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ABSTRACT In recent years, the increasing popularity of unmanned aerial vehicles (UAVs) has arisen
from the emergence of cutting-edge technologies deployed in small and low-cost devices. With the great
capability of friendly uses and wide applications for multiple purposes, amateur drones can be piloted to
effortlessly access any geographical area. This poses some difficulties in monitoring and managing drones
that may invade private or limited-access areas. In this paper, we propose a radio-frequency (RF)-based
surveillance solution to effectively detect and classify drones, and recognize operations by leveraging a
high-performance convolutional neural network. The proposed network, namely RF-UAVNet, is specified
with grouped one-dimensional convolution to significantly reduce the network size and computational cost.
Besides, a novel structure of multi-level skip-connection, for the preservation of gradient flow, incorporating
multi-level pooling, for the collection of informative deep features, is proposed to achieve high accuracy
via learning efficiency improvement. In the experiments, RF-UAVNet yields the accuracy of 99.85% for
drone detection, 98.53% for drone classification, and 95.33% for operation mode recognition, numbers
which outperform the current state-of-the-art deep learning-based methods on DroneRF, a publicly available
dataset for RF-based drone surveillance systems.

INDEX TERMS Convolutional neural network, deep learning, drone detection, drone classification, drone
surveillance.

I. INTRODUCTION

Recently, small unmanned aerial vehicles (UAVs), also
known as drones, have received explosive interest unprece-
dentedly for numerous applications in diverse domains,
which range from aerial photography to disaster manage-
ment, agriculture, and communications [1], [2]. However,
this rapid development of amateur drones poses many critical
threats to public security and personal privacy [3], where
drones are controlled to enter restricted zones intention-
ally without authentication. Drone surveillance has become

a potential solution to effectively cope with the above-
mentioned problem [4], in which drone detection and clas-
sification play an important role in many advanced anti-
drone systems. Several drone detection approaches based
on radar, audio, video, and radio-frequency (RF) [5] have
been developed in surveillance systems, however, they have
suffered from different limitations: ineffectiveness of radar-
based approaches for small drones detection, high sensi-
tivity to noise and limited working range of audio-based
approaches, and weather constraints with object occlusion of
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video-based approaches [6]. Compared with the others, the
RF-based approach is more favorable to drone detection and
classification thanks to substantial reliability and outstanding
performance [7] besides easy implementation and long oper-
ation range (approximately 1400 ft) [8].

Several RF-based drone detection methods have been in-
troduced with feature extraction and machine learning (ML)
algorithms. In [9], a reliable detection method was introduced
to warn the presence of drones by analyzing the fast Fourier
transform (FFT) of drone-controller RF signals. Shoufan et
al. [10] learned the random forest classifier with time-domain
features to improve the accuracy of drone pilot identification.
In [11], a regular ML framework with frequency-domain
features and neural networks was studied to detect drones via
WiFi interferences. Deep learning (DL) [12] with recurrent
neural network (RNN) and convolutional neural network
(CNN) [13]–[15] has been exploited to process RF signals
in wireless communications and improve the performance of
RF-based drone surveillance systems. The superiority of DL
with great capacity for learning relevant features at multi-
scale RF signal resolutions was articulated in [16] when
compared with various traditional ML algorithms for drone
detection. However, the primitive architecturein [16] suffered
from high implementation complexity and low accuracy.
Recently, some RNN and CNN architectures have been de-
signed with cascade structures to process time-series data in
different classification tasks, such as wearable-based physical
activity recognition [17] and motor fault diagnosis [18].

In this work, we present an efficient drone surveillance
method using supervised learning with deep architectures to
monitor and manage known drones. Especially, we propose
RF-UAVNet, a novel deep CNN architecture for three tasks:
drone detection, drone classification, and operation mode
recognition. We design the deep network architecture with
multiple convolutional layers, where each layer is specified
by several one-dimensional (1D) asymmetric filters of sizes
1 × 3 and 1 × 5 to extract local features of raw 1D signal
at multi-scale resolutions (from coarse to fine). We leverage
grouped convolution instead of standard convolution to sig-
nificantly reduce the number of network parameters and the
processing cost. Moreover, a multi-level skip-connection is
cleverly designed in association with a multi-level pooling
to regulate the gradient flow and collect more global un-
derlying features, which in turn increase the overall accu-
racy of surveillance systems. We evaluate the performance
of RF-UAVNet on a practical DroneRF dataset [19] and
investigate with various hyper-parameters and architecture
configurations to corroborate the efficiency of RF-UAVNet
for different drone surveillance tasks. The proposed method
is compared with state-of-the-art approaches with the same
condition, showing that RF-UAVNet is superior to other deep
networks. The primary contributions of this paper can be
summarized as follows:

• We propose RF-UAVNet to separately learn three com-
mon tasks in drone surveillance systems, in which the
network architecture is specified by asymmetric filters

to calculate the local correlations of RF signals. We
deploy grouped convolution to reduce the number of
trainable parameters and computational cost. We fur-
ther design an advanced structure with multi-level skip-
connection and multi-level pooling to improve the accu-
racy of three tasks.

• The proposed network achieves the overall accuracy of
99.85% for drone detection, 98.53% for drone classi-
fication, and 95.33% for operation recognition on the
DroneRF dataset while reducing the number of param-
eters by around 78% and the computational cost by
around 82%. In the method comparison, RF-UAVNet
outperforms several existing DL-based models in terms
of accuracy for different drone surveillance tasks.

The remainder of this paper is organized as follows:
Section II briefly surveys the available literature on drone
detection methods. In Section III, we present the proposed
RF-based method for drone detection, drone classification,
and operation recognition, wherein a high-performance CNN
is introduced to learn RF signals. The diversified experiments
with numerical results are provided in Section IV. Finally,
Section V concludes this paper.

II. STATE-OF-THE-ART TECHNIQUES
A. RADAR-BASED TECHNIQUE
The principle of radar-based methods is electromagnetic
backscattering to identify an aerial object by measuring the
radar cross-section (RCS) signature. Compared with aircraft,
drones are more challenging for RCS-based detection be-
cause of their small size and low-conductivity materials that
induce low RCS. In [20], the micro-Doppler signature with
time-domain analysis performed better than the Doppler-shift
signature to increase the accuracy of clutter/target discrim-
ination. The micro-Doppler signature was also adopted for
drone classification in a non-cooperative drone surveillance
system [21] with support vector machine (SVM) and decision
tree (DT) classifiers. Recently, a passive radar with long-
term evolution (LTE) downlink signals [22] was exploited
to detect small UAVs. Geng et al. [23] utilized frequency-
modulated continuous waveform to specify an effective LTE
downlink signal feature, which in turn increases the accuracy
of drone detection.

B. AUDIO-BASED TECHNIQUE
This technique can detect, classify, and localize drones based
on the sounds of the engine and high-speed rotating pro-
pellers using acoustic sensors (e.g., microphones). In [24],
a data-driven method was proposed to detect drones in a
heavy rain environment, in which a regular ML workflow
was developed to extract FFT-based frequency features and
learn the classification model with SVM. Anwar et al. [25]
improved the performance of audio-based drone detection
systems with linear predictive cepstral coefficients and Mel-
frequency cepstral coefficients. In [26], Uddin et al. cal-
culated the power spectral density of acoustic signals with
independent component analysis and learned a classification
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model with a k-nearest neighbor (k-NN) to discriminate
drones and other objects, such as birds, airplanes, thunder-
storms, rain, and wind. Audio-based approaches are usually
sensitive to ambient noise in crowded urban areas and require
some advanced designs of microphone array [8].

C. VIDEO-BASED TECHNIQUE
Video-based drone detection is typically the moving object
detection in computer vision, in which an object can be
detected and localized by analyzing visual features (e.g.,
color, texture, and shape) in images and videos. With the
great capability of learning representational features auto-
matically, some recent methods have exploited DL with CNN
architectures to detect and identify drones using color cam-
era [27] and depth camera [28]. To overcome the limited field
of view, Rozantsev et al. [27] deployed a surveillance sys-
tem with moving cameras to track small fast-flying drones.
In [29], a high-performance CNN architecture was designed
to boost the accuracy of drone detection while satisfying
computational complexity for practical implementations. The
network architecture has multiple spatial attention modules
to highlight small and ambiguous drones in an image for
better localization and detection. Besides high sensitivity to
illumination, these approaches face many challenging issues,
such as occlusion and multi-object interference.

D. RF-BASED TECHNIQUE
By exploiting the intercepted RF signals between drones
and ground controllers, several RF-based drone detection
methods have been proposed with the advantages of day-and-
night working under all weather conditions for various sce-
narios. In [30], a passive cost-efficiency RF sensing method
was proposed with discrete wavelet transform and short-time
fast Fourier transform to extract drone body shifting and
vibration, which in turn improves the detection accuracy of
surveillance systems. In [31], Ezuma et al. analyzed inter-
cepted RF signals at multi-resolution in the wavelet domain
and then learned a binary classifier with Naïve Bayes and
Markov models. Several methods have classified drones by
learning RF fingerprints of WiFi and Bluetooth interference
signals with ML algorithms. For instance, Bisio et al. [32]
estimated the number of packets and the packet inter-arrival
time of WiFi fingerprints to discriminate between different
drones. In [33], Alipour-Fanid et al. optimally selected the
L1-norm regularization-based descriptive statistics of traffic
fingerprints to achieve comparable detection accuracy with
low computation.

Lately, various DL models have been deployed to im-
prove the detection and classification accuracy of drone
surveillance systems. In [34], three deep neural networks
(DNNs) were built with the same architecture for three
separated tasks: drone detection, drone classification, and
operation recognition, where each network was designed
with three hidden layers to learn the discrimination model
from FFT features of RF signals. Allahham et al. [35] de-
signed a multi-channel convolutional network (MC-CNN) by
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FIGURE 1. System setup for RF-based UAV detection, classification, and
operation mode recognition.

alternately constructing 1D convolutional layers and max-
pooling layers. In [36], a 5-layer DNN was deployed to
estimate the direction of arrival (DoA) of single-channel RF
signals for aerial drone localization, in which the number
of neurons in the input layer was identical to the number
of directional antenna elements. Most of the existing RF-
based methods present low accuracy in drone detection and
classification tasks because of the weak discrimination of ML
algorithms [31]; meanwhile, DL with primitive architectures
cannot optimize learning efficiency.

In general, the drone signatures, detection range, advan-
tages, and disadvantages of above-mentioned drone detection
approaches are summarized in Table 1. It is worth noting that
the detection ranges are typically derived from the literature,
that means, they might vary in the practice up on the type of
drones with different hardware specifications, the algorithms
of deployment, and the surveillance environments.

III. METHODOLOGY
A. SYSTEM MODEL
The proposed RF-based UAV surveillance system is pre-
sented in Fig. 1. The system comprises several primary
modules: drones, a remote controller (a.k.a., flight control
unit), an RF sensing module, and a processing module with
a database repository. Some drones for multi-purpose civil
applications are specified by different technical specifica-
tions, such as maximum operation range and connectivity.
The remote controller, included in the drone package, sends
flight commands to the target drones and also receives the
response of operating status. To intercept the drone-controller
communication, an RF sensing module is configured with the
assumption that the WiFi frequency is known (the operation
frequency can be determined by some passive frequency
scanning techniques). The intercepted RF signals can be
captured by software-defined radio configurable devices and
then stored in a local database repository for processing
hereafter.

B. RF DATABASE DESCRIPTION
Regarding the aforementioned system, DroneRF [19], a
large-scale RF dataset, is introduced for different tasks: drone
detection, drone classification, and operation mode recogni-
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TABLE 1. Summary of existing drone detection approaches.

Approach Drone signature Detection range Advantages Disadvantages

Radar
RCS ≤ 3000 ft Easy installation Require large mono- or multi-static RF nodes

Micro Doppler Small RCS caused by low flying attitude
Expensive device

Audio
Time-frequency feature ≤ 30 ft Cheap sensors Sensitive to ambient noise

Easy implementation Limited range
Accessible equipment Complex microphone array arrangement

Video
Visual features ≤ 300 ft Easy installation Line of sight necessary
Motion features Accessible equipment High resolution camera requirement

Weather constraint

RF
WiFi fingerprint ≤ 1400 ft Cheap sensors Multipath and non-line of sight

Time-frequency features Easy installation High signal-to-noise ratio necessary
Vulnerable to interference

TABLE 2. Overall specifications of thee three drones under consideration.

Specifications Parrot Bebop Parrot AR Drone DJI Phantom 3
Dimensions (mm) 330× 380× 36 517× 517× 127 520× 490× 290
Weight (g) 400 420 1216
Max. flight speed (m/s) 13 11 16
Max. wireless range (m) 300 50 1000
Connectivity WiFi WiFi WiFi
Operation Frequency 2.4 GHz and 5 GHz 2.4 GHz 2.4−2.485 GHz

TABLE 3. Specifications of the USRP-2943 RF receivers.

Specifications Values
Number of channels 2
Range of operation frequency 1.2−6.0 GHz
Frequency step < 1 KHz
Gain range 0−37.5 dB
Gain step 0.5 dBm
Maximum instantaneous real-time bandwidth 40 MHz
Maximum I/Q sample rate 200 MS/s
Digital-to-analog converter (DAC) resolution 14 bit

tion. Four operation modes, denoted as modes 01 to 04, of
three different drones (Parrot Bebop, Parrot AR Drone, and
DJI Phantom 3, where some main specifications are listed in
Table 2) are considered as follows:

• Powering on and connecting to the controller.
• Hovering automatically without physical intervention

and user commands.
• Flying without video recording.
• Flying with video recording.

Two USRP-2943 RF receivers with the specifications sum-
marized in Table 3 are synchronized to collect the lower (L)
and upper (H) half of the frequency band signals with the
sampling rate of 40 MHz and the gain of 30 dB. The dataset
has 227 RF signal segments, where each segment has two
amplitude records (L and H bands), as shown in Fig. 2(a). It
is noted that the Phantom drone is represented with one mode
of drone connection (the data of other modes are corrupted
in the collection procedure). Besides, the data of no drone
scenario (or background activity) is recorded to serve for
the detection task, which identifies the presence of a drone.
The detailed experiments for the RF signal acquisition are

presented in the original work [19].
RF data in DroneRF should be partitioned into multiple

signal frames with the length of 104 samples (long enough to
represent radio characteristic) using the non-overlap window-
ing mechanism [34]. Accordingly, we segment 227K signal
frames, where each frame is formed in a high-dimensional
array S with the size of 1 × 10000 × 2. The information of
dataset distribution is provided in Table 4. Due to the critical
bias caused by two RF receivers with different RF band
configurations and three drones without identical technical
specifications, the amplitude data needs to be normalized by
scaling values to the range [0, 1] as

x̂
(L)
i =

x
(L)
i − x

(L)
min

x
(L)
max − x

(L)
min

, x̂
(H)
i =

x
(H)
i − x

(H)
min

x
(H)
max − x

(H)
min

, (1)

where x
(L)
min, x

(L)
max, x

(H)
min, x

(H)
max denote the minimum and max-

imum amplitude values of the lower and upper half bands of
all drones. An example of partitioning RF signal into fixed-
sized frames is illustrated in Fig. 2(b).

C. RF-UAVNET: RF-BASED UAV
DETECTION-CLASSIFICATION CONVOLUTIONAL
NETWORK
This part presents an efficient CNN, denoted RF-UAVNet, for
low-cost and high-accuracy drone detection, drone classifica-
tion, and operation recognition based on RF signals, where
the overall architecture is shown in Fig. 3(a). Regarding the
detailed architecture, an input layer is first specified with
the size of 1 × 10000 × 2 to facilitate partitioned frames.
To reduce the spatial size of feature maps to significantly
save computation at deeper layers, a 1D regular convolutional
(conv) layer is specified by the filters (so-called kernels) of
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FIGURE 2. Example of Bebop drone’s signal: (a) the raw amplitude samples
of the lower and upper bands and (b) the normalized samples with fixed-sized
partition using non-overlap windowing mechanism.

TABLE 4. Dataset Distribution of DroneRF.

Task Class No. segments No. frames

Drone detection Drone 186 186,000
No drone 41 41,000

Drone
Classification

AR 81 81,000
Bebop 84 84,000
Phantom 21 21,000
No drone 41 41,000

Operation
recognition

AR mode 01 21 21,000
AR mode 02 21 21,000
AR mode 03 21 21,000
AR mode 04 18 18,000
Bebop mode 01 21 21,000
Bebop mode 02 21 21,000
Bebop mode 03 21 21,000
Bebop mode 04 21 21,000
Phantom mode 01 21 21,000
No drone 41 41,000

size 1 × 5 with the stride of (1, 5). Notably, the number of
channels for each filter in a regular conv layer is always equal
to the number of channels (or the third dimension) of the
input to the layer. For example, because the input having two
channels connects with the conv layer directly, the number of
channels for each filter is two. The conv layer is followed by
a batch normalization (norm) layer and an exponential linear
unit (eLU) activation layer, where this layer group is denoted

r-unit in Fig. 3(b). Fundamentally, the convolution between a
kernel with weights wi and an input map ui at any specific
coordinate (x, y) in the spatial domain is formulated as

zx,y =
∑
i

wiui + b, (2)

where b is the scalar bias. The volume convolution of K
channels (a.k.a., the depth size of the input) is the sum of K
resulting convolution scalar z. The norm layer performs value
normalization to its input with the mean µB and variance σ2

B

calculated for each mini-batch and input channel as

ẑx,y =
zx,y − µB√
σ2
B + ε

, (3)

where ε = 10−5 is the constant scalar to prevent the numeri-
cal uncertainty caused by a very small variance. To possibly
process the inputs with zero mean and non-optimal variance
passing to the layer that follows the norm layer, the norm
layer then shifts and scales the normalized values by

vx,y = κẑx,y + ξ, (4)

where κ and ξ denote, respectively, the scale factor and offset
parameters that are updated during network training. Once
the training process is finished, the norm layer calculates
the mean and variance over the whole training set. In the
testing process to predict the class of new input, the norm
layer uses the trained mean and variance instead of the mean
and variance of a mini-batch to normalize the activation.
In a CNN for classification, batch normalization is typi-
cally used between conv and eLU layers to accelerate the
training of networks and reduce the sensitivity to network
initialization [37]. The eLU layer then performs nonlinearity
by outputting the identical value on positive inputs and the
exponential operation result on negative inputs, i.e.,

ox,y = eLU (vx,y) =

{
vx,y, if vx,y ≥ 0,

α (evx,y − 1) , if vx,y < 0,
(5)

where α = 1 is the nonlinear parameter. Compared with the
rectified linear unit commonly developed in several convo-
lutional networks, eLU can achieve the learning convergence
faster with a higher accuracy in some classification tasks [38].
With 64 filters of size 1× 5 and the stride of (1, 5) specified
for the conv layer, the width dimension of output maps
reduces five times and the depth dimension is identical to the
number of filters. At this point, with an input signal frame
S ∈ R1×10000×2, we determine the output of the r-unit
Fr−unit

OUT ∈ R1×2000×64.
As the primary modules of RF-UAVNet to extract the

local correlations of amplitude samples at multi-scale feature
representations (as illustrated in Fig. 4), four processing
units (denoted g-unit) are arranged in cascade throughout the
network architecture in Fig. 3(a). In each g-unit, a grouped
convolutional (g-conv) layer with the filters of size 1× 3 and
the stride of (1, 2) is followed by an eLU layer (see Fig. 3(c)).
Regarding the grouped convolution, the filters are separated
into different groups for processing, where each group will
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FIGURE 3. RF-UAVNet: (a) overall architecture, (b) skip-connection, and (c) network components: r-unit, g-unit, and multi-gap.
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FIGURE 4. Example of the 1D convolution operation to extract local features
at multi-scale resolutions from coarse to fine.

serve as standard convolution for a certain number of input
maps. Compared with the standard convolution, the grouped
one reduces the number of parameters and computational
cost significantly further as the number of non-overlapping
filter groups increases, while the learning efficiency is mostly
maintained with the sparse relationship among filters [39].
With G groups, the complexity of g-conv is Din×Dout

G , which
is lower than that of conv by G times [40], where Din

and Dout, respectively, denote the depth size of input and
output. An example of grouped convolution with two groups
is illustrated in Fig. 5, where the first group (yellow) con-
volves with the first half of the input and the second group
(red) convolves with the second half. The number of filter
groups must evenly divide the number of channels of the

x Dout/2

x Dout/2

1
Win

Din

1
n Din/2

1
n

Din/2

1
Wout

 Dout/2

FIGURE 5. Example of the grouped 1D convolution with two filter groups.

input layer. The number of channels in the output of g-
conv layer is numGroups × numFiltersPerGroup, where
numGroups and numFiltersPerGroup, respectively, denote
the number of groups and the number of filters for each
group. In this work, we specify the g-conv layers by eight
groups with each group having eight filters to always produce
64 feature maps at the output of g-conv layers. We denote by
Fgi=1,...,4

∈ R1×Wgi
×64 with Wgi = {1000, 500, 250, 125}

the outputs of g-units, where Wgi is the horizontal size of the
output maps resulted in the g-conv layer with the stride of
(1, 2) in the i-th g-unit.

To increase the overall system accuracy via well-handling
gradient flow in RF-UAVNet, we study a multi-level skip-
connection. Inspired by [41], skip-connection associates the
outputs of different g-units by adopting element-wise ad-
dition operation. Given the output of r-unit Fr−unit

OUT , the
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procedure of the first skip-connection can be formulated with
an element-wise addition (add) layer as

F1
add = F

(
Fr−unit

OUT

)
= Fp1

+ Fg1 , (6)

where Fp1
= Pmax

(
Fr−unit

OUT

)
and Fg1 = C

(
Fr−unit

OUT

)
;

Pmax denotes the max-pooling operation with the pool size
of (1, 2) and the stride of (1, 2); C denotes the united oper-
ation of grouped convolution, batch normalization, and eLU
activation. The max pooling (maxpool) layer is adopted to
pick on the most salient features [42] and to align the output
to spatial size of Fg1 . The element-wise addition operation
in (6) is done by an addition (add) layer, where all inputs
to this layer must have the same dimension. For example,
by downsampling Fr−unit

OUT in the horizontal dimension with
the stride of (1, 2), the output of maxpool layer Fp1

∈
R1×1000×64 has the same dimension with Fg1 ∈ R1×Wg1

×64.
In neural networks, the vanishing gradient problem usually
occurs when the gradient elements (the partial derivatives
with respect to the network parameters) become exponen-
tially small; hence, the update of the parameters with the
gradient is almost negligible. Based on the principle of
residual block [41], the skip-connection allows the network
to learn the residual C (·) instead of learning the true output
F (·) to nearly maintain the gradient flow. To put it sim-
ply, the attenuated gradient caused by activation functions
is consolidated with the identity information by skipping
layers. The structure of skip-connection deployed in RF-
UAVNet is generally described in Fig. 3(b). For a multi-level
mechanism, the n-th skip-connection with n ≥ 2, in general,
can be expressed as follows:

Fn
add = F

(
Fn−1

add

)
= Fpn−1 + Fgn−1

= Pmax

(
Fn−1

add

)
+ C

(
Fn−1

add

)
.

(7)

For the purpose of tracking the dimension of feature maps
along with the backbone of RF-UAVnet in the corporation
with multi-level skip-connection, the output halves the width
dimension of feature maps for each time of passing the
input through a skip-connection. In particular, we obtain F :
F1

add ∈ R1×Wg1
×64 ← Fr−unit

OUT for the first skip-connection
and F : Fn

add ∈ R1×Wgn×64 ← Fn−1
add ∈ R1×Wgn−1

×64

for the n-th skip-connection with n ≥ 2, where Wgn is the
width of output maps. It is worth noting that the element-wise
addition layer does not change the feature dimension. The
proposed multi-level skip-connection allows the gradient in-
formation to be mostly maintained at different feature levels.
Consequently, the vanishing/exploding gradient problem can
be prevented effectively when the network goes deeper.

A global average pooling (gap) layer is configured to
calculate the mean of each feature map, which is usually
located before fully connected (fc) layers for network size
reduction and overfitting alleviation with no learnable param-
eters. For example, the gap layer transforms the dimensions
from 1 × W × D to 1 × 1 × D by averaging across with
the pool size of (1,W ) for every maps along the channel

dimension. To collect the meaningful knowledge from the
preceding layers, we propose a multi-level global average
pooling (multi-gap) module as described in Fig. 3(c). The
outputs of different g-unit Fgi are first forwarded to the gap
layers individually to obtain the global features

Fi
gap = Pavg (Fgi) , with i = 1, . . . , 4, (8)

where Fi
gap ∈ R1×1×64 and Pavg denotes the average pool-

ing operation with different pool sizes. The resulting global
features are then stacked by a depth-wise concatenation
(concat) layer as

Fmulti−gap = D
(

F1
gap,F

2
gap,F

3
gap,F

4
gap

)
, (9)

where D denotes the concatenation operation. It is noted
that a concat layer takes the inputs having the same height
and width and aggregates them along the depth (or channel)
dimension. The output Fmulti−gap ∈ R1×1×256 has the
number of channels (or depth size) that is the sum of those
of all inputs.

At the end of network, the output of multi-gap Fmulti−gap

combines with the output of the last skip-connection
Fadd−gap = Pavg

(
F4

add

)
by a concat layer, see Fig. 3(a)

as
Ffinal = D (Fmulti−gap,Fadd−gap) , (10)

where Ffinal ∈ R1×1×320, which contains the synthetic
information of signal characteristics at multiple scales, is
flattened into a single vector before feeding to the fc layer
defined by k neurons and followed by a softmax layer. The
number of neuron in fc layer is identical to the number of
classes in a given dataset for a particular task. Regarding
different drone surveillance tasks studied in this work, we
use the same CNN architecture with a minor change in the
fc layer. Particularly, RF-UAVNet is with k = 2 for drone
detection, k = 4 for drone classification, and k = 10 for
operation recognition (see Table 4). The detailed network
configurations are further provided in Table 5. The network
is finalized with a softmax layer that performs a normalized
exponential function to transform the scores s = {sj}kj=1

deduced by the fc layer to the class probability distribution

pj =
esj∑k
i=1 e

si
, (11)

where pj is the j-th class probability of an input data with
0 ≤ pj ≤ 1 and

∑k
i=1 pi = 1. The softmax function can

be considered the multi-class generalization of the logistic
sigmoid function. The network assigns each input to one of k
mutually exclusive classes based on the output of softmax
function and computes the cross entropy loss for multi-
classes classification as follows:

L = −
N∑
i=1

k∑
j=1

νijln (υij) , (12)

where N is the number of training signal frames, νij denotes
the ground-truth of the i-th input signal associated with the

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3172787, IEEE Access

Thien et al.: High-Performance Convolutional Network for RF-based Drone Surveillance Systems

TABLE 5. RF-UAVNet Configuration (Task 01: Drone Detection, Task 02:
Drone Classification, and Task 03: Operation Recognition).

Layer Network description Output SizeTask 01 Task 02 Task 03
input RF signal frame 1× 10000× 2
r-unit 64 filters 1× 5, stride (1, 5) 1× 2000× 64
g-unit 8 groups of 8 filters 1× 3, stride (1, 2) 1× 1000× 64
g-unit 8 groups of 8 filters 1× 3, stride (1, 2) 1× 500× 64
g-unit 8 groups of 8 filters 1× 3, stride (1, 2) 1× 250× 64
g-unit 8 groups of 8 filters 1× 3, stride (1, 2) 1× 125× 64
gap pool size (1, 125) 1× 1× 64
multi-gap 4 gap layers + depth-wise concat 1× 1× 256
concat depth-wise concat 1× 1× 320
fc k = 2 k = 4 k = 10 1× 1× k

j-th class, and υij denotes the output resulted by the network
for the class j of the input signal i.

The configurations of the network training process are
given as follows: the optimizer is the stochastic gradient
descent with momentum, the momentum factor is 0.95, the
L2 regularization factor is 0.0001, the maximum number of
epochs for training is 90, the initial learning rate is 0.01
(dropping to 0.001 after 45 epochs for a better training
convergence), and the mini-batch size is 128. The network is
evaluated on a platform using 3.70-GHz CPUs, 32GB RAM,
and a single NVIDIA GTX 1080Ti GPU.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section evaluates the performance of RF-UAVNet for
drone surveillance using the 10-fold cross-validation proto-
col [34]. Concretely, the DroneRF dataset is randomly parti-
tioned into ten non-overlapping folds, where one fold is used
as the validation set for testing, and the remainder is used
to train the network. This process is then repeated ten times
to evaluate the whole dataset, and the overall performance is
reported by averaging the performance of all folds.

Specifically, four principal experiments along with insight-
ful discussions are delivered as follows:

• In the first experiment, we benchmark the performance
of RF-UAVNet for three drone surveillance tasks (i.e.,
drone detection, drone classification, and operation
recognition denoted by tasks 01-03) on the DroneRF
dataset.

• The second experiment evaluates the parameter sensi-
tivity of RF-UAVNet to the overall system performance
with different numbers of filter groups in g-conv layers.

• The third experiment is an ablation study, in which
RF-UAVNet is compared with its variants to demon-
strate the advantages of grouped convolution and skip-
connection incorporated with multi-gap.

• The last one compares RF-UAVNet with other state-of-
the-art DL-based approaches, which also exploit DNN
and CNN models for drone surveillance.

The performance of drone detection and classification is
measured using the accuracy and F1-score metrics. The
MATLAB codes of our work can be freely accessed on the

GitHub repository1.

A. MODEL PERFORMANCE
In the first experiment, we evaluate the performance of RF-
UAVNet on the DroneRF dataset for different tasks, where
the numerical results of confusion matrices are shown in
Fig. 6. For drone detection with the result given in Fig. 6(a),
RF-UAVNet reaches the overall correct identification rate
of 99.85%. For drone classification, RF-UAVNet yields the
overall accuracy of 98.55%, whereas Phantom presents the
worst classification rate of 96.41%. Phantom and Bebop are
confused with AR by around 2.80% and 2.04%, respectively.
For operation recognition which is more challenging than
drone detection and classification with more classes for dis-
crimination, the network achieves the overall accuracy of
95.33%. From the confusion matrix presented in Fig. 6(c),
Bebop mode 04 (lying with video recording) presents the
worst recognition rate of 88.37%, which is mostly confused
with Bebop mode 03 (flying without video recording) by
approximately 8.63%. Interestingly, high confusion is found
between different modes of the Bebop drone, for instance,
mode 01 (powering on and connecting) and mode 02 (hover-
ing) are misclassified as mode 03 with the error rate of 4.31%
and 5.74%, respectively.

B. PARAMETER SENSITIVITY
This experiment investigates the relationship between the
overall performance and the network complexity with various
numbers of filter groups (numGroups) defined in g-conv
layers. The complexity is evaluated by the network size,
which is measured by the number of trainable parameters,
and the computational cost, which is estimated by the number
of floating point operations (FLOPs). In Fig. 7, we report the
results of three tasks with numGroups = {2, 4, 6, 8, 16, 32},
where the number of filters in each group is automatically
determined to produce the same number of feature maps. In
general, the cost efficiency of RF-UAVNet gains along with
the increment of numGroups, whereas the performance of
three drone surveillance tasks gets degradation. For instance,
from Figs. 7(a) and 7(b), the F1-score of drone detection and
classification reduces by around 0.01% and 0.14%, respec-
tively, when we increase numGroups from 4 to 8 groups.
However, when we increase numGroups from 8 to 16
groups, the F1-score decreases severely by 0.62% for drone
detection and 3.08% for drone classification. For operation
recognition, the performance deterioration is nearly identical
in each time of doubling numGroups (approximately the
accuracy of 2.41% and the F1-score of 2.57%). Concerning
network complexity, the number of parameters and FLOPs
reduce significantly for small numbers of filter groups. Be-
cause of the same architecture configuration of r-unit and g-
units to extract features, the size difference of RF-UAVNets
for different tasks derives from the numbers of weights and
biases to densely associate all neurons in the concat layer

1https://github.com/ThienHuynhThe/RF-based-Drone-Surveillance-with-DL.
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FIGURE 6. Confusion matrices: (a) drone detection, (b) drone classification, and (c) operation mode recognition, where classes 01-04 are of the AR drone, classes
05-08 are of the Bebop drone, class 09 denotes the Phantom mode 01, and class 10 denotes RF background activity without drone detection.
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FIGURE 7. Performance and complexity of RF-UAVNet with various number
of filter groups (numGroups).

with k neurons in the fc layers. With k = 10, the size of
RF-UAVNet for operation recognition is bigger than those
of the networks for drone detection and drone classification
as shown in Fig. 7(c). Notably, the computation of RF-
UAVNet mostly is for feature calculation in convolutional
layers, while the computational cost consumed in the fc
layer is insignificant. This explains a small gap in FLOPs
for three different tasks in Fig. 7(d). As a result, we specify
numGroups = 8 to achieve a comfortable balance between
performance and complexity.

We further investigate the performance of RF-UAVNet

TABLE 6. Performance of RF-UAVNet With Different Activation Functions.

Activation Accuracy (%) F1-score (%)
Task 01 Task 02 Task 03 Task 01 Task 02 Task 03

ReLU 98.69 97.91 94.14 97.89 97.10 94.14
Tanh 98.97 96.82 94.52 98.32 95.41 94.44
LeakyReLU 99.77 97.80 95.36 99.61 97.82 95.01
eLU 99.85 98.55 95.33 99.75 98.48 95.06

with different common activation functions: rectified linear
unit (ReLU), leaky ReLU, hyperbolic tangent (Tanh), and
eLU. Based on the accuracy and F1-score results in Table 6,
eLU shows the best performance for drone detection and
drone classification, whereas being worse than LeakyReLU
for operation recognition with insignificant gaps. Despite be-
ing better than Tanh for drone classification, ReLU presents
worse results in drone detection and operation mode recogni-
tion experiments. It is noted that the activation layers do not
have parameters to learn and take up a small fraction of the
overall network computation.

C. ABLATION STUDY
The third experiment evaluates the effectiveness of grouped
convolution incorporated with multi-layer skip-connection
and multi-gap mechanisms, which are exploited in RF-
UAVNet. Specifically, we compare RF-UAVNet with three
cut-off variants, denoted by Net-A, Net-B, and Net-C, in
terms of accuracy and complexity. The detailed architectures
of these CNNs are given as follows and summarized in
Table 7:

• Net-A: an alternative architecture of RF-UAVNet using
standard conv layers without the incorporated structure
of skip-connection and multi-gap.

• Net-B: an alternative architecture of RF-UAVNet using
g-conv layers without skip-connection and multi-gap (or
Net-A with g-conv).

• Net-C: an alternative architecture of RF-UAVNet using
g-conv layers and skip-connection without multi-gap (or
Net-B with skip-connection).

It is noted that all networks are evaluated with the same
training configuration. Compared with Net-A which uses
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TABLE 7. Performance Comparison Between RF-UAVNet and Its Cut-off Variants. Noted: complexity is reported with RF-UAVNet for Operation Recognition.

Network Strategy Accuracy (%) F1-score (%) Approx.Complexity
conv g-conv skip-conn multi-gap Task 01 Task 02 Task 03 Task 01 Task 02 Task 03 No.params FLOPs

Net-A X 99.70 92.72 83.98 99.49 90.98 82.55 50K 24.5K
Net-B X 99.50 91.14 83.21 99.15 90.43 81.86 8.4K 4.4M
Net-C X X 99.71 95.77 92.62 99.51 93.75 92.06 8.4K 4.4M
RF-UAVNet X X X 99.85 98.55 95.33 99.75 98.48 95.06 11K 4.4M

TABLE 8. Performance Comparison Between RF-UAVNet and Other Deep Networks.

Activation Accuracy (%) F1-score (%) Approx. Complexity (%)
Task 01 Task 02 Task 03 Task 01 Task 02 Task 03 No. params FLOPs Speed (ms)

DNN [34] 99.71 84.52 46.83 99.57 78.81 43.02 5.1M 5.2M 1.24
1D-CNN [16] 99.81 85.45 59.19 99.61 84.68 55.11 63K 23M 1.98
MC-CNN [35] 99.95 94.55 87.37 99.46 91.01 77.02 47K 47M 2.64
RF-UAVNet 99.85 98.55 95.33 99.75 98.48 95.06 11K 4.4M 1.31

standard conv layers, Net-B with g-conv layers remarkably
reduces the network size (from 50K to 8.4K parameters) and
computational cost (from 24.5 MFLOPs to 4.4 MFLOPs,
where MFLOPs denotes megaFLOPs), while it suffers a
trivial reduction of performance. Net-C, which is upgraded
from Net-B with the multi-layer skip-connection, achieves
a performance improvement in terms of accuracy and F1-
score without the increment of the number of parameters
and FLOPs. By leveraging a sophisticated-designed architec-
ture, wherein g-conv layers associate with multi-layer skip-
connection and multi-gap mechanisms, RF-UAVNet success-
fully obtains a twofold objective: low complexity and high
accuracy. Concretely, RF-UAVNet is approximately 80%
lower than Net-A in terms of complexity and effectively per-
forms drone classification and operation recognition better
than Net-B by around 7.41− 12.12%. Notably, RF-UAVNet
is bigger than Net-B and Net-C in terms of the network size
because the multi-gap structure for multi-level feature maps
aggregation increases the number of parameters in the fc
layer.

D. METHOD COMPARISON

In the last experiment, the RF-UAVNet is compared with
some recent DL models deployed for drone surveillance,
including DNN [34], 1D-CNN [16], and MC-CNN [35], in
terms of performance and complexity, where the numerical
results, including accuracy, F1-score, number of trainable
parameters, FLOPs, and processing speed (a.k.a., the average
prediction time of a signal frame) are reported in Table 8.
In general, the performance gap between the comparison
methods in drone detection is trivial (around 0.1 − 0.5%),
whereas the gaps in drone classification and operation recog-
nition are more significant. DNN, which is simply designed
with three hidden layers, reports the worst performance,
especially with the operation recognition task with the overall
accuracy of 46.8% and the F1-score of 43.0%. By leveraging
convolutional architectures, 1D-CNN with multiple 1D conv
layers associated with average pooling layers in a cascade

structure performs better than DNN in drone classification
and operation recognition. Compared with DNN, 1D-CNN
improves accuracy and F1-score by up to 12.4% and 12.1%,
respectively. With a depth-wise concatenation layer to se-
lectively aggregate features in multiple channels, MC-CNN
reaches the drone classification accuracy of 94.6% and the
operation recognition accuracy of 87.4%, which significantly
outperforms DNN by 9.1 − 28.2%. Despite being worse
than MC-CNN by a tiny gap of drone detection (around
0.1 − 02%), RF-UAVNet, which effectively incorporates
the multi-level skip-connection and multi-gap mechanisms,
performs drone classification and operation recognition more
precisely with the higher accuracy of 4.0% and 7.9% and
with the greater F1-score of 7.5% and 18.1%, respectively.
For complexity, DNN has the biggest size with around 5.1M
parameters because of specifying large numbers of neurons
in hidden layers for dense connection, but its speed is fastest
with a very simple network structure. Compared with DNN,
1D-CNN and MC-CNN are much more lightweight but
have higher computation costs and classify more slowly.
RF-UAVNet presents the smallest network size with 11K
parameters and the cheapest computation with 4.4 MFLOPs
thanks to the deployment of grouped convolution (instead
of regular convolution in 1D-CNN and MC-CNN). With
the sophisticated structure of multi-level skip-connection and
multi-level pooling, our network performs a little slower than
DNN. Accordingly, the proposed CNN has demonstrated
superiority in terms of accuracy and complexity against other
existing deep models for drone surveillance.

V. CONCLUSION AND DISCUSSIONS
In this paper, we presented an efficient RF-based surveillance
approach to manage the flying activities of registered drones,
in which we proposed a cost-efficient and high-accuracy
CNN, namely RF-UAVNet, to effectively detect and classify
drones and recognize their operation modes. RF-UAVNet
was characterized by grouped convolutional layers to reduce
the network size and computational cost significantly, where
each g-conv layer was specified by asymmetric 1D kernels
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to capture the temporal correlations as local features of
RF signals. Remarkably, to increase the overall accuracy of
systems, we designed the multi-level skip-connection and
multi-gap mechanisms to, respectively, prevent the vanishing
gradient effectively and collect the useful global features
at different signal resolutions. In the experiments, we an-
alyzed RF-UAVNet exhaustively with different architecture
configurations on the DroneRF dataset to demonstrate the
effectiveness of grouped convolution to reduce complexity
and multi-level skip-connection incorporated with multi-gap
to improve accuracy. RF-UAVNet achieved very high ac-
curacy for different drone surveillance tasks (approximately
99.9% for drone detection, 98.6% for drone classification,
and 95.3% for operation recognition) with low complexity
(11K parameters and 4.4 MFLOPs), which could be a fa-
vorable approach for onboard deployment in portable anti-
drone systems. Furthermore, the proposed deep network con-
siderably outperformed state-of-the-art DL models for drone
surveillance in terms of accuracy and F1-score.

In the future, we intend to create our own practical dataset
of RF signals for different drone surveillance tasks, in which
each signal should be represented by a complex envelop
form with in-phase and quadrature components. Besides, we
will extend the dataset into more conditions and scenarios,
including increasing the number of drones, recording RF
signals under different channel impairments (e.g., fading and
additive noise) in both indoor and outdoor environments, and
varying speed, altitude, and distance between drones and the
RF sensing module.
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