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Abstract: Schistosomiasis is a neglected tropical disease (NTD) found throughout tropical and sub-
tropical Africa. In Madagascar, the condition is widespread and endemic in 74% of all administrative
districts in the country. Despite the significant burden of the disease, high-resolution risk maps have
yet to be produced to guide national control programs. This study used an ecological niche modeling
(ENM) and precision mapping approach to estimate environmental suitability and disease transmis-
sion risk. The results show that suitability for schistosomiasis is widespread and covers 264,781 km2

(102,232 sq miles). Covariates of significance to the model were the accessibility to cities, distance to
water, enhanced vegetation index (EVI), annual mean temperature, land surface temperature (LST),
clay content, and annual precipitation. Disease transmission risk is greatest in the central highlands,
tropical east coast, arid-southwest, and northwest. An estimated 14.9 million people could be at risk
of schistosomiasis; 11.4 million reside in rural areas, while 3.5 million are in urban areas. This study
provides valuable insight into the geography of schistosomiasis in Madagascar and its potential risk
to human populations. Because of the focal nature of the disease, these maps can inform national
surveillance programs while improving understanding of areas in need of medical interventions.

Keywords: disease mapping; geographic information science; schistosomiasis; precision public
health; ecological niche modeling

1. Introduction

Schistosomiasis is an acute and chronic parasitic infection caused by trematodes of
the genus Schistosoma [1]. The disease is widespread throughout sub-Saharan Africa (SSA),
where an estimated 800 million people are at risk of infection [1,2]. Globally, schistosomiasis
is endemic in 78 countries [1]. Annually, schistosomiasis is estimated to account for between
200,000 and 535,000 deaths in SSA alone [1,3]. The intermediate hosts of human Schistosoma
during the asexual stage belong to three freshwater snail genera, Biomphalaria, Bulinus, and
Oncomelania [4–6]. In impoverished, rural areas, the disease is prevalent in agricultural and
fishing communities and among those who take part in everyday domestic, occupational,
and recreational activities within waterbodies. Children are especially at risk of the disease
when swimming or playing in infected water [7,8]. After Malaria, schistosomiasis is ranked
as the second most devastating parasitic disease in terms of its socioeconomic impact on
people [7]. Like many neglected tropical diseases (NTDs), schistosomiasis is associated
with regions of high poverty and poor sanitation [9,10].

In Madagascar, the burden of schistosomiasis is high [3], with 107/144 districts re-
porting the disease as endemic in 2016 [11,12]. Only 11% of the population has access to
improved methods of sanitation, and 44% practice open defecation [13,14]. It is estimated
that 52.1% of the total population is infected with schistosomiasis, representing the fifth
highest globally [15]. Both Schistosoma haematobium and Schistosoma mansoni are found
in Madagascar. Schistosoma haematobium, which causes urogenital schistosomiasis, is pre-
dominately found in the northern and western districts. Likewise, Schistosoma mansoni,
which causes an intestinal version of the disease, is prevalent in the eastern and southern
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districts. Co-endemicity between these species is noted in the north-central and south-
west [11,12]. The burden of the disease is felt considerably by school-aged (SAC) and
pre-school-aged children. National control campaigns offering mass drug administration
(MDA) of praziquantel for children aged 5–15 often struggle with logistical challenges due
to the remoteness of some endemic regions [12]. Much of the Malagasy population in rural
areas have limited access to government-run primary health care centers, which often lack
physicians and laboratory testing equipment [16].

With the incorporation of geospatial technologies into fields like public health, epi-
demiology, and disease ecology, our knowledge of the spatial patterns of disease has
increased significantly in recent decades. The use of geographic information systems (GIS)
and the adoption of remotely sensed (RS) data products have been widely used in disease
mapping and epidemiology [17]. As an essential tool of 21st-century medical geographers,
GIS provides estimates of the spatial risk of disease at multiple scales of analysis, facilitating
public health interventions [18]. Disease mapping and spatial modeling are increasingly
utilized to guide intervention strategies, derive health metrics, and enhance epidemiologi-
cal understanding of humans and their environment [19]. GIS-based disease mapping is
primarily focused on identifying the locations of disease occurrence, patterns of diffusion,
and environmental risk factors [20,21]. Literature on the use of these techniques for studies
on schistosomiasis ranges geographically from China [22], Brazil [23], Nigeria [24], The
Philippines [25], sub-Saharan Africa [26], and Ethiopia [27].

To date, no studies have attempted to examine the geography of schistosomiasis
in Madagascar and its potential risk to human populations. To fill this gap, using an
ecological niche modeling (ENM) and precision mapping approach [28], this study sought
to (i) develop a model of environmental suitability for the disease (ii) and to map the
potential disease exposure risk. High-resolution maps are necessary due to the focal nature
of schistosomiasis. These risk maps will provide valuable eco-epidemiological information
to inform decision-makers in effectively allocating resources for targeted prevention and
control measures.

2. Materials and Methods
2.1. Study Area

Madagascar (Figure 1) (18.7669◦ S, 46.8691◦ E) lies approximately 400 km (250 miles)
off the coast of East Africa and is the world’s second-largest island nation (587,041 km
square) after Indonesia. The estimated population in 2021 is 28,427,328 [29]. According
to the International Monetary Fund (IMF), the per capita GDP (nominal) is estimated at
$471 per person (2019) [30]. Madagascar ranked 164th in the world in 2019 according
to the United Nations Development Programme (UNDP) Human Development Index
(HDI) [31]. Eight neglected tropical diseases (NTDs) are considered endemic on the island:
schistosomiasis (SCH), soil-transmitted helminths (STH), lymphatic filariasis (LF), dengue
fever, rabies, leprosy, tungiasis, and plague [32].
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Figure 1. Geographic distribution of occurrence data (n = 231) in comparison to the predominant
topographic characteristics of Madagascar. The model calibration area (M) is visualized as 40-km
buffers (black).

2.2. Occurrence Data

Geographic records of both Schistosoma haematobium (n = 80) and Schistosoma man-
soni (n = 120) were collected from the Global Atlas of Helminth Infections (GAHI) (http:
//www.thiswormyworld.org/) (access date: 2 November 2021) [33] and the World Health
Organization (WHO) [34]. Supplementing these data were literature on confirmed human
(n = 12) and animal (n = 1) cases [35–44] extracted from a literature search in Google (www.
google.com) (access date: 2 November 2021), Google Scholar (https://scholar.google.com/)
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(access date: 2 November 2021), and PubMed (https://pubmed.ncbi.nlm.nih.gov/) (access
date: 2 November 2021). No time range was specified or article type limits. Search terms
included “schistosomiasis Madagascar”, schistosomiasis Madagascar animals”, “schistoso-
miasis Madagascar humans”. Bulinus (n = 16) and Biomphalaria (n = 2) occurrence records
were also included to account for the immediate host stage. These data were collected
from the Global Biodiversity Information Facility (GBIF) [45,46]. In total, 231 records were
compiled from 1921–2021 (animal case (n = 1), human case (n = 12), S. haematobium (n = 80),
S. mansoni (n = 120), Bulinus (n = 16), Biomphalaria (n = 2)). Please see the Supplementary Ma-
terials for the complete list of occurrence data and their geographic information (Table S1).
Before the ecological niche modeling stage, the occurrence data were cleaned by removing
duplicate records. Sampling bias needed to be accounted for [47,48] because records were
not sampled evenly across the study area. The ‘spThin’ [49] R programming language pack-
age (version 4.1.2–R Core Team) [50] removed duplicate points at a distance threshold of
25 km. The final dataset thus featured 127 spatially independent records. The model calibra-
tion areas were established based on the recommendation of Barve and colleagues [51]. The
accessible area or the M region [52] within the BAM (Biotic–Abiotic-Movement) Framework
was defined by 40-km buffers surrounding the filtered occurrence data.

2.3. Environmental Variables

Like other neglected tropical diseases (NTDs), schistosomiasis is influenced by various
environmental factors that govern the persistence of the disease and the survival of snail
vectors [53–56]. To characterize the present climatic conditions, bioclimatic variables were
obtained from the WorldClim dataset (1970–2000) (v2.1) (https://worldclim.org/) (access
date: 2 November 2021) [57] at the 1-km resolution (30-arc seconds). Before modeling,
several variables were excluded from the analysis (bio8, bio9, bio18, bio19) due to known
spatial artifacts affecting the ecological niche modeling process [58]. Gridded soil data
representing the predominant silt, sand, and clay content were obtained from the Interna-
tional Soil Reference and Information Centre (ISRIC) (https://soilgrids.org/) (access date:
2 November 2021) at a depth of 0–5 cm (1-km). Topographic data were extracted from a
digital elevation model (DEM) representing the mean elevation of Madagascar. This data
was downloaded from EarthEnv (https://www.earthenv.org/) (access date: 2 November
2021) [59] and represented an enhanced model called the Global Multi-resolution Terrain
Elevation Data (GMTED2010).

To explore the potential effects of vegetation, surface energy, and water balance,
moderate resolution imaging spectroradiometer (MODIS) (National Aeronautics and
Space Administration (NASA)) monthly mean enhanced vegetation index (EVI) and
mean eight-day land surface temperature (LST) datasets were obtained from the World-
Grids data archive [60] (1-km). The EVI is an optimized vegetation index that enhances
signal sensitivity in high biomass regions and improves vegetation monitoring capa-
bilities. Land surface temperature (LST) is simply the radiative skin temperature of
land derived directly from infrared radiation. It is a useful variable because it con-
tains a mixture of bare soil and temperature data. Also included were two sociode-
mographic variables which could potentially contribute to the disease transmission risk
in rural areas: the accessibility to cities (1-km) (2015) [61], and nighttime lights satel-
lite imagery (2013) (1-km) (National Oceanic and Atmosphere Administration (NOAA))
(https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html) (access date: 2 Novem-
ber 2021) [62]. The distance to water bodies was also included in the analysis. This
variable served as a spatial risk factor for humans and the habitat for the intermediate
freshwater snail hosts. The dataset was created by applying the Euclidean distance anal-
ysis tool in ArcGIS 10.8.1 (Environmental Systems Research Institute, RedLands, CA,
USA) at a maximum distance threshold of approximately 16 km (25,749.5 m) with an
output cell size of 1-km. These water features were obtained from the website DIVA-GIS
(https://www.diva-gis.org/) (access date: 2 November 2021).

https://pubmed.ncbi.nlm.nih.gov/
https://worldclim.org/
https://soilgrids.org/
https://www.earthenv.org/
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.diva-gis.org/
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2.4. Variable Selection

A pairwise Pearson’s correlation coefficient (PCC) [63] analysis was done using the
R programming package (version 4.1.2–R Core Team), ‘ntbox’ v0.5.1.4 [64]. This step in
the pre-modeling process reduced multicollinearity between the predictor variables and
only variables with a value less than ±0.75 were retained. Pearson’s correlation coefficient
is defined as the covariance of two variables divided by the product of their standard
deviations [63]. The final set of candidate variables were: annual mean temperature
(bio1), Isothermality (bio3), temperature seasonality (bio4), annual precipitation (bio12),
precipitation seasonality (bio15), accessibility to cities, clay and silt content, distance to
water, land surface temperature (LST), enhanced vegetation index (EVI), and NOAA
nighttime lights (Table 1).

Table 1. Environmental variables.

Variable Included in Model Source Resolution Unit Average

BIO1–Annual Mean Temperature Yes WorldClim (v.2.1) ~1 km ◦C 23.18

BIO2–Mean Diurnal Range No WorldClim (v.2.1) ~1 km ◦C 11.93

BIO3–Isothermality Yes WorldClim (v.2.1) ~1 km ◦C 65.13

BIO4–Temperature Seasonality Yes WorldClim (v.2.1) ~1 km ◦C 232.32

BIO5–Max Temperature of Warmest Month No WorldClim (v.2.1) ~1 km ◦C 31.46

BIO6–Min Temperature of Coldest Month No WorldClim (v.2.1) ~1 km ◦C 13.12

BIO7–Temperature Annual Range WorldClim (v.2.1) ~1 km ◦C 18.33

BIO8–Mean Temperature of Wettest
Quarter No * WorldClim (v.2.1) ~1 km ◦C -

BIO9–Mean Temperature of Driest Quarter No * WorldClim (v.2.1) ~1 km ◦C -

BIO10–Mean Temperature of Warmest
Quarter No WorldClim (v.2.1) ~1 km ◦C 25.49

BIO11–Mean Temperature of Coldest
Quarter No WorldClim (v.2.1) ~1 km ◦C 19.98

BIO12–Annual Precipitation Yes WorldClim (v.2.1) ~1 km mm 1371.61

BIO13–Precipitation of Wettest Month No WorldClim (v.2.1) ~1 km mm 310.46

BIO14–Precipitation of Driest Month No WorldClim (v.2.1) ~1 km mm 18.59

BIO15–Precipitation Seasonality Yes WorldClim (v.2.1) ~1 km mm 100.13

BIO16–Precipitation of Wettest Quarter No WorldClim (v.2.1) ~1 km mm 808.67

BIO17–Precipitation of Driest Quarter No WorldClim (v.2.1) ~1 km mm 68.88

BIO18–Precipitation of Warmest Quarter No * WorldClim (v.2.1) ~1 km mm -

BIO19–Precipitation of Coldest Quarter No * WorldClim (v.2.1) ~1 km mm -

Clay Content Yes SoilGrids ~1 km g/100 g 23.68

Silt Content Yes SoilGrids ~1 km g/100 g 15.84

Sand Content No SoilGrids ~1 km g/100 g 60.80

Elevation No EarthEnv ~1 km meters 465.11

Enhanced Vegetation Index (EVI) Yes WorldGrids ~1 km 0–6 2.96

Land Surface Temperature (LST) Yes WorldGrids ~1 km ◦C 29.93

Distance to Water Yes DIV-GIS ~1 km meters 2515.57

Accessibility to Cities Yes Malaria Atlas Project ~1 km time 338.04

Nighttime Lights Yes NOAA ~1 km 1–63 5.97

* Excluded before modeling due to known spatial artifacts [58].



Trop. Med. Infect. Dis. 2022, 7, 15 6 of 17

2.5. Ecological Niche Modeling

An ensemble ecological niche model (ENM) was developed with the R programming
language (version 4.1.2–R Core Team) [50] package ‘biomod2’ [65]. The ecological niche
methodology consists of developing a predictive model of the geographic distribution
of species based on their known environmental requirements and occurrence data [66].
Ecological niche modeling (ENM) has increasingly been applied in a public health context
to characterize the ecological conditions that support disease agents and promote their
transmission [27,67,68]. In total, four algorithms were chosen for the ENM process: Gener-
alized Boosted Models (GBM) [69], Generalized Linear Models (GLM) [70], Random Forest
(RF) [71], and Multiple Adaptive Regression Splines (MARS) [72]. Pseudoabsence data
(1:2 ratio = 254 PA) were generated with the ‘surface-range envelope’ model (similar to
BIOCLIM). Here, random points were selected from all points outside the suitable area
estimated by a rectilinear surface envelope from the presence sample (quantile = 0.025–95%
CI) [65]. Each algorithm was run 25 times (4 algorithms × 25 replicates = 100 models), with
80% of the data allocated for training and 20% used for testing. Please see Supplementary
Materials (Image S1) for the corresponding environmental variable response plots.

For each algorithm, the area under the curve (AUC) of the receiver operating character-
istic (ROC) [66] and the true skill statistic (TSS) [73] were applied to evaluate the predictive
performance of each metric. The AUC differentiates between negative and positive values
and ranges from 0 to 1, with high values (greater than 0.70) indicating better predictive
potential. On the contrary, the TSS is a prevalence-independent measure calculated as
sensitivity + specificity − 1, with values ranging from −1 (random) to 1 (perfect model
performance. The variable importance of the non-correlated variables was based on a
decrease in accuracy and on correlating the fitted data with the randomly permitted val-
ues [74]. Models with mean AUC values greater than 0.70 were combined based on the
estimated weighted sum of predictions (weighted mean). The coefficient of variation (CV)
between values served as a measure of overall model uncertainty. The final ensemble was
also converted to a binary outcome (i.e., suitable, or non-suitable) based on a cut-off value
which best represented the trade-off between sensitivity, specificity, and accuracy [75].

2.6. Estimating Zones of Exposure Risk and the At-Risk Population

To map the disease transmission risk associated with schistosomiasis, two components
were combined: (1) the potential abundance of the disease, the ensemble ecological niche
model (threat), and (2) gridded human population density data (vulnerability) [76,77]. The
human population density grid (2020) with a spatial resolution of 1-km was obtained from
the WorldPop mapping project (www.worldpop.org) (access date: 2 November 2021). To
estimate exposure risk zones, a three-step process was applied. First, the population density
data was classified into four categories: null (0–1 persons/km2), low (>1–10 persons/km2),
medium (>10–100 persons/km2), and high (>100 persons/km2). Numerical values were
then assigned to each of these categories: null = 0, low = 1, medium = 2, high = 3. Second,
the weighted mean model was reclassified into four categories: null, low, medium, and
high with an equal interval classification type. Third, both reclassified grids were combined
in the Raster Calculator tool in ArcGIS 10.8.1 (Environmental Systems Research Institute,
RedLands, CA, USA).

The final output map featured exposure risk zones ranging from very low, low,
medium, high, and very high [76]. Estimates on the total number of people living in
suitable areas were then obtained by overlaying the binary output map (i.e., suitable, or
non-suitable) with human population data representing the total count of persons per
pixel value (1-km) (2020) (www.worldpop.org) (access date: 2 November 2021). The esti-
mated at-risk population was then split into two classification schemes: urban-rural based
on boundaries established from The Global Rural-Urban Mapping Project (GRUMP) v1
(CIESIN) (Global Rural-Urban Mapping Project (GRUMP), v1|SEDAC (columbia.edu)
(access date: 2 November 2021)).

www.worldpop.org
www.worldpop.org
columbia.edu
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3. Results

In this study, two hundred thirty-one records (Figure 1) were collected, all of which
spanned a temporal period of 100 years from 1921–2021. When documented at the regional
administrative level (Level 2-Database of Global Administrative Areas (https://gadm.
org/)) (access date: 2 November 2021), 17% (n = 39) of all occurrences were documented
in Ihorombe, 10% (n = 24) in Atsimo-Andrefana, 9.5% (n = 22) in Menabe, 7% (n = 16) in
Diana, 7% (n = 16) in Sofia, and 6.5% (n = 15) in Analamanga. The total area predicted to
be suitable for schistosomiasis in Madagascar is 264,781 km2 (102,232 sq miles). Variables
with the highest contribution to the ecological niche model (Figure 2) were the accessibility
to cities (23.70), distance to water (23.26), enhanced vegetation index (EVI) (16.75), annual
mean temperature (bio1) (15.62), land surface temperature (LST) (11.34), clay content
(6.97), annual precipitation (bio12) (6.72), silt content (3.41), precipitation seasonality (bio15)
(2.72), nighttime lights (2.24), temperature seasonality (bio4) (1.21), and Isothermality (bio3)
(0.59). The predicted environmental suitability of schistosomiasis and the associated model
uncertainty are presented in Figure 3.
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The spatial distribution is widespread throughout the island, particularly in the
sub-arid southwest regions of Atsimo-Andrefana, Androy, Atsimo-Atsinana, Ihorombe,
Menabe, and the east coast within Vatovavy Fitovinany, Atsinanana, and Analanjirofo.
Suitability within the sub-humid central plateau is present in and around Antananarivo,
Antsirabe, and Fianarantsoa. Similarly, the north-western region has suitable areas in
Boeny and Sofia, the far northeast and west, and to a limited extent in Diana and Sava. The
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around the urban areas of Antananarivo, Fianarantsoa, and the coastal cities of Toamasina,
Toliara, Mahajanga, and Antsiranana. The risk in rural areas, although less pronounced
because of a lower population density, is still significant, particularly in areas throughout
the southwest, western coast, and northwest.
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Figure 3. Environmental suitability of schistosomiasis in Madagascar (A). The estimated weighted
sum of predictions (weighted mean) (B). Model uncertainty based on the coefficient of variation (CV).
The filtered occurrence records (red) are superimposed, including the aquatic snails Biomphalaria
and Bulinus.

The average ROC scores for the chosen algorithms (GBM, GLM, RF, MARS) were high,
with all four averaging ROC scores ≥ 0.80. The most robust predictive performance was
displayed between the Generalized Boosted Model (GBM) (0.86) and Random Forest (RF)
(0.84) algorithms, while Multiple Adaptive Regression Splines (MARS) and Generalized
Linear Models (GLM) had average ROC scores of 0.81 and 0.80 respectively. When com-
pared, the ROC values for all models ranged from a minimum of 0.71 to a high of 0.98, while
the TSS values ranged from a minimum of 0.34 to a high of 0.97. The estimated human
population at risk of schistosomiasis (2020) is 14,972,194 (Figure 5). Of these 14.9 million,
3,545,616 live in urban areas, and 11,426,578 live in rural areas. The estimated population
at risk represents roughly 53% of Madagascar’s total population.



Trop. Med. Infect. Dis. 2022, 7, 15 9 of 17Trop. Med. Infect. Dis. 2022, 7, 15  10 of 18 
 

 

 

Figure 4. Schistosomiasis disease exposure risk. The color scale from orange to dark red corresponds 

to medium, high, and very high exposure risk, while values from yellow to grey represent low–very 

low risk. 

Figure 4. Schistosomiasis disease exposure risk. The color scale from orange to dark red corresponds
to medium, high, and very high exposure risk, while values from yellow to grey represent low–very
low risk.



Trop. Med. Infect. Dis. 2022, 7, 15 10 of 17Trop. Med. Infect. Dis. 2022, 7, 15  11 of 18 
 

 

 

Figure 5. The environmental suitability of schistosomiasis in Madagascar based on a binary thresh-

old value of 0.478. Level 2 classifications represent administrative boundaries according to the Da-

tabase of Global Administrative Areas (https://gadm.org/) (access date: 2 November 2021). Yellow 

dots represent the study occurrence data (n = 231). 

4. Discussion 

Historically, disease mapping has been considered an essential tool when examining 

the connection between place, space, and human health. These methods have evolved 

markedly in recent decades and have become one of the most critical GIS technologies in 

developing improved disease surveillance systems [78,79]. GIS-based disease mapping 

has been applied successfully in previous studies examining the geography of neglected 

Figure 5. The environmental suitability of schistosomiasis in Madagascar based on a binary threshold
value of 0.478. Level 2 classifications represent administrative boundaries according to the Database
of Global Administrative Areas (https://gadm.org/) (access date: 2 November 2021). Yellow dots
represent the study occurrence data (n = 231).

4. Discussion

Historically, disease mapping has been considered an essential tool when examining
the connection between place, space, and human health. These methods have evolved
markedly in recent decades and have become one of the most critical GIS technologies in
developing improved disease surveillance systems [78,79]. GIS-based disease mapping has
been applied successfully in previous studies examining the geography of neglected tropical
diseases (NTDs) [80–83]. In this study, an ecological niche modeling and precision mapping

https://gadm.org/
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approach were combined to estimate the environmental suitability of schistosomiasis and
the risk of disease transmission to humans. These models were developed by relating
the location of occurrence data with sociodemographic and environmental variables. The
ecological niche model represented the relative environmental risk of schistosomiasis and
the corresponding level of model uncertainty across Madagascar.

The present study shows that the suitability of schistosomiasis in Madagascar and
the risk to human populations has a broad geographic distribution across the island and
is at its most significant in the southwest regions of Atsimo-Andrefana, Androy, Atsimo-
Atsinana, Ihorombe, Menabe, and the eastern areas of Vatovavy Fitovinany, Atsinanana,
and Analanjirofo. Within the sub-humid central plateau region, suitability is prevalent in
Antananarivo, Antsirabe, and Fianarantsoa. While, in the northwest, suitable areas are
distributed in Boeny and Sofia, and to a limited extent, coastal regions in Diana and Sava.

When mapped at the regional administrative level, 17% of all occurrences were in
Ihorombe (n = 39), 10% (n = 24) in Atsimo-Andrefana, 9.5% (n = 22) in Menabe, and 7%
were found in Diana (n = 16), respectively. Variables of significance to the ecological niche
model were the accessibility to cities (23.70), distance to water (23.26), enhanced vegetation
index (EVI) (16.75), annual mean temperature (bio1) (15.62), land surface temperature (LST)
(11.34), clay content (6.97), annual precipitation (bio12) (6.72), silt content (3.41), precipi-
tation seasonality (bio15) (2.72), NOAA nighttime lights (2.24), temperature seasonality
(bio4) (1.21), and Isothermality (bio3) (0.59). In total, 14,972,194 people are at risk of schisto-
somiasis, with an estimated 3,545,616 living in urban areas and an additional 11,426,578
in rural areas. The total population at risk constitutes roughly 53% of the country’s total
population. Estimates of the human population at risk were obtained by converting the
weighted sum of predictions to a binary (i.e., suitable, or non-suitable) model, which best
represented a cut-off value that balanced model sensitivity, specificity, and accuracy.

This study additionally applied a precision mapping approach to quantify and map
the exposure risk to schistosomiasis. Precision mapping has its roots in the perspective of
precision public health, integrating geolocated information and maps to pinpoint regions
of elevated health risk with high degrees of accuracy [77,84–86]. Public health policies
are often conducted at the local level, so, ideally, information is obtained at a fine spatial
scale to facilitate interventions that can have the most significant impact [87]. Here, the
ecological niche of schistosomiasis and human population density data were combined to
produce a map of disease transmission risk. This method has been previously applied to
research on the Zika virus (ZIKV) [76] and the fungal pathogen Cryptococcus [86] in Europe
and the Americas.

The variables of significant contribution to the ecological niche model corroborate
previous research reporting the significance of the distance to water [56], accessibility to
healthcare resources [88,89], landscape characteristics [53,90,91], and temperature [92,93]
as helpful in understanding the complex social-ecological systems associated with schis-
tosomiasis. Long travel times are problematic in low-income settings because they are
associated with increased travel costs and influence whether individuals seek critical
care [61]. It is estimated that only 60–70% of the population of Madagascar has access to
primary healthcare and that travel distances to primary care often exceed 10 km [94]. In
2014, Madagascar had the lowest reported healthcare spending globally (per capita) at
$ 13.56 [95]. Equally relevant to the model, the distance to water represents the habitat
for aquatic snail species and a foci of infection for humans when fishing, bathing, and
swimming. Drivers of potential water contact patterns can extend outside of rivers, streams,
and lakes. Sources vary from artificial irrigation canals, small reservoirs, and agricultural
impoundments [96]. Water contact patterns and schistosomiasis transmission dynamics
are additionally influenced by local cultural practices, socioeconomics, and spatiotemporal
variability (i.e., seasonality) [96].

With the continued threat of climate change, the risk of neglected tropical diseases
(NTDs) like schistosomiasis may increase, especially in low-resource communities [97].
The task of predicting the effects of climate change on schistosomiasis is complicated by
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the ecology of snails and parasite species and the scale of temperature and precipitation
data [98,99]. Previous research has hypothesized that because of the host snails’ poikilo-
therm nature, changes in temperature and precipitation could alter reproduction, survival,
and dispersal throughout the environment [100]. Currently, southern Madagascar is experi-
encing widespread severe drought, the worst in nearly 40 years. As a result, more than one
million people are suffering from food insecurity and are on the brink of famine [101]. Some
have speculated that this disaster is the first famine caused by the direct effects of climate
change [102]. The ongoing COVID-19 global pandemic has posed several challenges for the
mass treatment of schistosomiasis. The traditional MDA campaigns at schools have shifted
to door-to-door campaigns, which have increased staff costs and are further complicated
by poor road conditions throughout the country [32]. In addition, anthropogenic activities
such as the construction of water development projects may create additional suitable habi-
tats for the intermediate freshwater snail hosts; thus, allowing the risk of human infection
to spread into previously nonendemic regions [103].

This study has some limitations. As previously stated, schistosomiasis is a focal
disease strongly linked with the socioeconomic status of those infected. Contextual level
factors like poverty, access to clean drinking water, and the safe disposal of human waste
vary geographically. Therefore, the models presented here cannot extract causality or
measure the disease’s prevalence or incidence. In addition, the risk to humans is complex
and reflects personal, cultural habits, environmental factors, and the underlying societal
structure. Thus, the estimated at-risk population should be viewed with caution as it
does not reflect the real risk to the entire population (14.9 million). The study data was
additionally extracted from historical and contemporary sources, so some uncertainties
may be present, especially for the oldest records included in the analysis. More than likely,
other endemic areas in Madagascar were not included in this study because records were
not available.

To improve future mapping efforts, national geo-referenced survey data combined
with macroecological information would be helpful. This would improve model accuracy
and enable more precise interventions in priority areas. One limitation of the ENM model
in this study is that it was developed with pseudoabsence data. Due to the lack of available
true absence data, it was necessary to generate pseudoabsence data (n = 264). Previous
research has documented the advantage of presence-absence techniques versus the random
generation of pseudoabsences [104]. Although, even with this inherent methodological
limitation, an ensemble model can produce a more robust prediction than a single model’s
output [65].

5. Conclusions

In summary, this study mapped the environmental suitability and disease transmission
risk of schistosomiasis in Madagascar for the first time. Significant findings from this
research are as follows:

• The total area of environmental suitability is 264,781 km2 (102,232 sq miles).
• The population at risk is 14,972,194 million people (2020) (11.4 million-rural areas;

3.5 million-urban areas).
• Environmental suitability is concentrated throughout Sofia, Boeny, Bongolava, Itasy,

Analamanga, Betsiboka, Alaotra-Mangoro, Atsinanana, Vakinankaratra, Amoron’I
mania, Vatovavy Fitovinany, Haute Matsiatra, Menabe, Atsimo–Andrefana, Ihorombe,
Anosy, Androy, and Atsimo-Atsinana.

• The disease transmission risk to human populations is significant within the central
highland region, humid tropical eastern coast, dry-arid southwest, northwest, and to
a lesser extent, the north and east.

• Variables of significance model contribution were the accessibility to cities, distance
to water, enhanced vegetation index (EVI), annual mean temperature, land surface
temperature (LST), clay content, and annual precipitation.
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These maps can serve as a guideline for schistosomiasis control programs, which could
prove beneficial to medical intervention campaigns. In addition, these maps can guide
integrated disease surveillance and response systems in identifying schistosomiasis hot
spots. Moreover, environmental-health education and targeted host snail-control programs
can benefit from the risk maps presented here.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/tropicalmed7020015/s1, Image S1: Variable response plots. Table S1:
Occurrence locations in Madagascar (n = 231).
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