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Emerging evidence indicates that circRNA can regulate various diseases. However, the
mechanisms of circRNA in these diseases have not been fully understood. Therefore,
detecting potential circRNA–disease associations has far-reaching significance for
pathological development and treatment of these diseases. In recent years, deep
learning models are used in association analysis of circRNA–disease, but a lack of
circRNA–disease association data limits further improvement. Therefore, there is an
urgent need to mine more semantic information from data. In this paper, we propose
a novel method called Semantic Association Analysis by Embedding and Deep learning
(SAAED), which consists of two parts, a neural network embedding model called Entity
Relation Network (ERN) and a Pseudo-Siamese network (PSN) for analysis. ERN can fuse
multiple sources of data and express the information with low-dimensional embedding
vectors. PSN can extract the feature between circRNA and disease for the association
analysis. CircRNA–disease, circRNA–miRNA, disease–gene, disease–miRNA,
disease–lncRNA, and disease–drug association information are used in this paper.
More association data can be introduced for analysis without restriction. Based on the
CircR2Disease benchmark dataset for evaluation, a fivefold cross-validation experiment
showed an AUC of 98.92%, an accuracy of 95.39%, and a sensitivity of 93.06%.
Compared with other state-of-the-art models, SAAED achieves the best overall
performance. SAAED can expand the expression of the biological related information
and is an efficient method for predicting potential circRNA–disease association.
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1 INTRODUCTION

CircRNA is a non-coding RNA formed by reverse splicing (Nigro et al., 1991; Danan et al., 2012;
Salzman et al., 2013) and performs multiple functions in the nucleus, cytoplasm, and extracellular
matrix (Li et al., 2018). In the nucleus, circRNA can regulate the splicing of their linear mRNA
counterpart (Ashwal-Fluss et al., 2014; Zhang et al., 2014; Kelly et al., 2015) and control the
transcription of parental genes (Li et al., 2015). In the cytoplasm, as miRNA sponges (Hansen et al.,
2013) and ceRNAs (Salmena et al., 2011), circRNAs competitively bind with miRNA, which can
interact with target mRNAs to induce mRNA degradation and translational repression (Fabian and
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Sonenberg, 2012). Moreover, it plays a regulatory role through
binding proteins (Memczak et al., 2013), and can be translated
(Chen and Sarnow, 1995; Conn et al., 2015; Wang and Wang,
2015). In vitro, circRNA can serve as an ideal biomarker, because
it is more stable compared to other linear non-coding RNA
molecules (Zhang and Xin, 2018; Shang et al., 2019; Slack and
Chinnaiyan, 2019).

As described above, circRNA engages in a large number of
biological processes and is associated with various diseases. It has
been found that N6-methyladenosine-modified CircRNA-SORE,
sequestering miR-103a-2-5p and miR-660-3p by acting as a
microRNA sponge, sustains sorafenib resistance in
hepatocellular carcinoma by regulating β-catenin signaling (Xu
et al., 2020). In addition, it has been proved that circMRPS35
governs histone modification in anticancer treatment and
advocates for triggering the circMRPS35/KAT7/FOXO1/3a
pathway to combat gastric cancer (Jie et al., 2020).

So, analyzing the relationship between circRNA and disease
can help understand the disease mechanism, treatments, and
diagnoses (Ghosal et al., 2013; Liu et al., 2019a). However,
traditional experiments are time-consuming and a lack of
circRNA–disease association data limits further improvement.
In recent years, various models are developed for association
analysis. These models could be divided into three categories. The
first model category involves the use of Gaussian Interaction
Profile (GIP) or JACCARD index to calculate the similarity
between circRNA and between diseases, and then the
application of different models to extract features from the
similarity matrix for further analysis, such as the KATZ
measure (Fan et al., 2018a), path weighting methods (Lei
et al., 2018), and k-nearest neighbor method with decreasing
weight (Yan et al., 2018).

The second category is based on machine learning and deep
learning. Wang et al. (2020a) propose an efficient computational
method based on multi-source information combined with deep
convolutional neural network (CNN) to predict circRNA–disease
associations. The method extracts the hidden deep feature
through the CNN and finally sends them to learning machine
classifier for prediction. GCNCDA (Wang et al., 2020b) is based
on the Fast learning with Graph Convolutional Networks
(FastGCN) algorithm to predict the potential disease-
associated circRNA. Specifically, the method first forms the
unified descriptor by fusing disease semantic similarity
information, disease, and circRNA GIP kernel similarity
information. They use traditional methods to deal with
association, which is difficult to integrate more knowledge.

The third category is based on embedding. In deep learning,
the vector transformed by the embedding model is called
embedding vector (Mikolov et al., 2013a). Recently, large-scale
pre-trained models are the most popular embedding models.
They can effectively introduce large amount of information into
the embedding vectors with self-supervised learning and
unlabeled data. Word2Vec (Mikolov et al., 2013b) and BERT
(Jacob et al., 2019) are famous embedding models in natural
language processing to calculate the embedding vector. Bordes
et al. (2011) propose a structured distributed embedding method
to learn the entities relations in Knowledge Bases. The embedding

space allows to estimate the probability density of any relation
between entities, preserves the knowledge of the original data, and
presents the interesting ability of generalizing to new reasonable
relations. In the field of bioinformatics, codon-based encoding
(Zhang et al., 2019) and rna2vec (Xiao et al., 2018) are two
embedding models transforming the codon and nucleobase into
embedding vector. However, nucleobase and codon are heavily
recurring in RNA sequences and require complex models to
extract their semantics information. Xiao et al. (2021) propose an
embedding model to calculate the embedding vector of circRNA
and disease, but it cannot fuse more new association information
into the embedding vector, and does not use large-scale learning
methods such as deep learning.

Therefore, we proposed a novel neural network embedding
model called Entity Relation Network (ERN) to calculate the
embedding vector of diseases and circRNA. The model
introduces various entity association information,
i.e., circRNA–miRNA, circRNA–disease, disease–gene,
disease–lncRNA, disease–drug, and disease–miRNA
association, so the embedding vector contains more
information than the previous model for extraction and
analysis. Compared with traditional embedding vector, ERN
can generate a fixed low-dimensional embedding vector, which
is learnable and can reduce computational complexity. This
means similar circRNAs or diseases will approach each other
in the embedding space during the training process, hence
making the model easier to converge and analyze the
associations. By using the embedding vectors calculated by
ERN, we have made significant progress in circRNA–disease
association analysis.

2 MATERIALS AND METHODS

2.1 Dataset of circRNA Association
In this study, we implement the model on the CircR2Disease (Fan
et al., 2018b) and Circbank (Liu et al., 2019b) to calculate the
embedding of the circRNA. CircR2Disease database supplies
experimentally varied circRNA–disease associations, which can
be freely obtained from http://bioinfo.snnu.edu.cn/
CircR2Disease/. Currently, CircR2Disease has collected 725
associations between 661 circRNAs and 100 diseases from
existing literatures. CircR2Disease is the benchmark dataset for
evaluation of the circRNA–disease association analysis. Circbank
is a comprehensive database of human circRNA with 16,844,375
circRNA–miRNA predicted associations between 1,917 miRNAs
and 140,790 circRNAs, which can be freely obtained from http://
www.circBANK.cn.

2.2 Dataset of Disease Association
We integrate DisGeNET (Piñero et al., 2016), HMDD (Huang
et al., 2019), LncRNADisease (Bao et al., 2019), and Comparative
Toxicogenomics Database (CTD) (Davis et al., 2021) for the
calculation of the embedding of disease. DisGeNET is a dataset of
disease–gene association, which can be freely obtained from
https://www.disgenet.org/. It contains 1,134,942 gene-disease
associations, between 21,671 genes and 30,170 diseases.
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HMDD is a dataset of disease–miRNA with 35,547
miRNA–disease associations between 1,206 miRNAs and 893
diseases, which can be freely obtained from https://www.cuilab.
cn/hmdd. LncRNADisease is a dataset with 20,595
LncRNA–disease associations and 1,004 circRNA–disease
associations from 19,166 lncRNAs, 823 circRNAs, and 529
diseases, which can be freely obtained from http://www.
rnanut.net/lncrnadisease/. CTD is a dataset with 224,627
disease–drug associations from 10,152 drugs and 3,278
diseases, which can be freely obtained from http://ctdbase.org/.

Table1 shows the number of different types of associations in
SAAED. We use two adjacency matrices to represent the
associations between circRNA, disease, and other biological
entities, respectively. When the specific circRNA or disease
and specific entity is associated, the element is assigned a
value of 1, otherwise 0.

2.3 Method Overview
SAAED consists of two parts, which is shown in Figure 1. The
first part is the ERN for embedding circRNA and diseases. The
second one is the Pseudo-Siamese network (Koch et al., 2015),
which is used to analyze the probability of association between
circRNA and diseases. More specifically, the input to SAAED is
entity association information, which can be represented by an
adjacency matrix. The size of the adjacency matrix is arbitrary.
Therefore, the model can easily introduce information about
semantic entities.

2.4 Embedding and Entity Relation Network
The similarity between circRNA or diseases can be analyzed
through their structure or function. Structure refers to sequence
information or spatial structure of the circRNA and disease.
Function refers to the interaction between circRNA, disease,
and other biological entities. Researchers often use one-hot
encoding vector to convert these information into embedding
vectors and analyze them by various models (Fan et al., 2018a; Lei
et al., 2018; Yan et al., 2018; Wang et al., 2020a; Wang et al.,
2020b), but one-hot encoding increases the computational
complexity as the information used increases. In addition, the
matrix of the one-hot encoding is sparse, and the computational
efficiency is low. Hence, we try to construct a deep learning model
called Entity Relation Network (ERN) to learn a fixed-length
continuous embedding vector from the associated information.

In ERN, we construct the embedding model to transform a
large amount of association information, such as
circRNA–disease, circRNA–miRNA, disease–gene,
disease–miRNA, disease–lncRNA, and disease–drug
associations, into embedding vectors so that the model can
analyze heterogeneous information simultaneously. In terms of
solving biological association problems, embedding of ERN has
the following advantages:

1) Embedding vector has strong expression ability. Fixed
length embedding vector learned by ERN is used to
introduce semantic knowledge without increasing
computational complexity, so as to solve the flexibility of
semantic expansion.

2) Embedding expression is more accurate. ERN translates the
0,1 matrix into a fixed length embedding vector by neural
network learning algorithm, and optimizes the correlation
degree by automatic learning, which is more accurate than the
Euclidean distance correlation measure of GIP.

ERN adopts a probabilistic feedforward neural network
language model (Bengio et al., 2003; Koch et al., 2015) to
extract information from association data and further
transforms it into an embedding vector. The association data
between entity A and entity B can be represented by a adjacency
matrix M, where I represents the number of entity A, and J
represents the number of entity B. When entity A(i) is associated
with entity B(j), the element M(A(i), B(j)) of matrix M is assigned
the value of 1. Otherwise, it has a value of 0.

M(A(i), B(j)){ 1, ifA(i) is associatedwith B(j)
0, otherwise

(1)

The adjacency matrix is used to represent entity association
information. ERN projects the adjacency matrix onto the
embedding vector, which consists of an input layer, a
projection layer, a feedforward neural network, and an output
layer. The flowchart of ERN is shown in Figure 2.

We define the vector V(A(i)) to represent all associated entities
of A(i), which is the ith row of the adjacency matrix M. ERN can
be trained to predict probability of each associated entity related
to A(i), and the feedforward neural network is used to analyze the
embedding vector and output the probability.

Vembi � Vone−hotipWemb (2)
Pi � Fn(Vembi) (3)

Where Vone−hoti is the one-hot encoding vector of the entity A(i),
Wemb is the projectionmatrix, Fn is a feedforward neural network,
and Pi is the predicted probability vector of A(i), and Vembi is the
embedding vector of entity A(i).

The ERN training uses one-hot encoding vector and adjacency
matrix as the input and probability of association as the output.
Taking the adjacency matrix as the learning goal, the ERN uses
the linear transformation to generate the embedding vector by
deep leaning algorithm.

The loss function of ERN is the mean square error,

Loss � ∑I
i�1
∑J
j�1
(Pij − V(A(i))j)2 (4)

where Pij is the jth element of Pi, which is the probability that A(i)
is associated with B(j); V(A(i))j is the jth element of V(A(i)),
which indicates whether A(i) is associated with entity B(j).

GIP is the most commonly used encoding method in the past.
Compared with GIP, ERN has three advantages. Firstly, ERN
can introduce any amount of external information into the
embedding vectors. Secondly, the size of the embedding
vector is fixed regardless of the number of entities and
information introduced, keeping the complexity of the
model constant. Thirdly, by reducing the loss function
during training, the representation of features is enhanced,
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TABLE 1 | The number of different types of associations in SAAED.

Dataset Association Amount of relation Amount of Entity 1 Amount of Entity 2

CircR2Disease CircRNA–Disease 725 661 100
Circbank CircRNA–miRNA 16,844,375 140,790 1,917
DisGeNET Disease–Gene 1,134,942 30,170 21,671
HMDD Disease–miRNA 35,547 893 1,206
LncRNADisease Disease–LncRNA 20,595 529 19,166
CTD Disease–Drug 224,627 3,278 11,152

Total — 18,260,811 — —

FIGURE 1 | SAAED flowchart. (A) An outline of flowchart of data curation. (i) The association information is extracted from data sources. (ii) Data preprocess deal
with data cleaning, redundancy removal, and unifying the names of circRNA and diseases from different datasets. (iii) The association information, i.e., represented by the
adjacency matrix. (B) The Entity Relation Network (ERN) calculates the embedding vectors. (C) The Pseudo-Siamese Network calculates the probability of association
with the embedding vector of circRNA and disease.
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especially for two entities with high similarity, and their
embedding vectors will be closer in the embedding space. It
should be noted that in the training of ERN, we should overfit
the model so that the embedding vector calculated by ERN can
accurately reflect the relationship, i.e., the distance between
different entities.

The use of embedding vectors with significant features makes
the Pseudo-Siamese network easier to converge and analyze, so
the overall model achieves better performance than previous
models.

2.5 Calculation of the Disease Embedding
Vector
Based on the disease–gene, disease–miRNA, disease–lncRNA,
and disease–drug association data, the disease related
adjacency matrix D is constructed:

D(d(i), e(j)) � { 1, if diseased(i) is associatedwith relevant entity e(j)
0, otherwise

(5)
V(d(i)) is the ith row of the adjacency matrix D, which reflects
the associated genes of disease d(i).

The input of the model is the one-hot encoding vector of
disease d(i).The details of the model are as follows:

VDembi � VDone−hotipWDemb (6)
PDi � Sigmoid(Sigmoid(ReLU(VDembi)pW1)pW2) (7)

Loss � ∑I
i�1
∑J
j�1
(PD i − V(d(i)))2 (8)

Where VDone−hoti is the one-hot encoding vector of disease d(i),
WDemb is the projection matrix, VDembi is the embedding vector
of disease d(i),W1 andW2 are the weights of feedforward neural

network, and PD i is the predicted probability indicating which
gene may be associated with the diseased(i).

2.6 Calculation of circRNA Embedding
Vector
Based on the circRNA–disease and circRNA–miRNA association
data, the circRNA-related adjacency matrix C is constructed, and
the embedding vector of circRNA is calculated.

C(c(i), e(j)) � { 1, if circRNAc(i) is associatedwith relevant entity e(j)
0, otherwise

(9)
Related diseases of circRNAi � V(c(i)) (10)

VCembi � VCone−hotipWCemb (11)
PCi � Sigmoid(Sigmoid(ReLU(VCembi)pW1′)pW2′) (12)

Loss � ∑I
i�1
∑J
j�1
(PCi − V(c(i)))2 (13)

WhereVCone−hoti is the one-hot encoding vector of circRNA c(i),
WCemb is the projection matrix, VCembi is the embedding vector
of circRNA c(i), W1′ and W2′ are the weights of the model, and
PCi is the predicted probability indicating which disease may be
associated with circRNA c(i).

2.7 Information Fusion and
circRNA–Disease Association Analysis
We used circRNA–disease association data from
CircR2Disease as positive samples and randomly selected
the same number of associations as negative samples.
Although unconfirmed circRNA–disease associations may
be regarded as negative samples, the probability is
significantly lower.

FIGURE 2 | The flowchart of the Entity Relation Network (ERN). Vone−hoti is the one-hot encoding vector of the entity A(i), Wemb is the projection matrix, Fn is a
feedforward neural network, and Pi is the predicted probability vector of A(i), and Vemb is embedding vector of entity A(i). One-hot encoding vector Vone−hoti selects the
specific column of parameter matrixWemb as the embedding vector Vemb of entity i, which is used for predicting the related entities. After training the embedding vector,
i.e., the parameter matrix is learned.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8322445

Liu et al. circRNA–Disease Association Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The Pseudo-Siamese network is adopted to fuse
information from circRNA and diseases to infer their
relationship. The flowchart is shown in Figure 3. The
embedding vectors of circRNA and disease are calculated
based on different information. The Pseudo-Siamese network
can learn two different transformations to project the
embedding vectors of circRNA and diseases from the
original semantic space into a new semantic space for
analysis.

The Pseudo-Siamese network has two inputs. After feature
extraction, the features are concatenated and analyzed by
feedforward neural network to output the probability of
association. VDemb and VCemb are the embedding vectors
calculated by ERN. Two different feedforward neural networks
as the extractors extract feature vectors from these two inputs,
respectively:

u � Extractor1(VDemb) (14)
v � Extractor2(VCemb) (15)

Where u and v are the feature vectors transformed from the
embedding vectors of circRNA and disease. The difference and
element-wise product of u and v are calculated to enhance the
inference of local information, and then concatenated with u and
v. Finally, another feedforward neural network is used to calculate
the probability.

P � Sigmoid(Fn([u; v; u − v; u ⊙ v])) (16)
Where P is the predicted probability, Fn is the feedforward neural
network. The Sigmoid function is used to limit the predicted
probability to a range from 0 to 1.

2.8 General Entity Embedding
After training the ERN and obtaining the embedding vector, the
embedding vector can be used as the input to the feedforward
neural network in ERN,

Pi � Fn(Vembi) (17)
If we derive the inverse function of Fn and use V(A(i)) as an

input to F−1
n , we have

Vembi � F−1
n (V(A(i))) (18)

Where F−1
n is the inverse function of Fn.

Since it is difficult to derive the inverse function, a new
feedforward neural network can be used to fit the inverse
function F−1

n with V(A(i)) and Vembi

Vembi � Fm(V(A(i))) (19)
Where Fm is a feedforward neural network.

The above function indicates that the embedding vector can be
calculated directly by using the association information,
regardless of whether the disease is in CircR2Disease or not.
Thus, the scope of circRNA–disease association analysis is greatly
expanded. Fm can be regarded as an embedding function learned
by ERN from association information. Unlike GIP or other
formulas, Fm can be adjusted based on the data, so as to
introduce more information into the embedding vector and
improve the quality of the embedding vector.

3 RESULTS

3.1 Performance Metrics
To evaluate the performance of SAAED, we used the fivefold
cross-validation to divide the data into training sets and testing
sets in the ratio of 4:1, i.e., 1,000 data are used for training and 250
data are used for testing. The fivefold cross-validation can make
full use of the data to train and test the generalization capability of
the model, and avoid the adverse effects of unreasonable division
of the training and testing sets on model evaluation. The model is
evaluated by accuracy (Accu.), sensitivity (Sen.), precision (Prec.),
F1 score (F1), and AUC. They are defined as:

Accu. � TP + TN

TP + TN + FP + FN
(20)

Sen. � TP

TP + FN
(21)

Prec. � TP

TP + FP
(22)

F1 � 2TP
2TP + FP + FN

(23)

FIGURE 3 | Flowchart of Pseudo-Siamese network. Two feedforward
neural networks are used as the extractor to extract features u and v from the
embedding vector VDemb and VCemb. The difference and element-wise
product of u and v are concatenated with u and v for analyzing
association by a Feedforward neural network.
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where TP, FP, TN, and FN represent the number of true positive,
false positive, true negative, and false negative, respectively. TP is the
number of positive (given circRNA is related with given disease)
correctly classified by the model; FP is the number of negative (given
circRNA is not relatedwith given disease)misclassification; TN is the
number of negative (unrelated) correctly classified by the model; FN
is the number of positive that is wrongly labeled.

3.2 Model Performance Evaluation
SAAED is implemented on the circR2Disease dataset to evaluate
its ability to predict potential circRNA–disease associations. The
results of fivefold CV are summarized in Table 2.

According to statistical indicators, the average accuracy of the
model is 95.39%, the average sensitivity is 93.06%, the average
precision is 98.34%, the average F1 score is 95.63%, and the AUC
is 0.9892, with all standard deviations less than 2. This indicated
that SAAED achieved excellent robustness in the CircR2Disease

dataset and is able to effectively predict circRNA–disease
associations.

In addition, we also plotted the ROC curves generated by the
model. As shown in Figure 4, the ROC curves can reach the
upper left corner of the graph.

We made a comparison of KATZHCDA (Liu et al., 2019a),
PWCDA (Ghosal et al., 2013), DWNN-RLS (Fan et al., 2018a), and
GCNCDA (Yan et al., 2018). The results are shown in Table 3.
According to the fivefold CV AUC scores, SAAED obtained the
highest AUC.

3.3 Cases Studies of the Association
Between circRNA and Breast Cancer/HCC
In order to evaluate the practical value of SAAED, we choose the
model with highest AUC to make predictions for circRNA
associated with breast cancer and HCC, two diseases for which
sufficient data are available in the CircR2Disease dataset to avoid
model bias due to a lack of data as much as possible. We used the
embedding vector of circRNA, breast cancer, and HCC as inputs
to the model, and the predicted probability can reflect the
relationship between the specified circRNA and disease.

As shown in Table 4, 16 of the 20 data with the highest
predicted probabilities are confirmed to be associated with breast

TABLE 2 | Result of fivefold CV generated by SAAED on the CircR2Disease Dataset.

Test set Accu.(%) Sen.(%) Prec.(%) F1(%) AUC(%)

1 95.59 93.33 99.41 96.28 99.08
2 94.08 92.57 95.86 94.19 98.47
3 95.56 93.26 98.22 95.68 99.26
4 96.15 93.82 98.82 96.25 98.36
5 95.56 92.31 99.41 95.73 99.44
Average 95.39 ± 0.77 93.06 ± 0.61 98.34 ± 1.47 95.63 ± 0.85 98.92 ± 0.48

FIGURE 4 | ROC curves of fivefold CV obtained by SAAED on the CircR2Disease Dataset.

TABLE 3 | The fivefold CV AUC scores generated by various models on the same
benchmark dataset CircR2Disease.

Methods SAAED GCNCDA DWNN-RLS PWCDA KATZHCDA

AUC(%) 98.92 90.90 88.54 89.00 79.36
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cancer, and according to the literature, 6 prediction results
(hsa_circ_0000615, CDR1as, ciRS-7, cZNF609, hsa_circ_0007386,
and circSMARCA5) are newly identified by the model.

As shown in Table 5, 13 of the 20 data with the highest
predicted probabilities are confirmed to be associated, and
according to the literature, 4 of the associated circRNA

TABLE 4 | The top 20 breast cancer-related candidate circRNA.

Rank circRNA Evidence (PMID) Rank circRNA Evidence (PMID)

1 hsa_circ_0000615 32398664 11 hsa_circ_0001445 Unconfirmed
2 CDR1as 31245927 12 circSMARCA5 32838810
3 iRS-7 30072582 13 hsa_circ_0001785 CircR2Disease
4 cZNF609 32398664 14 hsa_circ_0011946 CircR2Disease
5 hsa_circ_0007386 32808350 15 hsa_circ_0008717 CircR2Disease
6 circHIPK3 CircR2Disease 16 hsa_circ_0000732 CircR2Disease
7 hsa_circ_0000284 CircR2Disease 17 circRNA-001283 CircR2Disease
8 mmu_circ_0001878 Unconfirmed 18 hsa_circ_0001721 CircR2Disease
9 hsa_circ_0067934 Unconfirmed 19 circABCB10 CircR2Disease
10 hsa_circ_0004712 Unconfirmed 20 hsa_circ_0086241 CircR2Disease

TABLE 5 | The top 20 hepatocellular carcinoma-related candidate circRNA.

Rank circRNA Evidence (PMID) Rank circRNA Evidence (PMID)

1 hsa_circ_0000615 32398664 11 hsa_circ_0001819 Unconfirmed
2 CDR1as CircR2Disease 12 hsa_circRNA_000598 Unconfirmed
3 ciRS-7 CircR2Disease 13 hsa_circ_0000520 27258521
4 cZNF609 32398664 14 hsa_circ_0004018 CircR2Disease
5 hsa_circ_0007386 Unconfirmed 15 hsa_circ_0005986 CircR2Disease
6 circHIPK3 CircR2Disease 16 circRNA_000839 CircR2Disease
7 hsa_circ_0000284 CircR2Disease 17 hsa_circ_0056731 Unconfirmed
8 mmu_circ_0001878 Unconfirmed 18 hsa_circ_0001400 Unconfirmed
9 hsa_circ_0067934 CircR2Disease 19 hsa_circ_0067531 CircR2Disease
10 hsa_circ_0004712 Unconfirmed 20 hsa_circ_0000517 31750237

FIGURE 5 | Comparison of predicted probabilities. Both curves decrease from 0.8 to 0.1 significantly, while the curve of Breast Cancer is above the curve of HCC.
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(hsa_circ_0000615, cZNF609, has_circ_0000520, and
hsa_circ_0000517) are newly identified by the model.

In addition, recall rates are analyzed for data with probabilities
greater than 0.9, with a recall rate of 0.9310 for breast cancer and
0.7647 for HCC.

We plotted all the predicted results of the two diseases for detailed
analysis. Figure 5 shows a significant decrease in both curves from
0.8 to 0.1, which indicates that the model has a strong reliability for
each predicted result. Otherwise, the predicted probabilities would be
distributed more around 0.5. In addition, a total of 286 data are
greater than 0.8, while most of them are less than 0.2; presumably,
most circRNA are not associatedwith breast cancer andHCC, which
is in line with the reality.

3.4 Prediction and Analysis of Six Diseases
It is worth noting that there is a difference in the prediction
performance between breast cancer and HCC. In order to analyze
whether it is caused by the difference of data volume in the

CircR2Disease dataset, we selected four more diseases, predicted
them by using SAAED, and plotted the results in box plots.

Table 6 shows the amount of related circRNA with diseases in
CircR2Disease. The amount of related circRNA with breast cancer is
the largest. The amount of related circRNA with infantile
hemangioma is the smallest. Table 7 shows the median probability
of the related circRNA with the diseases predicted by SAAED. The
box plots in Figure 6 clearly show that most probability data are
distributed between 0.92 and 1 (except for infantile hemangioma,
whose median probability distribution is 0.8979), which indicates that
SAAED can effectively identify most associations in CircR2Disease.
Meanwhile, themedian of each box plot is a commonmeasure used in
data centers, which indicates that the more the training data are, the
closer the probability distribution is to 1. Therefore, collecting more
training data can significantly improve model performance.

In addition, it is worth noting that the top 10 candidate circRNAs
of both breast cancer and HCC are the same. We tried to analyze
more diseases and found that most predicted results have similar top

TABLE 6 | Selected circRNA and their amount in CircR2Disease.

Disease Breast Cancer Bladder Cancer HCC Osteosarcoma Glioblastoma Infantile Hemangioma

Amount 58 31 30 22 16 12

TABLE 7 | Median of the predicted probability.

Disease Breast Cancer Bladder Cancer HCC Osteosarcoma Glioblastoma Infantile Hemangioma

Median 0.9799 0.9412 0.9255 0.9483 0.9235 0.8979

FIGURE 6 | Probability distribution of specific associations in CircR2Disease predicted by SAAED. Figure 6 clearly shows that most probability data are distributed
between 0.92 and 1 (except for infantile hemangioma, the median probability distribution is 0.8979), which indicates that SAAED can effectively identify most
associations in CircR2Disease. The more the data are, the closer the predicted probability is to 1.
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10 candidate circRNAs. We selected the top 5 candidate circRNAs,
i.e., hsa_circ_0000615, CDR1as, ciRS-7, hsa_circ_0007386, and
circHIPK3 (cZNF609 is an alias of hsa_circ_0000615), and
counted their associated diseases in CircR2Disease. The result is
visualized in Figure 7. There are 20 associated diseases, which
account for 28.6% of all diseases. However, most circRNAs in
CircR2Disease are associated with only one disease. We believe
that such imbalance of data introduces bias in the model.

4 CONCLUSION

In this study, we proposed a method called SAAED to calculate
embedding vectors of circRNA and diseases to predict associations.
SAAED consists of ERN and the Pseudo-Siamese network, and
ERN is an effective model to calculate entity embedding vectors.
The innovative combination of embedding and deep learning can
obtain biological association information without adding algorithm
complexity. Experimental results show that the model outperforms
other state-of-the-art models and can effectively identify
circRNA–disease associations. In addition, SAAED can be used
for association analysis between any entities. It provides a widely
tried path for biological information mining.

It is worth mentioning the limitations of SAAED. First, the
reliability of dataset may affect the semantic expression of
embedding vector. For example, the imbalance of data in
CircR2Disease leads to a similar top 10 associated circRNA of

different diseases. Fusing multi-source data and mitigating the bias
from different datasets are essential for the generalization and
prediction for circRNA–disease association analysis. Second, the
data diversity and inconsistency in different datasets are a challenge
for data fusing and embedding. We can alleviate this problem by
tedious preprocessing, while we believe that the introduction of
knowledge graph network is a more effective way to improve the
quality of embedding vector and introduce more information.
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