1 ∧ C2)pi(a, c1, b)(C1 ∧ C3)pi(a, c2, b) · · · (C1 ∧ C3)pi(a, b, b)

also
pi(a, a, b)

(
(C1 ∧ C2) ∨ (C1 ∧ C3)

)
pi(a, b, b)

Gleichungen liefern dann: a
(
(C1 ∧ C2) ∨ (C1 ∧ C3)

)
b.

Jónsson chains have been discovered by Bjarni Jónsson; they provide an equivalent charac-
terisation of congruence distributive varieties. If the variety is generated by the polymorphism
clone of a finite structure B with finite relational signature, this condition has drastic con-
sequences for CSP(B), similarly as in the previous section for congruence modular varities.
Barto [6] proved that in this case B must also have a near-unanimity polymorphism and
hence can be solved in polynomial time by the methods that will be presented in Section ??.
There are several equivalent definitions of Jónsson chains; we present a variant that follows
the terminology in [55].

Definition 9.11. A sequence j1, . . . , j2n+1 of ternary operations on a set B is called a chain
of Jónsson operations if for all x, y, z ∈ B

j1(x, x, y) = x

ji(x, y, x) = x for all i ∈ {1, . . . , 2n+ 1}
j2i−1(x, y, y) = j2i(x, y, y) for all i ∈ {1, . . . , n}
j2i(x, x, y) = j2i+1(x, x, y) for all i ∈ {1, . . . , n}

j2n+1(x, y, y) = y.

Note that if j0, j1, j2 is a Jónsson chain, then j1 is a majority operation. Clearly, the
existence of a Jónsson chain is a minor condition, and it is non-trivial, so any clone that
contains a Jónsson chain has no minor-preserving map to Proj.

A variety is congruence distributive if the congruence lattice of every algebra in the variety
is distributive. Jónsson [53] showed that this is the case if and only if there exists a chain of
terms which denotes a Jonsson chain in all algebras of the variety.

We therefore mention two further strengthenings of chains of quasi Jónsson operations
whose impact on the complexity of CSP(B) is also unclear.

80

Definition 9.12. A sequence d1, . . . , dn of ternary operations on a set B is called a chain of
directed Jónsson operations if for all x, y, z ∈ B

d1(x, x, y) = x

di(x, y, x) = x for all i ∈ {1, . . . , n}
di(x, y, y) = di+1(x, x, y) for all i ∈ {1, . . . , n− 1}
dn(x, y, y) = y.

Proposition 9.13. If a clone contains a chain d1, . . . , dn of directed Jónsson operations then
it also contains a chain j1, . . . , j2n−1 of Jónsson operations.

Proof. Define j1(x, y, z) := d1(x, y, z) and for i ∈ {1, . . . , n− 1}

j2i(x, y, z) := di+1(x, x, z)

j2i+1(x, y, z) := di+1(x, y, z).

Then

j1(x, x, y) = d1(x, x, y) = x,

j2n−1(x, y, y) = dn(x, y, y) = dn(y, y, y) = y,

and for i ∈ {1, . . . , n− 1}:

j2i(x, y, x) = x

j2i+1(x, y, x) = di+1(x, y, x) = x

j2i−1(x, y, y) = di(x, y, y) = di+1(x, x, y) = y

j2i(x, x, y) = di+1(x, x, y) = j2i+1(x, x, y).

Proposition 9.14. If a clone contains an n-ary near-unanimity operation f , then it also
contains a chain d1, . . . , dn of directed Jónsson operations.

Proof. For i ∈ {1, . . . , n} define di(x, y, z) := f(x, . . . , x, y, z, . . . , z) where the argument y is
at position n− i+ 1.

It has been shown by Kazda, Kozik, McKenzie, and Moore that a clone contains a chain
of Jónsson operations if and only if it contains a chain of directed Jónsson operations [55]. A
slight variation of the previous definition from [55] yields a much stronger condition.

Definition 9.15. A sequence p1, . . . , pn of ternary operations on a set B is called a chain of
Pixley operations if for all x, y ∈ B

p1(x, y, y) = x

pi(x, y, x) = x for all i ∈ {1, . . . , n}
pi(x, x, y) = pi+1(x, y, y) for all i ∈ {1, . . . , n− 1}
pn(x, x, y) = y.

Proposition 9.16. If a clone contains a chain p1, . . . , pn of Pixley operations, then it also
contains a chain j1, . . . , j2n+1 of Jónsson operations.

81

Proof. Define

j1(x, y, z) := x

j2i(x, y, z) := pi(x, y, z) for i ∈ {1, . . . , n}
j2i+1(x, y, z) := pi+1(x, z, z) for i ∈ {1, . . . , n− 1}
j2n+1(x, y, z) := z.

Then

j1(x, x, y) = x,

j2n+1(x, y, y) = pn(x, y, y) = y,

and for i ∈ {1, . . . , n}:

j2i(x, y, x) = pi(x, y, x) = x

j2i+1(x, y, x) = x

j2i−1(x, y, y) = pi(x, y, y) = j2i(x, y, y)

j2i(x, x, y) = pi(x, x, y) = pi+1(x, y, y) = j2i+1(x, x, y).

Note that if p1, p2, p3 is a chain of Pixley operations of length n = 3, then p2 is a Maltsev
operation.

TODO: mention finite-signature collapse to NU.

9.3 Congruence Modularity

Ein Verband V heißt modular falls gilt

∀x, y. x ≤ y ⇒
(
x ∨ (y ∧ z) = y ∧ (x ∨ z)

)
äquivalent (da x ≤ y ⇔ (x = x ∧ y)):

∀x, y, z. (x ∧ y) ∨ (y ∧ z) = y ∧ ((x ∧ y) ∨ z)

Lemma 9.17. Distributivität impliziert Modularität.

Sei x ≤ y.

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (D2)

= y ∧ (x ∨ z) (da x ∨ y = y)

The lattice N5 (see Figure 13) is not modular: a ≤ b, aber

a ∨ (b ∧ c) = a

6= b = b ∧ (a ∨ c)

Theorem 9.18 (Dedekind). V ist genau dann modular, wenn es keine Einbettung N5 → V
gibt.

Proof. Angenommen, a, b, c ∈ V mit a ≤ b und a1 := a∨(b∧c) < b1 := b∧(a∨c). Nachrechnen:
c ∧ b1 = c ∧ b und c ∨ a1 = c ∨ a.

82

a1

b1

c

c ∧ b

c ∨ a

Figure 13: The lattice N5.

Proposition 9.19. Wenn A kongruenzpermutierbar, dann ist A kongruenzmodular.

Proof. Seien C1, C2, C3 ∈ Con(A) mit C1 ⊆ C2. Z.Z.:

C2 ∧ (C1 ∨ C3) ⊆ C1 ∨ (C2 ∧ C3)

Sei also (a, b) ∈ C2 ∩ (C1 ∨ C3).
Kongruenzpermutierbarkeit: C1 ∨ C3 = C1 ◦ C3.
Also gibt es c mit aC1cC3b.
(a, c) ∈ C2 da C1 ⊆ C2.
Da (a, b) ∈ C2 gilt (c, b) ∈ C2 da C2 Äquivalenzrelation.
Also (c, b) ∈ C2 ∩ C3.
Da (a, c) ∈ C1 haben wir (a, b) ∈ C1 ◦ (C2 ∩ C3) ⊆ C1 ∨ (C2 ∧ C3).

Sei K eine Klasse von τ -Algebren.

Theorem 9.20 (Gumm). Alle Algebren in HPS(K) sind kongruenzmodular gdw
es gibt n ∈ N und τ -Terme q0, . . . , qn, p so dass für alle i ∈ {0, 1, . . . , n}

K |= ∀x, y. qi(x, y, x) = x

∧ q0(x, y, z) = x

∧ qi(x, y, y) = qi+1(x, y, y) für gerade i

∧ qi(x, x, y) = qi+1(x, x, y) für ungerade i

∧ qn(x, y, y) = p(x, y, y)

∧ p(x, x, y) = y

TODO: mention finite-signature collapse to edge terms, with forward reference to Sec-
tion ??.
Exercises.

101. Show that SH(K) ⊆ HS(K), PS(K) ⊆ SP (K), and PH(K) ⊆ HP (K).

102. Let f : A→
∏
i∈I Ai be a homomorphism. Show that

Ker(f) =
⋂
i∈I

Ker(πi ◦ f)

83

103. Show that the variety of all lattices is congruence distributive, but not congruence
permutable.

104. Show that the variety of Boolean algebras is both congruence permutable and congru-
ence distributive.

105. Show that a lattice satisfies the identities

∀x, y, z. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
∀x, y, z. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

if and only if it satisfies one of those identities.

9.4 Congruence Semidistributivity

A lattice (L;∧,∨) is called meet semidistributive (SD(∧) if it satisfies

∀a, b, c
(
a ∧ b = a ∧ c⇒ a ∧ (b ∨ c) = a ∧ b

)
.

Join semidistributivity (SD(∨)) is defined dually. The smallest lattices satisfying one, but not
both, semidistributivity conditions are shown in Figure 14.

Figure 14: The left diagram shows the lattice D1 which fails SD(∧) and the right diagram
shows the lattice D2 which fails SD(∨) (and which is the congruence lattice of S2 where S
is the 2-element semilattice).

TODO: forward reference to Section ??.

9.5 Abelian Algebras

Definition 9.21. An algebra A is called abelian if ∆A := {(a, a) | a ∈ A} is a congruence
class of a congruence of A2.

Example 9.22. The algebra ({0, . . . , p − 1};m), where m : {0, . . . , p − 1}3 → {0, . . . , p − 1}
is defined by m(x, y, z) := x − y + z, is abelian, witnessed by the congruence θ defined as
follows:

((x1, x2), (y1, y2)) ∈ θ ⇔ (x1 − x2 = y1 − y2). 4

With the following definition we generalise Example 9.22.

Definition 9.23. An algebra A is called affine if A is polynomially equivalent (Definition 9.4)
to a module (Example 7.3).

84

Clearly, every module M has a Maltsev term, namely t(x, y, z) := x − y + z, and tM is
an affine Maltsev operation as defined in Section 6.1. An algebra whose term operations are
generated by an affine Maltsev operation is called an affine Maltsev algebra. Note that affine
Maltsev algebras are affine in the sense of Definition 9.23.

Proposition 9.24. An algebra A is abelian if and only if for every term t of arity k+ 1, all
a, b ∈ A and tuples c, d ∈ Ak

t(a, c) = t(a, d)⇒ t(b, c) = t(b, d).

Proof. TODO

Example 9.25. We revisit the algebra A from Example 9.22. Every term t in A can be
written as f(x1, . . . , xk) =

∑k
i=1 axi mod p where ka = 1 mod p. TODO: EXPLAIN. Then

clearly if
∑k

i=1 axi =
∑k

i=1 ayi and x1 = y1, then
∑k

i=2 axi =
∑k

i=2 ayi, which proves the
condition given in Proposition 9.24. 4

Christian Herrmann [48] showed that if A is a finite abelian idempotent algebra in a
congruence modular variety, then A is affine. We only need the following special case. (This
is really nice, but do we really need it?)

Lemma 9.26 (see [61]). Let A be a finite idempotent algebra with a Maltsev term. Then the
following are equivalent.

• A is abelian.

• If p(x, y, z) is a Maltsev term in A, then pA is a homomorphism from A3 → A.

• A is affine.

Proof. Todo, easy.

Exercises.

106. Show that subalgebras of affine algebras are affine.

107. Show that an algebra A is affine if and only if there exists an abelian group (A; +,−)
such that

• (x, y, z) 7→ x− y + z is in Clo(A), and

• for all a, b, c ∈ An we have f(a−b+z) = f(a)−f(b)+f(z) for every f ∈ Clo(A)(n).

108. Show that the second item in the previous exercise is equivalent to {(x, y, u, v) ∈ A4 |
x+ y = u+ v} being a subalgebra of A4.

109. Show that the second item in the Exercise 107 is equivalent to the condition that for
every f ∈ Clo(A) there exist endomorphisms e1, . . . , en of (A; +,−) and a ∈ A such
that for all x1, . . . , xn ∈ A

f(x1, . . . , xn) =
n∑
i=1

ei(xi) + a.

85

10 Absorption

“The notion of absorption is, in a sense, complementary to abelianness”
(Barto and Kozik [9])

Absorption theory is an important topic in universal algebra, developed by Marcin Kozik and
Libor Barto, which has powerful applications for the study of homomorphism problems. It
can be seen as a tool to show the existence of certain solutions in instances of a CSP.

Definition 10.1 (Absorbing subalgebras). Let A be an algebra and f ∈ Clo(A). A subal-
gebra B of A is called an absorbing subalgebra of A with respect to f , in symbols B Cf A,
if f(b1, . . . , bn) ∈ B whenever all but at most one out of b1, . . . , bn are from B. If such an f
exists we say that B absorbs A, and write B C A.

Since subalgebras are uniquely determined by their domain, we also use the notation
B C A if B is the domain of an absorbing subalgebra B of A.

Example 10.2. If A = ({0, 1}; majority) then both {0} C A and {1} C A. If A =
({0, 1}; min) then {0} C A. 4

In any algebra A with a near-unanimity term t, every one-element subalgebra is absorbing
with respect to tA. Following the presentation in [9], we will prove a converse to this statement;
in the proof, we need a useful definition.

Definition 10.3. If s, t are operations (or terms) of arity p and q, respectively, then the star
composition of s and t is the operation s ∗ t (or term) of arity pq defined by

(x1,1, . . . , xp,q) 7→ s
(
t(x1,1, . . . , x1,q), . . . , t(xp,1, . . . , xp,q)

)
.

Proposition 10.4. Let A be a finite algebra. If every one-element subset is the domain of
an absorbing subalgebra of A, then A has a near-unanimity term.

Proof. If B Cf A and C Cg A, where f is n-ary and g is m-ary, then B Cf∗g A and
C Cf∗g A. Since A is finite we can thus construct a single term operation h such that
B Ch A for every one-element subalgebra B. But then h must be a near unanimity term.

10.1 Absorption Transfer

We start with some warm-up exercises concerning absorption.

Lemma 10.5. If C /B /A then C /A.

Proof. If B absorbs A with respect to an operation t ∈ Clo(A) of arity n and C absorbs B
with respect to an operation s ∈ Clo(B), then A absorbs C with respect to s ∗ t.

Corollary 10.6. If B /A and C /A then B ∩ C /A.

Proof. Note that B ∩ C / C with respect to the same term as B / A. Now the statement
follows from Lemma 10.5.

86

Let A and B be two algebras of the same signature, and let R be the domain of a
subalgebra of A × B. For X ⊆ A and Y ⊆ B we define the neighborhoods of X ⊆ A and
Y ⊆ B

X+R := {b ∈ B | ∃a ∈ X : R(a, b)}
Y −R := {a ∈ A | ∃b ∈ Y : R(a, b)}.

Lemma 10.7. Let R be a subalgebra of A × B. If X ≤ A and Y ≤ B then X+ ≤ A and
Y − ≤ B. If R ≤S A×B and X /A and Y /B, then X+R /B and Y − /A.

Proof.

Lemma 10.8. Let ∼ be a congruence of A and suppose that B/(A/∼). Then
⋃
b∈B b/∼ C A.

For the following lemma that generalises the previous two results, we pass to a presentation
using relational structure B. Recall that if A is an algebra such that Clo(A) = Pol(B), then
R ⊆ An is primitive positive definable in B if and only if R is the domain of a subalgebra of
An.

Lemma 10.9. Let A be a finite relational τ -structure and φ a primitive positive τ -formula.
Let A′ be a τ -structure on the same domain such that for each R ∈ τ we have RA′ C RA. If
φ defines S in A and defines S′ in A′, then S′ C S.

Proof. Todo.

10.2 The Absorption Theorem

Let A and B be algebras, and let R ⊆ A× B be a relation. We view R as the edge relation
of a bipartite graph with color classes A and B. We say that R is linked if this graph is
connected after removing isolated vertices. Note that when R is a subdirect subalgebra of
A×B then R has no isolated vertices.

Let A and B be τ -algebras. Then a subalgebra R of A×B is called subdirect if

{a ∈ A | there exists b ∈ B such that (a, b) ∈ R} = A

{b ∈ B | there exists a ∈ A such that (a, b) ∈ R} = B.

Theorem 10.10 (Absorption theorem [8]). Let C be a finite algebra. Then C has a Taylor
term if and only if for all A,B ∈ HSP(C) and any linked R ≤S A×B:

• R = A×B;

• A has a proper absorbing subuniverse;

• B has a proper absorbing subuniverse.

10.3 Hereditarily Absorption-Free Algebras

An algebra A is called hereditarily absorption-free if no subalgebra of A has a proper absorbing
subalgebra, i.e., whenever C is an absorbing subalgebra of an subalgebra B of A, then C = B.

Corollary 10.11 (Theorem 1.4 in [11]). Let A be a finite idempotent algebra with a Taylor
term. If A is hereditarily absorption-free, then A has a Maltsev term.

87

Proof. Let F ∈ HSPfin(A) be the free algebra on two generators x, y. We first show that F is
hereditarily absorption-free. TODO

Let R be the subalgebra of F2 generated by (x, y), (x, x), and (y, x). Every element of F
can be written as tF(x, y), and since (x, y) ∈ R and (y, x) ∈ R we have that (tF(x, y), tF(y, x)) ∈
R, showing that R is a subdirect subalgebra of F2.

Every element of R can be written as sR((x, y), (x, x), (y, x)) = (sF(x, x, y), sF(y, x, x))
for some term s. Since (x, x), (y, x) ∈ R we have (sF(x, x, y), sF(x, x, x)) ∈ R and since
(x, y), (x, x) ∈ R we have (sF(x, x, x), sF(y, x, x)) ∈ R, and hence R is linked.

Since F has no proper absorbing subalgebra, Theorem 10.10 implies that R = F ×F . Let
m be a term such that m((x, y), (x, x), (y, x)) = (y, y). Then mA is a Maltsev operation.

The following is a special case of Lemma 4.1 in [11].

Lemma 10.12. Let A be a finite idempotent algebra. If A is abelian then A is hereditarily
absorption-free.

Proof. An easy short proof exists for the special case that abelian algebras cannot have 1-
element absorbing subalgebras [9].

Corollary 10.13. Let A be a finite idempotent algebra with a Taylor term. If A is abelian
then A is affine.

Proof. If A is abelian, then by Lemma 10.12 it is hereditarily absorption-free. Since A has a
Taylor term, Corollary 10.11 implies that A has a Maltsev term m. Lemma 9.26 implies that
A is affine.

10.4 n-Absorption

We define a refinement of absorption which takes the arity of the function into account.

Definition 10.14. Let A be an algebra and B ⊆ A. Then B is called n-absorbing if there
exists a term t such that tA(a) ∈ B whenever a ∈ An and |{i | ai ∈ B}| ≥ n− 1. If B is the
domain of a subalgebra B of A, we write B Cn A.

Clearly, B C A (according to Definition 10.1) if there exists an n ∈ N such that B Cn A.

10.5 Near Unanimity Polymorphisms

Equivalence of k-decomposability and existence of (k + 1)-ary near unanimities.

11 Cyclic Polymorphisms

In this section, for several results that we present we do not give a proof.

11.1 Cyclic Terms

An operation c : An → A, for n ≥ 2, is cyclic if it satisfies for all a1, . . . , an ∈ A that
c(a1, . . . , an) = c(a2, . . . , an, a1). Cyclic operations are weak near unanimity operations, and
in particular Taylor operations. Conversely, a deep result of Barto and Kozic (Theorem 11.5
below) implies that every Taylor operation on a finite set generates a cyclic operation.

88

We start with some easy but useful observations about cyclic terms. The cyclic composi-
tion s 	 t of s and t is the operation (or term) of arity q defined by

(x1, . . . , xq) 7→ s
(
t(x1, . . . , xq), t(x2, . . . , xq, x1), . . .

)
.

The following is straightforward.

Lemma 11.1. Let s : Ak → A and t : Al → A be operations.

• If s and t are cyclic operations, then their star product s ∗ t (Definition 10.3) is cyclic.

• If s is arbitrary and t is cyclic then s 	 t is cyclic.

• If s is cyclic, t is arbitrary, and l divides k then s 	 t is cyclic.

Exercises.

110. Show that if A = ({0, 1}; min) and f ∈ Clo(A)(k) is cyclic, then

f(x1, . . . , xk) = min(x1, . . . , xk).

111. Suppose that A = ({0, 1}; majority) and f ∈ Clo(A)(k) is cyclic. Show that

• k ≥ 3;

• if r > k/2 and c ∈ Ak is such that ci = a for i ≤ r and ci = b otherwise, then
f(c) = a;

• if r, s, t are such that r + s > t, s+ t > r, and t+ r > s, then the function

(x, y, z) 7→ f(x, . . . , x︸ ︷︷ ︸
r

, y, . . . , y︸ ︷︷ ︸
s

, z, . . . , z︸ ︷︷ ︸
t

) (11)

is the ternary majority operation on {0, 1}.

112. Suppose that p is a prime and A = ({0, . . . , p − 1};m) where m : A3 → A is given by
m(x, y, z) = x − y + z mod p and that f ∈ Clo(A)(k) is cyclic. Show that if r, s, t are
such that r = t = k mod p and s = −k mod p, then the ternary function defined in
(11) equals x− y + z mod p.

113. Does previous exercise remain true if we drop the assumption that p is prime?

11.2 Cyclic Relations

When a = (a0, a1, . . . , ak−1) is a k-tuple, we write ρ(a) for the k-tuple (a1, . . . , ak−1, a0).

Definition 11.2. An n-ary relation R on a set A is called cyclic if for all a ∈ Ak

a ∈ R⇒ ρ(a) ∈ R .

Lemma 11.3 (from [8]). A finite idempotent algebra A has a k-ary cyclic term if and only
if every nonempty cyclic subalgebra of Ak contains a constant tuple.

89

a0 a1 ak-1
a2a1

ak-2ak-1

b0

bk-1

f

f

SB

bk-2

b2b1

ba !(a) !(a)
b1

d

a0

a0

!k-1(b)!k-1(a) r

b0

Figure 15: Diagram for the proof of Lemma 11.3.

Proof. Let τ be the signature of A. For the easy direction, suppose that A has a cyclic
τ -term t(x1, . . . , xk). Let a = (a0, a1, . . . , ak−1) be an arbitrary tuple in a cyclic subalge-
bra R of Ak. As R is cyclic, ρ(a), . . . , ρk−1(a) ∈ R, and since R is a subalgebra, b :=

tA
k
(a, ρ(a), . . . , ρk−1(a)) ∈ R. Since t is cyclic, the k-tuple b is constant.
To prove the converse direction, we assume that every nonempty cyclic subalgebra of Ak

contains a constant tuple. For a τ -term f(x0, x1, . . . , xk−1), let S(f) be the set of all a ∈ Ak
such that fA(a) = fA(ρ(a)) = · · · = fA(ρk−1(a)). Choose f such that |S(f)| is maximal
(here we use the assumption that A is finite). If |S(f)| = |Ak|, then fA is cyclic and we are
done. Otherwise, arbitrarily pick a = (a0, a1, . . . , ak−1) ∈ Ak \ S(f). For i ∈ {0, . . . , k − 1},
define bi := f(ρi(a)), and let B := {b, ρ(b), . . . , ρk−1(b)}.

We claim that the smallest subalgebra C of Ak that contains B is cyclic. So let c ∈ C
be arbitrary. Since C is generated by B, there exists a τ -term s(x0, x1, . . . , xk−1) such that
c = sA(b, ρ(b), . . . , ρk−1(b)). Then ρ(c) = sA(ρ(b), ρ2(b), . . . , ρk−1(b), b) ∈ C, proving the
claim.

According to our assumption, the algebra C contains a constant tuple d. Then there
exists a τ -term r(x0, . . . , xk−1) such that d = rC(b, ρ(b), . . . , ρk−1(b)). Note that

rA(b0) = rA(b1) = · · · = rA(bk−1)

since d is constant (also see Figure 15). It follows that b ∈ S(r).
Now consider the τ -term t(x0, x1, . . . , xk−1) defined by

t(x) := r(f(x), f(ρ(x)), . . . , f(ρk−1(x))) .

where x := (x0, x1, . . . , xk−1). We claim that S(f) ⊆ S(t), but also that a ∈ S(t). This is
clearly in contradiction to the maximality of |S(f)|. Let e ∈ S(f). Then

tA(ρi(e)) = rA
(
fA(ρi(e), fA(ρi+1(e)), . . . , fA(ρi−1(e)))

)
= rA

(
fA(e), fA(e), . . . , fA(e)

)
(since e ∈ S(f))

= fA(e) (since A is idempotent)

for all i ∈ {0, . . . , k − 1}. Therefore, e ∈ S(t). On the other hand,

tA(ρi(a)) = rA(fA(ρi(a), fA(ρi+1(a)), . . . , fA(ρi−1(a))))

= rA(bi, bi+1, . . . , bi−1)

= rA(ρi(b))

90

which is constant for all i by the choice of r. Therefore, a ∈ S(t) and the contradiction is
established.

11.3 Digraphs without Sources and Sinks

A source in a digraph is a vertex with no incoming edges, and a sink is a vertex with no
outgoing edges. In this section we mention an important result about finite digraphs with no
sources and no sinks. Note that undirected graphs (V,E), viewed as directed graphs where
for every {u, v} ∈ E we have (u, v) ∈ E and (v, u) ∈ E, are examples of such graphs.

Theorem 11.4 (Barto, Kozik, Nieven [10]). Let H be a digraph without sources and sinks.
If H has a Taylor polymorphism, then H is homomorphically equivalent to a disjoint union
of cycles.

A proof of this deep theorem is out of the scope of this course. An important part of the
proof is using absorption theory, which has been developed for this theorem.

If a graph H is homomorphically equivalent to a disjoint union of cycles, then CSP(H)
is in P (e.g., we can use the algorithm PCH to solve it; see Section 3). On the other hand,
a digraph without a Taylor polymorphism has an NP-hard CSP. Therefore, Theorem 11.4
shows that the Feder-Vardi conjecture is true for digraphs without sources and sinks: their
CSPs are in P or NP-complete.

11.4 The Cyclic Term Theorem

We present an improvement of the result in Section 8.2.

Theorem 11.5 (of [8]). Let A be a finite algebra. Then the following are equivalent.

• A has a Taylor term;

• A has a cyclic term;

• for all prime numbers p > |A|, the algebra A has a p-ary cyclic term.

Proof. The statement can be found for finite idempotent algebras in [8], but since a structure
has a Taylor polymorphism if and only if its core does (recall that in this text we do not
require that Taylor operations are idempotent), and since a core has a Taylor polymorphism
if and only if it has an idempotent Taylor polymorphism, the idempotent case implies the
statement as given in the theorem. Again, the full proof of this theorem is out of the scope
of our course. We mention that Barto and Kozik use absorption theory [8] and explicitly use
a strong version of Theorem 11.4.

As an application, we derive the classification of the complexity of H-colouring for finite
undirected graphs H (Theorem 1.5).

Proof. If the core G of H equals K2 or has just one vertex, then CSP(H) can be solved in
polynomial time, e.g. by the Path Consistency Procedure, Section 3. Otherwise, G is not
bipartite and there exists a cycle a0, a1, . . . , a2k, a0 of odd length in H. If H has no Taylor
polymorphism, then by Corollary 7.34, CSP(H) is NP-hard.

Otherwise, if H has a Taylor polymorphism, then Theorem 11.5 asserts that there exists
a p-ary cyclic polymorphism c of H where p is a prime number greater than max{2k, |A|}.

91

Since the edges in H are undirected, we can also find a cycle a0, a1, . . . , ap−1, a0 in H. Then
c(a0, a1, . . . , ap−1) = c(a1, . . . , ap−1, a0), which implies that H contains a loop, a contradiction
to the assumption that the core of H has more than one element.

Exercises.

114. Show that if A has a cyclic term and B has a cyclic term, then A×B has a cyclic term.

11.5 Siggers Operations of Arity 4

Interestingly, whether a finite algebra has a Taylor term (equivalently: a weak near unanimity
term, or a cyclic term) can be tested by searching for a single 4-ary term s that satisfies

A |= ∀x, y, z. s(x, y, z, y) = s(y, z, x, x) ,

a so-called 4-ary Siggers term. In particular, the question whether a given finite structure
has a cyclic term is in the complexity class NP. Siggers originally found a 6-ary term (see
Section 8.2), which has been improved later to the 4-ary term given above. The proof given
below is from [56], where the authors also prove that the result is optimal in the sense that
there is no equivalent characterisation using a single ternary Taylor term.

Theorem 11.6 (due to [69]; see [56]). Let A be a finite algebra. Then A has a cyclic term
if and only if A has a 4-ary Siggers term.

Proof. Suppose that A has a cyclic term. Let p = 3k + 2 be some prime number larger
than |A| and let c(x1, . . . , xp) be a cyclic term of A, which exists by Theorem 11.5. Define
s(x, y, z, w) to be the term

c(x, x, . . . , x, y, . . . , y, w, z, . . . , z) ,

where the variable x occurs k + 1 times, the variable w occurs once, and the variables y and
z occur k times each. Then

s(x, y, z, y) = c(x, x, . . . , x, y, y, . . . , y, y, z, . . . , z) (k + 1 times x, k + 1 times y, k times z)

= c(y, y, . . . , y, z, z, . . . , z, x, x, . . . , x) (by cyclicity of c)

= s(y, z, x, x) .

Conversely, a Siggers term is a Taylor term, and therefore the other direction follows from
Theorem 11.5.

12 Open Problems

The Feder and Vardi dichotomy conjecture [40] has been the outstanding open problem in
the field; it was solved in 2017 by Bulatov [24] and, independently, by Zhuk [71]. However,
there are many interesting problems in the field that are still left open. We start with open
problems where all the relevant concepts have already been introduced in the course.

1. Is the class of all finite structures, ordered by pp-constructability and factored by the
respective equivalence relation, a lattice [17–19]? Is it countably infinite or uncountably
infinite? Are there infinite ascending chains?

92

2. What is the computational complexity of determining whether a given finite core struc-
ture H has tree duality? Is this problem in P? Is it in P if H is a digraph or even an
orientation of a tree?

3. Is there a polynomial-time algorithm to determine whether a given core structure H
has a Siggers polymorphism? Is this true for the special case where H is a digraph or
an orientation of a tree?

4. (Bulin [28]) Is is true that the CSP of an orientation of a tree is in P if and only if it
can be solved by Datalog?

Here come some open problems that require knowledge of concepts that have not been
covered in this course; however, references are provided where these concepts are defined
formally.

1. Prove that a finite-domain CSP is in P if and only if it can be expressed in Choiceless
Polynomial Time [14].

2. Is it true that if CSP(H) is in NL, then CSP(H) is in linear Datalog (Dalmau [33])? Is
this at least true for digraphs H? The same question would already be interesting for
orientations of trees.

3. (Egri-Larose-Tesson [36]) Is it true that if CSP(H) is in L, then CSP(H) is in symmetric
Datalog? Is this at least true for digraphs H? It would already be interesting for
orientations of trees.

4. (Larose-Tesson [58]) Is it true that if the polymorphism algebra of H generates a con-
gruence join-semidistributive variety, then CSP(H) is in linear Datalog? Is this at least
true for digraphs H? It would already be interesting for orientations of trees.

5. Is it true that if CSP(H) is not P-hard under logspace reductions, then it is in NC? It is
known that NC is closed under logspace reductions, and it is believed that P is different
from NP. Moreover, the CSP for the structure ({0, 1}; {0, 1}3 \ {(1, 1, 0)}, {0}, {1}) is
P-hard (see Exercise 85). Is it true that if CSP(H) does not pp-construct this structure
then CSP(H) is in NC?

For CSPs over infinite domains, there are numerous open problems, and I invite the reader
to have a look at [16].

References

[1] S. Aaronson. P=?NP. Electronic Colloquium on Computational Complexity (ECCC),
24:4, 2017.

[2] G. Ahlbrandt and M. Ziegler. Quasi-finitely axiomatizable totally categorical theories.
Annals of Pure and Applied Logic, 30(1):63–82, 1986.

[3] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters, 8(3):121–123,
1979.

93

[4] A. Atserias, A. A. Bulatov, and A. Dawar. Affine systems of equations and counting
infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

[5] L. Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings of the Symposium on Logic in Computer Science (LICS), Toronto, Canada,
2011.

[6] L. Barto. Finitely related algebras in congruence distributive varieties have near una-
nimity terms. Canadian Journal of Mathematics, 65(1):3–21, 2013.

[7] L. Barto and M. Kozik. Constraint satisfaction problems of bounded width. In Pro-
ceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pages
595–603, 2009.

[8] L. Barto and M. Kozik. Absorbing subalgebras, cyclic terms and the constraint satisfac-
tion problem. Logical Methods in Computer Science, 8/1(07):1–26, 2012.

[9] L. Barto and M. Kozik. Absorption in universal algebra and CSP. In The Constraint
Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups,
pages 45–77, 2017.

[10] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with no
sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
Journal on Computing, 38(5), 2009.

[11] L. Barto, M. Kozik, and D. Stanovský. Mal’tsev conditions, lack of absorption, and
solvability. Algebra Universalis, 74:185–206, 2015.

[12] L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. Israel Journal of
Mathematics, 223(1):363–398, 2018.

[13] G. Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of the
Cambridge Philosophical Society, 31(4):433–454, 1935.

[14] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure and
Applied Logic, 100(1-3):141–187, 1999.

[15] M. Bodirsky. Diskrete Strukturen, 2020. Skript zur Vorlesung, TU Dresden.

[16] M. Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Lecture Notes in
Logic (52). Cambridge University Press, 2021.

[17] M. Bodirsky and F. Starke. Maximal digraphs with respect to primitive positive con-
structability. Submitted, 2021.

[18] M. Bodirsky, F. Starke, and A. Vucaj. Smooth digraphs modulo primitive positive
constructability. International Journal on Algebra and Computation (to appear), 2021.
Preprint available at ArXiv:1906.05699.

[19] M. Bodirsky and A. Vucaj. Two-element structures modulo primitive positive con-
structability. Algebra Universalis, 81(20), 2020. Preprint available at ArXiv:1905.12333.

94

[20] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for
Post algebras, part I and II. Cybernetics, 5:243–539, 1969.

[21] A. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of
the Symposium on Logic in Computer Science (LICS), pages 321–330, Ottawa, Canada,
2003.

[22] A. A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science, 349(1):31–
39, 2005.

[23] A. A. Bulatov. Conservative constraint satisfaction re-revisited. Journal Computer and
System Sciences, 82(2):347–356, 2016. ArXiv:1408.3690.

[24] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, pages 319–330, 2017.

[25] A. A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM
Journal on Computing, 36(1):16–27, 2006.

[26] A. A. Bulatov and P. Jeavons. Algebraic structures in combinatorial problems. Technical
report MATH-AL-4-2001, Technische Universität Dresden, 2001.

[27] A. A. Bulatov, A. A. Krokhin, and P. G. Jeavons. Classifying the complexity of con-
straints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

[28] J. Bulin. On the complexity of H-coloring for special oriented trees. Eur. J. Comb.,
69:54–75, 2018.

[29] S. N. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer Verlag,
Berlin, 1981.

[30] C. Carvalho, L. Egri, M. Jackson, and T. Niven. On Maltsev digraphs. Electr. J. Comb.,
22(1):P1.47, 2015.

[31] H. Chen and B. Larose. Asking the metaquestions in constraint tractability. TOCT,
9(3):11:1–11:27, 2017.

[32] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and S. Živný. Binarisation via dualisation for
valued constraints. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 3731–3737, 2015.

[33] V. Dalmau. Linear datalog and bounded path duality of relational structures. Logical
Methods in Computer Science, 1(1), 2005.

[34] V. Dalmau and J. Pearson. Closure functions and width 1 problems. In Proceedings
of the International Conference on Principles and Practice of Constraint Programming
(CP), pages 159–173, 1999.

[35] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

95

[36] L. Egri, B. Larose, and P. Tesson. Symmetric datalog and constraint satisfaction prob-
lems in logspace. In Proceedings of the Symposium on Logic in Computer Science (LICS),
pages 193–202, 2007.

[37] M. M. El-Zahar and N. Sauer. The chromatic number of the product of two 4-chromatic
graphs is 4. Combinatorica, 5(2):121–126, 1985.

[38] T. Feder. Classification of homomorphisms to oriented cycles and of k-partite satisfia-
bility. SIAM Journal on Discrete Mathematics, 14(4):471–480, 2001.

[39] T. Feder and M. Y. Vardi. Monotone monadic SNP and constraint satisfaction. In
Proceedings of the Symposium on Theory of Computing (STOC), pages 612 – 622, 1993.

[40] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

[41] J. Fischer. CSPs of orientations of trees. Master thesis, TU Dresden, 2015.

[42] M. Garey and D. Johnson. A guide to NP-completeness. CSLI Press, Stanford, 1978.

[43] D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27:95–100, 1968.

[44] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford
University Press, 2008. Sixth edition.

[45] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92–110, 1990.

[46] P. Hell and J. Nešetřil. The core of a graph. Discrete Mathematics, 109:117–126, 1992.

[47] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, Oxford,
2004.

[48] C. Herrmann. Affine algebras in congruence modular varieties. Acta Sci. Math. (Szeged),
41(1-2):119–125, 1979.

[49] D. Hobby and R. McKenzie. The structure of finite algebras, volume 76 of Contemporary
Mathematics. American Mathematical Society, 1988.

[50] W. Hodges. Model theory. Cambridge University Press, Cambridge, 1993.

[51] W. Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.

[52] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44(4):527–548, 1997.

[53] B. Jónsson. Algebras whose congruence lattices are distributive. Mathematica Scandi-
navica, 21:110–121, 1967.

[54] A. Kazda. Maltsev digraphs have a majority polymorphism. European Journal of Com-
binatorics, 32:390–397, 2011.

96

[55] A. Kazda, M. Kozik, R. McKenzie, and M. Moore. Absorption and directed Jónsson
terms. Outstanding Contributions to Logic, 16:203–220, 2018.

[56] M. Kozik, A. Krokhin, M. Valeriote, and R. Willard. Characterizations of several Maltsev
conditions. Algebra universalis, 73(3):205–224, 2015.

[57] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint satisfaction
problems. Logical Methods in Computer Science, 3(4:6), 2007.

[58] B. Larose and P. Tesson. Universal algebra and hardness results for constraint satisfaction
problems. Theoretical Computer Science, 410(18):1629–1647, 2009.

[59] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[60] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118,
1977.

[61] R. N. McKeznie, G. F. McNulty, and W. F. Taylor. Algebras, Lattices, Varieties (Volume
1). American Mathematical Society, 1987.

[62] U. Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Information Sciences, 7:95–132, 1974.

[63] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[64] E. L. Post. The two-valued iterative systems of mathematical logic, volume 5. Princeton
University Press, Princeton, 1941.

[65] I. G. Rosenberg. Minimal clones I: the five types. Lectures in Universal Algebra (Proc.
Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, 43:405–427, 1986.

[66] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Symposium
on Theory of Computing (STOC), pages 216–226, 1978.

[67] U. Schöning. Logic for Computer Scientists. Springer, 1989.

[68] Y. Shitov. Counterexamples to hedetniemi’s conjecture, 2019. arXiv:1905.02167.

[69] M. H. Siggers. A strong Mal’cev condition for varieties omitting the unary type. Algebra
Universalis, 64(1):15–20, 2010.

[70] W. Taylor. Varieties obeying homotopy laws. Canadian Journal of Mathematics, 29:498–
527, 1977.

[71] D. N. Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
pages 331–342, 2017. https://arxiv.org/abs/1704.01914.

97

A O-notation

The letters o and O stand for the order of growth of the function. The big-O notation is used
to express upper bounds, and the little-o notation to express lower bounds. We mention that
there exists related notation to describe other kinds of bounds on asymptotic growth, e.g., Θ,
Ω, ω, of which we only need Θ in this text, so we skip the definitions of the others.

Let g : R→ R (we use R for convenience; similar definitions exist for other domains such
as N and Q, etc). Then O(g) is the set of all functions f : R → R such that there exists
c, x0 ∈ R such that |f(x)| ≤ cg(x) for all x ≥ x0. Note that

f ∈ O(g)⇔ lim sup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
In typical usage, the formal definition of O(g) is not used directly; rather, we first use the
following simplification rules:

• if g(x) is a sum of several terms, if there is one with largest growth rate, then we drop
all other terms;

• if g(x) = c · f(x) and c is a constant that does not depend on x, then c can be omitted.

When we write O(g), we typically choose g to be as simple as possible. O-notation can also
be used within arithmetic terms. For example, h + O(g) denotes the set of functions of the
form h+ f for f ∈ O(g). In other words, k ∈ h+O(g) is equivalent to k − h ∈ O(G).

We write o(g) for the set of all functions f : R → R such that for every ε ∈ R>0 there
exists x0 ∈ R such that |f(x)| ≤ εg(x) for all x ≥ x0. Informally, f ∈ o(g) means that g grows
much faster than f . For example, x 7→ 2x is in o(x 7→ x2), and x 7→ 1/x is in o(1). Note that
o(g) ⊆ O(g), and that

f ∈ o(g)⇔ lim
x→∞

f(x)

g(x)
= 0.

Similarly as in the case of the O-notation we may use the o-notation in arithmetic expressions.
Note that if f ∈ o(g) and c is a constant, then cf ∈ o(g). Frequent notation is to write f � g
(or g � f) if f ∈ o(g).

We write Θ(g) for the set of all functions f such that there are constants c, C and x0 ∈ R
such that cg(x) ≤ f(x) ≤ Cg(x) for every x ≥ x0. In other words, f ∈ Θ(g) if f ∈ O(g) and
g ∈ O(f).

Finally, we write f(x) ∼ g(x) if

lim
x→∞

f(x)

g(x)
= 1

and we say that f and g are asymptotically equivalent (for x→∞).

B Basics of Complexity Theory

For a set A, we write A∗ for the set of all words over the alphabet A. A word over A can be
seen as a function from {1, . . . , n} → A, for some n ∈ N. We write ε for the empty word (i.e.,
for the function with the empty domain).

98

The most classical setting of complexity theory is the study of the computational com-
plexity of functions f from {0, 1}∗ → {0, 1}. Alternatively, we may view f as a set of words,
namely that set of words w such that f(w) = 1; such sets are also called formal languages.
There are several mathematically rigorous machine models to formalise the set of such func-
tions that are computable or efficiently computable. The first insight is that most of these
machine models lead to the same, or to closely related classes of functions. Complexity the-
ory maps out the landscape of the resulting classes of functions. Typically the first machine
model that is introduced in introductory courses are Turing machines. They strike a good
balance between the following two (almost contradictory!) requirements that a theoretician
has for these machine models:

• the model should be relatively simple, so that it is easy to show that it can be simulated
by many other machine models.

• the model should be relatively powerful, so that it is easy to show that it can simulate
many other machine models.

Turing machines are simple, but still the definition does not easily fit into a few lines.
On the other hand, today academics are most likely to already have a very good idea of
what a computer program can do (in polynomially many steps); and this coincides with what
a Turing machine M can do (in polynomially many computational steps). In a nutshell, a
Turing machine

• has an unboundedly large memory containing values from {−1, 0, 1} (the symbol −1
will be called the blank symbol);

• has finitely many states Q;

• has a read/write head;

• has a finite transition function δ : Q× {−1, 0, 1} → Σ×Q× {l, r};

• has a accept state y ∈ Q.

• has a start state s ∈ Q.

Initially, the memory just contains the word w ∈ {0, 1}∗, i.e., in the first cell there is w1, in
the second cell there is w2, etc, and in all further memory cells there is −1, and the machine
is in state s. Depending on its state u ∈ Q and the tape content c under the read-write head,
let (v, d,m) := δ(u, c); then

1. the machine changes to state v;

2. the tape content under the read-write head is changed from c to d,

3. the read-write tape moves one cell to the left if m = l, and one to the right if m = r.

If the machine reaches state y it accepts. Every Turing machine describes a formal language,
namely the function f : {0, 1}∗ → {0, 1} such that f(w) = 1 if and only if when running the
machine on input w it eventually accepts. We also say that M computes f , and we then
sometimes write M(f) instead of f(w). More generally, Turing machines can be used to
describe functions f from {0, 1}∗ to {0, 1}∗ where f(w), for a given word w, is the string

99

that is written on the output tape when the Turing machine accepts (here we require that
the machine terminates on every input after finitely many steps, and again we say that M
computes f).

So we will pretend in the following that the reader already knows what Turing machines
M are. It turns out that despite the simplicity of Turing machines, they can simulate most of
the other machine models, and they can simulate any machine that humans ever constructed
(even when neglecting the restriction that we one have some fixed finite maximal memory
size in this universe).

In complexity theory we are interested in the number of computation steps that M needs
to perform to compute f(w), which corresponds to computation time. For example, we say
that a Turing machine runs in polynomial time if the number of computation steps is in
O(|w|k) for some k ∈ N. The class of such functions is denoted by P .

Coding. In the combinatorics course we have met computational complexity for ex-
ample in the section about colorability. We mentioned that 2-colorability is in P and that
k-colorability, for k ≥ 3, is NP-hard. But these were problems about finite graphs, whereas
in the above we only treated formal languages. But this is just a matter of coding. We
first observe that we can simulate any alphabet by our alphabet {0, 1}, by just grouping bits
together to represent a richer alphabet. In particular, we will typically use the letter # to
separate different numbers in the input. One way to represent a graph as a word is to first
write the number n of vertices, followed by the symbol #, followed by a sequence of n2 bits
for the adjacency matrix.

The second most important complexity class is NP.

Definition B.1. NP (for nondeterministic polynomial time) stands for the class of all func-
tions f : {0, 1}∗ → {0, 1} such that there exists a polynomial-time Turing machine M and a
d ∈ N such that for every w ∈ {0, 1}∗ there exists a a ∈ {0, 1}∗ with |a| ∈ O(nd) such that
f(w) = M(w#a).

It is a famous open problem whether P = NP, and it is widely conjectured that P 6=
NP. To explain the significance of this conjecture, we need a couple of more concepts. Let
f1, f2 : {0, 1}∗ → {0, 1}. A reduction from f1 to f2 is a function g : {0, 1}∗ → {0, 1}∗ such that
f1(w) = f2(g(w)). A reduction g is polynomial-time if g can be computed a Turing machine
that runs in polynomial time.

Definition B.2. A function f : {0, 1}∗ → {0, 1} is NP-hard if every function g in NP has a
polynomial-time reduction to f . A function is called NP-complete if it is in NP and NP-hard.

The class coNP is dual to NP: it is the class of all functions f such that 1 − f is in NP.
There is an analogous definition for any complexity class K: a function is in co-K if 1− f is
in K. Clearly, every function in P is both in NP and in co-NP.

A class of finite graphs C is in NP if there exists a formal language in NP such that each
word in the language codes a graph in C (say in the way we described above), and every graph
in C is coded by some word in the language. Unlike the class P, it is possible to define the
class of all graph classes in NP transparently and fully formally in a few lines (without any
reference to Turing machines).

Theorem B.3 (Fagin). A class of finite graphs C is in NP if and only if there exists an
existential second-order sentence Φ such that for every finite graph G we have

G ∈ C if and only if G |= Φ.

100

We do not define existential second-order logic here. The interested reader is referred to
a textbook on finite model theory to learn more about such connections between logic and
complexity theory, e.g. [59].

We now return to the question why most researchers believe that P 6= NP. In order to show
that P=NP is suffices to provide for any of the known NP-complete problems a polynomial-
time algorithm. There are many NP-complete problems that are of central importance in
optimisation, scheduling, cryptography, bioinformatics, artificial intelligence and many more
areas. If P=NP, then this would mean a simultaneous breakthrough in all of these areas. It
is fair to say that every day, thousands of researchers are directly or indirectly working on
proving that P=NP (since they work on things that are related to the better understanding
of some NP-complete problem). The fact that nobody has succeeded (not even came close
to) is one of the reasons why we believe that P cannot be equal to NP. A world where P =
NP would probably be drastically different from the world we live in. On the other hand,
we also have no clue on how to possibly prove that P 6= NP. And quite a bit is known
about approaches to proving P 6= NP that must fail (see [1]; great read, free download
at https://www.scottaaronson.com/papers/pnp.pdf).

101

https://www.scottaaronson.com/papers/pnp.pdf

	The Basics
	Graphs and Digraphs
	Graph Homomorphisms
	The H-colouring Problem and Variants
	Cores
	Polymorphisms

	The Arc-consistency Procedure
	The Power Graph
	Tree Duality
	Totally Symmetric Polymorphisms
	Semilattice Polymorphisms

	The Path-consistency Procedure
	Majority Polymorphisms
	Testing for Majority Polymorphisms
	Digraphs with a Maltsev Polymorphism

	Logic
	Primitive positive formulas
	From Structures to Formulas
	From Formulas to Structures
	Primitive Positive Definability
	Cores and Constants
	Primitive Positive Interpretations
	Reduction to Binary Signatures
	The Structure-Building Operators `39`42`"613A``45`47`"603AH, `39`42`"613A``45`47`"603AC, and `39`42`"613A``45`47`"603AI

	Relations and Operations
	Operation Clones
	Inv-Pol
	Essentially Unary Clones
	Minimal Clones
	Schaefer's Theorem

	Maltsev Polymorphisms
	Examples
	Compact Representations of Relations
	The Bulatov-Dalmau Algorithm

	Universal Algebra
	Algebras and Clones
	Subalgebras, Products, Homomorphic Images
	Pseudovarieties and Varieties
	Birkhoff's Theorem
	(Abstract) Clones
	Taylor Terms
	The Tractability Conjecture

	Undirected Graphs
	The Hell-Nešetril Theorem
	Siggers Operations of Arity 6

	Congruence Lattices
	Congruence Permutability
	Congruence Distributivity
	Congruence Modularity
	Congruence Semidistributivity
	Abelian Algebras

	Absorption
	Absorption Transfer
	The Absorption Theorem
	Hereditarily Absorption-Free Algebras
	n-Absorption
	Near Unanimity Polymorphisms

	Cyclic Polymorphisms
	Cyclic Terms
	Cyclic Relations
	Digraphs without Sources and Sinks
	The Cyclic Term Theorem
	Siggers Operations of Arity 4

	Open Problems
	O-notation
	Basics of Complexity Theory

