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ABSTRACT RISC-V is a novel open instruction set architecture that supports multiple platforms while
maintaining simplicity and reliability. Despite its novelty, the software support for RISC-V has been
increasing in the last years, given that popular tool-chains and operating systems already have support for
RISC-V. However, although many works have been exploring the RISC-V software ecosystem, no work that
raised the current state of software support for RISC-V is available. In this context, this survey reviews the
contributions introduced in the last years to understand the RISC-V’s software ecosystem and its usage in
both academic and industrial environments. We classified and evaluated the works into four main categories:
fields of application, RISC-V implementations, software architecture, and deployment features. The primary
goal of this research is to provide the community with a comprehensive overview of the current state of the
art of RISC-V software support and identify and highlight the main contributions of recent works.

INDEX TERMS RISC-V, Software Support, Operating Systems

I. INTRODUCTION

W ITH the increasing number of instructions of pop-
ular Instruction Set Architectures (ISAs) and the

requirements of backward compatibility of older extensions,
researchers from the University of California at Berkeley
developed an open ISA based on Reduced Instruction Set
Computer (RISC) principles. This architecture was named
RISC-V [1] and seeks to provide a base ISA and optional
application-specific extensions to support software engineers
with a small and robust ISA [2]. In other words, it offers
a stable ISA for compiler and operating system designers,
enabling them to work with hardware designers to provide
additional resources to meet application requirements and
participate in the decisions and implementations of the
RISC-V ISA specifications [2]. Nowadays, RISC-V is main-
tained by RISC-V International, a non-profit organization.

RISC-V also aims at becoming a universal ISA by support-
ing numerous processor sizes, from embedded controllers to
high-performance computers and a wide variety of software
stacks and programming languages [2]. Moreover, given
the future computing landscape, multiple platforms such as

Internet of Things (IoT) devices and personal mobiles will
likely dominate the market, requiring ISAs to support these
systems [3].

Over the last decade, several studies have focused on
the different issues related to the RISC-V architecture, and
part of these contributions is summarized and analyzed in
survey papers focused on security [4]–[7] and open-sourcing
[8], [9] aspects. Although many studies have addressed the
software stack for RISC-V, there is no report on the literature
analyzing these studies from a unified perspective. Driven
by the growth of the RISC-V’s ecosystem and the lack of
studies concerning the current state of software for this ISA,
this work seeks to fill this gap and explore the state-of-the-
art software support for RISC-V architectures. This survey
analyzes works carried out in the last five years to understand
the RISC-V’s software ecosystem and its usage in academic
and industrial environments. The main contributions of this
research are: (i) providing the community with a comprehen-
sive overview of the current state of the art of the RISC-V
software ecosystem, and (ii) identifying and highlighting the
main contributions of recent works.

The remainder of this work is organized as follows. Sec-
tion II summarizes the RISC-V ISA and Section III describes
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the methods applied to conduct this review. Next, Sections IV
and V cover the field of applications and the RISC-V im-
plementations, respectively. Finally, Sections VI and VII
cover a set of software support characteristics. Concluding,
Section VIII presents our final remarks.

II. RISC-V
Unlike prior ISAs, RISC-V relies on a modular design by
providing a frozen base ISA core (RV32I), which will never
change, and extensions that provide further functionalities.
Moreover, it supports a full software stack, providing a sta-
ble target to compiler writers, operating system developers,
and assembly language programmers [2]. A modular design
enables optional standard extensions that the hardware can
include if specified by the system’s requirements, facilitating
the development of small or large-scale applications and
compilers to generate more reliable code. Besides, when
RISC-V needs to include new instructions to the ISA, they
are kept optional and non-required for all future RISC-V
implementations, contrary to incremental ISAs [2].

A. INSTRUCTION FORMAT
The RV32I base ISA has four instruction formats (R/S/I/U)
and two variants (B/J) based on the handling of immediate
operands. All of them have a fixed length of 32 bits and must
be aligned on a four-byte boundary in memory [10]. Thus,
the six instruction formats are:

• R-type, for register-register instructions.
• I-type, for register-immediate and load instructions.
• S-type, for store instructions.
• B-type, for conditional branch instructions.
• U-type, for instructions with a large upper immediate.
• J-type, for unconditional jump instructions.
Given that the six instruction formats have regular encod-

ing, the decoding of instructions is much more straightfor-
ward than ARM or x86 architectures. For example, RISC-V
provides three register operands at the same position in all
formats, simplifying the decoding process. In addition, the
specified registers to be read or written are always in the same
position in all instructions, enabling register access to start
before the instruction decoding phase [2], [11].

B. THE BASE ISA
The RISC-V ISA provides two primary base integer vari-
ants: RV32I (for 32-bit) and RV64I (for 64-bit). The base
instruction-sets provide the minimum requirements for run-
ning a processor and are able to run a simple operating
system. It uses a two’s-complement representation for signed
integer values, and data is stored in memory using the little-
endian system, although it allows non-standard alternatives
to provide a big-endian memory system [11].

C. PRIVILEGE LEVEL
The hardware must provide the OS mechanisms that en-
able the processor to change its execution privilege status,

such as going from the user mode to the supervisor mode,
and provide protection across different software components
[12]. RISC-V supports three privilege levels of execution to
protect different software stacks, enabling multiple software
stacks to run with different privileges levels. Attempts to
perform operations not permitted by the current privilege
level will result in exceptions and require handling by an
underlying execution environment. The highest and manda-
tory privilege level of the RISC-V hardware platform is the
M-Mode, which is inherently trusted and has all low-level
access to the system. Besides M-Mode, RISC-V supports
Supervisor-mode (S-Mode) intended for OS usage and User-
mode (U-Mode) for conventional applications. In addition,
each privilege level has a set of privileged ISA extensions
with support to optional extension, enabling, for example,
having S-Mode extended to support a hypervisor execution
environment [11].

D. REGISTERS
RISC-V has 32 registers (x0-x31), and the RISC-V’s Ap-
plication Binary Interface (ABI) determines their name. Reg-
ister zero is hardwired to zero and always holds the value
zero, mainly to simplify the ISA. The ra and sp registers
hold the return address and stack pointer, respectively. Reg-
isters t0-t6 holds temporary values that are not guaranteed
to persist after a function call, and s0-s11 hold persistent
values across function calls. Finally, registers a0-a1 hold the
first two arguments of a function and return value, and a2-a7
hold any remaining arguments [2].

E. CONTROL AND STATUS REGISTER
The Control and Status Registers (CSRs) are system registers
to control and monitor the machine’s current state. CSRs
can be read or written through specific CSR instructions,
and have restrictions for low-privilege levels. A RISC-V
implementation may contain additional CSRs, accessible to
a subset of the privilege levels. Any attempt to either access
a CSR without the appropriate privilege level or to write into
a read-only CSR raises an illegal instruction exception [13].

F. EXCEPTIONS AND INTERRUPTS
Both exceptions and interrupts on RISC-V processors are
considered traps. As exceptions and interrupts happen during
runtime, the processor provides mechanisms to make an un-
scheduled procedure call to an arbitrary address [12]. RISC-
V classifies traps into two main categories: synchronous
and asynchronous. Synchronous traps are exceptions and
result from an instruction execution, such as accessing an
invalid memory address or executing an invalid instruction.
Asynchronous traps are interrupts and are external events that
occur asynchronously to the instruction stream. RISC-V sets
the most significant bit of the mcause control status registers
to identify whether the trap is synchronous or asynchronous,
and the least significant bits for identifying which interrupt
or exception occurred [2].
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RISC-V has three sources of interrupts: software, timer,
and external interrupts. Software interrupts enable program-
mers to interrupt a given CPU, allowing efficient Inter-
Process Communication (IPC), while timer interrupt is trig-
gered when a hart (i.e., hardware thread) time comparator
exceeds or equals the global timebase register. External
interrupts, in turn, are asserted by a platform-level interrupt
controller [13]. The mechanisms for raising and clearing
interrupts can vary according to the hardware platform, given
they can use different memory maps and demand divergent
features from their interrupt controller [2]. However, all
RISC-V systems handle exceptions and mask interrupts in
the same way.

G. ADOPTION AND MOTIVATION
RISC-V Foundation is a nonprofit organization and counts
with more than 40 sponsoring companies [12]. For the past
decade, NVIDIA has been shipping their Graphics Process-
ing Units (GPUs) with proprietary microcontrollers called
Falcon, but since 2016, NVIDIA is evaluating RISC-V for
their GPUs [14]. Western Digital open-sourced the SweRV
Core, an industry-qualified processor featuring a 32-bit in-
order, 2-way superscalar design with a 9-stage pipeline core
[15]. In 2019, Alibaba revealed its first embedded RV64GCV
RISC-V-based processor, 64-bit, high performance, and with
a set of custom extensions [16], [17]. Due to the recent US
restrictions on its ARM design, Huawei HiSilicon released
their first RISC-V-based board together with the Harmony
OS in May 2021 [18]. With LEON SPARCv8 being the dom-
inant architecture in European avionics and facing difficulties
in leveraging software from the commercial domain, the
Dependable Real-time Infrastructure for Safety-critical Com-
puter (De-RISC) project introduces the RISC-V architecture
for aviation and space environments by using with fault-
tolerant techniques and supporting compute-intensive appli-
cations [19]. Further, apart from Apple’s recent switch to
ARM-based System On Chip (SoC), it has recently demon-
strated an interest in exploring the RISC-V architecture [20].

Apart from industrial motivation and adoption, academic
development is also in progress. For example, the PULPino
processor developed at the Swiss Federal Institute of Tech-
nology (ETH Zürich) is ready for industrial standards.
PULPino is optimized for low power consumption, concen-
trating on providing IoT solutions [21], [22]. Given this
background, the institution of technology Semico Research
Corp. estimates that in 2025 the market will have around 62.4
billion RISC-V cores worldwide [23], [24], as represented by
the graph in Figure 1.

III. MATERIALS AND METHODS
In order to carry out this survey and identify the cur-
rent state of the art of RISC-V software support, we con-
ducted a bibliographic survey using the following mate-
rials and methods. First, we performed a search on the
IEEE, ACM, Springer, and Usenix digital libraries us-
ing this search query: (’RISC-V’ AND (Software

OR ’Operating System’ OR OS)), and limited the
search to retrieve works published in the last five years. Fur-
thermore, we applied the impact of the publication channel
and the normalized number of citations received by each
work to select the ones to be analyzed.

After the search and selection phase, we identified the fol-
lowing RISC-V software ecosystem shown in Figure 2. From
top to bottom, we first explore the variety of environments
RISC-V is applied to and then continue to explore available
implementations that have been proposed. We then further
explore the different software architectures that have been
ported or implemented on RISC-V and the deployment char-
acteristics, such as security, reliability, and power features.

This work will further explore these categories in the
following sections: field of application (Section IV); RISC-V
implementations (Section V); and software support, includ-
ing software architecture, OS support, file systems, network
stack, and uncategorized features (Section VI). In addition,
we analyzed the additional features, including the support for
security, reliability, and low-power operation (Section VII).

IV. APPLICATION FIELDS
The space industry has had difficulties leveraging software
from the commercial domain and is now considering al-
ternative architectures in a larger commercial market [19].
Furthermore, with the introduction of SoC and multi-core
processors, this industry now seeks to migrate components to
a higher level of integration, introducing a new set of issues
that needs to be solved. In this sense, a modular architecture,
such as RISC-V, enables designers to extend the processor
and implement functionalities tailored to their application
requirements, making RISC-V highly adaptable to various
environments.

The De-RISC project introduces a novel RISC-V hard-
ware/software platform meeting the requirements and func-
tionalities imposed by the space environment. De-RISC
meets reliability by designing its Multiprocessor System-
on-Chip (MPSoC) with fault-tolerance techniques to pro-
vide a correct operation in the presence of faults [25]. The
SELENE project, depicted in Figure 3, proposes a reliable
platform for safety-critical computing. It is built on open-
source technology and enables designers to adapt the system
to a specific requirement domain, integrating applications of
different criticalities and demands, and achieving a diverse
set of redundancy and performance [26]. The openness of
RISC-V improves component reuse and prevents the need for
developing projects from scratch, increasing productivity and
reducing cost [27].

With the increase of embedded device deployments and
the expected growth of the Industrial Internet Of Things
(IIoT) market to reach 1.11 trillion US dollars by 2028
[28], [29], Internet of Things (IoT) devices have become a
fundamental part of the lives of billions of people around the
world. Securing these devices without loss of performance or
increasing power usage has become a matter of discussion
with the accelerating growth of connected devices. A set
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FIGURE 1. Market forecasting for RISC-V [24].

of security research for constrained devices is embraced by
the RISC-V community and investigated by the scientific
community. Solutions addressing high-level goals identified
by NIST IR 8228 [30], authenticated secure-boot images
while verifying updates during runtime [31], hardware en-
forcements [32], memory isolation mechanisms, and post-
quantum solutions [33] are all available for the RISC-V
architecture.

Apart from security and reliable applications, RISC-V has
a set of research fields concerning AI-based applications. In
[34], the authors seek to provide a heterogeneous processor
design for Convolutional Neural Network (CNN)-based ap-
plications by proposing a domain-specific architecture design
and an accelerator for the inference of CNNs, adhering to
low-power characteristics. The SiFive Intelligence X280 is
a multi-core RISC-V compliant processor that optimizes
Artificial intelligence and Machine Learning (AI/ML) infer-
encing computing. X280 uses the vector extension and SiFive
Intelligence extensions, making the core suitable for high-
throughput single-threaded and power-constrained applica-
tions [35]. Further, the work of [36] aims at providing system
call isolation characteristics for embedded devices.

RISC-V is highly adaptable for various contexts, given
the open specification, its modularity, and the community. It
enables designers to deploy from small, low-cost embedded
devices to a large-scale system with custom extension sup-
port meeting the requirements imposed by the system.

V. RISC-V IMPLEMENTATIONS
Despite the requirements of a general-purpose processor,
RISC-V enables domain-specific implementations to exist,
either by implementing the RISC-V base ISA with custom
characteristics or implementing a new extension.

A. PROCESSOR SOFT-CORE
The PULPino project provides three RISC-V core imple-
mentations: (i) a 32-bit 2-stage pipeline named Ibex (for-
mally named Zero-riscy), (ii) a 4-stage pipeline core named
CV32E40P (formally named RI5CY), and (iii) a 64-bit 6-
stage core named CVA6 (formerly named Ariane). Ibex,
maintained by lowRISC and illustrated in Figure 4, is well
suited for embedded control applications and supports the
Integer (I) or Embedded (E), Integer Multiplication and
Division (M), Compressed (C), and Bit Manipulation (B)
extensions, and is available as a SystemVerilog project [37],
[38]. The CV32E40P core, depicted in Figure 5, implements
the RV32IMFC ISA and the Xpulp extension for higher
code density, performance, and energy efficiency charac-
teristics [37], [39]. Finally, the CVA6 core, illustrated in
Figure 6, focuses on reducing the critical path, implements
the RV64IMAC ISA, and supports a configurable size and
separate Translation Lookaside Buffer (TLB) [40].

The work of [41] injects faults on a 64-bit, 5-stage pipeline,
LowRISC v0.2 Rocket core processor RTL to leak and
highlight the importance of hidden registers in the processor
pipeline. The authors of [42] use the RISC-V Rocket core
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FIGURE 2. RISC-V ecosystem overview.

version 1.7 to provide a kernel hardware-based monitoring
platform and a hardware interface architecture to overcome
the semantic gap problem. Šišejković et al. [43] implement
a hardware/software solution using the 64-bit 6-stage in-
order, single-issue Ariane Core. In their work, [44] adopts
a CV32E40P core from PULP platform to propose initial
ideas on using control logic drivers to create subsystems
and system-level portable models from existing block-levels.
The work seeks to help verification engineers with vertical
reuse by defining a set of algorithms that will semi-automate
transformations of portable models for different scenarios.

SonicBOOM, illustrated in Figure 7, is a Register-Transfer
Level (RTL) implementation of a RISC-V RV64GC super-
scalar out-of-order core written in Chisel3. SonicBOOM
improves the architectural characteristics of BOOMv2 and
seeks to provide a state-of-the-art platform for high-
performance research. The SonicBOOM core optimizes the
execution path and redesigns the instruction fetch unit with a
hardware Tagged Geometric (TAGE) branch predictor algo-
rithm. Further, SonicBOOM’s load-store unit provides mul-
tiple loads per clock cycle and achieves 6.2 CoreMark/MHz
[45], [46].

Furthermore, [47] uses the RISC-V BOOM implemen-
tation to provide a platform for Robot Operating System
(ROS)-based robotic applications.

In June 2021, SiFive announced the P270 and the P550
cores to their Performance family. P270 is an 8-stage, dual-
issue, efficient in-order pipeline compatible with RISC-V’s

RV64GCV ISA. P550 features 13-stage, triple-issue, out-of-
order pipeline compatible with RISC-V’s RV64GC ISA and
delivers a SPECInt 2006 score of 8.65/GHz, delivering the
highest performance RISC-V processor available today [48]–
[50].

NOEL-V is a synthesizable VHSIC Hardware Description
Language (VHDL) processor with support to the 32- and
64-bit RV{IM,IMAC,GCH} ISA, with single- or dual-issue
features. The core is available as part of a subsystem that
includes system peripherals and is configurable to use the
supports RISC-V extensions upon configuration. The NOEL-
V dual-issue processor allows two instructions per clock
cycle to execute and implements advanced branch prediction
capabilities [19], [51].

In [34], the authors implement their RISC-V CPU based on
the low-power 2-stage pipeline Hummingbird E200 RISC-V
core, which implements the RV32IMAC ISA. Further, in or-
der to explore and present a compatible RISC-V with Trusted
Execution Environment (TEE) featuring security algorithm
accelerators, [52] uses a 64-bit RISC-V with the IMAFDC
ISA implementation, along with a Rocket chip generator as a
hardware platform to integrate the security accelerator.

B. SOC PLATFORMS
The PULPino project provides a set of complete system plat-
forms: (i) PULPissimo and PULPino, two platforms based
on a single-core microcontroller, (ii) OpenPULP, a multicore
IoT processor, and (iii) Hero, a multi-cluster heterogenous
accelerator, which combines PULP-based parallel manycore
accelerator on a FPGA with a hard ARM Cortex-A multicore
host processor, all four illustrated in Figures 8 to 11, respec-
tively.

To encourage SoC security research, [56] employs the
Ariane SoC RTL to investigate and discover hardware vul-
nerabilities in SoC designs. In order to further explore mi-
croarchitectural security, [57] conducts two case studies on
the Ariane and PULPissimo SoC. Moreover, [58] evaluates
the impact of OS on the reliability of a RISC-V-based SoC
by using a LowRISC implementation on a Xilinx FPGA.

The work by [59] uses a LowRISC FPGA implementa-
tion to propose a hardware/software-based solution to secure
system integrity. Wang et al. [60] present an open-source
framework for easy deployments of Neural Network (NN)s
trained with the Fast Artificial Neural Network (FANN)
library on an ARM Cortex-M core as well as on a RISC-
V-based PULP processor.

The FE310-G000 SoC by SiFive, illustrated in Figure 12,
has an E31 core with a single-issue in-order pipeline and
implements the RV32IMAC ISA. The E31 core peaks a sus-
tainable execution rate of one instruction per clock cycle. FE-
3100-G000 features two Universal Asynchronous Receiver-
Transmitter (UART) devices for serial communication, three
Quad Serial Peripheral Interfaces (QSPIs), three Pulse-Width
Modulation (PWM) ports, and support to low-power opera-
tions and wakeup [61]. The work of [62], which proposes a
set of novel approaches that enhance Virtual Prototype (VP)
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FIGURE 3. The architecture of the SELENE project [26].

FIGURE 4. Block diagram of the Ibex core [37].

FIGURE 5. Block diagram of the CV32E40P core [37].

design flow, supports the HiFive1 board, which features the
FE310-G000 SoC. Similarly, [63] proposes an automated
quality-driven methodology which supports the HiFive 1
board.

Du et al. [64] use the SiFive U500 SoC with the
RV64IMAFD ISA to add support for a secure and efficient
cross-process call architecture.

The PolarFire SoC FPGA by Microchip is a low-power,
thermal efficient, and defense-grade security for intelligent,
connected systems. The SoC has a 5-stage single-issue in-
order pipeline RISC-V and does not suffer from Meltdown
and Spectre exploits of common architectures. PolarFire
cores are deterministic and coherent with the memory sub-

system, enabling Linux and real-time capable applications to
execute. The SoC implements the RV64GC and RV64IMAC
ISA [65].

The work of [31] uses a Universal Sensor Platform
(USeP) SoC to meet the requirements imposed by IoT,
which features a RISC-V processor and integrates a range
of peripherals with a scalable subsystem as a Three Di-
mensional System-in-Package (3D-SiP). Further, the Sipeed
MAIX-Go development board employed by [66] features a
Kendryte SoC K210, with a dual-core 64-bit RISC-V with
the RV64GC ISA, including an Floating-Point Unit (FPU)
compliant with support to single and double-precision multi-
ply, divide, and square-root operations.
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FIGURE 6. Block diagram of the Ariane core [40].

C. EMULATORS AND SIMULATORS

The open-source QEMU project is a generic machine emu-
lator and virtualizer, providing a virtual model of an entire
machine to run a guest OS. QEMU supports 32- and 64-
bit RISC-V implementation and several different machines,
including Microchip’s PolarFire SoC, SiFive’s HiFive Un-
leashed, and Shakti C platform [67], [68].

The Gem5 is an open-source modular simulator for com-
puter architecture research, including system-level architec-
ture and processor microarchitecture. Gem5 support to RISC-
V privileged ISA specification is still in development [69].

Spike is a RISC-V ISA simulator and implements a func-
tional model of one or more RISC-V hardware threads.
It supports a large set of RISC-V extensions and eases
simulating new instructions by letting the user describe the
functional behavior and add the opcode and opcode masks
[70].

Furthermore, the RISC-V Assembler and Runtime Simu-
lator (RARS) assembles and simulates the execution of the
RISC-V assembly language. RARS is built on top of the
MIPS Assembler and Runtime Simulator (MARS) and ex-
tends the software to enable features such as instructions hot-
load of RISC-V extensions [71]. Similarly, [72] provides a
web-based server-side simulation of a 5-stage pipeline RISC-

V implementation for use in classrooms. The application en-
ables writing simple assembly programs and visualizing data
in registers, memory, and the internal state of the pipeline.

D. DISCUSSION
This section reviewed different RISC-V implementations and
applications to comprehend the RISC-V ecosystem and the
available research towards the open ISA. Given RISC-V’s
open specification, multiple implementations exist and tackle
specific problems for a given field of application, making
RISC-V highly adaptable. Besides the presented RISC-V
cores and SoCs, there are several others not mentioned in this
work that have shown to be production-ready, supporting low
to high-performance computing requirements.

VI. SOFTWARE SUPPORT
The ISA interface encompasses the machine language in-
structions that a computer can run, acting as a boundary
between the hardware and software layer [73], represented
in Figure 13. In RISC-V’s privilege layer, both the user
application and the OS can access the ISA directly, as RISC-
V provides a subset of instruction repertoire per layer.

The Application Binary Interface (ABI) defines a standard
for binary portability across programs by defining the system
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FIGURE 7. Block diagram of the SonicBOOM core [45].

call interfaces to the OS and hardware resources available
in the system through the ISA [73]. This allows binaries
compiled to a specific ABI to run without modifications in
a different system with the same ISA and OS.

RISC-V compiler ABI depends on the RISC-V extensions
present; the ilp32, ilp32f, and ilp32d are all RV32
ABIs which depend on the RISC-V extension. The ilp32
ABI refers to a 32-bit size int, long, and pointer data
type in C-language, while the optional suffix refers to how
floating-point arguments get stored in a register. The ilp32
ABI stores all floating pointers in the integer-type register
file, while ilp32f stores simple floating-point arguments
in the floating-point-type register file. The ilp32d ABI
applies to the 32-bit data type with double floating-point
precision stored in the floating-point-type register file [2].

The following subsections seek to evaluate and review
works that address different types of software architecture to
understand the scope of end-user application and Operating
System (OS) support.

FIGURE 8. Block diagram of the a PULPissimo SoC [53].

FIGURE 9. Block diagram of the a PULPino SoC [37].

A. SOFTWARE ARCHITECTURE
The architecture of software relates to its structure and how
these components are separated, and their interrelationships.
Software engineers seek to structure software to meet current
and future demands, making the system reliable, manageable,
adaptable, cost-effective, and scalable [74].

1) Bare-metal application
Applications running on a bare-metal systems have direct
access to the processor and peripherals. These applications
are not managed by an OS layer, enabling applications that
require runtime guarantees along with constraint hardware to
function as expected.

The work of [75] extends their previous work on COmpiler
Assisted Software Fault Tolerance (COAST) [76], which
seeks to explore Commercial off-the-shelf (COTS) systems
to provide an automated compiler modification, bringing
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FIGURE 10. Block diagram of the a OpenPULP SoC [54].

support to several new processing platforms, such as RISC-V
and Xilinx SoC-based products. The compiler inserts dual- or
triple-modular redundancy during the compilation phase, en-
abling the software to correct errors during runtime. The pro-
posal is attractive for applications requiring tolerance against
Single Event Effect (SEE) and is well-suited for processing
in a high radiation environment. Although the tool provides
both Duplicate With Compare (DWC) and Triple Modular
Redundancy (TMR) mechanisms, the default configuration
uses Variables 3 (VAR3) protection mechanism. Figure 14
illustrates the COAST architecture.

Stahl et al [77] propose a driver development flow to ease
the definition of hardware/software interfaces without a fixed
register layout and reduce the development effort and mem-
ory usage of an Microcontroller Unit (MCU). The proposal
uses a Domain-Specific Language (DSL) to describe the
behavior using features such as bit field arrays and hierarchy
and provides a custom C-like struct definition for grouping
the bit fields of a driver. In addition, the work proposes a
heuristic, code analysis, and generation technique to find
an optimized register layout that exploits its performance
and memory footprint. The proposal uses PULPino General-
purpose Input/Output (GPIO) and Serial Peripheral Interface
(SPI) drivers and has reduced the estimated run time by 52%,
32% reduction of memory accesses, while the driver code
size is reduced by 22%.

Fell et al. [78] explores time side-channel attacks and in-
vestigates the impact of source-code obfuscation techniques
to verify what information leakage is exploitable. The work
proposes two techniques to mitigate timing leakage in obfus-
cated codes: a compiler-based technique named TAD (Time
side-channel Attack Defense), which consists of providing

an extension to the LLVM compiler, removing conditional
branches, and replacing primitive instructions with custom
instructions that manifest non-deterministic executing time
during runtime.

2) Operating systems
Zhang et al. [79] propose an automatic kernel code synthesis
and verification technique framework, which seeks to build
a verifiable OS kernel with a high degree of proof automa-
tion and a low burden of proof. Moreover, the proposed
framework enables a software developer to write the required
specification of the kernel and translates the corresponding
specification to C code. The authors have provided a kernel
named iv6, which combines exokernel architectural aspects
with characteristics of seL4, a mathematically proven and
trustworthy microkernel Šišejković et al. [43]. The kernel
initializes in RISC-V’s M-Mode, runs in a separate address
space from userspace, and uses identity mapping techniques
for the kernel along with additional characteristics.

In addition to the OS architecture, [80] explores the build-
ing blocks of the development cycle of an open-source OS
for the 64-bit little-endian RISC-V architecture, proposing a
custom Linux distribution from Linux From Scratch (LFS)
with independent userspace and a package manager written
in Lua programming language. The proposal seeks to provide
a Linux-based distribution for open source hardware and is
the first OS targetting RISC-V.

Implementations of a RISC-V architecture with hard-
ware/software co-design are also available, such as the work
proposed by [81], which captures possible application-kernel
interaction as an Finite-state Machine (FSM) and integrates
the Real-time Operating System (RTOS) semantics directly
into the processor pipeline. The proposal significantly im-
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FIGURE 11. Block diagram of the a Hero SoC [55].

proves event latencies, interrupt lock times, and memory
footprint at a moderate cost of Field-programmable Gate
Array (FPGA) resources.

Malenko and Baunach [36] employ a microkernel-based
operating system named SmartOS, which seeks to provide
basic functionality in privilege-mode while other functional-
ities run in user-mode. Further, to evaluate the reliability of a
RISC-V-based SoC, [58] compares five algorithms against a
Linux-based OS and a bare-metal implementation.

3) Development Tools
The work of [82], illustrated in Figure 15, proposes a design
method to generate domain-specific many-core architectures
with provided frameworks and automated steps using soft-
ware tools. The solution facilitates engineering and cre-
ates many-core architectures with different configurations,
including core augmentation through instruction extensions
and custom accelerators.

Torres-Snchez et al. [66] evaluate the development envi-
ronment toolchains and debugging process concerning the
Sipeed MAIX Go development board and Tiny YOLO v2
support by deploying a low-power IoT edge application,
achieving good performance and cost characteristics.

Herdt and Drechsler’s [62] proposal provides an automated
formal verification tailored for SystemC-based VP on top of
a RISC-V ISA and significantly improves verification quality
and reducing overall verification effort.

Furthermore, [60] provides a library to run lightweight
and energy-efficient neural networks. Further, the framework
automates deployments on MCUs with and without an FPU.
Finally, [83] proposal enables ISA designers to iteratively re-
fine and evaluate ISA specifications, allowing one to improve

upon each result.

B. OPERATING SYSTEM ARCHITECTURE
With the growing complexity of computer hardware, the
operating system provides an abstraction layer to the user,
acting as an interface between applications and computer
hardware, enabling programmers to develop software with-
out knowing much of the underlying details and executing
software efficiently. The ISA defines the OS capabilities, as
it defines the available machines’ instructions to the applica-
tion. RISC-V has a defined subset of OS support as well as
user and machine instructions [73], [84].

1) Memory Model
The work of [82] uses scratchpad memory to avoid having
to deal with cache coherence issues. Further, all cores and
components in the architecture share the same address space.
The memory module routes memory accesses to the data
cache or another component through the crossbar network.

The SmartOS employed by [36] organizes the memory
with the linker script to structure the Task Control Block
(TCB), Resource Control Blocks (RCB), and Event Control
Blocks (ECB) arrangements and the regions for task stack,
data, and entry function.

The cache controller of NOEL-V supports a store buffer
First In, First Out (FIFO) with one cycle per store and a wide
Advanced High-performance Bus (AHB) data width support
to enable start stores and fast cache refill [19].

Trippel et al. [83] propose a memory verification model to
check for bugs on hardware and software memory models by
providing a tool capable of verifying High-level Language
(HLL), compilers, and ISAs uphold MCM requirements.
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FIGURE 12. Block diagram of the FE3100-G00 SoC [61].
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FIGURE 13. Simplified computer abstraction.

Further, the authors uncovers potential inefficiencies of the
RISC-V ISA specification and identifies possible solutions to
mitigate these inefficiencies.

2) Scheduler support

A processor scheduler assigns processes to be executed by
the processor at a given time, meeting system response time,
throughput, and processor efficiency objectives and allowing

multiple processes to exist concurrently in a multiprogram-
ming system. Furthermore, schedulers can also have real-
time features, where it guarantees that high-priority tasks
execute within a specific time constraint, and is characterized
as a failure if the execution does not meet the conditions.

The work of [85] implements an improved version of a de-
terministic coprocessor task scheduler based on the Earliest-
Deadline First (EDF) algorithm. In addition, the work adds
support for CPUs to run two or four real-time tasks in par-
allel, improving real-time system performance and reducing
resource costs using the Heap Queue sorting architecture for
the Ready Queue implementation. The improved coprocessor
and the task scheduler were described in SystemVerilog and
verified by simulations and a simpler version of the Universal
Verification Methodology (UVM).

Naylor et al. [86] explore the potential of a distributed
soft-processor overlay programmed in software to deliver
good performance for FPGA clusters. The work compares
a Xeon cluster against a 12-FPGA 12,288 RISC-V threads to
demonstrate the use of hardware multithreading to achieve a
fast, space-efficient, and high-throughput overlay. The work
implements a barrel-scheduled multithreaded core that uses a
large subset of the RV32IMF ISA. In addition, the work uses
a FPGA-optimized hyperthreaded RISC-V soft-core named
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FIGURE 14. COAST proposal [75].

FIGURE 15. The realization of the design method including the tools and their
inputs and outputs [82].

Tinsel, implementing a barrel-scheduled multithreaded core
that uses a large subset of the RV32IMF ISA. Tinsel tolerates
inherent latencies of a floating-point operation and off-chip
memory access. Further, it provides a programming environ-
ment through an interface on top of the Tinsel Application
Programming Interface (API), abstracting architectural de-
tails, and handling graph mapping onto the overlay.

Tasks in SmartOS, employed by [36], are preemptive with
unique static priorities defined at compile-time and active
priorities dynamically modified by the resource manager and
used by the scheduler. Further, SmartOS’s kernel uses a TCB
structure for managing tasks.

3) Inter-Process Communication
Processes may need to communicate with one another, re-
quiring the OS to provide a communication mechanism, pre-
venting race conditions and the proper sequence of communi-
cations. If process B requires data from process A, process A
needs to run before process B. The communication should be
well-structured and preferably without using interrupts. The
communication the OS provides is known as IPC [73], [84].

The work of [64] seeks to provide architectural support for
a secure and efficient cross-process. The work, illustrated in
Figure 16, proposes a hardware-assisted OS primitive named
Cross Process Call (XPC), which uses an asynchronous IPC
across different address spaces and enables a direct switch
between IPC caller and callee without trapping into the
kernel. XPC improves throughput using a new address-space
mapping mechanism named relay-seg and provides a
multithreading API with the migration thread model. The
work supports split thread state, per-invocation C-Stack, and
Android’s Ashmem subsystem. The authors assessed perfor-
mance, achieving a 0.3ms latency for 4KB data, with a 1.6x
improvement, mainly from the secure zero-copying message
transfer. XPC is compatible with traditional address-space
isolation and can easily integrate with existing OS kernels.

Further, the work of [87] proposes in-process isolation
based on dynamic memory protection domains. When re-
quired, the work uses a shared memory when sharing data
with different domains, enforcing security with a set of
protection keys and the associated memory, usage rights, and
their allowed entry points by domains.

4) Network Stack
The Sipeed MAIX-I employed by [66] features a highly inte-
grated Espressif ESP8285 SoC with complete self-contained
Wi-Fi networking capabilities. Du et al. [64] use the lwIP
network stack as a network stack server for the microkernel
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FIGURE 16. XPC architecture [64].

and a loopback device driver to pack and send to the network
device server. Further, the proposal of SeRot uses the LKL
network stack to provide network functionalities to the en-
claved application [88].

5) File system support
Few developments have been reported concerning the file
system support in operating systems for RISC-V. In this
context, we can cite the work of [88], whose proposal enables
enclaved applications to access the file system by using the
Linux Kernel Library (LKL) for accessing and managing file
system calls. Further, SeRot implements an ext4 file system
based on LKL.

C. DISCUSSION
With little time in the market, RISC-V’s software ecosystem
includes compilers, state-of-the-art OSs, tools to generate
domain-specific architectures, and development flow to ease
software/hardware interfacing. In addition, the open specifi-
cation of RISC-V has made it possible for one to support and
implement robust software architectures to meet a range of
requirements.

With the increasing demand for computing power, the sim-
plicity of the RISC-V ISA enables OS engineers to support
the architecture and contribute to the RISC-V specification
effortlessly. On the other hand, the growing complexity of
architectures such as x86 ISA makes it difficult for develop-
ers to keep up and contribute to the development of the ISA
specification.

RISC-V’s openness has led to a wide range of RISC-V ap-
plications, including academic and industrial usage, helping
researchers explore the benefits of an open ISA for software
development. Overall, the works presented have shown how
RISC-V can support software and operating systems with

sophisticated IPC, memory models, compiler techniques, and
toolchains.

VII. DEPLOYMENT FEATURES
To further investigate the RISC-V software ecosystem, this
section reviews the works that tackle security, reliability, and
power management characteristics of RISC-V in order to
improve the executing software.

A. SECURITY
Fault injections can be used to measure coverage, latency
parameters, explore error propagation, and analyze how the
system’s workload and fault handling capabilities. Further,
different fault injections models can be used to exploit secu-
rity characteristics of given hardware [89], requiring counter-
measures to avoid and protect such exploits from happening.

Laurent et al. [90] explore fault injection at the microar-
chitectural layer and propose a cross-layer approach. This
approach cojoins software and hardware characteristics to
improve countermeasures with reasonable overhead. The au-
thors have shown faulty behaviors in a RISC-V processor by
analyzing the RTL simulation, the consequences on software,
and architectural aspects concerning security. In the experi-
ments, the authors inject single-bit faults to simulate faulty
behaviors in a LowRISC processor. The simulation results of
fault injection have shown behaviors of forwarding capabili-
ties, speculative execution, and writing in a General-Purpose
Register (GPR) during branch instruction. The authors also
review software fault models and provide alternatives to
bypass the countermeasures set by data- and control-flow
integrity. Further, the work considers fault attacks that affect
control signals in the pipeline and ensures no exception gets
raised by the processor during the analysis of the faulty
behavior.
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Similarly, in another work [41], the same authors explore
how software and hardware characteristics can lead to suc-
cessful attacks. They provide countermeasures against hid-
den registers attacks by exploring the processor’s multiplier
unit and forwarding characteristics, which are invisible from
the software point of view and are entirely dependent on the
processor implementation.

In the context of coverage analysis and fault simulation,
the work by [91] introduces a metric for RISC-V instructions
and registers coverage for binary software to measure if the
instructions are executed, and GPRs, CSRs, and FPRs are
accessed. The work further analyzes and compares three
available RISC-V test suites and combines them to a unified
test suite, reaching 100% GPR coverage.

Hunt et al. [92] argue that hardware enforcement isola-
tion mechanisms have historically been the software system
designers’ basis for a secure system. However, providing
redundant protection for isolation by combining software and
hardware techniques can improve system security. Zhang et
al. [79] provide a kernel isolation method by implementing
a Kernel Page-Table Isolation (KPTI) with a channel for
accessing userspace from the kernel space by a block of a
shared memory region. Further, the framework reduces the
impact of human error during the development phase. Sim-
ilarly, [36] explore memory isolation techniques and imple-
ment a hardware/software co-design approach for memory
isolation by providing two hardware components: Device
Driver Isolation Module (DDIM) and System Call Tracing
Module (SCTM). Authorization of a system call happens
after the decode stage of the pipeline.

Hwang et al. [42] introduce a new hardware-based mon-
itoring platform to ensure kernel integrity from the outside
host system named RiskiM and an interface architecture
named PEMI. In order to overcome the semantic gap issue,
PEMI provides all internal states of the host system to
RiskiM to fulfill its monitoring task and protect the kernel
in the presence of attacks. Furthermore, [43] proposes a
hardware design protection against hardware Trojans inserted
during the production phase through netlist obfuscation pro-
vided by logic locking.

In [56], Fischer et al. exploit hardware misconfigured
access control of Read-Only Memory (ROM) a well as in-
correct implementations of SoC firmware. Further, the work
explores memory overwrites of peripheral regions and has
found no code that implements the Counter (CTR) block
cipher mode.

Auer et al. [31] address three high-level goals identified by
the NISTIR 8228 report to provide a secure architecture on
IoT devices. The work uses a secure-boot mechanism with
a certificate chain to authenticate boot images, and update
verification happens during runtime. Furthermore, [52] pro-
vide a RISC-V system compatible with TEEs and featuring
a security algorithm accelerator. The work features SHA-3
and Ed25519 accelerators and provides a procedure for the
software, composed of a root of trust to authenticate a Linux
bootloader.

Liu et al. [88] propose a secure runtime system named
SeRot, illustrated in Figure 17, which addresses TEE prim-
itives to support unmodified applications. Further, the work
uses LKL to allow external calls to the host machine and
provides API and ABI protection.

FIGURE 17. Architecture of SeRot [88].

In addition, [59] provides a solution for securing the pro-
cessor by implementing a self-authenticated secure boot and
provide Information Flow Tracking (IFT) to detect and stop
memory corruption attacks.

Dessouky et al. [57] provide a testbed of real-world
software-exploitable RTL bugs based on RISC-V SoCs, ex-
ploring TLB, cache, and memory attacks to identify specific
vulnerabilities classes.

Finally, [93] proposes a Runtime Scope Enforcement
(RSE) approach to mitigate all known Data-oriented Pro-
gramming (DOP) attacks efficiently on memory-unsafe
programming languages. The proposed technique enforces
memory safety constraints during compile-time, resulting in
a low-performance overhead.

B. RELIABILITY
With difficulty in ensuring the trustworthiness of the fabrica-
tion process of silicon devices, [94] propose an architectural
protection mechanism, shown in Figure 18, to detect hard-
ware trojans infesting the instruction and data memories of
the system by shielding the communication of the processor
and memory in a microprocessor-based system. The proposal
relies on Bloom Filters (BF), which guarantees no false
alarms and a small configurable percentage of undetected
alarms, resulting in a 99% detection rate of possible hardware
trojans activation.
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FIGURE 18. The protection-based architecture proposed by [94].

Similarly, [95] investigates undocumented instructions on
RISC-V and ARM ISAs and propose two methods to look for
undocumented instructions. Both methods execute a single
instruction in a controlled manner, allowing the processor to
determine if the instruction word is valid by comparing the
results to the processor ISA specification.

Further, [96] seeks to provide an efficient approach to
fault effect analysis and simulation by introducing a vir-
tual prototype-based approach. By considering permanent
and transient faults, single n-bitflips are injected into the
fetched/execute instructions, GPRs and CSRs of a RISC-V
processor model and simulated to analyze the impact during
software execution. In contrast, [58] found that SEUs barely
affect the number of silent data corruption in the presence
of an OS. In addition, the single event functional interrupt
rate increases about 3.6 times compared to the bare-metal
program execution. Similarly, [97] evaluate the reliability
of software applications running on soft microprocessors
against SEUs that affect configuration and microprocessor
memories. The work compares the utilization of hardened-
by-replication software with the baseline software by testing
a set of benchmarks.

Liu et al. [34] propose a domain-specific architecture
design for CNN-based Artificial Intelligence (AI) IoT appli-
cation, among with a heterogeneous processor design and
accelerator for the inference of CNNs. Along the lines of
domain-specific architectures, [82] generate domain-specific
manycore architectures with the provided framework and
automated steps with software tools.

In [93], Nyman et al. extend the ISA with seven new
Storage Region Stack (SRS) management instructions to
provide context-specific enforcement. Further, the authors
modify the instruction decode stage of the processor pipeline
to interpret the new instructions. Similarly, [59] modifies the
execute stage of the processor pipeline to add support to tag
propagation and tag check features.

To introduce a non-intrusive approach to optimize FPU bit-
width for approximate computing, [98] proposes a method-
ology to help designers select the most optimized FPU
configuration that meets a given Quality of Results (QoR)
threshold for a specific application. In addition, [63] presents
AxSWGenfor, an automated quality-driven methodology that
combines different approximate computing techniques to

explore and apply to error-tolerant sections of applications.

C. LOW-POWER
Imianosky et al. [99] evaluate CCSDS 123 Compressor per-
formance and power consumption on RISC-V and ARM
architectures by executing the algorithms in two OS with
RISC-V support: FreeRTOS and Zephyr. The authors con-
cluded that RISC-V uses less power when compared to
the ARM processor, while ARM offers higher performance
and lower energy consumption than RISC-V. The work also
showed FreeRTOS has a lower overhead to the algorithm
execution in comparison to Zephyr when executed on a
RISC-V processor.

The SoC adopted by [31] has low-power characteristics
to a low of 0.4V, enabling designers to perform power-
tradeoffs at runtime by adjusting the back-gate bias voltage.
In contrast, [62] proposes methods of improving verification
quality to aid decisions that significantly impact the power
consumption strategies by validating firmware-based power
management implementations.

The proposal of [100] is well-suited for low-intensity
tasks at low data rates and uses a microcontroller working
at a low operating frequency of 25MHz. Further, the work
presents ultra-low-power comparator circuits, which run on
low frequencies to improve the power overshoot identifica-
tion. Similar, the work of [66] keeps the CPU below 350mW
when running face-detection routines and 35mW with both
cores when the CPU is waiting for interrupts.

The methodology proposed by [63] seeks to minimize
energy consumption and meets the defined threshold for
a given application-level quality metric. Furthermore, the
toolkit proposed by [60] takes multi-layer perceptrons trained
with FANN to generate code for energy-efficient neural net-
works on microcontrollers.

D. DISCUSSION
This section sought to review works that tackled or have sim-
ilarities with security, reliability, and low-power characteris-
tics. The RISC-V’s features enable designers to implement
novel resources to improve the architecture’s security and
reliability. Several works took advantage of the open ISA
in order to analyze its implementation and test the security,
reliability, and power efficiency.

Due to RISC-V’s nature of supporting a variety of envi-
ronments, a set of works have focused on providing TEE
techniques in order to secure processes as well as to run
applications in an environment with low-power requirements.

VIII. CONCLUSION
Despite the novelty of RISC-V, a large variety of works aims
at adapting and using RISC-V architectures to explore the
capabilities of an open ISA. The different implementations of
RISC-V aspire to improve or extend the basic specifications
to satisfy peculiar computing needs. Low-level programming
environments strive for a stable ISA to strongly comply with
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high-level programming environments. RISC-V’s specifica-
tion has primarily fulfilled these environments by providing
engineers and researchers with a reliable frozen ISA base.
The RISC-V’s goal of supporting a broad set of computing
environments has allowed enterprises and academia to tackle
specific software requirements with low cost and flexibility.

This survey demonstrated how RISC-V is prevalent in
works that seek to tackle specific requirements and how
the community can benefit from an open ISA specification.
Furthermore, given RISC-V’s novelty and the rich software
ecosystem, the community has well received and contributed
to adopting RISC-V architectures into a wide range of
systems from small and constrained devices to large-scale
computers.
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