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The recent discovery that the input impedance of digital impedance circuits is dependent on the external source impedance requires

the development of new design procedures to address the significant complexity of this discovery. These circuits are of particular
utility for the implementation of difficult non-Foster impedances such as negative capacitance. Therefore, a new digital impedance
circuit design procedure is presented where stable digital filter coefficients are computed to provide desired digital impedance values
at two chosen frequencies, given that a stable solution exists. The new design procedure explicitly addresses the aforementioned
dependence on the external source impedance for digital impedance circuits with resistive sources. Lastly, simulation results from
a negative capacitance design example are compared to the new theory to confirm the efficacy of the new design procedure.

Index Terms—Digital impedance, mixed-signal circuit stability, non-Foster impedance, source impedance dependence.

The recent discovery that the input impedance of digital
impedance circuits is dependent on the external source impedance
requires the development of new design procedures to address
the significant complexity of this discovery. These circuits are
of particular utility for the implementation of difficult non-
Foster impedances such as negative capacitance. Therefore, a new
digital impedance circuit design procedure is presented where
stable digital filter coefficients are computed to provide desired
digital impedance values at two chosen frequencies, given that
a stable solution exists. The new design procedure explicitly
addresses the aforementioned dependence on the external source
impedance for digital impedance circuits with resistive sources.
Lastly, simulation results from a negative capacitance design
example are compared to the new theory to confirm the efficacy
of the new design procedure.

I. INTRODUCTION

NON-FOSTER circuits such as negative capacitors offer
the potential for increased bandwidth in a variety of

applications such as wideband electrically-small antennas,
wideband artificial magnetic conductors, wideband acoustic
elements, and metamaterials with wideband negative perme-
ability and negative permittivity [1]–[8]. However, the design
of stable analog implementations of non-Foster circuits re-
mains challenging, and motivates the consideration of digital
implementations of non-Foster impedances [9]–[12].

Digital impedance circuits provide a new alternative ap-
proach for the implementation of difficult-to-realize analog
impedances, such as negative capacitance and negative induc-
tance [13]. These digital impedance circuits are comprised
of an ADC (analog-to-digital converter), a digital filter, and
feedback from a DAC (digital-to-analog converter), with the
digital filter determining the input port impedance. This digital
loop has potential advantages associated with digital systems,
such as having digitally-tunable or adaptive circuit parameters
which may offer new stabilization approaches.

More recently, we discovered that the input impedance
of these digital impedance circuits was dependent on the
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impedance of the external source driving the circuit when
earlier simplified circuit design approximations would fail in
certain cases [14]. In particular, the earlier digital impedance
design procedures were often ineffective at high frequencies
above 20 MHz where the ADC and DAC often have low
impdances of 50 ohms. Unfortunately, the analytical result
of the digital input impedance when incorporating the depen-
dence on the external source impedance was quite compli-
cated. Nonetheless, we present a new design procedure which
does incorporate the discovered dependence on the external
source impedance for digital impedance circuits with resistive
sources. This novel design procedure will determine the co-
efficients of the digital filter for a stable digital impedance
circuit with desired digital impedance values at two chosen
frequencies, given that a solution exists. Note that beyond the
present work, the overall design method in and of itself may
be useful in solving other related engineering design problems.

In Section II, we first present the theoretical analysis for a
source-dependent digital impedance theory in a form which
lends itself to the parameterization necessary for the new
design procedure. Section III will present the new design
procedure for selecting digital filter coefficients to obtain a
desired stable digital impedance circuit under the assumption
that a solution exists. In Section IV, simulation results from
a negative capacitance design example are compared with
theoretical results to demonstrate the effectiveness of this new
design procedure.

II. THEORETICAL ANALYSIS

Prior digital impedance design methods used approxima-
tions which were useful for the implementation of a digital
non-Foster RC circuit in [15]. However, the voltage input ADC
used in the microcontroller based system in [15] had very
high input resistance, which is not an acceptable assumption
in many cases of high-speed ADCs (>20 MHz sampling).
Indeed, the earlier approximation-based design procedures
often failed when high-speed 50 Ω ADCs and DACs were
considered in the analysis. This led to the discovery in [14]
that the digital input impedance was dependent on the external
source impedance, and is the motivation for the new design
procedure below.
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To begin, consider the digital impedance circuit of Fig. 1
with a source-dependent digital impedance that is analyzed
using the Fig. 2 block diagram. In Fig. 2, V ?in(s) is the starred
transform of Vin [16], and Vs(s) is the Laplace transform of
the source voltage. The ADC of Fig. 1 is then replaced by the
sampler in Fig. 2, with the sampler output V ?in(s) becoming the
starred transform of the input voltage Vin(s). The DAC output
is formed by passing through the ZOH (zero-order hold) with
the transfer function (1− z−1)/s. The ZOH output in Fig. 2
will also pass through the same time delay e−sτ as in Fig. 1.

The input voltage from Fig. 2 in the Laplace domain with
a general Zs(s) external source impedance is given as [14]:

Vin(s) =

Vs(s)
Zs(s)

+
V ?in(s)e

−sτH(z)(1−z−1)/s
Rio+Rdac

1
Zs(s)

+ 1
Radc

+ 1
Rio+Rdac

∣∣∣∣∣∣
z=esT

=

Vs(s)
Zs(s)

+
V ?in(s)e

−sτH(z)(1−z−1)/s
Rio+Rdac

Zs(s)+Re
Zs(s)Re

∣∣∣∣∣∣
z=esT

, (1)

where T is the sampling period of the ADC and DAC and
Re is the resistance of the parallel combination of Radc with
Rdac + Rio. To find V ?in(s), we take the starred transform of
both sides of (1) as follows:

V ?
in(s) =

(
ReVs(s)

Re + Zs(s)

)?

+
ReV

?
in(s)H(z)(1− z−1)K(z)

Rio +Rdac

∣∣∣∣
z=esT

= Vs(z)L(z) +
ReV

?
in(s)H(z)(1− z−1)K(z)

Rio +Rdac

∣∣∣∣
z=esT

,

(2)

where ([ReVs(s)]/[Re + Zs(s)])
? ≈ Vs(z)L(z) for frequen-

cies below 1/(2T ) of a bandlimited Vs(s) without aliasing,
and L(z) is the z-transform of L(s) = Re/ (Zs(s) +Re).
K(z) is defined as the modified z-transform of:

Fig. 1. Block diagram of a Thevenin-form digital impedance circuit driven
by an external voltage source Vs(s) and an external source impedance Rs.

Fig. 2. Analysis block diagram of a Thevenin-form digital discrete-time
impedance circuit driven by an external voltage source Vs(s) and an external
source resistor Rs with a sampler switch introduced. The ADC acts as a
switch and the voltage after the ADC is the starred transform of the input
voltage.

Zs(s)e
−sτ

s
(
Re + Zs(s)

) . (3)

For resistive sources Zs(s) = Rs, the z-transforms will
become L(z) = Re/ (Rs +Re) and K(z) = Rs(Re +
Rs)

−1(z−1)−1. The input current is also found by the voltage
difference between the source and the input divided by the
source resistance:

Iin(s) =
Vs(s)− Vin(s)

Rs
. (4)

To develop a design procedure for the digital filter co-
efficients in H(z), the extraordinarily complicated equation
for the digital impedance Zin(s) given in [14] is rearranged
below in a more convenient form for determining stable
designs. Using a commercial symbolic solver, the digital input
impedance for resistive sources is found to be:

Zin(s) =
Vin(s)

Iin(s)
=

A(s, z)H(z) +B(s, z)

C(s, z)H(z) +D(s, z)

∣∣∣∣
z=esT

, (5)

where
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III. DESIGN PROCEDURE

We seek to design a digital filter H(z) in Fig. 2 which
will produce a particular desired digital input impedance
Zin(s) = Vin(s)/Iin(s) at two chosen frequencies. In the
design procedure, we choose a pole-zero digital filter model
for H(z) in the following design equations.

To illustrate the method, we consider two deterministic
impedance values at Laplace frequencies s1 and s2 which
will approximate a negative capacitor frequency response at
Zin(s1) and Zin(s2). Typically, Zin(s1) and Zin(s2) will
have a non-zero real and imaginary part to their values. Since
Zin(s1) = Re{Zin(s1)} + jIm{Zin(s1)} and Zin(s2) =
Re{Zin(s2)} + jIm{Zin(s2)}, there are effectively four
known real and imaginary impedance values which can be
used to find a solution in a system of four linear equations to
solve for the digital filter coefficients in H(z).

Therefore, a general pole-zero digital filter model with
four degrees of freedom combined with the four val-
ues Re{Zin(s1)}, Im{Zin(s1)}, Re{Zin(s2)}, Im{Zin(s2)}
yields a linear system of four equations with four unknowns
and a straightforward solution. For the purpose of illustration,
Let

H(z) =
b0z + b1

z2 + a1z + a2
, (7)

then we can solve for a b0, b1, a1, a2 value since we have four
equations with four unknowns. However, such a solution is
not necessarily stable.

Nonetheless, a stable solution may still be found by increas-
ing the degrees of freedom in H(z). To allow flexibility for
choosing the digital filter coefficients of a pole-zero digital
filter model which gives us the desired impedance values for
Zin(s1) and Zin(s2) with a stable solution, we introduce an
underdetermined system of equations for which we dictate
H(z) to take the form

H(z) =
b0z

2 + b1z + b2
z2 + a1z + a2

, (8)

such that there are fewer equations than unknowns resulting
in an infinite amount of solutions for b0, b1, b2, a1, a2.

The important question we now address is how to ef-
ficiently search the 5-dimensional parameter space for a
b0, b1, b2, a1, a2 which will produce a stable solution if one
exists. To begin, we derive the system of four linear equations
which solves for b0, b1, b2, a1, a2 by substituting (8) into (5)
and then rearranging the equations to get:

Re((C(s1, z)Zin(s1)−A(s1, z))z
2)b0

+Re((C(s1, z)Zin(s1)−A(s1, z))z)b1

+Re(C(s1, z)Zin(s1)−A(s1, z))b2

−Re((B(s1, z)−D(s1, z)Zin(s1))z)a1

−Re(B(s1, z)−D(s1, z)Zin(s1))a2

= Re((B(s1, z)−D(s1, z)Zin(s1))z2)
∣∣
z=es1T

Im((C(s1, z)Zin(s1)−A(s1, z))z
2)b0

+ Im((C(s1, z)Zin(s1)−A(s1, z))z)b1

+ Im(C(s1, z)Zin(s1)−A(s1, z))b2

− Im((B(s1, z)−D(s1, z)Zin(s1))z)a1

− Im(B(s1, z)−D(s1, z)Zin(s1))a2

= Im((B(s1, z)−D(s1, z)Zin(s1))z2)
∣∣
z=es1T
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+Re((C(s2, z)Zin(s2)−A(s2, z))z)b1

+Re(C(s2, z)Zin(s2)−A(s2, z))b2

−Re((B(s2, z)−D(s2, z)Zin(s2))z)a1

−Re(B(s2, z)−D(s2, z)Zin(s2))a2

= Re((B(s2, z)−D(s2, z)Zin(s2))z2)
∣∣
z=es2T

Im((C(s2, z)Zin(s2)−A(s2, z))z
2)b0

+ Im((C(s2, z)Zin(s2)−A(s2, z))z)b1

+ Im(C(s2, z)Zin(s2)−A(s2, z))b2

− Im((B(s2, z)−D(s2, z)Zin(s2))z)a1
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∣∣
z=es2T

. (9)
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Fig. 3. Flowchart of a proposed search-based design procedure for digital
impedance circuits with an external resistive source impedance to determine
a stable solution if one exists with the constraint of two desired impedances
Zin(s1) and Zin(s2) at the frequencies s1 and s2.

This system of four linear equations will allow us to choose
a free variable from b0, b1, b2, a1, a2. A valid choice which
allows us to gain the flexibility of choosing digital filter
coefficients for a stable solution is to set b2 as the free variable
and to write the parameters b0, b1, a1, a2 in the linear system
of equations in terms of b2. The motivation for choosing b2
to become our free variable is as follows. Along the lines of
the the stability analysis in [15] for resistive sources, if the
Fig. 2 Thevenin source Vs(s) in series with Rs is analyzed as
a Norton source Is(s) = Vs(s)/Rs in parallel with Rs, then

Vin(s)

Re2
= Is(s) +

V ?in(s)H(z)e−sτ

Rio +Rdac

(1− z−1)

s
, f (10)

where 1/Re2 = 1/Rs + 1/(Rdac + Rio) + 1/Radc. Next, by
taking the starred transform of both sides where I?s (s) ≈ Is(s)
for frequencies below 1/(2T ) of a bandlimited Is(s) without
aliasing and then taking the z-transform of the entire equation,
we are left with

Vin(z)

Re2
= Is(z) +

Vin(z)H(z)z−1

Rio +Rdac
, (11)

and the transfer function

G(z) =
Vin(z)

Is(z)
=

Re2
1−Re2H(z)z−1/(Rio +Rdac)

. (12)

From the denominator of (12), the poles of the system
depicted in Fig. 2 must satisfy

z =
Re2

Rio +Rdac
H(z) = ρH(z), (13)

where ρ = Re2/(Rio+Rdac), and the poles must be inside the
unit circle for stability [16]. Now, Substituting (8) into (13) and
rearranging the terms gives the following constraint equation
for a stable system:

z3 + (a1 − ρb0)z2 + (a2 − ρb1)z − ρb2 = 0

or (z − zp1)(z − zp2)(z − zp3) = 0 . (14)

For a stable solution to exist when considering resistive
sources, the free variable parameter b2 must be in the set of real
numbers between −1/ρ and 1/ρ. This is because the constant
term of our polynomial in (14) which is −ρb2 is also equal
to the negative of the product of all the poles of our system,
such that −ρb2 = −zp1zp2zp3. Thus, for a stable solution to
exist, the magnitude of the product of all the poles must be
less than 1 such that

|zp1zp2zp3| = |ρb2| < 1 . (15)

Note, there may also be many unstable solutions in the set
of real numbers between b2 = −1/ρ and b2 = 1/ρ in (15),
but if a stable solution exists, then it must meet the criteria of
−1/ρ < b2 < 1/ρ and we can completely disregard searching
over the range b2 ≥ |1/ρ| for a stable solution. Therefore, our
method proposes a search from b2 = −1/ρ to b2 = 1/ρ with
a desired numerical precision to determine a stable solution. If
a stable solution exists within the desired numerical precision,
then a valid b2 will be found and then the calculations for
the parameters b0, b1, a1, a2 follows from the linear system of
equations. If no stable solution is found, either the numerical
precision needs to be adjusted when searching b2 values over
the valid range between b2 = −1/ρ and b2 = 1/ρ or a stable
solution doesn’t exist for the system altogether.

The computational complexity of the search space for this
proposed design algorithm will be O(n) where n is the length
of b2 values to search over. The flowchart for this proposed
design algorithm is shown in Fig. 3. This proposed design al-
gorithm has a significantly reduced search space (|b2| ≤ |1/ρ|
rather than |b2| <∞) and reduced dimensionality (search over
one parameter rather than five) from a naive brute force search
method over an unconstrained search range for each parameter
b0, b1, b2, a1, a2.

IV. RESULTS

An example design for a negative capacitance is used to
demonstrate the effectiveness of the proposed algorithm. We
use scaled parameters for higher operational frequencies from
the measured data in Fig. 6 from [14] which includes Radc =
4700, Rdac = 1, Rio = 1000, with faster sample time T =
1.25 ns, and correspondingly shorter latency τ = 1.25 ns.
Using our new proposed algorithm for a source resistance of
Rs = 50 Ω with Zin(s1) = −163+j799 at f1 = 30 MHz and
Zin(s2) = −221 + j572 at f2 = 40 MHz, we found a stable
solution with digital filter parameters b0 = 13.62, b1 = 12.57,
b2 = −21.04, a1 = 2.11, a2 = 2.05 or

H(z) =
13.62z2 + 12.57z − 21.04

z2 + 2.11z + 2.05
, (16)

The design was simulated in the Simulink commercial
simulator as shown in Fig. 4, and plotted as the solid curves
of Fig. 5, along with circles showing the theoretical Zin(s)
from (5). The theoretical poles for this example were stable
with zp1 = 0.9957, zp2 = 0.9957, and zp3 = 0.9995. The
time-domain simulation confirmed the stability and converged
appropriately. The simulated values of Zin(s1) and Zin(s2)
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Fig. 4. An example simulink simulation schematic for H(z) = 13.62z2+12.57z−21.04
z2+2.11z+2.05

, with Rs, Radc, Rdac, and Rio shown. Sample time is T = 1.25 ns,
and latency is τ = 1.25 ns.

were −153 + j806 and −213 + j588 compared to the theo-
retical values of −163 + j799 and −221 + j572 respectively.
Therefore, both the real and imaginary parts of the simulated
values of Zin(s1) and Zin(s2) are very close to matching
their theoretical values even on the steepest part of the slope
in Fig. 5. We also note that the new design procedure is
based on a general source impedance Zs(s) as seen in (1)
– (3), and that the well-controlled resistive source resistance
Rs was chosen for a straightforward exposition of the new
design procedure. In addition, the digital implementation of
H(z) offers the potential for adaptive control of time-varying
source impedances that may occur in mobile antennas. Fur-
thermore, applications such as the non-Foster improvement of
electrically-small antenna impedance bandwidths from 1% to
5% would suggest choosing design frequencies closer together
than the approximate 29% bandwidth of s1 and s2 in the
example above. Lastly, the maximum frequency in Fig. 5 for
the digital impedance circuit is the Nyquist limit of half the
ADC and DAC clock frequency 0.5/T = 400 MHz.

V. CONCLUSION

In conclusion, this paper demonstrates a new algorithm for
the design of digital impedance circuits which can effectively
produce a stable solution, with excellent impedance accuracy
at the two design frequencies for a resistive source impedance.
The generalization of the Non-Foster digital impedance theo-
retical analysis opens up new approaches for effective design
methods of stable digital impedance circuits. Furthermore, the
approach taken in the overall design method in and of itself
may be useful in solving other related engineering design
problems.
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