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Semantic annotation is a crucial step to assure reusability and reproducibility of

biosimulation models in biology and physiology. For this purpose, the COmputational

Modeling in BIology NEtwork (COMBINE) community recommends the use of the

Resource Description Framework (RDF). This grounding in RDF provides the flexibility to

enable searching for entities within models (e.g., variables, equations, or entire models)

by utilizing the RDF query language SPARQL. However, the rigidity and complexity of

the SPARQL syntax and the nature of the tree-like structure of semantic annotations,

are challenging for users. Therefore, we propose NLIMED, an interface that converts

natural language queries into SPARQL. We use this interface to query and discover

model entities from repositories of biosimulation models. NLIMED works with the

Physiome Model Repository (PMR) and the BioModels database and potentially other

repositories annotated using RDF. Natural language queries are first “chunked” into

phrases and annotated against ontology classes and predicates utilizing different natural

language processing tools. Then, the ontology classes and predicates are composed

as SPARQL and finally ranked using our SPARQL Composer and our indexing system.

We demonstrate that NLIMED’s approach for chunking and annotating queries is more

effective than the NCBO Annotator for identifying relevant ontology classes in natural

language queries.Comparison of NLIMED’s behavior against historical query records in

the PMR shows that it can adapt appropriately to queries associated with well-annotated

models.

Keywords: semantic annotation, ontology class, physiome model repository, BioModels, NLP, SPARQL,

information retrieval

1. INTRODUCTION

The Resource Description Framework (RDF) is a standard data model from the semantic web
community that is used in semantically annotated biosimulation models such as those formatted in
CellML (Cuellar et al., 2003) and Systems Biology Markup Language (SBML) (Hucka et al., 2003)
in the Physiome Repository Model (PMR) (Yu et al., 2011) and BioModels Database (Chelliah
et al., 2015). These RDF-annotated models can then be discovered by their model entities, such
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as variables, components, mathematical formula, reactions,
compartments, species, and events. Leveraging these semantic
annotations when searching the model repositories improves the
discoverability of relevant models, thus supporting communities
in biology and physiology by guiding modelers to potential
starting points for reuse.

The use of RDF in the semantic annotation of biosimulation
models has been formalized as the recommended technology
by the Computational Modeling in BIology NEtwork
(COMBINE) community (Neal et al., 2019). Furthermore,
the community encourages standardized model annotation to
ensure interoperability and sharing between modelers using
different platforms (Gennari et al., 2021; Welsh et al., 2021).
The standard uses composite annotations (Gennari et al.,
2011) for more expressive and consistent model annotation.
Composite annotations are logical statements linking multiple
knowledge resource terms, enabling modelers to precisely define
model elements in a structured manner. Methods such as those
presented here are able to make use of that structure to go beyond
the raw RDF triples with which a model may be annotated.

Because these semantic annotations are encoded with RDF, we
can leverage the SPARQL Query Language for RDF, a standard
query language, to retrieve information from RDF data. SPARQL
is a well-defined and high-performance query language, well-
suited for triple (subject, predicate, and object) searches over RDF
graphs (Pérez et al., 2009). Thus, it is possible to search for entities
related to queries such as “the formula for potassium transport
across the apical plasma membrane” to compose a new model.
In the biosimulation model, the entities might be annotated
compositely by several ontology classes to accurately represent
the underlying biological knowledge inherent to the model.
Moreover, the ontology classes can be connected by a series
of predicates and objects, creating a tree structure. Therefore,
writing SPARQL becomes complicated because knowledge about
the ontology classes and tree structure related to the model
is critical, requiring expert users to be able to create SPARQL
queries that suit their information needs. Thus, the availability
of a tool or interface to assist an ordinary user in composing
SPARQL using a natural language based query is required.

Several studies answering this challenge have been carried
out by developing a graphical user interface (GUI) that provides
assistance when building SPARQL for a query. Arenas et al.
(2016) and Ferré (2014) have created a textual-based GUI using
faceted queries where the user can select one or multiple facets
and then specify its coverage. For an easier use of SPARQL
features, Ferré (2014) complemented their work with natural
language verbalism and readability. Another textual-based GUI
was SPARQL Query-Builder which generated theWHERE clause
based on ontology classes and attributes (Vcelak et al., 2018).
Visual-based GUIs such as SparqlBlocks (Ceriani and Bottoni,
2017) and ViziQuer (Čerāns et al., 2019) provided different
user experiences by minimizing typing activity. SparqlBlocks
implemented block-based programming so the user can quickly
drag and drop subjects, predicates, objects, and SPARQL features,
while ViziQuer presented a Unified Modeling Language (UML)
style interface targeting general IT expert and non-IT users. The
advantage of a GUI lies in the ability to create a complex SPARQL

query, accommodating various features, however, understanding
the RDF data structure and SPARQL logic is still required in all
of these examples.

Other studies have addressed this challenge by proposing
a converter from query to SPARQL. Using Natural Language
Processing (NLP), Hamon et al. (2014) developed POMELO
(PathOlogies, MEdicaments, aLimentatiOn), a tool that enriches
a query with linguistic and semantic features and then abstracts
and constructs SPARQL. A similar approach is used by Yahya
et al. (2012) and Xu et al. (2014) who have developed tools
that identify the subject, predicate, and object associated with
a query and eventually generate SPARQL. Marginean (2014)
proposed a different approach using manually generated rules
and showed that it performs better than POMELO for biomedical
data (QALD-4) (Unger et al., 2014); however, this approach is
brittle and does not work for newer or more complex queries.
Another approach is SimplePARQL (Djebali and Raimbault,
2015) which is a pseudo-SPARQL query language where the
query is made in SPARQL form, but the structure, especially
the WHERE clause, is in textual form. With SimplePARQL,
SPARQL can be more expressive, and multiple SPARQL queries
are created based on the available templates. The query to
SPARQL converter offers a seamless interface that allows the user
to provide keywords and get results directly. These queries to
the SPARQL converter are the most similar to Natural Language
Interface for Model Entity Discovery (NLIMED); however, they
are less suitable for exploring RDF in biosimulation models
that use composite annotations. We differentiate our work by
applying different approaches for ontology class identification
and SPARQL generation. In addition, our work accommodates
complex RDF annotations that are not just a set of triples but
rather a tree structure with different depths where the leaves are
either ontology classes or literals.

In the biosimulation model communities, to the best of our
knowledge, the only study of a query to SPARQL conversion
is based on semantic queries with a web interface aimed at
findingmodel entities related to epithelial transport (Sarwar et al.,
2019b). This interface was utilized by the Epithelial Modelling
Platform (EMP), a visual web tool for creating new epithelial
transport models based on existing models (Sarwar et al.,
2019a). However, for more general discoveries involving several
repositories with various biosimulation models, this interface
requires a significant modification.

In this manuscript, we introduce NLIMED, a natural language
interface for searching semantically annotated model entities
from biosimulation model repositories. In order to translate
queries into SPARQL, there are two stages. (1) The terms in
the query must be identified as ontology classes. This task is
similar to named entity recognition, and could be done by off-
the-shelf tools like the NCBO annotator (Jonquet et al., 2010). (2)
The now-annotated query can be used to generate an SPARQL
query. As an alternative to NCBO Annotator, we apply off-the-
shelf NLP tools such as Stanford CoreNLP (Manning et al.,
2014) and Stanza (Zhang et al., 2020) to “chunk” a query into
phrases and then link the phrases to ontology classes using our
proposed similarity measure. We first examine entities’ semantic
annotation patterns in a repository involving the detected
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ontology classes to generate SPARQL. For all patterns that have
the detected ontology classes, the SPARQL are generated.

We evaluated NLIMED on all CellML models within the
PMR that are annotated with RDF. We show that the NLIMED
approach for detecting ontology classes in NLQ is more effective
than the NCBO Annotator based on precision, recall, and F-
measure statistics with margins above 0.13. In addition to the
PMR, we have performed preliminary testing of NLIMED with
the BioModels database indexing models encoded in the SBML
format. This testing supports our belief that NLIMED can be
implemented and adapted for different biosimulation model
repositories and modelling formats, and that it is possible to
create a generic model entity discovery tool. Also, comparing
the behavior of NLIMED against historical records of actual
queries and results in the PMR shows that NLIMED can
perform appropriately on well-annotated biosimulation models.
Currently, we have implemented NLIMED in the Epithelial
Modeling Platform and Model Annotation and Discovery web
tools (Sarwar et al., 2019a) to optimize user experiences when
searching for model entities. We provide our implementation
and experiment setup at https://github.com/napakalas/NLIMED.

2. MATERIALS AND METHODS

Our interface consists of two primary modules, the NLQ
Annotator and the SPARQL Generator (Figure 1). Both modules
are based on data collected from the PMR (Yu et al., 2011),
BioModels (Chelliah et al., 2015), and BioPortal (Whetzel et al.,
2011). We utilize natural language parsers provided by Stanford
CoreNLP (Manning et al., 2014) and Benepar (Kitaev and Klein,
2018) contained in NLTK (Bird et al., 2009), and named entity

recognition for biomedical and clinical data by Stanza (Zhang
et al., 2020).

2.1. The Physiome Model Repository,
BioModels, and BioPortal
The PMR contains more than 800 CellML biosimulation
models in which around 25% have been annotated with RDF.
Within these annotated models, there are 4,671 model entities
annotated described using ontology classes, textual data, and
other attributes such as author name, doi, and journal title.
Figure 2 is an example of well-annotated entities and shows how
this example entity is expressed in RDF, and thus can be viewed
as a tree structure, where the leaves are ontology terms. There are
3,472 distinct leaves, 29,755 paths between roots and leaves, and
529 distinct ontology leaves in the models contained in the PMR.

The BioModels database has a larger biosimulation model
collection consisting of 2,287 SBML files of which 1,039 have
been manually annotated. Similar to CellML, model entities are
represented as a tree structure but are usually annotated with a
simpler format consisting of a single triple linking an entity, a
predicate, and an ontology class. Overall, the BioModels database
has 13,957 model entities, 46,431 paths connecting roots and
leaves, and 2,419 ontology classes.

We utilize BioPortal (Whetzel et al., 2011) to get ontology
dictionaries covering ontology classes found in the PMR and
most of the ontology classes found in BioModels. In total there
are 18 ontology dictionaries collected (Figure 1), of which the
most commonly found in the PMR are Gene Ontology (GO),
Ontology of Physics for Biology (OPB), Foundational Model of
Anatomy (FMA), and Chemical Entities of Biological Interest
(ChEBI). Moreover, BioPortal provides the NCBO Annotator
tool (Jonquet et al., 2010), which is used as the gold standard

FIGURE 1 | NLIMED workflow. We first create a Text Feature Index (TFI) and an RDF Graph Index (RGI) based on data available in the PMR, BioModels database, and

ontology dictionaries. The natural language query is initially annotated into ontology classes in the NLQ Annotator module and then translated into SPARQL in the

SPARQL Generator module.
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FIGURE 2 | An annotation of a model entity of concentration of potassium in extracellular space. (A) An RDF/XML code describing the model entity. (B) A tree

structure representing the RDF code describing the model entity.

to measure NLIMED’s performance. The NCBO Annotator can
identify ontology classes in a text based on three features: textual
metadata, the number of other ontology classes referring to the
ontology class, and the number of classes in the same ontology.

2.2. Selecting Features of Ontology
Classes to Associate With Query Phrases
Each ontology class collected from BioPortal is described by
a set of features such as preferred label, synonym, definition,
is_a, parents, regex, and comment. These features, then, are
used to compute the degree of association of a phrase to an
ontology class. However, some features do not have attributes
useful to calculate the degree of association, for example,
created_by, comment, and creation_date are aimed to record
the class development history, and obsolete, is_obsolete, and
obsolete_since are used to show the class status. Some other
features are also limited for specific ontologies, such as regex,
part_of, example, and Wikipedia, while the last two features tend
to consist of a very long text and bias calculations. Therefore,
we chose features that can textually represent concepts in the
ontology class and are highly related to the user query, i.e.,
preferred label, synonym, definition, and parent label (Table 1).
In addition, many entities in the PMR and BioModel repositories
come with textual descriptions that complement the RDF
annotations, so we include them as an additional feature.

2.3. Natural Language Query (NLQ)
Annotator
The NLQ Annotator is a module for identifying ontology
classes with their predicates in an NLQ. It works by chunking
the query into candidate phrases using the NLQ Parser, then
calculating the degree of association between candidate phrases
and ontology classes using the Phrase Annotator (Figure 1).
However, calculating the degree of association for all candidate
phrases to all ontology classes is inefficient; here, we filter only

TABLE 1 | Features representing an ontology class used by the Phrase Annotator

to calculate the degree of association of a phrase to the ontology class.

Feature Source Description

Preferred label Ontology dictionary The primary phrase used to

explain the concept in the

ontology class.

Synonym Ontology dictionary Alternative phrases used to

explain the concept in the

ontology class.

Definition Ontology dictionary A detailed explanation of the

concept in the ontology

class.

Parent label Ontology dictionary The preferred label of the

parent ontology class.

Entity description Biosimulation model Textual information collected

from entities in biosimulation

model. The information is

used as a sharing feature

between ontology classes

annotating an entity.

the likely relevant ontology classes using the Text Feature Index
(TFI). The TFI holds a vector space model (Salton et al., 1975)
describing ontology classes and adapts an inverted index concept
(Harman et al., 1992) to manage features and their relationship
to ontology classes. To chunk the query, we investigated the
effectiveness of using three NLP tools, CoreNLP (Manning et al.,
2014), Benepar (Kitaev and Klein, 2018), and Stanza (Zhang et al.,
2020). Stanza differs from the other two in that it functions as a
Named Entity Recognition (NER) tool to identify biomedical and
clinical entities directly. In contrast, others are parsers that are
only used to identify phrases. For simplicity, each approach will
be referred to as a parser.

The use of parsers (Figure 3, left side) initially identifies
all possible noun phrases, fragments, and sentences as
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FIGURE 3 | Example NLQ annotation including chunking, dependency level recognition, and similarity calculation for “concentration of potassium in extracellular

space.” The left side presents the use of parsers (CoreNLP and Benepar) while the right side presents the use of NER (Stanza and xStanza).

candidate phrases. For example, the NLQ of “concentration
of potassium in extracellular space” is chunked to cp1 :

“concentration of potassium in extracellular space,” cp2 :

“concentration of potassium,” cp3 : “concentration,” cp4 :

“potassium,” cp5 : “extracellular space,” and cp6 : “space”
by CoreNLP. The more interesting phrases are those with
the highest degree of association to an ontology class
while having the most extended terms without overlap
while fully covering the NLQ. For the example NLQ, cp3 :

“concentration,” cp4 : “potassium,” and cp5 : “extracellular space”
are selected, while the other phrases are considered as irrelevant
and removed.

The implementation of NER (Figure 3, right side) makes
it possible to identify candidate phrases along with entity
types. This allows evaluation of the phrase’s context and
the identification of additional candidate phrases and related
predicates, which are used as extra variables for SPARQL ranking.
We utilize three biomedical datasets, AnatEM (Pyysalo and
Ananiadou, 2014), BioNLP13CG (Pyysalo et al., 2015), JNLPBA
and one clinical dataset (Kim et al., 2003), i2b2 (Uzuner et al.,
2011), covering most required entity types including anatomy,
chemical, protein, gene, DNA, RNA, cell line, cell type, organ,
tissue, amino acid, problem, test, and treatment. Considering the
example NLQ; initially we get phrase:entity-type pairs such as
cpt1: “potassium—SIMPLE_CHEMICAL” and cpt2: “extracellular
space—ANATOMY.” Then the contexts related to each cpt are
identified, for example the cpt1 context phrase is “concentration
of simple chemical.” The context phrase has a higher degree of

association with an ontology class rather than a predicate, and so
it is selected as an additional phrase cpt3.

The degree of association between a candidate phrase and
an ontology class is the addition of similarity values of
the candidate phrase to each feature in the ontology class.
Since candidate phrases and features derived from ontology
dictionaries are generally short, the similarity is simply the
proportion of overlapping terms in candidate phrase P and
feature F normalized by the number of terms in feature F
[Equation (1)].

S(P, F) =
|P

⋂
F|

|F|
(1)

However, longer candidate phrases tend to have high similarity
value when the feature text is shorter. For example, cp1 :

“concentration of potassium in extracellular space” and cp5 :

“extracellular space” have the same similarity values when
compared to FMA_70022’s preferred label feature, “extracellular
space;” but intuitively cp5 should be higher. Therefore, we add
the number of terms in the candidate phrase P to the normaliser
but prevent the excessive similarity value decrease of a longer
candidate phrase with ln(max(1, |P|

|F| )) [Equation (2)]. Assuming
that candidate phrases are always short, we can set the appearance
of a term t in the candidate phrase to 1, so Equation (2) can be
reduced to Equation (3).

S(P, F) =
|P

⋂
F|

|F| + ln(max(1, |P|
|F| ))

(2)

Frontiers in Physiology | www.frontiersin.org 5 February 2022 | Volume 13 | Article 820683

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Munarko et al. NLIMED: Query to SPARQL

S(P, F) =
∑

t∈P∩F

1

|F| + ln(max(1, |P|
|F| ))

(3)

So far all terms in the candidate phrase get the same weight,
while based on the level of dependence, different terms ideally
have different weights. For example, “potassium” in cp2:
“concentration of potassium” should have lower weight than in
cp4: “potassium,” because in cp2 “potassium” is not the main term
and a noun modifier of “concentration,” while in cp4 “potassium”
is the main term. Considering that the universal dependencies of
the candidate phrase can be constructed as a tree structure, we
use the depth of a node plus 1 as the dependency level of a term,
so a lower dependency level contributes more to the similarity
value. In Figure 3, we can see the example of dependency level
determination of cp2: “concentration of potassium” to 1, 3, 2,
and cpt3: “concentration of simple chemical” to 1, 3, 3, and 2.
However, when the dependency level of a term in the candidate
phrase dltp differs from that in the ontology class feature dltf ,
the highest value is chosen. Thus, we introduce the dependency
level of a term into Equation (3) so that it becomes Equation (4),
where max(dltp, dltf ) selects the highest dependency level.

S(P, F) =
∑

t∈P∩F

1

|F| + ln(max(1, |P|
|F| ))

|F|. ln(max(k1, |F| + k1 −max(dltp, dltf )))

ln((|F| + k2)!)

=
∑

t∈P∩F

ln(max(k1, |F| + k1 −max(dltp, dltf ))

(1+
ln(max(1, |P|

|F| ))

|F| ). ln((|F| + k2)!)

(4)

Next, |F|. ln(max(k1, |F| + k1 − max(dltp, dltf ))) calculates the
contribution of the dependency level to the feature’s similarity
value, where k1 is an empirical variable with minimum value of
2. Here, we ensure that a term with a lower dependency level
higher than k1 still has a contribution. Then, this contribution is
normalized with ln((|F| + k2)!) where k2 is an empirical variable
with minimal value of 1. For our experiment, k1 and k2 were set
to 2 and 1, respectively.

With the dependency level, less specific terms have a higher
contribution than more specific terms. It should be noted
that the terms in the candidate phrases and ontology classes
are generally short, so the least specific terms are usually the
primary descriptors. We found that higher contribution of more
specific terms lead to overfitting resulting in a performance
decrease. For example, when comparing “concentration of simple
chemical” to OPB_00340 “concentration of chemical,” if we
put more contribution on more specific terms, “chemical”
and “simple,” the phrase will be identified as SBO_0000247
“simple chemical” rather than OPB_00340. Here, the least
specific term “concentration” represents the ontology class better
than “simple” and “chemical.” Another example is comparing
FMA_84669 “basolateral plasma membrane” and GO_0090652
“basolateral cytoplasm” to a phrase containing “basolateral;” the
phrase will be associated with both classes since “basolateral”
is used in a limited number of classes. The additional “plasma
membrane” or “cytoplasm” will specifically direct the phrases to
one of the ontology classes.

For the description feature extracted from the biosimulation
model, we use a different similarity calculation because the
number of terms in this feature is usually larger than for the other
features [Equation (5)]. The similarity value is the proportion of
overlapping phrases in the candidate phrase and the description
feature normalized by the smoothing length of the candidate
phrase (1 + ln(|P|)) and the smoothing of the total number of
terms in the entity descriptions appearing with the ontology class
(1 + ln(1 + tea)). We assume that the more an ontology class
is used to annotate entities, the more important that ontology
class is. So we multiply by (1 + ln(1 + teo)), which represents
the number of entities annotated by the ontology class.

Sdesc(P, F) =
∑

t∈P∩F

1

(1+ ln(|P|))(1+ ln(1+ tea))
(1+ ln(1+ teo))

(5)
Finally, the degree of association between the candidate phrase
and the ontology class is the sum of similarities between the
candidate phrase against all features, including preferred label
(pl), synonym (syn), definition (def ), parent label (par), and
description (desc) [see Equation(6)].

S = α.S(P, pl)+ β .S(P, syn)+ γ .S(P, def )+ δ.S(P, par)

+θ .Sdesc(P, desc) (6)

We believe that features such as preferred label and synonym
are more critical than others; for example, in FMA_70022,
pl=“extracellular space” and syn=“intercellular space” represent
the class better than par =“interstitial space,” so the weights of pl
and syn are naturally higher than the others. Therefore, we apply
multiple weighting scenarios (Ogilvie et al., 2003; Robertson
et al., 2004), so we have multipliers α, β , γ , δ, and θ for pl,
syn, def , par, and desc, respectively. The multipliers are decided
empirically to obtain the best performance and will vary based
on the training data. At this point, a candidate phrase may relate
to multiple ontology classes with various degrees of associations.
To get the final phrase, we remove ontology classes with a degree
of association lower than a particular threshold value t, resulting
in candidate phrases with zero or more ontology classes. Hence,
the final phrases have at least one association with an ontology
class. The SPARQL Generator will use these final phrases with
their corresponding ontology classes to derive SPARQL patterns
and compile them into SPARQL. If NLQ Annotator uses NER,
then predicates are obtained to make SPARQL more specific and
ranking more accurate.

2.4. SPARQL Generator
With the NLQ Annotator result consisting of phrases and
their associated ontology classes and predicates, our SPARQL
Generator generates SPARQL utilizing the RDF Graph Index
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FIGURE 4 | The example of SPARQL generation in SPARQL Composer where (A) phrases and ontology classes as NLQ Annotator result, (B) are combined and

checked for their availability in RGI, (C) then are related to available entity annotation patterns, (D) and finally are compiled to SPARQL and ranked.

(RGI) and SPARQLComposer. RGI is an indexing system used to
represent entities’ semantic annotation patterns in biosimulation
models, where SPARQL Composer is a compiler that locates
SPARQL elements in RGI, then constructs and ranks SPARQL.

RGI stores all existing semantic annotation patterns in the
repository. For example, the annotated entity in Figure 2 has a
pattern consisting of the entities “#K_e” as root described by the
ontology classes OPB_00340, FMA_70022, and CHEBI_29103.
Between the root and the ontology class, some predicates make
up the path. With the ontology classes as the RGI input, we can
get the annotation pattern; and then construct SPARQL. This
pattern search is done using the indexing system in RGI, which
can search for predicate and root sets based on ontology classes
(see Supplementary Figure S1 for the RGI creation process).

Each phrase selected by the NLQ Annotator can be associated
with multiple ontology classes. For example, in the query we
have used throughout this paper, cp3: “concentration,” cp4:
“potassium,” and cp5: “extracellular space” are associated with C̄1:
(OPB_00340, OPB_00592), C̄2: (CHEBI_29103, CHEBI_26216),
and C̄3: (FMA_70022, FMA_17555), respectively (Figure 4A).
The SPARQL Composer initially searches for the available C̄1, C̄2,
and C̄3 combinations in the RDF Graph by leveraging the RGI’s
ontology class to root index. Of the eight combinations, only two
have patterns, ac1: (OPB_00340, FMA_70022, CHEBI_29103)
and ac2: (OPB_00592, FMA_70022, CHEBI_29103) (Figure 4B).

The other six possibilities have no matching results in the
repositories, and thus, they are discarded. Then, each ac is
searched for the relationship pattern between its ontology
class and root using the RGI ontology class and root
to the path. In Figure 4C, we show that ac1 and ac2
have one and three relationship patterns, respectively. Next,
these patterns are compiled into SPARQL and ranked by
summing the degree of phrase association to the ontology
class (Figure 4D). Additionally, when using xStanza, the
predicate context of a phrase is also used in the ranking.
In our example, if the NLQ has predicate terms such as “as
sink participant,” this can be used to calculate the ranking
more accurately.

Since NLIMED is developed based on the structure
of composite annotation of biosimulation models in the
repositories, it stores information regarding ontology classes,
entities, and their connecting paths. Therefore, it is also possible
to discover entities based on the identified ontology classes and
paths without constructing SPARQL and send a request to an
SPARQL endpoint. However, the non-SPARQL approach will
fail to find entities in the new RDF annotated models added to
repositories. The COMBINE recommendation to standardize
the composite annotation makes it possible to get the new
entities using the generated SPARQL. Moreover, although not
mandatory, regular update of the NLIMED indexes (TFI and
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RGI) is beneficial for recording the overall RDF annotation
structure and improving performance.

3. EXPERIMENTS AND RESULTS

We performed experiments to measure the performance of our
NLQ Annotator in detecting NLQ-related phrases and ontology
classes, and to examine NLIMED’s behavior toward historical
query records in the PMR. For the first experiment, we prepared
a test dataset examined by experts consisting of 52 NLQ and their
associated ontology classes with differing complexity, having
1 − 14 terms and 1 − 4 phrases (Supplementary Table S1). In
the second experiment, we collected query-result pairs of from
search sessions in the PMR query logs. We obtained 110 pairs
by selecting those whose results were models annotated against
ontology classes (Supplementary Table S2). An entity identified
by NLIMED was considered a relevant result if a model in these
pairs contains the entity.

While the preferred label feature is available in all ontology
classes, other features may not be present. These empty features
may lead to lower degrees of association between a phrase
and an ontology class; therefore, adding the preferred label to
other features can provide a fairer result. We found that this
addition (WPL), along with the use of dependency level to
calculate similarity, works well with NLIMED. Furthermore, we
varied the measurement on four parsers, i.e., CoreNLP, Benepar,
Stanza, xStanza (Stanza with context identification). If a phrase
was associated with more than one ontology class, the class
with the highest degree of association was selected. We also
examined different feature modifications and dependency level
implementations more closely. Detailed results are presented in
Supplementary Figure S2.

3.1. NLQ Annotator Performance
The NLQ Annotator performance was measured by calculating
precision, recall, and F-measure. Precision is the proportion
of correctly identified ontology classes among the number of
detected ontology classes, while recall is the proportion of
correctly identified classes among the number of ontology classes
that count as correct classes. F-measure is the harmonization of
precision and recall obtained by dividing the multiplication of
precision and recall by the addition of precision and recall and
then multiplying by two. As the gold standard, parsing using the
NCBO Annotator is fixed on seven ontologies primarily found in
the PMR and prioritized the most prolonged-phrase, resulting in
a precision of 0.542 and recall of 0.504.

Table 2 shows experimental results where our approach
outperforms the NCBO Annotator. CoreNLP can chunk better
than other approaches; moreover, with context identification,
xStanza outperforms Stanza by adding new ontology classes,
placing this approach second after CoreNLP in recall and F-
measure. Furthermore, xStanza provides the ability to detect
predicates useful to rank and compose SPARQL. The use
of dependency levels and WPL (the distribution of preferred
label to other features) can increase the overall performance
(see Supplementary Figure S2 with higher AuCPR). Here,
dependency levels can improve similarity measurement by giving

TABLE 2 | The performance of NLIMED to annotate NLQ on a test dataset

containing 52 NLQs.

Strategy Precision Recall F-measure

NCBO Annotator 0.542 0.504 0.522

WPL + NoDep + benepar 0.69 0.426 0.527

WPL + NoDep + coreNLP 0.721 0.539 0.617

WPL + NoDep + stanza 0.553 0.452 0.498

WPL + NoDep + xStanza 0.624 0.548 0.583

WPL + Dep + benepar 0.636 0.426 0.51

WPL + Dep + coreNLP 0.65 0.661 0.655

WPL + Dep + stanza 0.635 0.53 0.578

WPL + Dep + xStanza 0.615 0.557 0.584

We modify features by distributing preferred label to other features (WPL). The use of

CoreNLP demonstrates the highest performance measured by precision, recall and F-

measure (bold values, rows 3 and 7). Moreover, the complement of term dependency

level to CoreNLP can increase recall and F-measure (bold values, row 7), although it can

decrease precision.

higher weight to the more critical term. At the same time,
WPL can overcome the empty feature problem and balance the
participation of each feature by distributing the preferred label,
as the essential feature, to other features. As a reference, our most
reliable configuration is WPL, using dependency level, CoreNLP
with multipliers α = 3.0, β = 3.0, γ = 0.0, δ = 0.0,
and θ = 0.38. The complete configurations are available in
Supplementary Table S3.

Considering the NLQ complexity, Figures 5A,B present the
F-measure for different NLQ lengths. All parsers generally work
better than the NCBO Annotator, where CoreNLP is consistently
superior to other parsers, and xStanza follows. The analysis
based on the number of phrases shows that xStanza is best for
one phrase NLQ while CoreNLP is best for the longer NLQ
(Figure 5A). The higher performance of CoreNLP is mainly due
to its better ability to chunk NLQ, while xStanza’s performance
depends on the datasets used to identify named entities. For
example, the NLQ “luminal antiporter activity” ideally comprises
the two phrases “luminal” and “transporter activity” correctly
identified by CoreNLP. In contrast, xStanza identifies “luminal”
(entity: multi-network structure) or “luminal antiporter activity”
(entity: problem). Since the implementation of Stanza avoids any
overlapping, “luminal” with the higher degree of association to
an ontology class is selected while “luminal antiporter activity”
is discarded. The analysis based on the number of terms shows
a similar pattern as the analysis based on the number of
phrases (Figure 5B), although xStanza is best for two-term NLQ.
In general, the high performance of NLIMED on short NLQ
shows that the Equation (6) used to calculate the degree of
association between a phrase and an ontology class is working
well. Hence, NLIMED performance is available to be improved
by implementing a better chunker.

Considering the role of features, the preferred label is
the essential feature, and its use with the synonym feature
using WPL and CoreNLP could reach higher performance
(Supplementary Figure S2A, row 2, column 3). The importance
of other features is presented in Supplementary Figure S3
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FIGURE 5 | The analysis of NLIMED performance over different number of terms and phrases in NLQ (A) F-measure based on the number of terms in NLQ. (B)

F-measure based on the number of phrases in NLQ.

where synonym and description contribute positively for the
higher AuCPR.

3.2. NLIMED Behavior for Historical Query
Records in the PMR
The data used in this experiment has the characteristic that
the terms in the ontology classes describing a model are rarely
found in the query. It is natural since the available PMR
search tools are intended to find biosimulation models rather
than entities; therefore, queries tend to use common terms in
model descriptions such as author, year, and publication title
rather than specific terms in ontology classes. Consequently,
NLIMED’s ability to find relevant results based on the provided
queries is relatively low. We divided query-result pairs into three
groups based on the number of terms that appear together
in the query and the results ontology classes divided by the
number of terms in the ontology classes. Those groups are
G1:“proportion=0,” G2:“0 < proportion < = 0.5,” and G3:“0.5<
proportion < = 1.0.” The experiment was conducted using
the best multipliers combination stated at Subsection 3.1 and
two additional combinations of α, β , γ , δ, and θ as (3.0,
3.0, 0.5, 0.5, 0.5) and (3.0, 3.0, 1.0, 1.0, 1.0). Using mAP@10
(Mean Average Precision at 10) as a performance measurement,
in Supplementary Figure S5, the mAP@10 value continuously
increases from G1 to G3. The increase is as expected that a query
containing terms in the result’s ontology classes is an advanced
query that can find models more precisely. Moreover, in G1,
NLIMED can still retrieve a small number of relevant results due
to using the entity’s description as a feature.

Contradicting the finding in 3.1, Benepar outperformed other
parsers in terms of retrieval, raising F-measure around 0.7 for
G3. It seems that Benepar benefits from the relatively higher
precision (shown by bigger circles in Figures 5A,B), so it can
suppress false positives while the number of retrievals is limited.
The low performance of CoreNLP and Stanza is probably due to

their better ability to identify terms related to ontology classes
so that in the chunking process, many common terms are
discarded from the query. These common terms help findmodels
that are more general than entities. Meanwhile, the additional
ontology classes and predicates by xStanza seem unrelated to
the query’s intent, so relevant models found using Stanza have
a lower ranking.

4. DISCUSSION

4.1. NLQ to SPARQL Evaluation
We have shown that NLIMED can translate NLQ to SPARQL
and find entities annotated to ontology classes. The degree
of association equation proposed in the NLQ Annotator
combined with the corresponding parser outperformed the
NCBO Annotator in terms of associating NLQ with ontology
classes. NLIMED performance varies based on the number of
terms or the number of phrases in the query (Figure 5), so for
future study, it is necessary to consider this query length factor.
Next, we discuss NLIMED based on the length and the type
of NLQ.

4.1.1. Short NLQ (1–2 Phrases)
Most queries have terms that can be annotated correctly, such
as “chloride,” “cardiac myocyte,” “apical plasma membrane,”
“left ventricular wall,” and “flux of potassium.” The use of a
different parser has its own character on the annotation result;
for example, “flux of potassium” is chunked to “flux” and
“potassium” by CoreNLP but to “flux of simple chemical” and
“potassium” by xStanza, although they are annotated to the same
ontology classes, OPB_00593 and CHEBI_29103, respectively.
For the same NLQ, Stanza skips the “flux” related phrase because
of the lack of a named entity dataset related to the Ontology of
Physics for Biology. The use of the NCBOAnnotator has a similar
issue to Stanza by ignoring some phrases that have a low degree
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of association to ontology classes. Thus, using information from
the annotated entities such as textual description as an additional
feature in NLIMED may improve performance.

Nevertheless, recognizing phrases not linked by prepositions
is quite challenging, for example, noticing that “potassium flux” is
similar to “flux of potassium.” CoreNLP and Benepar consider it
a single phrase that is conceptually correct but does not match the
intent of the NLQ, while Stanza only considers the “potassium”
term. Extending Stanza, xStanza extracts the context around
“potassium” as an additional phrase and successfully associates
it as an ontology class. Further, xStanza also identifies additional
ontology classes and predicates so that it can construct more
specific SPARQL.

4.1.2. Long NLQ (3–4 Phrases)
NLQ Annotator’s performance, especially using CoreNLP, is
better than NCBO Annotator for NLQ with three and four
phrases. Long NLQ are generally well-structured so that
determining phrases and ontology classes can be relatively
accurate. However, possible drawbacks can occur when there are
a lack or excess of identified NLQ phrases. The lack of phrases
might not be critical as they only lead to the more general
SPARQL, whereas in reality, entities are rarely annotated against
more than three ontology classes, so the lack of one ontology class
can still generate quite specific SPARQL. On the other hand, the
excess of phrases is a critical problem that leads to more specific
SPARQL causing NLIMED to miss entities. To overcome this
problem, NLIMED implements a filtering threshold based on the
degree of association between the phrase and the ontology class.

4.1.3. Question Type NLQ
A question type NLQ such as “give me models containing a
glucose transporter” usually consists of supporting phrases that
are not related to ontology concepts and some relevant phrases
which are the core of the NLQ. While Benepar and CoreNLP
cannot differentiate accurately, Stanza and xStanza can extract
the relevant phrases only as long as the phrase is associated
with the available named entity. For the example, Stanza and
xStanza can identify “glucose transporter” only, but Benepar
and CoreNLP identify an additional phrase “give me models.”
Nevertheless, for our purposes, since “give me models” contains
“models” term which is frequent in biosimulation models, we
may consider terms in this phrase as stop words and ignore the
phrase. Alternatively, to prevent the same problem, wemay apply
an inverse document frequency threshold to determine whether
to ignore a candidate phrase or not. However, in the future, we
may use these non-biological phrases containing terms such as
“model,” “variable,” and “constant” to identify the type of entity
to present more accurate results.

4.2. NLIMED Embedded Within Other Tools
Currently, NLIMED is working over CellML models in the PMR
(Yu et al., 2011) and SBML models in BioModels (Chelliah
et al., 2015), and has been implemented in EMP (Sarwar et al.,
2019a) as an additional interface for discovering model entities.
We are confident that NLIMED may also be developed for use
with different repositories, e.g., ChEMBL (Gaulton et al., 2012)

and BioSamples (Barrett et al., 2012), since they contain models
richly annotated with the RDF utilizing ontologies. NLIMED has
potential to be applied to EMP-like tools such as the Cardiac
Electrophysiology Web Lab (Cooper et al., 2016), eSolv (de Boer
et al., 2017), and SemGen (Neal et al., 2018). Present annotation
tools, e.g., SemGen (Neal et al., 2018), OpenCOR (Garny and
Hunter, 2015), and Saint (Lister et al., 2009), which can provide
ontology class suggestions based on available ontology databases
may take advantage of NLIMED. Following the COMBINE
recommendation about standardization of biosimulation model
annotation (Neal et al., 2019), this work can be directed to
provide a comprehensive search interface to discover model
entities from various biosimulation model repositories.

4.3. Limitations and Future Directions
There are several limitations of NLIMED, some of which will
direct our future work. While NLIMED can identify phrases
in NLQ and then classify them into ontology classes, we have
not yet explored the lexical-semantics such as synonymy and
hyponymy. Consequently, NLIMED cannot detect perfectly
the similarity of queries “the role of potassium within the
cytosol” and “the regulation of K+ in liquid medium contained
within a cell,” and the specificity of query “sodium across
epithelial cell” to “sodium across basolateral plasma membrane”
and “sodium across apical plasma membrane.” We believe
that the lexical-semantic in NLQ is closely related to the
model entity’s tree structure and the dependency between
ontology classes.

Currently, NLIMED calculates ranking for all generated
SPARQL but not yet for the model entities returned from
SPARQL queries. Ranking model entities is quite tricky because
all entities retrieved using the same SPARQL have the same
ranking and are associated with the same ontology classes, so
they do not have differentiation properties. However, the use of
the text in the original publication related to the model entities
might be helpful, so it may be possible to implement term-
weighting strategies such as BM25 (Robertson andWalker, 1994).
Furthermore, other entities that surround an entity may also be
used to supplement the ranking.

5. CONCLUSION

We demonstrated NLIMED, an interface for translating NLQ
into SPARQL that consists of NLQ Annotator and SPARQL
Generator modules, for model entity discovery. The NLQ
Annotator can identify ontology classes in NLQ utilizing features
extracted from ontologies (preferred label, synonym, definition,
and parent label) and biosimulation models’ RDF (description).
The ontology class identification performance is relatively high,
reaching AuCPR of 0.690 when using the CoreNLP parser and
term dependency level. We also showed that NLIMED could
handle a wide range of NLQ types containing one or many terms
with one or many phrases. Our SPARQL Generator uses the RDF
graphs as indexes into the repositories, and then can generate
all possible SPARQL queries (those that have results) based on
the provided ontology classes. NLIMED has been implemented
in EMP for model entity searching and could potentially be
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applied as a generic search interface for exploring model entities
from numerous biosimulation model repositories, e.g., PMR
and BioModels. Further, we are interested in exploring lexical-
semantics such as synonymy, hyponymy, and hypernymy by
exploring hierarchies in ontology, entity composite annotation
patterns, and co-occurrence of terms in query collections.
Thus, we can recognize and take advantage of the similarity of
terms such as “K+” and potassium and the specificity of terms
such as “epithelial cells” to the “basolateral and apical plasma
membranes.” By allowing users to easily perform sophisticated
search queries over model repositories, we believe that NLIMED
will be a valuable model-discovery tool for the biosimulation
model community.
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