Odd Integers N With Five Distinct Prime Factors for Which $2-10^{-12} < \sigma(N)/N < 2+10^{-12}$

By Masao Kishore*

Abstract. We make a table of odd integers N with five distinct prime factors for which $2-10^{-12} < \sigma(N)/N < 2+10^{-12}$, and show that for such $N |\sigma(N)/N-2| > 10^{-14}$. Using this inequality, we prove that there are no odd perfect numbers, no quasiperfect numbers and no odd almost perfect numbers with five distinct prime factors. We also make a table of odd primitive abundant numbers N with five distinct prime factors for which $2 < \sigma(N)/N < 2+2/10^{10}$.

1. A positive integer N is called perfect, quasiperfect (QP), or almost perfect according as $\sigma(N) = 2N$, 2N + 1, or 2N - 1, respectively, where $\sigma(N)$ is the sum of the positive divisors of N. While twenty-four even perfect numbers are known, no odd perfect (OP) numbers, no QP numbers, and no almost perfect numbers except a power of 2 are known.

In this paper we make a table of odd integers N with five distinct prime factors for which

$$(1) 2 - 10^{-12} < \sigma(N)/N < 2 + 10^{-12},$$

and we show that for such N

$$|\sigma(N)/N - 2| > 10^{-14}$$
.

Using this inequality, we prove that there are no OP, QP, or odd almost perfect (OAP) numbers with five distinct prime factors.

N is called primitive abundant if N is abundant $(\sigma(N) > 2N)$ and every proper divisor M of N is deficient $(\sigma(M) < 2M)$. In 1913 Dickson [4] published a table of odd primitive abundant numbers with less than five distinct prime factors. In this paper we also make a table of odd primitive abundant numbers N with five distinct prime factors for which

(2)
$$2 < \sigma(N)/N < 2 + 2/10^{10}.$$

2. Throughout this paper we let $N = \prod_{i=1}^r p_i^{a_i}$ where $3 \le p_1 < \cdots < p_r$ are primes and a_i 's are positive integers. $p_i^{a_i}$ is called a component of N.

We define

$$a(p) = \min\{a | p^{a+1} > 10^{12}\},$$

$$\omega(N) = r,$$

$$S(N) = \sigma(N)/N = \prod_{i=1}^{r} (p_i^{a_i+1} - 1)/p_i^{a_i}(p_i - 1),$$

Received December 6, 1976; revised March 23, 1977.

AMS (MOS) subject classifications (1970). Primary 10A20.

Copyright © 1978, American Mathematical Society

^{*}This paper is a part of the author's doctoral dissertation which was submitted to Princeton University in August 1977 and directed by Professor J. Chidambaraswamy of the University of Toledo.

$$A(N) = \left[\prod_{a_i < a(p_i)} S(p_i^{a_i}) \right] \left[\prod_{a_i \geqslant a(p_i)} S(p_i^{a(p_i)}) \right],$$

$$B(N) = \left[\prod_{a_i < a(p_i)} S(p_i^{a_i}) \right] \left[\prod_{a_i \geqslant a(p_i)} p_i / (p_i - 1) \right],$$

$$L(p^a) = \begin{cases} [10^{12} \log S(p^a)] / 10^{12} & \text{if } a < a(p), \\ [10^{12} \log p / (p - 1)] / 10^{12} & \text{if } a \geqslant a(p), \end{cases}$$

where [] is the greatest integer function. We note that if p, q are primes with p > q and a, b are positive integers then

$$S(p^a) = (p^{a+1} - 1)/p^a(p-1) < p/(p-1) = \lim_{a \to \infty} S(p^a) \le (q+1)/q \le S(q^b),$$

and so $L(p^a) \leq L(q^b)$ and $A(N) \leq S(N) \leq B(N)$. Hence, we have

LEMMA 1. (a) If $A(N) > 2 - 10^{-12}$ and $B(N) < 2 + 10^{-12}$, N satisfies (1).

(b) If
$$A(N) \le 2 - 10^{-12} < B(N) < 2 + 10^{-12}$$
, some N satisfies (1).

(c) If
$$2 - 10^{-12} < A(N) < 2 + 10^{-12} \le B(N)$$
, some N satisfies (1).

(d) If
$$A(N) \le 2 - 10^{-12}$$
 and $2 + 10^{-12} \le B(N)$, some N may satisfy (1).

(e) If
$$2 + 10^{-12} < A(N)$$
 or $B(N) < 2 - 10^{-12}$, N does not satisfy (1).

In Lemmas 2 through 5 we assume that N satisfies (1) and $\omega(N) = 5$.

LEMMA 2.

(3)
$$0.6931471805544 < \sum_{i=1}^{5} L(p_i^{b_i}) < 0.6931471805655,$$

where $b_i = \min\{a_i, a(p_i)\}.$

Proof. Suppose p^a is a component of N. If a < a(p), then

$$|\log S(p^a) - L(p^a)| < 10^{-12}$$
.

If $a \ge a(p)$, then $p^{a+1} > 10^{12}$ and

$$10^{-12} > \log p/(p-1) - L(p^a) > \log S(p^a) - L(p^a) \ge \log S(p^a) - \log p/(p-1)$$

$$= \log (1 - 1/p^{a+1}) = -\sum_{i=1}^{\infty} 1/i(p^{a+1})^i > -1/(p^{a+1}-1) \ge -10^{-12}.$$

Hence

$$|\log S(p^a) - L(p^a)| < 10^{-12}$$
.

Since (1) holds,

$$0.6931471805544 < \log(2 - 10^{-12}) - 5/10^{12}$$

$$< \sum_{i=1}^{5} \log S(p_i^{a_i}) - 5/10^{12} < \sum_{i=1}^{5} L(p_i^{b_i})$$

$$< \sum_{i=1}^{5} \log S(p_i^{a_i}) + 5/10^{12} < \log(2 + 10^{-12}) + 5/10^{12}$$

$$< 0.6931471805655, \quad \text{O.E.D.}$$

LEMMA 3. $p_1 = 3, p_2 \le 11$ and $p_3 \le 41$.

Proof. Lemma 3 follows from the following inequalities:

$$\frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} < 2 - 10^{-12},$$

$$\frac{3}{2} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{23}{22} < 2 - 10^{-12},$$

$$\frac{3}{2} \frac{5}{4} \frac{43}{42} \frac{47}{46} \frac{53}{52} < 2 - 10^{-12}. \text{ Q.E.D.}$$

LEMMA 4. $p_4 < 5000$.

Proof. Suppose N satisfies (1) and $p_4 \ge 5003$. Then

$$0 \le L(p_5^{b5}) \le L(p_4^{b4}) < \log S(p_4^{b4}) + 10^{-12}$$

$$< \log p_4/(p_4 - 1) + 10^{-12} < 1/(p_4 - 1) + 10^{-12}$$

$$< 0.0002.$$

Hence by (3)

(4)
$$0.69274 < \sum_{i=1}^{3} L(p_i^{b_i}) < 0.69315.$$

A computer (PDP11 at the University of Toledo) was used to find $\Pi_{i=1}^3 p_i^{b_i}$ satisfying (4), but there were none. Q.E.D.

Similarly, we can prove

LEMMA 5. $p_5 < 3000000$, or $\Pi_{i=1}^4 p_i^{b_i} = 3^7 5^6 17^2 233$ and $36549767 \le p_5 \le 36551083$.

The computer was used to find $N = \prod_{i=1}^{5} p_i^{a_i}$ satisfying $a_i \le a(p_i)$, Lemmas 3, 4, 5, and Lemma 2 or Lemma 1(b), (c), (d), with the result given in Table 1.

Lemma 6. Suppose
$$N = \prod_{i=1}^{5} p_i^{a_i}$$
 and $M = \prod_{i=1}^{5} p_i^{b_i}$ where $b_i = \min\{a_i, a(p_i)\}$. If $M = 3^2 \cdot 35^{12} \cdot 17^6 \cdot 257^4 \cdot 65521$, $|S(N) - 2| > 5/10^{13}$; if $M = 3^8 \cdot 5^{14} \cdot 17^3 \cdot 251 \cdot 1884529$, $|S(N) - 2| > 2/10^{14}$; if $M = 3^8 \cdot 5^9 \cdot 17^3 \cdot 251 \cdot 1579769$, $|S(N) - 2| > 3/10^{13}$; if $M = 3^8 \cdot 5^8 \cdot 17^9 \cdot 269^4 \cdot 4153^3$, $|S(N) - 2| > 4/10^{14}$; if $\prod_{i=1}^{4} p_i^{b_i} = 3^7 \cdot 5^6 \cdot 17^2 \cdot 233$, $|S(N) - 2| > 10^{-14}$. In all other cases $|S(N) - 2| > 10^{-13}$.

Proof. The first part of Lemma 6 follows from the following inequalities:

$$S(3^{2}^{3}5^{12}17^{6}257^{4}65521) < 2 - 5/10^{13},$$

 $S(3^{2}^{3}5^{12}17^{6}257^{5}65521) > 2 + 1/10^{12},$
 $S(3^{8}5^{14}17^{3}251)$ 1884529/1884528 $< 2 - 2/10^{14},$
 $S(3^{8}5^{9}17^{3}251\cdot1579769) < 2 - 4/10^{13},$
 $S(3^{8}5^{9}17^{3}251\cdot1579769^{2}) > 2 + 3/10^{13},$
 $S(3^{8}5^{9}17^{3}251\cdot1579769^{2}) > 2 + 3/10^{13},$
 $S(3^{8}5^{8}269^{4})$ 17/16·4153/4152 $< 2 - 4/10^{14},$
 $S(3^{8}5^{8}17^{9}269^{5}4153^{3}) > 2 + 3/10^{13},$
 $S(3^{7}5^{6}17^{2}233\cdot36550379) > 2 + 5/10^{14},$

and

$$S(3^7 5^6 17^2 233) 36550429/36550428 < 2 - 10^{-14}$$

Suppose $|S(N) - 2| \le 10^{-13}$. Then (1) holds, and so N is given in Table 1; however, for every N in Table 1 except for those given above $S(N) \le B(N) < 2 - 10^{-13}$, or $S(N) \ge A(N) > 2 + 10^{-13}$. Q.E.D.

We have proved

THEOREM. If N is an odd integer with $\omega(N) = 5$, $|\sigma(N)/N - 2| > 10^{-14}$.

3. We used a similar method to find odd primitive abundant numbers $N = \prod_{i=1}^{5} p_i^{a_i}$ for which (2) holds, with the result given in Table 2 in the microfiche. Table 2 includes odd primitive abundant numbers N with $\omega(N) = 5$ one of whose component p^a is greater than 10^{10} ; for, letting $M = N/p^a$, we have

$$2 < \sigma(N)/N = \sigma(M)\sigma(p^{a})/Mp^{a} = \sigma(M)(p\sigma(p^{a-1}) + 1)/Mp^{a}$$
$$= \sigma(Mp^{a-1})/Mp^{a-1} + \sigma(M)/Mp^{a} < 2 + 2/10^{10},$$

showing that (2) holds.

4. Suppose N is an odd integer such that $\sigma(N) = 2N + A$. If $|A/N| \le 10^{-14}$, then by our Theorem $\omega(N) \ge 6$. We give three examples of such N.

Suppose N is OP. Sylvester (1888), Dickson (1913), and Kanold (1949) proved that $\omega(N) \ge 5$. From our Theorem we have

Proposition 1. If N is OP, $\omega(N) \ge 6$.

This fact was also proved by Gradštein (1925), Kühnel (1949) and Webber (1951). Pomerance [1] (1972) and Robbins (1972) proved that $\omega(N) \ge 7$, and Hagis [2] proved that $\omega(N) \ge 8$.

PROPOSITION 2. If N is QP, $\omega(N) \ge 6$.

Proof. By [3] if N is QP, then N is an odd perfect square, $\omega(N) \ge 5$ and $N > 10^{20}$. Hence $2 < S(N) = 2 + 1/N < 2 + 10^{-20}$, and so by Theorem $\omega(N) \ge 6$. O.E.D.

LEMMA 7. If N is OAP, pN is primitive abundant for some $p \mid N$.

Proof. Suppose $N = \prod_{i=1}^r p_i^{a_i}$ is OAP, and choose j so that $\sigma(p_j^{a_j}) \ge \sigma(p_i^{a_i})$ for every i. Letting $p = p_j$, $a = a_j$ and $L = N/p^a$, we have

$$2p^{a}L - 1 = \sigma(N) = \sigma(p^{a})\sigma(L)$$
$$= (1 + p\sigma(p^{a-1}))\sigma(L) = \sigma(L) + p\sigma(p^{a-1})\sigma(L).$$

Hence $p \mid \sigma(L) + 1$. If $p = \sigma(L) + 1$, then

$$\sum_{i=1}^{a+1} p^i = \sigma(p^a)p = \sigma(p^a)\sigma(L) + \sigma(p^a)$$

$$= \sigma(N) + \sigma(p^a) = 2p^aL - 1 + \sigma(p^a) = 2p^aL + \sum_{i=1}^a p^i,$$

or $p^{a+1} = 2p^aL$, showing that $N = 2^a$. Since N is OAP, $p \neq \sigma(L) + 1$, and so $p < \sigma(L)$ because $p \mid \sigma(L) + 1$. Then

$$\sigma(pN) = \sigma(p^{a+1})\sigma(L) = (1 + p\sigma(p^a))\sigma(L)$$
$$= \sigma(L) + p\sigma(N) = \sigma(L) + 2pN - p > 2pN,$$

showing that pN is abundant.

Suppose M is a proper divisor of pN. If $p^{a+1}
mid M$, then M is a divisor of N, and M is deficient because

$$S(M) \le S(N) = 2 - 1/N < 2.$$

Suppose $p^{a+1}|M$. Then for some k, $p_k^{a_k} \nmid M$. Letting $q = p_k$ and $b = a_k$, we have $\sigma(p^a) \ge \sigma(q^b)$, or

$$\sum_{i=1}^{b} q^{i} \leq \sum_{i=1}^{a} p^{i} < \sum_{i=1}^{a+1} p^{i}.$$

Hence

$$(1/p^{a+1}) \sum_{i=0}^{b-1} q^{-i} < (1/q^b) \sum_{i=0}^{a} p^{-i},$$

and by adding $\sum_{i=0}^{a} p^{-i} \sum_{i=0}^{b-1} q^{-i}$ to both sides we obtain

$$\sum_{i=0}^{a+1} p^{-i} \sum_{i=0}^{b-1} q^{-i} < \sum_{i=0}^{a} p^{-i} \sum_{i=0}^{b} q^{-i},$$

or $S(p^{a+1})S(q^{b-1}) < S(p^a)S(q^b)$. Then

$$S(M) \le S(p^{a+1})S(q^{b-1}) \prod_{i \ne j,k} S(p_i^{a_i})$$

$$< S(p^a)S(q^b) \prod_{i \neq j,k} S(p_i^{a_i}) = S(N) < 2,$$

showing that M is deficient. Q.E.D.

LEMMA 8. If $N = \prod_{i=1}^r p_i^{a_i}$ is OAP, a_i is even. If $p_1 = 3$, $a_1 \ge 12$.

Proof. Suppose N is OAP, p^a is a component of N, q is a prime and $q \mid \sigma(p^a)$. Since $\sigma(N) = 2N - 1$ is odd and $\sigma(p^a) \mid \sigma(N)$, $\sigma(p^a) = \sum_{j=0}^a p^j$ is odd. Hence a is even. Since $q \mid 2\sigma(N) = 4N - 2$ and 4N is a perfect square, $(2 \mid q) = 1$, where $(2 \mid q)$ is the Legendre symbol, and so $q \equiv 1$ or 7 (mod 8) because $(2 \mid q) = (-1)^{(q^2-1)/8}$. Also $\sigma(p^a) \equiv 1$ or 7 (mod 8), for, otherwise, $\sigma(p^a)$ would have a prime factor $\equiv 3$ or 5 (mod 8).

Suppose p = 3 and a = 2e. Then $\sigma(3^{2e}) \equiv 1 + 4e \equiv 1$ or 7 (mod 8), or $e \equiv 0 \pmod{2}$. Hence $a = 4, 8, 12, \ldots$; however, $a \neq 4$ or 8 because $11 | \sigma(3^4), 11 \equiv 3 \pmod{8}, 13 | \sigma(3^8)$ and $13 \equiv 5 \pmod{8}$. Q.E.D.

Proposition 4. If N is OAP, $\omega(N) \ge 6$.

Proof. Suppose $N = \prod_{i=1}^r$ is OAP. Then by Lemma 7 pN is primitive abundant for some p|N. If $3 \nmid N$, $\omega(N) \geq 7$, for, otherwise,

$$2 < S(pN) < \prod_{i=1}^{r} \frac{p_i}{p_i - 1} \le \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} < 2.$$

Suppose $3 \mid N$. Then $3^{12} \mid pN$ by Lemma 8. According to the table of odd primitive abundant numbers M with fewer than five distinct prime factors in [4] $3^{12} \nmid M$.

Hence $\omega(N) \ge 5$, and $N \ge 3^{12}5^27^211^213^2 > 10^{13}$. Then $2 > S(N) = 2 - 1/N > 2 - 10^{-13}$, and by Lemma 6 $\omega(N) \ge 6$. Q.E.D.

For other results on QP and OAP see [3], [5], [6], [7] and [8]. Computer time for Tables 1 and 2 was over four hours.

TABLE 1 $N = \prod_{i=1}^{5} p_i^{a_i} \text{ for which } 2 - 10^{-12} < \sigma(N)/N < 2 + 10^{-12(a)}$

	•			
$p_1^{b_{11}}$	$p_2^{b_2}$	p_3^{b3}	p_4^{b4}	$p_{5}^{b_{5}}$
3 ²⁵	5 ⁵	17 ⁷	251	570407 ^(b)
323	5 ¹²	17 ⁶	257 ⁴	65521 ^(c)
322	5 ⁵	17 ⁶	251	569659 ²
3 ² 1	5 ⁹	17 ⁹	257 ⁴	65099 ^{2(b)}
	5 ⁵	17 ⁵	251	557273
3 ²⁰	5 ¹⁴	17 ⁵	257 ⁴	65357 ^(b)
319	5 ³	17 ³	181	57149 ²
318	5 ⁵	17 ⁵	251	557017 ²
		174	251	406811 ²
316	5 ⁵	17 ⁸	251	567943 ²
312	5 ⁵	17 ⁵	251	412943 ²
3 ¹¹	5 ¹²	17 ⁹	257 ³	58337 ^(c)
310	510	17 ⁹	257 ³	47791 ^{2(c)}
3 ⁹	7 ³	13 ⁵	19 ²	1009643 ^(b)
3 ⁸	516	17 ⁸	257 ⁴	15137 ^{2 (c)}
	514	17 ³	251	1884527 ^(c)
				1884529
	5 ¹³	17 ³	251	1884061 ^(c)
	511	17 ³	251	1870207
	5 ⁹	17 ³	251	1579769
	5 ⁸	17 9	269 ⁴	4153 ^{3(d)}
	5 ³	19 ⁹	83 ⁶	493277
		19 ⁸	83 ³	488203 ²
		19 ⁷	83 ⁴	493201
3 ⁷	5 6	17 ²	233	(e)

Note: (a) If $b_i = a(p_i)$ and c > 0, Np_i^c also satisfies (1). See Lemma 1(a).

⁽b) See Lemma 1(b). (c) See Lemma 1(c). (d) See Lemma 1(d).

⁽e) $36549767 \le p_5 \le 36551083$.

Department of Mathematics University of Toledo Toledo, Ohio 43606

- 1. C. POMERANCE, "Odd perfect numbers are divisible by at least seven distinct primes," Acta Arith., v. 25, 1974, pp. 265-299.
- 2. P. HAGIS, JR., "Every odd perfect number has at least eight prime factors," Abstract #720-10-14, Notices Amer. Math. Soc., v. 22, 1975, p. A-60.
- 3. H. L. ABBOT, C. E. AULL, E. BROWN & D. SURYANARAYANA, "Quasiperfect numbers," Acta Arith., v. 22, 1973, pp. 439-447.
- H. L. ABBOT, C. E. AULL, E. BROWN & D. SURYANARAYANA, Corrections to the paper "Quasiperfect numbers," *Acta Arith.*, v. 29, 1976, pp. 427-428.
- 4. L. E. DICKSON, "Finiteness of the odd perfect and primitive abundant numbers with *n* distinct prime factors," *Amer. J. Math.*, v. 35, 1913, pp. 413-422.
- 5. M. KISHORE, "Quasiperfect numbers are divisible by at least six distinct prime factors," Abstract #75T-A113, Notices Amer. Math. Soc., v. 22, 1975, p. A-441.
- 6. M. KISHORE, "Odd almost perfect numbers," Abstract #75T-A92, Notices Amer. Math. Soc., v. 22, 1975, p. A-380.
- 7. R. P. JERRARD & N. TEMPERLEY, "Almost perfect numbers," Math. Mag., v. 46, 1973, pp. 84-87.
- 8. J. T. CROSS, "A note on almost perfect numbers," *Math. Mag.*, v. 47, 1974, pp. 230-231.