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Abstract: Nowadays, several environmental applications take advantage of remote sensing tech-
niques. A considerable volume of this remote sensing data occurs in near real-time. Such data
are diverse and are provided with high velocity and variety, their pre-processing requires large
computing capacities, and a fast execution time is critical. This paper proposes a new distributed
software for remote sensing data pre-processing and ingestion using cloud computing technology,
specifically OpenStack. The developed software discarded 86% of the unneeded daily files and
removed around 20% of the erroneous and inaccurate datasets. The parallel processing optimized
the total execution time by 90%. Finally, the software efficiently processed and integrated data into
the Hadoop storage system, notably the HDFS, HBase, and Hive.

Keywords: remote sensing big data; data pre-processing; parallel programming; cloud computing

1. Introduction

Remote Sensing (RS) refers to the technique of observing atmospheric objects remotely.
Conventionally, RS was used for satellite and airborne platforms, obtaining data from
optical and radar sensors [1]. Formerly, more than 3000 satellites in orbit were used
in several applications. These satellites are equipped with various instruments within
different temporal, spatial, and spectral resolutions oscillating from low to high. Satellites’
sensors measure variables and then diffuse data into ground data centers over downlink
networks [2].

The significant growth of industrial, transport, and agricultural activities has directed
many environmental matters, notably outdoor Air Pollution (AP) [3]. Therefore, AP can
excessively disturb human health and cause climate change. For this purpose, Air Quality
(AQ) now merits special consideration from many scientific communities [4]. Continuous
AQ monitoring is one of the propositions helping decision-makers [5]. It’s a Near-Real-
Time (NRT) monitoring of Aerosol Optical Depths (AOD), offers obstinate input data for
AQ models, and tracks the pollutant plumes emitted from industrial and agricultural
sources [6].

The acquired data are stored in a complicated scientific file format precisely: The
Binary Universal Form for the Representation of meteorological data (BUFR), the Network
Common Data Form (NetCDF), the Hierarchical Data Format (HDF5), and so on. The
daily size of the downloaded RS data is approximately 55 gigabits (GB) and sumps up
to 17 terabits (TB) per year [7]. Additionally, the velocity with which information is
transmitted is fast, with a rate of 40,000 files per day. Hence, RS data are complex, have
huge volumes, high velocity, and veracity, confirming that satellite data are BD. So, the
processing is complicated and takes a long execution time, and the existing platforms for
RS data processing are limited and face many challenges [8].
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Two main approaches are used to deal with RS data. Firstly, satellite images are
generally processed with software and libraries like ENVI, Geographic Information System
(GIS) programs, or other image processing algorithms. This method is excellent with
optical sensors. However, it cannot deal with other scientific file formats, notably the
NetCDF, HDF5, Binary (BIN), GRIB, etc. It is also less efficient because it does not support
multisource data with high velocity, veracity, and huge volume. Thus, the limitation
is evident: the processing does not support Remote Sensing Big Data (RSBD), which is
not compatible with distributed and scalable computing. Secondly, RS data can be pre-
processed in batch processing software for ingestion and then integrated into a scalable
framework for processing, such as Hadoop for extra processing. This method is more
efficient because it supports RSBD and makes them semi-structured and compatible with
MapReduce (MR) and Structured Query Language (SQL) languages. It could also be run
in a distributed and scalable cluster to optimize the execution time and keep its freshness.

In our previous works, we achieved many pieces of research to identify the nature
and the features of the used satellite data. We also proposed SAT-ETL-Integrator: BD batch
processing ingestion software for RSBD. The suggested ingestion tool acquires, decom-
presses, filters, converts, and extracts refined datasets from massive RSBD input. JAVA,
Python, and Shell were the fundamental programming languages used in the development.
We also came up with SAT-CEP-Monitor, innovative software for RS data processing in
streaming using Complex Event Processing (CEP).

This work aimed to benefit from the strengths of the previous proposal, including
cloud and Hadoop technologies and to optimize the execution time, guarantee the NRT
aspect for some Earth Observation (EO) applications, and integrate the RS data in Hadoop
to apply Artificial Intelligence (AI) models for prediction. In light of the above, we propose
the following Research Questions (RQs):

RQ 1: Is it possible to process the RSBD data in NRT to keep their freshness?
RQ 2: Can we optimize the execution time with cloud and parallel computing tools?
RQ 3: Can we integrate the pre-processed data in Hadoop for extra processing?
We firmly believe we can handle RS data’s complexity due to our RSBD analytics

expertise in batch, streaming, cloud, and parallel computing. Hence, this paper explains the
ingestion layer, which is regarded as an essential part of the proposed BD architecture. The
developed SAT-Hadoop-Processor enables us to pre-process heterogeneous satellite data
and extracts only useful and potential datasets with high exactness and low volume related
to the EO application, such as AP mapping, natural hazard supervision, climate change
monitoring, etc. Secondly, we optimized the total execution time of processing by 90%,
equivalent to 20 times the speed-up. Thirdly, we integrated satellite data in the Hadoop
framework, particularly the Hadoop Distributed File System (HDFS), HBase, and Hive,
for scalable processing with MR and Spark. Finally, the proposed software is adaptable to
many RS data sources and formats.

As a result, it could be implemented in a ground station for processing. Further-
more, the developed framework is flexible with several EO applications and customized
depending on the requirement.

The remainder of this manuscript is ordered as follows: Section 2 provides a back-
ground on RSBD processing technologies and cites some related works. Section 3 describes
the proposed SAT-Hadoop-Processor software architecture. Section 4 shows the exper-
imental analysis results. Section 5 goes into the details of the comparison. Section 6
elaborates on discussing the anticipated RQs, and Section 7 highlights the conclusions and
some perspectives.

2. Background on Technologies for RSBD Processing and Related Works

This section provides a background to the specification of the RSBD (Section 2.1).
Secondly, we present the Hadoop framework for BD data integration (Section 2.2), and
we review the architecture of the OpenStack tools for cloud and distributed processing
(Section 2.3). Finally, we cite some related works (Section 2.4).
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2.1. RSBD Specification

RS techniques have been broadly used in many environmental applications, such as
AP monitoring [1] and climate change monitoring. Satellites are the primary equipment
for the measurement. They use sensors within various temporal, spatial, and spectral
resolutions. Satellites continuously pass by unique polar or geostationary orbits. In this
investigation, we applied RS techniques to monitor the AQ and climate changes in NRT [2].
We collected data from various organizations, satellites, and instruments within different
spatial, temporal, and spectral resolutions, as illustrated in Section 3.1. In our case study,
satellite data occur with high-velocity attainment of 40,000 daily files with an average
latency of 30 min [3]. These data continuously increase the storage space by 60 GB per day.
The collected data are stored in a scientific file format, particularly the NetCDF, HDF5, and
BUFR [4].

Consequently, RSBD management turns out to be a challenging problem to be tackled.
Satellites produce persistent data with high velocity, which cannot be continuously stored
inside a usual storage system [5]. Thus, it is necessary to develop a model determining
which RSBD to keep and which one to remove. Finally, RSBD processing involves mathe-
matical skills in probability and statistics to integrate deep learning, machine learning, and
neural network algorithms to extract new insights.

2.2. Hadoop for Distributed Big Data Integration: Hortonwork

Hadoop has become the pioneer platform for BD storage and processing [6]. Hadoop
is a group of IT tools for distributed storage and processing of BD. Hadoop is fault-tolerant,
scalable, and very simple to expand. Hadoop can handle massive amounts of data sets
that are incapable of being distributed or formerly needing expensive super-computers.
Hadoop can currently schedule and administer thousands of computers, storage, and
cumbersome processes at a petabyte (PB) level [7]. One of Hadoop MR’s critical advantages
is that it lets non-expert users run analytical operations over BD. Hadoop MR gives users
complete control over how input datasets are processed. Users code their queries using
Java rather than SQL. This makes Hadoop MR informal to use for a more substantial
number of developers: no skills in databases are obligatory, and only basic knowledge in
Java is essential [8].

Many milestone works have been conducted to empower RSBD processing in the
Hadoop platform. However, Hadoop principally plans to process large-scale web data [8];
it does not, by default, support the RS data formats, such as HDF, NetCDF, and BUFR.
Two methods threaten RSBD in the Hadoop platform. One conceivable way is to con-
vert the RS data to Hadoop-friendly data formats, such as CSV databases. The second
approach is to develop complementary plugins, allowing Hadoop to support the scientific
RS data formats.

Designing a BD architecture is an excellent method to split the problems of BD pro-
cessing. We must create and make all BD’s essential components well, where each layer
has a specific function [9]. More than a few distributions manipulate and manage BD:
HortonWorks, Cloudera, MR, IBM Infosphere Biglnsights, Pivotal, Microsoft HDInsight,
etc. Table 1 details a technical comparison of the five Hadoop distributions based on
19 criteria [10].

We notice that most providers offer distributions based on Apache Hadoop and
project open sources related to the comparative table. They also deliver a software solution
installable on the organization, infrastructure in a private or public cloud. The frameworks
that build Hadoop are open source. A subscription is paid to the benefit of technical
support. Additionally, functions that are not available in the community version and
the training can be used. Presently, there is no absolute winner on the market because
each supplier focuses on the main features, such as security, integration, performance,
and governance.
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Table 1. Technical comparison among the five distributions of Hadoop.

Criteria/
Distribution

Horton
Work Cloudera MR IBM

Insights Pivotal HD

Centralized + + − − −
Cloud services + + + + +

Data Access + + + + +
Data Analysis + + + + +

Data Ingestion Batch + + + + +
Data Ingestion − − + + +
Data Analysis + + + + +

Data warehousing + + + + +
Distributed − − + + +

ETL + + + + +
Machine learning + + + + +
Management tools + + + + +

MR + + + + +
Parallel Query + + + + +

Replication Data + + + + +
Scripting platform + + + + +

Cell with (+) means that the option is supported; however, (−) means the absence of the option.

2.3. Cloud Computing for Scalable Big Data Processing: OpenStack

OpenStack is a free and open-source software package for cloud computing; it is
under the Apache License. The OpenStack framework administers big pools of computing,
storage, and networking materials through a datacenter within a dashboard or via the
OpenStack Application Programming Interface (API). OpenStack runs with prevalent enter-
prise and open-source technologies, making it perfect for mixed infrastructure [11]. Several
of the world’s largest brands trust OpenStack to manage their businesses, reduce costs,
and optimize performance. OpenStack has a robust system constructed by a prosperous
community of developers.

OpenStack is a group of package tools used for building and handling cloud com-
puting platforms for public and private clouds. The OpenStack cloud operating system
supervises all hypervisors in a data center or across numerous data centers into pools of
resources consumed from a single place, a dashboard. Administrators and users can easily
manage the cluster via a dashboard, create Virtual Machines (VMs), configure networks,
and set up volumes AQ [12]. It computes a server that can deliver a central processing unit
(CPU), storage, network, and memory resources; therefore, it significantly affects the cloud
deployment model’s use and performance. OpenStack is composed of many components,
which are listed and explained in Table 2.

Table 2. OpenStack key components.

Tool Description

Keystone Keystone is an OpenStack package that runs API client authentication.

Nova Nova is a cloud computing controller crucial to an Infrastructure as a Service (IaaS) system. It permits users to make
and manage virtual servers via machine images.

Cinder Cinder provides a Block Storage as a Service (BaaS), which offers a persistent block-level storage device. It is
responsible for managing the creation, attachment, and detachment of block devices to clusters.

Glance Glance is an image package that affords a suitable way to copy and launch instances. Besides, it allows users to
upload, register, and retrieve VMs images easily and rapidly.

Panko Panko is intended to provide metadata indexing and event storage to allow scalable auditing.

Horizon Horizon is the OpenStack dashboard that provides administrators and users a graphical interface to access, provide,
and automate cloud-based resources.

Neutron Neutron provides Networking as a Service (NaaS) between interface devices managed by other
OpenStack services. It is a significant chunk of the OpenStack platform.

Sahara Sahara tool provides data processing frameworks, particularly the Hadoop on OpenStack, by setting up parameters,
such as the framework version, cluster topology, and so on.
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Besides, it is possible to integrate Hadoop as a component of OpenStack; all OpenStack
schedulers are used to control how schedules compute, network, and volume requests;
and Memcached service, which stores data in memory to reduce the rate with which an
external database must be requested.

2.4. Related Works

Many investigations have been focused on diverse architectures to solve RS data
processing issues. These studies aimed to customize parallel computing by integrating
the hardware into the capacity [13] to store and process RSBD inside distributed clusters,
such as the Hadoop [14], improve algorithms and the processing patterns, and manage RS
data streaming. We cite other studies that are particularly related to the current approach.
Regarding works that processed RSBD in a Hadoop platform, we can mention the paper
by Golpaygani et al. [15], who proposed a parallel and suitable computing framework
Hadoop for various service-oriented science applications. The results showed that this
parallel programming paradigm efficiently processes the satellite data. Besides, it can be
exploited for deriving higher-level data products from random RS systems. Wang et al. [14]
proposed a Hadoop-based framework to manage and process the RSBD in a distributed
and parallel way. RS data can be directly raised from other data platforms into the HDFS.
The experiment result indicates that the proposed framework can optimize the execution
time when dealing with a massive RS data volume. Sun et al. [16] came up with an in-
memory computing framework to address RS processing. Thus, Spark is used to process
in-streaming RS data. Data loaded into the memory in the first iteration on the Spark-based
platform can be reused in subsequent iterations. The experiments demonstrated that the
Spark-based platform’s time cost is far less than the MR platform.

It is significant to reference two recent software allowing distributed satellite image
processing using Hadoop and Spark tools. In [17], an innovative parallel RSBD processing
framework was developed called ScienceEarth, which stores, manages, indexes, and queries
satellite images in a distributed system with high feasibility. Xicheng Tan et al. [18] also
anticipated a Spark-based RSBD framework for image processing. The method integrates
Landsat raster into HDFS, then MR maps, merges, and finally loads the looked-for tiles.
The experimental results demonstrated fast and efficient processing.

It is also noteworthy to mention the applications focused on RSBD inside a cloud
platform. Yan et al. [19] presented software-generating products using multisource RS data
and crossways distributed computers in a cloud environment to reward the low production
efficiency, fewer types, and simple services of the existing system. The program uses the
“master-slave” paradigm. Thus, the proposed cloud-based RS production system manages
massive RS data, and various products are generated. Some appropriate methods that focus
on novel architectures for RS processing are explained as follows: Boudriki Semlali [20]
developed Java-based application software to collect, process, and visualize numerous
environmental data acquired from the EUMETSAT datacenter. Boudriki Semlali et al. [21]
also proposed software as an extract-transform-load tool for satellite data pre-processing
that allows effective RSBD integration. Thus, the developed software layer gathers data
unceasingly and eliminates about 86% of the unemployed files.

Many studies have also focused on satellite High Spectral Image (HSI) processing. The
analyses of HSI are very challenging and require huge computer capacities and enhanced
algorithms [22]. In [23], the authors developed an intelligent algorithm to refine HSI using
the super-resolution fusing method. The developed algorithm is based on recent image
processing techniques, such as Hybrid Color Mapping (HCM), the Plug-and-Play algorithm,
etc. Some promising results were shown after the comparison and validation stages. In [24],
a new benchmarking framework for panchromatic algorithms was defined. After pre-
processing the HIS, some talented results showed the data quality assessment. In [25], a
new algorithm was proposed to process HSI to detect pixel anomalies. This method is
based on unmixing, and low-rank decomposition approaches. The experimental results
demonstrated high true positive and low false alarm rates regardless of the image type.
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3. SAT-Hadoop-Processor

This section describes the proposed SAT-Hadoop-Processor architecture, explains
Hadoop’s implementation, and shows how to include cloud computing, especially the
OpenStack and parallel programming for RS data ingestion. Figure 1 illustrates the SAT-
Hadoop-Processor architecture. We note the steps from RS data acquisition to the last query
and access in such a schema as briefly explained in the following subsections.
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3.1. Satellite Measurement and RS Data Acquisition

In this study, we gathered data from the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT) via the Mediterranean Dialogue Earth Observatory
(MDEO) ground station installed at the Abdelmalek Essaâdi University of Tangier in
Morocco [26] and the Earth Observation Portal (EOP). Besides, we obtained RS data
from the Earth Observation System Data and Information System (EOSDIS) of NASA,
the Infusing Satellite Data into Environmental Applications (NESDIS) of the NOAA, and
the Copernicus Open Access Hub (COAH) platform operated by the ESA. The RS data
collected came from many polar satellites flying in Sun-Synchronous Orbit (SSO)—MetOp,
NOAA, and Sentinel series, AQUA, TERRA, AURA, etc.—and Geostationary Earth Orbit
(GEO) satellites, notably the Geostationary Operational Environmental Satellite (GOES-NP
and RU) series and the Meteosat Second Generation (MSG), etc.

In our study, we acquired data from several passive and active satellite sensors [27]:
Spinning Enhanced Visible and InfraRed Imager (SEVIRI), Infrared Atmospheric Sounding
Interferometer (IASI), Visible Infrared Imaging Radiometer Suite (VIIRS), Atmospheric
Infrared Sounder (AIRS), Moderate Resolution Imaging Spectroradiometer (MODIS), Mi-
crowave Limb Sounder (MLS), Advanced Baseline Imager (IMG), Sea and Land Surface
Temperature Radiometer (SLSTR), etc. The used satellite instruments have different spa-
tial resolutions ranging from 375 m to 5 km. and a spectral resolution diverting from
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microwave (MW), shortwave (SW), near-infrared (NIR), infrared (IR), visible (V), and
ultraviolet (UV). Besides, the temporal resolution varies from a few minutes to a few days.
Wget [28], dhusget [29], and Sentinelsat [30] Linux libraries have been used to download
RSBD in NRT from the links detailed in Table 3. The use of the commands (CMD) lines is
noted as follows:

• CMD 1: wget-r-nc—accept=Extension—no-parent—dns-timeout=500-P Output path—
user=Username—password=Password Link &

• CMD 2: bash dhusget.sh-d Link-u Username-p Password-m “Sentinel-5 P”-i TROPOMI-t
TimeAgo (second)-T “$i”-o product-O Output path &

• CMD 3: sentinelsat-u s5pguest-p s5pguest-s StartDate-e EndDate-d—sentinel 5—producttype
L2__O3____—location CityName—url “https://s5phub.copernicus.eu/dhus/”

Table 3. RS data sources’ URLs.

Data Source CMD Download Link

MDEO CMD 1 https://www.eumetsat.int/eumetcast
EOSDIS CMD 1 https://earthdata.nasa.gov/earth-observation-data
NESDIS CMD 1 ftp://ftp-npp.bou.class.noaa.gov
COAH CMD 2 & 3 https://s5phub.copernicus.eu

MGS Madrid CMD 1 https://datos.madrid.es/portal/site/egob

3.2. RS Data Ingestion

The processing chain of the RSBD takes in many challenges. First of all, satellite data
are diffused into ground stations, so the big complaint is how to gather these data in NRT
to keep data fresh. These data should be pre-processed to remove erroneous, inaccurate,
and unneeded datasets to retain only data of interest and integrate them into a distributed
and scalable storage platform. Figure 2 displays the six phases of the ingestion layer. The
acquisition is the initial step in the satellite data processing.
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We acquired data automatically from the sources mentioned in Section 3.1. The
downloaded files were compressed from the ground station and datacenters. Therefore,
the following phase decompresses satellite data automatically by a Bash script (Tar, Zip,
and bz2); thus, the number of files grew 240 times, and the size increased up to 40%. Based
on these results, we confirm that RS data require more storage space and become more
complex for processing after the decompression step.

Commonly, the HDF5, NetCDF, BUFR, and BIN file formats are dedicated to storing RS
data. These data require conversion from the scientific file format to a CSV or the Extensible
Markup Language (XML) file format. We employed two Python libraries: the BUFRextract
(BUFREXC) and the pybufr_ecmwf (ECMWF). Afterward, datasets are prepared to be
extracted. So, the total size of data stays roughly the same after the conversion.

https://s5phub.copernicus.eu/dhus/
https://www.eumetsat.int/eumetcast
https://earthdata.nasa.gov/earth-observation-data
ftp://ftp-npp.bou.class.noaa.gov
https://s5phub.copernicus.eu
https://datos.madrid.es/portal/site/egob
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The downloaded data come from polar satellites flying in a Low Earth Orbit (LEO)
with an altitude of 800 km and making 16 orbits daily. Thus, the processing of all data of
the Earth takes more computing resources and a long execution time. We coded Python
script filtering satellite data by countries using the longitude and latitude. We found that
big countries, such as the USA, China, and Australia, have many files, reaching more than
700 files per day. However, the smallest state, which is Qatar, covers only about 50 files,
and the data size is megabit (MB). The next step is data extraction. It permits the selection
of the looked-for variables. For example, we were interested in 12 variables: temperature,
humidity, pressure, wind speed, AOD, the Vertical Column Density (VCD) of trace gases,
etc. The final step is the data integration into the HDFS, HBase, and Hive storage framework
of Hadoop using some CMDs detailed in the Supplementary Materials File (SMF). The main
algorithm in which the SAT-Hadoop-Processor was developed is as follows:

ST is the system set of satellites of interest {st1, . . . , stn}.
SS is the used satellite sensor {ss1, . . . , ssn}.
P is the used satellite products {p1, . . . , pn}.
F is the acquired satellite files {f1, . . . , Fn}.
UF’ is the unzipped RS files {uf’1, . . . , uf’n}.
CF’ is the converted RS files {cf’1, . . . , cf’n}.
FF’ is the orbit filtered RS files {ff’1, . . . , ff’n}.
EF’ is the extracted RS files {ef’1, . . . , ef’n}.
V is the used satellite variables {v1, . . . , vn}.
D is the extracted RS dataset {d1, . . . , dn}.
FD’ is the filtered RS dataset {fd’1, . . . , fd’n}.
CD’ is the unit converted RS dataset {cd’1, . . . , cd’n}.
FD’ is the final RS dataset {fd’1, . . . , fd’n}.
We can also define the main functions and threads (scripts) of processing as follows:
T-Acquisition (): the thread of RS data acquisition.
T-Decompression (): the thread of RS data unzipping.
T-Conversion (): the thread of RS data conversion.
T-Filtering (): the thread of RS data orbit filter and subset.
T-Extraction (): the thread of RS data extraction and serialization.
T-Integration (): the thread of RS data integration in the Hadoop.
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3.3. Cloud-Distributed RS Data Ingestion

In this study, we deployed the OpenStack for a private cluster in the University
Polytechnic of Catalunya (UPC). This small pool comprises one controller node, four
compute, and one network node, as shown in Figure 3. All the used nodes were run
with Intel(R) Core (TM) i5 or i7 Central Processing Unit (CPU)@ 2.50 GHz and 16 or
32 GB Random-Access Memory (RAM), running the Centos 7 (64 bit). All the slaves
were equipped with 1 TB of the Hard Disk Drive (HDD). However, the controller was
configured with 500 GB. The cluster was connected with the UPC routers. The master
contains the Keystone, Glance, Panko, Horizon, Neutron, Swift, and Sahara packages. Thus,
the compute nodes encompassed only the Nova and the Cinder components. Besides,
Sahara allowed us to install the Hadoop tools inside the OpenStack cluster to process
BD efficiently.
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To create a private cloud cluster, we used the Packstack packages dedicated to Linux
Centos 7. We resumed the following installation steps: network security allowance, system
update, the installation of the sources, and the Packstack packages. After, the generation
and the customization of the configuration file (answers_files.txt) occurs. Finally, the
deployment of the installation takes about one hour. If the installation succeeds, we can
access the Horizon dashboard via this link: IP_server:8080.

3.4. Parallel RS Data Ingestion

We used parallel programming libraries to optimize the ingestion process execution
time, notably, the Linux Background Processing (LBP), GNU Parallel, Python parallel, and
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the multi-threads of Java. The LPB is a process that is started from a shell and then executes
independently using this symbol (&) after the CMD; the same terminal will be instantly
available to run further CMDs.

The GNU Parallel is used to compile and run CMDs parallel to the same CMD with
several arguments, whether filenames, usernames, etc. It provides shorthand references
to many of the most common operations, mainly the input lines, sources, etc. It can also
replace xargs or feed CMDs from its input sources to several Bash instances. CMD 4 shows
that the parallel execution exploits 95% of the hardware in the subset script using the GNU
parallel library: CMD 4: Bash subset_script.sh | parallel—load 95%—noswap ‘{}.’

The Python parallel is a library that simultaneously executes several processes or
scripts in multiple processors in the same computer or cluster. It is intended to decrease
and optimize the total processing time. CMD 5 illustrates how to execute many func-
tions simultaneously in Python using the Python parallel library: CMD 5: Th = thread-
ing.Thread(Functions); Th.start(); Th.join(). Java Multithreading is a Java option that
permits parallel execution of two or more program parts to maximize hardware capacities.

Figure 4 summarizes the input format and the output format of the six steps of pre-
processing. The ingestion layer was conceived for RSBD pre-processing; it can hold a
colossal input data volume and extract the information needed from satellite data. As
illustrated in Figure 1, this ingestion layer was developed by some detached and intercon-
nected scripts: Java, Python, and Bash are the primary programming languages employed
in coding.
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The Bash was used to connect automatically, download RSBD from various sources,
and manage many files. Python scripts are mostly used to extract, serialize, and deserialize
the final output datasets. Lastly, the Java application aggregates, calls, run all the estab-
lished scripts and connects with MySQL DB to select parameters and insert benchmarking
monitoring results.

The mechanism of how the layer functions is that in parallel (LPB), the RSBD is
downloaded from several links using Wget. A Bash script decompresses in parallel (GNU
parallel) the collected data using the Tar, Unzip, and Gunzip libraries. Afterward, a Bash
script parallel (LBP) filters the data. Another Bash script converts in parallel (GNU parallel)
the BUFR, Bin, and GRIB data to the CSV format using the BUFRextract (BUFREXC) and
the pybufr_ecmwf (ECMWF). The converted data are subset and extracted in parallel
(Python parallel) using the h5py and Pyhdf libraries. Finally, the final CSV output is loaded
and integrated into the Hadoop system.

3.5. RS Data Integration and Storage: Hadoop Framework

In this section, we explain how to create a Hadoop cluster for RS data integration
and storage. In our work, we worked with the HortonWorks distribution launched in
2011. This version’s components are open source and licensed from Apache to adopt the
Apache Hadoop platform [31]. HortonWorks is a significant Hadoop contributor, and
its economic model is not to sell a license but to support sales and training exclusively.
This distribution is most consistent with Apache’s Hadoop platform. More configuration
details can be found in the following link: https://www.techrunnr.com/how-to-install-
ambari-in-centos-7-using-mysql/ (accessed on 7 November 2021). After the successful
installation, deployment, and configuration, we can access the Ambari dashboard via the
link IP-Server:8080 containing all the metrics and the cluster’s customization tools.

This study integrated and stored the pre-processed RSBD inside a Distributed File
System (DFS) in a scalable way across a distributed Hadoop cluster. DFS is a virtual
file system that affords data nodes’ heterogeneity in various centers [32]. Thus, the DFS
provides a standard interface for applications to manage data on different nodes that use
the other OS. DFS can retain a replica of data further than one node; thus, the image is
preserved and restored if needed in the event of a fault. DFS is scalable, where the number
of compute nodes can be amplified to optimize the processing. Figure 5 shows the general
paradigm to integrate and store pre-processed files stored in a CSV file to DSF, HDFS,
HBase, and the Hive table.

The first step makes the DFS and HDFS folder for storing, yielding access to the folder,
copying the CSV file to HDFS, before importing the HDFS to HBase based on the primary
column and the Column Family (CF), and lastly, generating an external Hive table for the
HBase table. Accordingly, the CSV file is stored in Hadoop, which can be requested and
retrieved using HiveQL language only and is comparable to the SQL language queries.

3.5.1. The Exportation of RS Data into the HDFS

HDFS is intended mainly for big datasets and high availability. It is also an indepen-
dent framework implemented in Java [32]. Compared to other DFS, it is specified that
the performance is different in design, and HDFS is the individual DFS with automatic
load balancing [33]. In this investigation, we are looking forward to storing the integrated
data from the ingestion layer’s output to an HDFS. It is an excellent tool that can hold
a colossal volume of data, afford easier access, and performs data replication to prevent
data losses in the case of failure or damage [34]. Furthermore, the HDFS facilitates paral-
lel data processing, and the chief master/slave is the topology [35] (see Supplementary
Material File).

https://www.techrunnr.com/how-to-install-ambari-in-centos-7-using-mysql/
https://www.techrunnr.com/how-to-install-ambari-in-centos-7-using-mysql/
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3.5.2. The Integration of RS Data in the HBase

HBase is a column-oriented key/value storage system made to run on the upper of
the HDFS. The Apache Software Foundation accomplishes its development. HBase became
a top-level Apache project in 2010. It is designed to manage significant table operations
and request rates (billions of rows and millions of columns) and scale-out parallelly in
distributed computing clusters [36]. HBase is recognized for offering robust data consis-
tency on reads and writes, which differentiates it from other NoSQL databases [37]. It
uses the architecture of master nodes to handle region servers that distribute and process
parts of data tables. HBase is a chunk of a long list of Apache Hadoop frameworks that
embrace Hive, Pig, and Zookeeper tools. HBase is typically coded using Java, not SQL.
The most common Filesystem used with HBase is HDFS [38]. Nevertheless, you are not
limited to HDFS because the Filesystem used by HBase has a pluggable architecture and
can replace HDFS with any other supported system. In effect, you could also implement
your Filesystem (see Supplementary Material File).

3.5.3. The Storage of the RS Data in Hive

Hive is an open-source data warehousing tool made on top of Hadoop. It was open-
sourced in August 2008, and since then, it has been explored by many Hadoop users for
their data processing requests. Hive executes queries in the SQL declarative language,
HiveQL, which are performed in MR jobs using Hadoop [39]. Furthermore, HiveQL allows
users to plug custom MR code into queries. The language contains a type system supporting
tables containing native types, such as arrays and maps. The HiveQL includes a subgroup
of SQL and some extensions that we have found useful in our environment. Standard SQL
features are similar to clause subqueries, various types of joins: joins, cartesian products,
grouping, aggregations, union all, create table as select, and several useful functions on
primitive and sophisticated types make the language very analogous to SQL. Hive also
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takes in a system catalog, the Metastore, containing schemas and statistics useful for data
exploration, query optimization, and compilation [40].

Hadoop is not easy for end-users who are not familiar with MR. End-users must
write MR scripts for simple tasks, such as calculating raw counts or averages. Hadoop
requires popular query languages’ expressiveness, particularly SQL, and thus users spend
a long-time coding program for even simple algorithms. We frequently run thousands
of Hadoop/Hive cluster jobs for various applications, from simple summarization to
machine learning algorithms. Hive serializes and deserializes using a java interface offered
by the user. Thus, custom data formats can be taken and queried (see Supplementary
Material File).

4. Experiment and Results

This section describes the experiment directed according to the description of the case
study. Firstly, we detail the used hardware and RSBD input for the investigation: mainly
the launched instances for pre-processing and the input size of the pre-processed RS data.
It also shows the pre-processing software’s statistical results, particularly the output data,
the execution time, and benchmarking. Besides, it illustrates how to access and explore the
final datasets stored in the Hadoop storage layer.

4.1. Instances and VMs

Table 4 shows the four VMs launched for RSBD pre-processing. Thus, we created
instances 1 and 2 using the local cluster of the UPC equipped with OpenStack. On the
other hand, we allocated instances 3 and 4 using the Elastic Compute Cloud (EC2) of the
Amazon Web Services (AWS) to obtain more computing capacities for testing.

Table 4. The configuration of the used VMs.

Instance Type Instance (VM) VCPU RAM Storage

Private (UPC) Instance 1 7 16 HDD
Private (UPC) Instance 2 8 32 HDD
Public (AWS) Instance 3 16 64 SSD
Public (AWS) Instance 4 32 128 SSD

This paper acquired NRT data from five sources: the MDEO, NASA, NOAA, ESA,
and some Meteorological Ground Station (MGS). The data were measured with around
25 satellite sensors and more than 60 ground sensors. The collected data were transmitted
through downlink channels, providing about 50 products. Moreover, the data were stored
in a scientific file format, such as NetCDF, HDF5, BUFR, and GRIB. The total daily volume
of data sums up 50 GB, and the velocity reaches more than 40,000 files per day. The acquired
data’s latency averages between one minute and three hours, as shown in Table 5. The total
number of plots (a single measurement of a variable in a specific time and location in the
map) in Morocco 24 h sumps up 10 million datasets.

Table 5. The specifications of the daily input data.

Organizations Sensors Products File
Format

Size/
Day (GB)

Velocity/
Day

Latency
(Minutes)

MDEO 8 27 NetCDF, 10 20,000 1–35
NASA 8 14 HDF5, 12 7000 40–140
NOAA 6 6 BUFR, 14 8000 60–180

ESA 3 5 GRIB, 17 150 120–180
MGS 61 7 Bin 1 100 1–10
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4.2. Benchmarking

The experiments were run on the created VM running Debian GNU/Linux 10 (64 bit).
During the execution of the developed SAT-Hadoop–Processor software, we monitored
some benchmarking using the CMD 6: time-f “%e_%P_%M_%S

Figure 6 shows that in parallel mode, the percent of CPU, the maximum reside memory,
and the CPU/s increase significantly when the VM size grows because the software executes
as many scripts simultaneously. Still, in standard mode, the software does not yield totally
from the hardware capacity available in the cluster. Accordingly, we assumed that the
parallel execution maximizes the employment of the hardware capacities to improve the
execution time.
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Figure 7 shows the mean temperature of the CPU during all the pre-processing steps.
Thus, the temperature ranges from 40 to 75 ◦C. It depends on the number of inputs, output
files, the algorithm’s complexity, and the operation’s nature (reading, writing, calculating,
networking, and so on). We note that the CPU’s temperature is moderate, about 55 ◦C,
during the decompression and the orbit filter steps because these two operations manage
files in the HDD (moving, deleting, etc.). However, the CPU’s temperature is high, around
65 ◦C, during the conversion, subset, and extraction because these scripts include many
loops and computation instructions, so they consume further CPU.

4.3. RS Data Output

The ingestion layer achieved an automatic download, decompression, filter, conver-
sion, subset, and extraction efficiency. Hence, as shown in Figure 8, we note that the total
daily size collected as input is around 50 GB. A 10% growth occurred after the decompres-
sion because the ground station compresses RS data to smooth transmission. After the
conversion step, the total size remains the same size. Still, after the subset process, data
decreases meaningfully due to the exclusion of unnecessary data. Globally, this ingestion
layer allows us to increase the storage space by 86%. Thus, the final CSV files’ total size
is between 1 and 6 GB depending on the studied country’s surface area. Therefore, this
relevance could be considered as a partial solution to the satellite data’s perversity.
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The extraction is the final and significant stage of the ingestion layer. Figure 9 describes
the daily total number of plots of the six countries. After the subset, we note that the sum
of plots decreases exponentially to retain only datasets covering the countries’ zone of
interest. The quality, minimum, and maximum filter eliminate about 20% of inaccurate and
erroneous datasets. Lastly, the refined and final datasets (rows) were stored in associated
CSV output files loaded and imported into an HDFS.
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Consequently, the extraction also diminishes the number of inaccurate and unneeded
datasets by up to 20%. The daily total number averages between thousands to millions of
plots conditional to the studied country’s surface area. This result confidently applies an
efficient Extract Transform Load (ETL) process to the RSBD and adapts it for integration
into a Hadoop environment.

The ingestion layer results in several CSV files as outputs with a unified schema,
storing datasets of several variables for each satellite, channel, and product. A final CSV
file contains 24 columns: Id of rows useful to distinguish it, Epoch Time, Year, Month, Day,
Min, Latitude, Longitude, and 12 atmospheric levels with an altitude between 0 and 8 km
(middle Troposphere). Figure 10 shows a snapshot of the first six rows of the CSV output
of the VCD of CH4 in Morocco.
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4.4. RS Data Queries Access and Interpretation: HiveQL and MR

This study integrated the output CSV files in the HDFS. This helps to handle RS data’s
enormous volume, variety, velocity, and value. HDFS supports arranging, storing, and
cleaning the data, making it suitable for analyzing massive parallel processing.

HDFS is based on a cluster with independent machines in which every node performs
its job using its resources. This will help to attach different computers with different OS
and configurations. Besides, integrating the pre-processed data in HDFS will automatically
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stripe and run-on commodity hardware, which does not need a very high-end server with
a large memory and processing processor. Storing the pre-processed RS data does not
require large clusters to be built. We kept on adding nodes. We employed HDFS to store
and access the refined easily and to generate value from RS data.

Hadoop can competently process terabytes of data in a few minutes and petabytes in
hours using MR. Importing the ingested RS data in HDFS is also replicated in other nodes
in the cluster, which means an alternative copy exists for use in the incident of failure.
Importing some GB of data inside the used Hadoop cluster takes approximately a few
minutes, and the visualization only a few seconds.

We also stored the HDFS files inside the HBase system to aggregate and analyze
billions of rows of the refined RS datasets. Furthermore, compared to traditional relational
models, the data could be shared with other users as end-users quickly and with a small
amount of reading and writing time. Storing the output data in HBase also helps to perform
online and NRT analytical operations. The importation of massive data from HDFS to
HBase involves only a few minutes. HBase does not support SQL requests in contracts
and shows a large memory and high CPU performance to process massive inputs and data
outputs. The system involves fewer task slots per node to allocate HBase CPU requirements
in a shared cluster environment.

This study stored the pre-processed RS data in Hive external tables, as shown in
Figure 11. Hive helps simplify working with billions of rows, using the HiveQL, which
is much closer to SQL than Pig and has less trial and error than Pig. Hive also analyzes
the massive RS data without strong java programming skills for writing MR programs
to retrieve data from the Hadoop system. Importing some GB of data inside the Hive
external table takes approximately a few minutes, and the visualization only takes a few
seconds [19].
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4.5. The Optimization of the Total Execution Time

Our experiment ran the ingestion software in four different VMs, as detailed in
Table 4, with an Internet bandwidth of 1 GB/s. Commonly, the pre-processing of the
RSBD takes a long execution time. From Figure 12, we remark that the download phase
took approximately eight minutes in standard mode and around six minutes when the
parallel tools were applied. This time could be optimized more by speeding up the Internet
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bandwidth or/and switching the Internet Protocol (IP) from the Transmission Control
Protocol (TCP) to the User Datagram Protocol (UDP).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 24 
 

 

Figure 12. The execution time of the standard and parallel pre-processing phases. 

The decompressing and the orbit filter execution time requires 20 min in standard 

mode and only about 10 min in parallel. The conversion is the lengthiest process, reaching 

about 50 min in standard and less than 10 min with a parallel algorithm. The subset needs 

more than an hour in standard; however, it requires only 15 min parallelly. In conclusion, 

the extraction script takes an average of 20 min. In contrast, it takes only three minutes 

with the parallel approach.  

The developed scripts are optimized by reducing database connections, such as se-

lections and insertion requests; thus, the network traffic economizes. Removing unused 

loops by breaking the loops by conditions is also essential to reduce CPU and RAM con-

sumption. Besides, discarding the collections lists, arrays, and vectors after each file pro-

cessing reduce RAM utilization.  

Scaling the input and output operations by only filtering datasets of interest acceler-

ates the execution time and makes more free memory available. Finally, reducing the 

number of reads and write processes surely adjusts the HDD and CPU performance. In 

this testing, and according to Figure 13, the total pre-processing time of 55 GB of RSBD 

takes more than nine hours in the standard mode Before Optimization (BO). However, it 

requires less than four hours in a traditional approach and within an optimized code. On 

the other hand, we pre-processed the same input size within an optimized code and in 

parallel in only 34 min. Accordingly, optimizing the code and integrating cloud and par-

allel programming techniques optimized the total execution time by 90%. Thus, this 

Figure 12. The execution time of the standard and parallel pre-processing phases.

The decompressing and the orbit filter execution time requires 20 min in standard
mode and only about 10 min in parallel. The conversion is the lengthiest process, reaching
about 50 min in standard and less than 10 min with a parallel algorithm. The subset needs
more than an hour in standard; however, it requires only 15 min parallelly. In conclusion,
the extraction script takes an average of 20 min. In contrast, it takes only three minutes
with the parallel approach.

The developed scripts are optimized by reducing database connections, such as
selections and insertion requests; thus, the network traffic economizes. Removing unused
loops by breaking the loops by conditions is also essential to reduce CPU and RAM
consumption. Besides, discarding the collections lists, arrays, and vectors after each file
processing reduce RAM utilization.

Scaling the input and output operations by only filtering datasets of interest accelerates
the execution time and makes more free memory available. Finally, reducing the number
of reads and write processes surely adjusts the HDD and CPU performance. In this testing,
and according to Figure 13, the total pre-processing time of 55 GB of RSBD takes more than
nine hours in the standard mode Before Optimization (BO). However, it requires less than
four hours in a traditional approach and within an optimized code. On the other hand,
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we pre-processed the same input size within an optimized code and in parallel in only
34 min. Accordingly, optimizing the code and integrating cloud and parallel programming
techniques optimized the total execution time by 90%. Thus, this number could be reduced
more using the power function “y” when the instance capacities (VCPU, RAM, HDD) are
larger, such as a super-computer. The processing speed-up will grow when the cluster
capacity is extended by adding extra VMs, reaching a plateau equal to a speed-up-max. The
speed-up-max = 600/SFET, where SFET is the Single File Execution Time. In our study, the
average SFET is 5 min; thus, the speed-up-max is 120 times based on the power equation
shown in Figure 13 with the green color. It is worth mentioning that the speed-up factor
will reach a plateau after a certain number of VMs due to the overhead in communications.
The maximum number of VMs used to reach a plateau is roughly 27 VMs.
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5. Comparison with Related Works

Table 6 compares our proposal and other related works focusing on applying RS
techniques for environmental application. Please note that cells with (-) are missing the
exact information. Most cited papers use scientific file formats, notably the NetCDF, HDF5,
BUFR, data stream, or images regarding the input type. Instead, most of the presented
studies collected data either from satellite sensors or the MGS. In contrast, in our study,
we acquired data from both sources to have strong input data. Consequently, we obtained
a combined output product. The streaming processing velocity sums up to millions of
datasets per day, though, in batch processing, the speed is lower.

Concerning data processing, some studies adopted batch and other stream processing.
Thus, our collected data are stored and then pre-processed and integrated inside the
Hadoop, so we used the batch processing paradigm. We found that Python and Java are
most commonly used in all the studies regarding the development language. The majority
of the approaches were executed in a distributed platform, especially Hadoop. Regarding
the benchmarking, we also note that streaming processing solutions take a brief execution
time: less than one minute with low RAM and CPU ingesting. However, batch processing
necessitates a robust cluster of processing.

Comparing this study to the SAT-ETL-Integrator software [21], we confirm that the
two software have the same RS data input and output specifications. However, they differ
in their processing architecture. We developed the SAT-ETL-Integrator software to pre-
process RSBD in a single machine. However, with the SAT-Hadoop-Processor software, we
optimized the code and integrated the cloud computing technology using parallel comput-
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ing. Finally, the final result will be integrated into the Hadoop environment. Therefore, the
new solution is upgraded to support parallel processing and the Hadoop framework.

Table 6. Comparison with related works.

Feature/Study SAT-Hadoop-
Processor

SAT-ETL-Integrator
[21] [16] [17] [18] [19]

Input format NetCDF, HDF5, BUFR, GRIB, BIN HDF5 Images Images Stream
Sources (Sensors) 25 1 1 1 1

Size 55 GB 50 MB 687 GB 9.5 GB 11 TB
Processing mode Batch Batch Batch Batch Streaming

Architecture Distributed Single Distributed Distributed Distributed Distributed
Technologies/Tools ETL, Hadoop ETL Hadoop Hadoop Hadoop Hadoop
Cloud technology OpenStack No No Yes Yes No

Parallel
computing Yes No No Yes Yes Yes
Languages Java, Python, Bash MPI MR, Spark MR, Spark MR, Spark

Execution time ~30 min ~9 h ~10 min Few hours 16 min ~135 h
Used RAM (GB) 128 16 - 576 160 160

Used CPU
(Cores) 32 5 - 288 80 80

Output type CSV CSV Stream Raw data Images Image

The comparison of the SAT-Hadoop-Processor with [15,16] shows that they all imple-
ment distributed, cloud, Hadoop, and MR tools for scalable RSBD processing. Still, they
differ in their input data format, architecture, and output. Our advanced solution has some
advantages, notably the various inputs as scientific file formats provided from various satel-
lite sensors, except optical ones providing images with pixels. The SAT-Hadoop-Processor
can be customized to any EO application easily thanks to its ETL algorithm. This is not the
case with other software.

6. Discussion

We suggest that our method allows complex RSBD in NRT to be dealt with. The
SAT-Hadoop-Processor acquires data from multiple series of satellites and sensors automat-
ically. It rapidly pre-processes data, keeps only relevant datasets, and finally serializes the
refined output in CSV or stream, which could be consumed directly by other third-party
applications or integrated into Hadoop for extra massive calculation and analysis.

We also incorporated cloud and parallel technologies to optimize the execution time
by maximizing the hardware capacities. Accordingly, the developed software reduced the
total execution time by 20-fold. We also integrated the ingested RSBD in Hadoop and made
it compatible with HDFS, HBase, and Hive to facilitate storage and processing using MR
and Spark’s pioneer tools.

The preliminary experimental results show the significant performance of the SAT-
Hadoop-Processor as a promising prototype for RSBD processing. We can conclude that
we successfully contributed to NRT RS data pre-processing and integration. The SAT-
Hadoop-Processor is flexible software supporting several RS data input formats. It can
also be customized with many EO applications, notably AP supervision, natural hazard
detection [41], etc.

7. Conclusions

Currently, many environmental issues affect the equilibrium and the safety of the
globe, especially AP and climate change. Thus, RS techniques play an indispensable role
in AQ monitoring and climate change supervision. Although, data collected by satellite
sensors are tricky, have a large size, and have high velocity. Accordingly, the RS data are
BD according to the eight V salient (8Vs) of BD. Such data processing is very challenging
and exceeds the capacity of current systems and architectures.

For this aim, we proposed the SAT-Hadoop-Processor software, which pre-processes
a huge volume of RS data from various satellites and sensors with diverse configurations.
The developed software works as an ETL, allowing practical pre-processing of satellite
data, including a daily storage improvement of 86% and an RS data cleansing of up to
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20%. Besides, this software is compatible with parallel processing in a cloud platform,
such as IaaS. The parallel running mode optimized the execution period 20 times. This
gain can be amplified by adding more hardware capacities to the cluster. As a result, the
developed solution enables NRT RSBD pre-processing to preserve its freshness. Finally, the
established solution integrated the Hadoop framework’s ingested data for extra processing
and analysis using MR and Spark tools.

In subsequent work, we aim to work in the following directions. First, we plan
to optimize the SAT-Hadoop-Processor to support satellite images (pixels) from optical
sensors onboard Landsat and Sentinel. In addition, we hope to apply and test this software
on different EO applications, such as natural hazard prediction, vegetation, and climate
change monitoring. As a perspective, we also want to develop smart AI algorithms based
on MR, allowing RSBD cleaning, interpolating, fusing, and validating. Applying some
meteorological models for data prediction to help decision-makers is also an interesting
work to conduct.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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