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Abstract

This thesis consists of three separate parts namely, chapter one, chapter

two and chapters three-four which correspond to different research activities.

Chapter one is independent of the others.

In chapter one we consider an algebraic variety X over an algebraically

closed field k and then study the nonstandard enlarged variety ∗X. We

study the shadow of internal subvarieties of ∗X (theorem 1.3.6). We prove

the Nullstellensatz for infinite dimensional varieties (theorem 1.5.3). Then

we study the enlargement of commutative rings.

In chapter two we give a survey of the fundamental paper of Shokurov

[Sh4] on the existence of log flips in dimension 3 (no result of mine and no

rigorous proof in this section).

In chapter three we outline Shokurov’s program (see 3.1.16.1) to attack

the log termination conjecture (3.1.16), the ACC conjecture on mlds (3.1.15)

and the Alexeev-Borisovs conjecture on the boundedness of δ-lc weak log

Fano varieties (3.1.11) in higher dimensions. The core of this program is

the boundedness of ε-lc complements conjecture due to Shokurov (conjec-

ture 3.1.7). We prove the latter conjecture in dimension two . In other

words, we prove that for any δ > 0 there exist a finite set N of positive

integers and ε > 0 such that any 2-dimensional δ-lc weak log Fano pair

(X/P ∈ Z,B), where B ∈ {m−1
m
}m∈N if dim Z ≥ 1 and B = 0 if Z = pt.,

is (ε, n)-complementary/P ∈ Z for some n ∈ N (theorem 3.7.1 and theorem

3.10.1). As a corollary, We give a completely new proof of the Alexeev-

Borisovs conjecture in dimension two, that is, we prove the boundedness of

δ-lc log del Pezzo surfaces (corollary 3.7.9). We also prove that the bound-
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edness of lc complements due to Shokurov (theorem 3.1.24) can be proved

only using the theory of complements. However, our most important result

is the method used to prove the boundedness of ε-lc complements conjecture

(3.7.1 and 3.10.1).

In chapter four we outline separate plans proposed by myself and Shokurov

toward the boundedness of ε-lc complements conjecture in dimension three.

4



Acknowledgement

I would like to express my deep gratitude to Professors I.B. Fesenko and V.V.

Shokurov for their support, encouragement, introducing me to fundamental

aspects and directions of modern algebraic geometry and patiently answering

my uncountable questions.

Professor Fesenko proposed the problem in the first section. Professor

Shokurov gave me the problems in section three and four. He also read the

survey in section two.

I also want to thank Professor J.E. Cremona for helping me to overcome

serious bureaucratic difficulties at the beginning of my PhD and creating

some difficulties at the end!

Finally special thanks to my family, Tarn, Nikos, Claudia, Oli Toli and

others for providing me with support, working space, accommodation and

lots of fun!

5



Contents

1 Nonstandard algebraic geometry 8

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Properties of the ∗ and o map . . . . . . . . . . . . . . . . . . 10

1.4 Generic points for prime ideals . . . . . . . . . . . . . . . . . . 18

1.5 Varieties of infinite dimension . . . . . . . . . . . . . . . . . . 21

1.6 Enlargement of commutative rings . . . . . . . . . . . . . . . . 26

2 Shokurov’s log flips 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Flips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Reduction to Lower Dimensions and b-divisors . . . . . . . . . 39

2.4 The FGA Conjecture . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Finding Good Models . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 The CCS Conjecture . . . . . . . . . . . . . . . . . . . . . . . 45

3 Boundedness of epsilon-log canonical complements on sur-

faces 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 The case of curves . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 The case of surfaces . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Local isomorphic case . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Local birational case . . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Global case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6



3.8 Second proof of the global case . . . . . . . . . . . . . . . . . 113

3.9 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.10 Local cases revisited . . . . . . . . . . . . . . . . . . . . . . . 126

4 Epsilon-log canonical complements in higher dimensions 130

4.1 Epsilon-lc complements in dimension 3 . . . . . . . . . . . . . 131

4.2 Epsilon-lc complements in dimension 3: Shokurov’s approach . 135

4.3 List of notation and terminology for chapter three-four . . . . 138

4.4 References for chapter three-four: . . . . . . . . . . . . . . . . 139

7



1 Nonstandard algebraic geometry

1.1 Introduction

Methods of nonstandard mathematics have been successfully applied to many

parts of mathematics such as real analysis, functional analysis, topology,

probability theory, mathematical physics etc. But just a little bit has been

done in foundations of nonstandard algebraic geometry so far. Robinson

indicated some ideas in [4] and [5] to prove Nullstellensatz (Rückert’s Theo-

rem) and Oka’s Theorem, using nonstandard methods, in the case of analytic

varieties. In this chapter we try to formulate first elements of nonstandard

algebraic geometry.

Consider an enlargement ∗X of an affine variety X over an algebraically

closed field k. We often take k = C to be able to define the shadow of limited

points of ∗X.

As one of the first results in section 1.3 (Theorem 1.3.6) we prove the

following:

• Let X be an algebraic closed subset of Cn and the polynomial f ∈

(∗C)[z1, . . . , zn] with limited coefficients. Then there is a polynomial

g ∈ (∗C)[z1, . . . , zn] with limited coefficients such that:

V (g) = V (f), ◦V (f) = V (◦g).

where zeros of these polynomials are taken in ∗X and X correspond-

ingly.

In the same section (Theorem 1.3.2) we show that the shadow of any
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internal open subset of ∗X equals X, which in turn implies that every point

on X has an internal nonsingular point in its halo.

In section 1.4 we discuss an error in Robinson’s paper [4, th.5.3] and

indicate a way to fix it.

In section 1.5 we introduce the notion of a countable infinite dimensional

affine variety and prove Nullstellensatz in the case of an uncountable under-

lying algebraically closed field, in particular for the field of complex numbers.

Finally in section 1.6 we investigate enlargements of a commutative ring

R and R-modules M . We use flatness of ∗R over R to prove ∗M ' ∗R⊗R M

for R a Noetherian commutative ring R and a finitely generated R-module

M .

1.2 Basic definitions

We consider the enlargement of a set which contains an algebraically closed

field k and the real numbers. Then we can consider the enlargement of affine,

projective and quasiprojective varieties over k. Let X be a variety over k and

let ∗X be its enlargement. By ∗X∗k we mean ∗X as a variety over the field

∗k. Note that this is completely different from ∗X with the induced internal

structure.

Definition 1.2.1 Let a ∈ X, then the halo of a in the Zariski topology is

defined as

zhX(a) =
⋂
a∈U

∗U.

where U is Zariski open in X.
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We distinguish it from hX(a) which stands for the halo of a when k = C and

U is open in the sense of usual topology.

∗X lim denotes the elements with limited coordinates. The map

∗ : X −→ ∗X is the natural map which takes a to ∗a and usually we denote

the image of a by the same a. We also have another important map o :

∗X lim −→ X which takes each point to its shadow.

We get two different ”topologies” on ∗X. One is the internal Zariski

topology such that its open subsets are the internal open subsets of ∗X. In

fact, this is not always a topology. That is, the intersection of a collection

of closed subsets may not be a closed subset. For example, let X = A1
k and

BM = {x ∈ ∗N : 1 ≤ x ≤M}. Moreover, let B = {BM}M≤N where N, M are

unlimited hypernatural numbers and k is an algebraically closed field with

characteristic 0. All BM in B are hyperfinite, hence by transfer they are

internal closed subsets of ∗X. Now consider
⋂

B∈B B = N which is not an

internal subset of ∗X and then not internal closed subset.

The other topology is the usual Zariski topology on ∗X∗k as a variety over

the field ∗k.

1.3 Properties of the ∗ and o map

X denotes an affine variety through this section. Consider the internal topol-

ogy on ∗X, in which a basis of open subsets consists of complements of zeros

of an internal polynomial (i.e. an element of ∗C[z]).

The first question which draws our attention is the continuity of the ∗

map. We shall show that this map is not continuous.

Example 1.3.1 Let X = k = C, then there is an internal closed subset
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of ∗X with a nonclosed preimage under the ∗ map. Consider the following

formula:

(∀A ∈ PF (C))(∃p ∈ C[z])(∀a ∈ C)(a ∈ A←→ p(a) = 0).

By transfer we have:

(∀A ∈ ∗PF (C))(∃p ∈ ∗C[z])(∀a ∈ ∗C)(a ∈ A←→ p(a) = 0).

Now let A = {x ∈ ∗N : 1 ≤ x ≤ N} for an unlimited hypernatural number

N . A is a hyperfinite subset of ∗C. Then, there is an internal polynomial in

∗C[z] which vanishes exactly on A. The preimage of A is N, which is not a

closed subset of C.

We can prove a stronger assertion, that for any subset B of C, there is

an internal closed subset of ∗C whose preimage is B. To prove this, let H be

a hyperfinite approximation of B in ∗C. Hence B ⊆ H ⊆ ∗B. The preimage

of ∗B is B, thus the preimage of H is also B.

Now we look at images of subsets of ∗X under the o map in the case of k =

C. Note that we defined the o from X lim to X, but we can consider the image

of subsets of ∗X by taking the image of their limited points. Unexpectedly,

the image of any nonempty internal open set is the whole X.

Theorem 1.3.2 Let A be a nonempty internal open subset of ∗X, then

oA = X.

Proof It is sufficient to prove the Theorem for principal internal open sub-

sets. Let A = ∗Xf be a nonempty internal principal open subset where f
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is an internal polynomial. If the shadow of A is not X, there is some point

a ∈ X for which f(hX(a)) = 0. Hence, we have the following:

(∃g ∈ ∗C[z1, . . . , zn])(∃ε ∈ ∗R+)(∀z ∈ ∗X)((∃w ∈ ∗X)(g(w) 6= 0)∧(| z−a |≤ ε

→ g(z) = 0)).

So, by transfer:

(∃g ∈ C[z1, . . . , zn])(∃ε ∈ R+)(∀z ∈ X)((∃w ∈ X)(g(w) 6= 0)∧(| z−a |≤ ε→

g(z) = 0)).

It is easy to see that the latter is not true. �

Corollary 1.3.3 There is a nonsingular point ξ in hX(a) for every a ∈ X.

Theorem 1.3.4 Let f : X −→ Y be a regular map of varieties over C.

Then, we have:

(i) o(∗Z) = Z for every closed subset Z ⊆ X;

(ii) (∗f)−1(∗Z) = ∗(f−1(Z)) for every subset Z of Y .

Proof (i) Obviously Z ⊆ o(∗Z). Let Z = V (g1, . . . , gl) and let x ∈ o(∗Z)

and x = oξ for some ξ ∈ ∗Z. Then, gi(ξ) = 0 for 1 ≤ i ≤ l. Clearly gi(
oξ) = 0

for 1 ≤ i ≤ l which in turn proves that x ∈ Z.

(ii) consider the formula :

(∀x ∈ X)(x ∈ (f)−1(Z)←→ f(x) ∈ Z).
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so by transfer:

(∀x ∈ ∗X)(x ∈ ∗((f)−1(Z))←→ ∗f(x) ∈ ∗Z).

On the other hand we have:

(∀x ∈ ∗X)(x ∈ (∗f)−1(∗Z)←→ ∗f(x) ∈ ∗Z).

which proves (ii). �

It is well known that the shadow of any subset of ∗R is a closed subset

in R, the field of real numbers, in the sense of real topology. But a similar

fact for algebraic sets, is much more complicated. We first show that the

shadow of an internal closed subset of ∗X is not necessarily closed in X.

For example, consider BM ⊂ ∗A1
C which was defined in section 1.2 for an

unlimited hypernatural number M . Obviously, oBM = N is not closed in A1
C.

A better deal is to consider closed subsets of ∗X∗C.

Theorem 1.3.5 Let f ∈ (∗C)[z1, . . . , zn] be a polynomial with limited co-

efficients and let of be nonzero. Then, we have:

◦(V (f)) = V (◦f).

Proof The shadow of f , ◦f , may happen to be a constant, that is, the

coefficients of nonzero degree monomials in f are infinitesimal. This implies

that no limited point can be in V (f). On the other hand, V (◦f) = ∅. Then,

the equality is proved in this case.

So we may assume that ◦f is not constant. Let ξ ∈ ∗Cn be a limited point

such that f(ξ) = 0. Then, of(oξ) = 0 hence oξ ∈ V (of).
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If a ∈ V (of) then f(a) ' 0. Moreover, f(hCn(a)) ⊆ hCn(0). It is sufficient

to find a point in the halo of a such that f vanishes at that point. Now if

f(a) 6= 0 we can linearly change variables so that a is transferred to the

origin. Note that the new polynomial, say g has also limited coefficients and

this translation takes hCn(a) to hCn(0). We can write g = ginf + gap such

that ginf has infinitesimal coefficients and gap has noninfinitesimal limited

coefficients. Then, og = ogap.

Now we use induction on the number of variables. If n = 1 Robinson–

Callot Theorem [3, ch.2, th.2.1.1] shows that g(hC(0)) = hC(0) because g

is S-continuous as it has limited coefficients. If 1 < n we consider the ho-

mogeneous form with highest degree appearing in gap, say h. h is a sum of

monomials of the same degree.

If h = αz1 . . . zn, where α is a hypercomplex number, then we change

variables such that z1 = w1 and zi = wi + w1. This change, obviously

maps the halo of origin on itself and from g we get a new polynomial e with

limited coefficients. Now consider e(w1, . . . , wn−1, 0), clearly the shadow of

this polynomial in a smaller than n number of variables, is not constant, and

we use induction.

In the remaining cases we can again replace one of the variables by zero

and reduce the number of variables, if necessary, to use induction. In fact, we

used h to make sure that when we replace a variable by zero we do not get a

constant polynomial. This proves the existence of a zero for f and completes

the proof of the Theorem. �

We can generalize the last Theorem replacing Cn by its affine subvariety,

X. The Theorem is again true. Although the previous Theorem is a partic-
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ular case of the next Theorem, but their proofs are of different nature and

we prefer to keep the previous proof.

Theorem 1.3.6 Let X be an algebraic closed subset of Cn and let f ∈

(∗C)[z1, . . . , zn] be with limited coefficients. Then, there is a g ∈ (∗C)[z1, . . . , zn]

with limited coefficients, satisfying the following:

V (g) = V (f), ◦V (f) = V (◦g).

where zeros of these polynomials are taken in ∗X and X correspondingly.

Proof If V (f) = ∗X then the Theorem is trivial. Hence, we may assume

that V (f) 6= ∗X. If ◦f is not identically zero on X we take g = f . Otherwise,

let f̈ be f divided by one of its coefficients with maximum absolute value. If

of̈(X) 6= 0 then put g = f̈ . If of̈(∗X) = 0 then V (f̈ − of̈) = V (f̈) = V (f).

Now f̈ − of̈ has a smaller number of monomials than f . By continuing

this process eventually we get a polynomial g such that its shadow is not

identically zero on X and V (g) = V (f).

Now let x ∈ ◦V (g), then x = oξ for some ξ ∈ V (g). From g(ξ) = 0 we

deduce og(oξ) = 0, hence x ∈ V (og). Conversely, let x ∈ V (◦g). In this

case, we want to prove that hX(x)∩ V (g) 6= ∅. Let Y ⊆ X be an irreducible

curve containing x such that og is not identically zero on Y . It is sufficient

to prove that hY (x) ∩ V (g) 6= ∅. Change the variables such that x is trans-

ferred to the origin and then consider ∗Y∗C. First suppose that V (g) 6= ∅ on

∗Y . So V (g) ∩ ∗Y∗C is a finite set, that is, a zero dimensional subvariety, say

A = {ξ1, . . . , ξl}. Since ∗X ⊆ ∗Cn, every point of ∗X is as (b1, . . . , bn), with n

coordinates b1, . . . , bn. If no point in A is infinitesimal, that is, with infinites-

imal coordinates, then every ξi has at least a noninfinitesimal coordinate, say
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aij . The index j means that aij appears in the j-th coordinate of ξi. Let

hi = (zj − aij)/aij and let h = h1 . . . hl. Obviously, A ⊆ V (h) hence ht = eg

on ∗Y , for some polynomial e and natural number t. By construction h and

g have limited coefficients. e also must have limited coefficients, otherwise

ht/s = (e/s)g on ∗Y where s is a coefficient appearing in e with maximum

absolute value. Then, o(ht/s) = 0 = o(e/s)og on Y . Since Y is irreducible,

o(e/s) = 0 on Y . Now we can use the method by which we constructed g

and reduce the number of monomials appearing in e. Then, we get a new e

with limited coefficients which satisfies oe 6= 0, ht = eg and oht = oeog on Y .

This is a contradiction because oh is not zero at origin.

If V (g) = ∅ on ∗Y then V (g) ⊆ V (1) and so there is e such that 1 = eg

on ∗Y . Again e must have limited coefficients and so 1 = o1 = oeog on Y .

We get again a contradiction since og(0) 6= 1. �

Remark 1.3.7 It is not always possible to take g to be f itself. For

example, let X = V (z1) in C2 and f = z1 + εz2 in which ε is an infinitesimal

hyperreal number. Then, of = z1 is identically zero on X. But the shadow

of V (f) is just a single point.

Infinitesimal deformation of plane curves

Let C1 = V (f1) and C2 = V (f2) be two affine plane curves. We may de-

form C1, C2 a “little” and investigate the relation between them. So let

f̃1, f̃2 ∈ (∗C)[x, y] be two internal polynomials such that of̃i = fi and let

Ci = V (f̃i) be the corresponding internal plane curve. Let P ∈ C1 ∩ C2.

How C1 and C2 intersect in hA2(P )? Is the intersection number of C1 and C2
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at P , the same as the intersection number of C1 and C2 in hA2(P )? What

happens if we choose C1 and C2 to be with simple normal crossings? Is the

number of points in their intersection the same as the local intersection num-

ber (C1 ·C2)P ? We check this in some special cases. Suppose C1 is a line and

C1 = ∗C1 . We can parameterize C1 by a single parameter t, that is, C1 can

be given by (φ1(t), φ2(t)) and so C1 by (∗φ1(t),
∗φ2(t)). If we assume that P is

the origin, then the intersection number of C1 and C2 is the smallest degree of

t in f2(φ1(t), φ2(t)). The polynomial f̃2(φ1(t), φ2(t)) can be decomposed into

a product of linear polynomials in t. Since of̃2(φ1(t), φ2(t)) = f2(φ1(t), φ2(t)),

the number of linear components with an infinitesimal root, counting mul-

tiplicities, is the same as the smallest power of t in f2(φ1(t), φ2(t)), that is

equal to (C1 · C2)P .

More generally if C1 is nonsingular at P , then it has a local parameter in

this point so the above argument can be modified for this situation.

More properties of the ∗ map

Suppose X ⊆ An is an affine variety over C. Earlier, by giving some examples,

we showed that the ∗ map is not well behaved. But it turns out that it behaves

quite well when we consider it as follows:

∗C : X → ∗X∗C

Theorem 1.3.8 Let Y be a closed subset of ∗X∗C. Then, ∗
−1
C (Y) is a closed

subset of X. Moreover, for any closed subset Z of X there is a hypersurface

Z such that ∗
−1
C (Z) = Z.
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Proof Suppose that Y is defined by f1 = 0, . . . , fl = 0 in ∗X∗C and let

fi =
∑mi

j=1 ξi,jgi,j where ξi,j ∈ ∗C are linearly independent over C. Hence, for

x ∈ X, we have

fi(x) = 0↔ ∀ 1 ≤ j ≤ mi, g(i,j)(x) = 0

because of the linear independence that we assumed. So x ∈ Y ∩ X if and

only if g(i,j)(x) = 0 for all (i, j). This gives explicit equations for the inverse

image of Y . That is

Y :=∗−1
C (Y) = V ({g(i,j)})

Now let Z = V ({hk}1≤k≤K) ⊆ X. Define Z by
∑K

k=1 hkξk = 0 where ξk ∈
∗C are linearly independent over C. This gives us the required subvariety. �

Remark 1.3.9 Y and Y may not be of the same dimension. Moreover,

Y is not unique for Y up to isomorphism. Let Y = V (1 + εx) ⊆ ∗C1 and

Y ′ = V (1 + x) ⊆ ∗C1 where ε /∈ C. So Y ' Y ′ but Y = ∅ and Y ′ = {−1}.

1.4 Generic points for prime ideals

Let Γ be the ring of analytic functions at origin of Cn. An important Theorem

in complex analysis states that every prime ideal of Γ has a generic point in

the halo of origin. We prove a similar Theorem in the algebraic context.

Theorem 1.4.1 Let X be an irreducible affine variety and x ∈ X. Then,

every prime ideal in the ring of regular functions at x has a generic point in

the Zariski halo of x.
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Proof Let p be a prime ideal in OX,x, the ring of regular functions at x.

Define:

Af,g,U = {y ∈ U : U is open in X, g(y) 6= 0, f(y) = 0 and f, g regular on U}.

Af,g,U 6= ∅ if x ∈ U , f ∈ p and g /∈ p. The collection {Af,g,U}x∈U,f∈p,g /∈p

has finite intersection property. Then, there is a ξ in the following set:⋂
x∈U,f∈p,g /∈p

∗Af,g,U .

So ξ is a generic point for p and ξ ∈ zhX(x) . �

The previous Theorem shows that the map π : zhX(x) −→ SpecOX,x is

surjective where π(ξ) = mξ, the elements of OX,x vanishing at ξ. This map

demonstrates how close zhX(x) and SpecOX,x are.

Theorem 1.4.2 With the hypotheses of the previous Theorem we get:

π−1(VS(I)) = Vzh(I).

where I is an ideal of OX,x , VS(I) is the closed subset of SpecOX,x defined

by I and Vzh(I) is the zeros of I in zhX(x).

Proof Let ξ ∈ zhX(x) and π(ξ) ∈ VS(I). Then, obviously I ⊆ π(ξ). In

other words, every member of I vanishes at ξ. This shows that ξ is in the

right side of the above equality.

Conversely, let ξ be in the right side of the equality, then every member

of I vanishes at ξ. This implies that I ⊆ π(ξ), that is, ξ is in the left side of

the equality. �
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In the analytic case the existence of generic points is used to prove the

Nullstellensatz Theorem. That is, if f, g1, . . . , gl ∈ Γ and V (g1, . . . , gl) ⊆

V (f), then some power of f should be in the ideal generated by all gi [4,

sect. 4]. In [4, th.5.1] the existence of a generic point was proved for infinite

dimensional spaces CΛ, in which Λ is an arbitrary infinite set. Robinson used

generic points to deduce Nullstellensatz in this case [4, th.5.3]. Unfortunately,

this is not correct. Now we indicate the gap.

Analysis of Robinson’s proof. Let Γ be the set of cylindrical analytic

functions in the origin of CΛ, each one depending only on a finite number of

variables. Let A ⊆ Γ be such that V (A) ⊆ V (f) in a neighborhood of origin.

If no power of f is in < A >, then there is a prime ideal, say P containing

A but not f . P has a generic point in the halo of origin, say ξ. Robinson

concludes that f is zero at ξ because V (A) ⊆ V (f), in a neighborhood of

origin, say U . But this is not true. Consider:

(∀x ∈ U)((∀h ∈ A)h(x) = 0 −→ f(x) = 0).

and by transfer:

(∀x ∈ ∗U)((∀h ∈ ∗A)h(x) = 0 −→ ∗f(x) = 0).

This formula is true but it is different from:

(∀x ∈ ∗U)((∀h ∈ imA)h(x) = 0 −→ ∗f(x) = 0).

which is a wrong formula Robinson applied to ξ.

Counter-Example 1.4.3 Let Λ = C, ha = za(z0 − a) − 1, A = {ha :

a ∈ C and a 6= 0} and f = z0 where za is a variable indexed by a. Then,

V (A) ⊆ V (f) and no power of f is in < A >.
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Let ξ ∈ V (A), then z0(ξ) = 0 because for every nonzero a ∈ C, ha(ξ) =

za(ξ)(z0(ξ) − a) − 1 = 0 and then z0(ξ) − a is nonzero. Hence za(ξ) =

1/(z0(ξ) − a) = 1/(−a). This means that V (A) = {ξ}. Clearly ξ ∈ V (z0).

But if a power of z0, say zl
0, be in < A > then zl

0 =
∑t

i=1 eihai
where hai

∈ A.

Now we can find a point at which all hai
’s are zero and z0 is not. But this is

a contradiction. Then, no power of z0 is in < A >.

1.5 Varieties of infinite dimension

The previous section demonstrates some peculiar features of varieties of in-

finite dimension. In this section, at first we show that Nullstellensatz does

not hold in infinite dimensional algebraic geometry as well as in infinite di-

mensional complex analysis.

Counter-Example 1.5.1 There is a set Λ and a proper ideal J in S, the

ring of polynomials over C in variables indexed by Λ, such that V (J) = ∅.

Let Λ = C ∪ {C}, ha = za(z0 − a)− 1 for a 6= 0 in C and hC = zCz0 − 1.

Let J be the ideal generated by all these functions in S. Then, V (J) = ∅. If

J = S, then there are a1, . . . , al (al can be C) and f1, . . . , fl such that

l∑
i=1

fihai
= 1.

Now consider all variables which occur in this formula and let R be the ring

of polynomials in these variables over C and Cm the corresponding affine

space. Then, the ideal generated by ha1 , . . . , hal
in R is R itself. That is

V (J) = ∅ in Cm. This is not possible because we can find a point in Cm at

which all hai
’s are zero. But the right side of the above equation would not

be zero at that point.
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Fortunately, this is not the end of the story. We prove a complete version

of Nullstellensatz similar to the finite dimensions, in the particular case of

Λ = N. Let S be the ring C[z1, z2, . . . ].

Definition 1.5.2 Let X ⊆ CN. We say X is an affine variety in CN if

X = V (J) for some ideal J of S. Moreover, we call C[X] = S/I(X) the ring

of regular functions on X. Similarly, the field of fractions of C[X] denoted

by C(X) is the field of rational functions on X.

Theorem 1.5.3 Let M be a maximal ideal of S. Then, V (M) 6= ∅.

Proof If for every n ∈ N there is an an ∈ C such that zn − an ∈ M then

M =< zn−an >n∈N because < zn−an >n∈N is a maximal ideal of S. Hence,

V (M) = {(an)n∈N}. Now suppose there is an n ∈ N such that zn−a /∈M for

any a ∈ C. For simplicity we can take n = 1. Now let Si = C[z1, . . . , zi] and

let Mi be the contraction (inverse image) of M to Si. Mi is a prime ideal in

Si and our goal is to prove that it is also a maximal ideal.

Let Yi = V (Mi) in Ci. Then, by our hypothesis Y1 = C, that is, M1 = 0.

For every i, we have a projection:

πi : Yi −→ C.

where πi(z1, . . . , zi) = z1. Every member of S is a polynomial with a finite

number of variables. Then,
⋃

Mi = M. By a Theorem in algebraic geometry

[7, ch. I,§5,th.6] πi(Yi) is an open subset of C or just a single point. If

πi(Yi) = {b} for some i, then z1 − b ∈ Mi which is a contradiction. If all

πi(Yi) are open, then consider x ∈ C. Hence, there is an h ∈ S such that

1− h(z1 − x) ∈M, so 1− h(z1 − x) ∈Mj for some j. x cannot be in πj(Yj)
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because 1− h(z1− x) does not vanish at any point where its first coordinate

is x. This proves the following equality:

C =
∞⋃
i=1

C \ πi(Yi).

which is impossible. �

Corollary 1.5.4 An ideal M in S is maximal iff it is as < zi − ai >i∈N

for some ai ∈ C.

�

In the proof of the previous Theorem we have not used any specific prop-

erty of C, we just used the properties that it is algebraically closed and

uncountable. So, we have the following.

Corollary 1.5.5 The Theorem holds if we replace C by any uncountable

algebraically closed field k.

�

Now we look at other parts of Nullstellensatz.

Theorem 1.5.6 Let J be an ideal in S, then I(V (J)) =
√

J.

Proof One inclusion is obvious. Let T = CN and let V (J) ⊆ V (g) where

g ∈ S. Now we consider a new space of the same type, namely W = C× T .

We will have a new variable like z0 and a new coordinate corresponding to

this variable (note that 0 /∈ N in this thesis). Consider the ideal J+ = J+ <

1−z0g > in the ring S[z0]. J+ has no zero in W , so J+ = S[z0]. Hence, there
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are h0, h1, . . . , hl in S[z0] and f1, . . . , fl in J for which we have:

l∑
i=1

hifi + h0(1− z0g) = 1.

Now we can put z0 = 1/g and conclude that either J = S or some power of

g is in J. �

Corollary 1.5.7 Let J1, J2 be ideals in S, then we have the following:

(i) V (J1J2) = V (J1 ∩ J2) = V (J1) ∪ V (J2);

(ii) V (J1 + J2) = V (J1) ∩ V (J2);

(iii)
√

J1 is prime iff V (J1) is irreducible.

Proof Standard. �

It is not obvious that every rational map of affinae varieties of infinite

dimension has a nonempty domain (points where the rational map is defined).

Theorem 1.5.8 dom(φ) 6= ∅ for any rational map φ : X −→ Y .

Proof Let φ = (φ1, φ2, . . . ), φi = gi/fi and T = CN. It is sufficient to prove

that there is a point at which none of fi’s vanishes. Suppose there is no such

point, that is,
∞⋃
i=1

V (fi) = CN.

Now let W = CN. We define a coordinate system on W such that the

(2i − 1)th component in it is the same as the ith component of T , that is,
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we associate the variable zi to the component with number 2i − 1, and the

variable wi to the 2ith component.

Now consider the set:

A = {1− wifi : i ∈ N}.

This set has no zero in W . Then, by Theorem 1.5.3, < A >= C[z1, w1, z2, w2, . . . ],

hence there are h1, . . . , hl in C[z1, w1, z2, w2, . . . ] such that:

l∑
j=1

hj(1− wijfij) = 1.

But this is a contradiction because we know that there is some ξ ∈ T such

that fij(ξ) 6= 0 for 1 ≤ j ≤ l. By putting wij(ξ) = 1/fij(ξ) we get a point in

W at which all (1− wijfij) vanish. �

Corollary 1.5.9 Neither CN nor Cn (n is finite) is the union of a count-

able set of proper subvarieties.

Proof We just proved this for CN. Suppose that Cn =
⋃∞

i=1 V (fi) in which

fi is in C[z1, . . . , zn]. Now we extend it to CN and we get the result. �

Let SN = C[z1, z2, . . . ] and Si = C[z1, . . . , zi]. We have the following

inclusions when n < m:

Sn −→ SN

Sn −→ Sm

and by transfer we have

∗Sn −→ ∗SN
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∗Sn −→ SN

in which SN = C[z1, . . . , zN ] is the set of internal polynomials over ∗C in

variables z1, . . . , zN with an unlimited hypernatural number N .

Now let J be an ideal in SN, Jn its contraction to Sn and JN the corre-

sponding internal ideal in SN . We have the following diagram:

Sn

��

αn,N // SN

��
∗Sn

αn,N // SN

��
∗SN

Using transfer we can see that α−1
n,N(JN) = ∗Jn, for all n ∈ N. Hence,

α−1
N,N(JN) = J.

1.6 Enlargement of commutative rings

In this section, we study the enlargement of commutative rings, especially

Noetherian rings. In the theory of commutative rings, localization and com-

pletion of rings and modules have some typical properties like preserving

exactness of sequences and behaving well with tensor product. That is, if R

is a Noetherian ring, p a prime ideal and M is a finitely generated R-module,

then we have:

Mp ' Rp ⊗R M.

M̂ ' R̂⊗R M.

We prove similar properties of enlargement of modules. As usual, we

denote the enlargement of R and M as ∗R and ∗M . For any ideal I of R we
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have two notions of radical of ∗I in the ring ∗R. One is the usual
√∗

I when

we consider ∗R as a ring. The other is the internal notion of radical of idelas,

namely int
√∗

I which is the enlargement of
√

I, that is,

int√∗I = ∗√I.

From now on we work with a Noetherian commutative ring R.

Theorem 1.6.1 For any ideal I in R, we have:

∗ min(I) = min
int

(∗I) = min(∗I).

where min of an ideal is the set of minimal prime ideals over the correspond-

ing ideal.

Proof Since R is Noetherian, min(I) is a finite set, say {p1, . . . , pl}. Then,

∗ min(I) = min(I). Now let q be a prime ideal of ∗R containing ∗I. Hence, its

contraction qc in R is a prime ideal containing I. There is some j such that

pj ⊆ qc. Since R is Noetherian, each ideal in R is generated by a finite number

of elements, the same is true for the enlargement of any ideal. Therefore,

∗pj ⊆ q which in turn implies the equalities. �

We also can prove that ∗J(R) = J(∗R) where J(R) is the Jacobson radical

of R and similarly J(∗R) is the Jacobson radical of ∗R.

Corollary 1.6.2 For I as in Theorem 1.6.1, we have the following:

(i) int
√∗

I =
√∗

I and nilint(
∗R) = ∗ nil(R) = nil(∗R);

(ii) q is p-primary iff ∗q is ∗p-primary iff ∗q is internally ∗p-primary.
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Lemma 1.6.3 Let φ : M −→ N be a homeomorphism of R-modules. Then,

(i) ker ∗φ = ∗ ker φ;

(ii) im ∗φ = ∗ imφ.

Proof (i)

(∀m ∈M)(m ∈ ker φ←→ φ(m) = 0).

and by transfer:

(∀m ∈ ∗M)(m ∈ ∗ ker φ←→ ∗φ(m) = 0).

(ii) Use a similar formula. �

Remark 1.6.4 Let M, N, L and K be R-modules. Then, the above Lemma

shows that

(i) 0 −→ N −→M −→ K −→ 0 is exact iff

0 −→ ∗N −→ ∗M −→ ∗K −→ 0

is exact.

(ii) ∗M/∗N = ∗(M/N).

Lemma 1.6.5 ∗R is a faithfully flat R-algebra.

Proof By [2, ch. I,§2,no11] ∗R is a faithfully flat R-algebra iff for any

maximal ideal m in ∗R, m∗R 6= ∗R and any solution of an R-homogeneous

linear equation
∑l

i=1 aiYi = 0 in ∗Rl is a ∗R linear combination of solutions

in Rl.
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Let m be any maximal ideal of R. Since R is Noetherian, m∗R = ∗m,

m∗R 6= ∗R.

Now let f =
∑l

i=1 aiYi = 0 be an R-homogeneous linear equation. Let A

be the module of solutions of f in Rl. A is an R-submodule of Rl. Since R

is Noetherian, then A is finitely generated, say A =< β1, . . . , βc >. Then,

we have:

(∀x1, . . . , xl ∈ R)
( l∑

i=1

aixi = 0←→ (∃r1, . . . , rc ∈ R)(x1, . . . , xl) =
c∑

i=1

riβi

)
.

and using transfer:

(∀x1, . . . , xl ∈ ∗R)
( l∑

i=1

aixi = 0←→ (∃r1, . . . , rc ∈ ∗R)(x1, . . . , xl) =
c∑

i=1

riβi

)
.

This proves that ∗R is R-flat, hence faithfully flat R-algebra. �

Let M be a finitely generated R-module. Define a bilinear function

ω : M × ∗R −→ ∗M

such that ω(m, r) = rm. This induces a unique R-homomorphism

ΩM : M ⊗R
∗R −→ ∗M, ΩM(

t∑
i=1

ai(mi ⊗ ri)) =
t∑

i=1

airimi.

where ai ∈ R, mi ∈M and ri ∈ ∗R. Clearly, Ω is surjective.

Theorem 1.6.6 ΩM is an isomorphism.

Proof We first assume that M is a free module, say M = Rs. Let {e1, . . . , es}

be a basis for M over R. Then, every element of M ⊗R
∗R can be written

as
∑s

i=1 ai(ei⊗ ri) and its image under ΩM as
∑s

i=1 airiei. Now assume that
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∑s
i=1 airiei = 0. By transfer all airi must be zero. This proves the Theorem

when M is free.

Now in the general case, there is an l and a surjective homomorphism

from Rl to M . Let K be the kernel of this homomorphism. Then, we get an

exact sequence of R-modules:

0 −→ K −→ Rl −→M −→ 0.

and so

0 −→ ∗K −→ ∗Rl −→ ∗M −→ 0.

Also by the flatness of ∗R we have:

0 −→ K ⊗R
∗R −→ Rl ⊗R

∗R −→M ⊗R
∗R −→ 0.

The maps ΩK , ΩRl and ΩM give us the vertical homomorphisms between the

two exact sequences:

0 // K ⊗R
∗R

��

λ // Rl ⊗R
∗R

��

γ //M ⊗R
∗R

��

// 0

0 // ∗K
α // ∗Rl

β // ∗M // 0

Suppose ΩM(a) = 0. There is b such that γ(b) = a. Let ΩRl(b) = c. By

commutativity of the diagram β(c) = 0. Hence, there is d such that α(d) = c.

Since ΩK is surjective, there is e such that ΩK(e) = d. Then, ΩRlλ(e) = c.

On ther hand, ΩRl is an isomorphism, then λ(e) = b. By the exactness of

the sequence γ(b) = γλ(e) = 0. This shows that ΩM is an isomorphism of

R-modules. This completes the proof. �

30



We can consider M ⊗R
∗R as a ∗R-module. ΩM also can be considered as

a ∗R-homomorphism, so a ∗R-isomorphism.

By [2, ch. IV,§2.6,th.2], we have

Ass∗R
∗M = Ass∗R(M ⊗R

∗R) = {∗p : p ∈ AssR M}.

Corollary 1.6.7 Ass∗R
∗M = ∗ AssR M .

� By [8,th1.1], we can say that (as a particular case) T = ∗C[z1, . . . , zm] is

a faithfully flat S = (∗C)[z1, . . . , zm]-algebra. By Lemma 1.6.5, T is also a

faithfully flat R = C[z1, . . . , zm]-algebra:

S
β // T

R

γ

OO
α

??�������

Now let J be an ideal of R. Hence (JS)T = ∗J. Let J1 = γ−1(JS). By

flatness of β, β−1(∗J) = JS, hence γ−1[β−1(∗J)] = J1. On the other, hand by

flatness of α, α−1(∗J) = J. Then, we conclude that γ−1(JS) = J. Therefore,

we get another diagram:

S/JS
β // T/∗J

R/J

γ

OO
α

;;wwwwwwwww

Corollary 1.6.8 J is prime iff JS is prime.
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� If J be a radical ideal. Then, JS and ∗J are also radical.

These ideals, respectively, define closed subsets Y (in Cm), ∗Y∗C (in ∗Cm
∗C)

and ∗Y (in ∗Cm). Moreover, R/
√

J, S/
√

JS and T/
√∗

J are their coordinate

rings, respectively. Now using the previous Corollary we get

Corollary 1.6.9 ∗Y is irreducible iff ∗Y∗C is irreducible iff ∗Y is internally

irreducible.

�
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2 Shokurov’s log flips

2.1 Introduction

In this section we give a survey of the paper [Sh4] by Shokurov on the ex-

istence of log flips in the three dimensional case. There is no result of mine

and no rigorous proof in this section. Moreover, it is independent of other

sections.

The birational classification of algebraic varieties in dimensions more than

2 has fundamental differences from the classification of curves and surfaces.

In the case of curves, essentially we do not have birational classification

because any two birational normal projective curves are isomorphic. The

case of surfaces is more complicated but still we do not face much difficul-

ties. The exceptional locus is always a bunch of rational curves and we

always deal with nonsingular surfaces as far as we are concerned about the

classification of nonsingular surfaces. But in the case of 3-folds or higher

dimensions the exceptional locus can be of codimension more than 1 and

this creates fundamental difficulties. It creates rough sorts of singularities

(even non-Q-Gorenstein), then we have to do an operation to get rid of this

singularities, which is called flip (see below for the definition). The flip op-

eration proved by Reid [R3] for toric varieties, turned out to be extremely

difficult in the general case. The general case was proved by Mori [M] in

dimension 3 with terminal singularities. In more general settings and using

quite different methods, Shokurov [Sh2] solved the flip problem in dimen-

sion 3 with log terminal singularities. Recently, Shokurov in his fundamental

paper [Sh4] created new powerful methods which are able to prove the flip
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problem shortly in dimension 3 and more complicated in dimension 4. The

paper is very technical and still not digested by algebraic geometers.

This note is intended for two group of people. Those who may read this

before starting Shokurov’s Marathon. And those who do not want to get

into technical details.

2.2 Flips

For basic definitions, we refer you to [KM]. We some times write ∗D and ∗D

for the pullback and pushdown of divisors.

Let (X, B) be a Klt pair and f : X → Z a birational contraction. In this

section, we assume that ρ(X/Z) = 1 and we also assume that X is Q-factorial

throughout this chapter.

Definition 2.2.1 f is a flipping contraction if the followings hold:

Klt KX + B is Klt.

small f is a small contraction, i.e. codim exc(f) > 1.

Fano −(KX + B) is f -ample.

Now (Z, f∗B) does not have Klt singularities (actually, it is not even Q-

Gorenstein), so we have to replace it with some other varieties with Klt

singularities, in hope of getting a better model for (X,B). The nominated

variety is a pair (X+, B+) and a map f+ : X+ → Z such that:

small f+ is a small contraction.
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Q-Gorenstein KX+ + B+ is Q-Cartier.

Compatible B+ is the strict transform of B.

Ample KX+ + B+ is f+-ample.

We have not assumed much about the singularities of (X+, B+), but it

turns out that its singularities are at least as good as (X, B). The induced

birational map X 99K X+ is called a KX+B-flip. Now one might ask a stupid

question: is this really the only choice? At least, it looks very natural because

we make the log canonical divisor ”more” nef and we improve singularities.

It is well known that the existence of a the KX + B-flip is equivalent to

the finite generation of the following sheaf of graded OZ-algebras:

R = RX/Z(KX + B) = R(X/Z, KX + B) =
∞⊕
i=0

f∗OX(i(KX + B))

If this algebra is finitely generated, then we take X+ = ProjR. This is the

first step towards the algebraisation of the problem. Algebraic methods are

usually much more powerful and work better in higher dimension. Shokurov’s

idea is to reduce the problem to lower dimensions, that is to use induction.

He reduces the problem of the existence of flip to the existence of pl flips

(definition 2.2.2) where the reduced part of the boundary is not zero. This

enables him to use adjunction and good properties of components of the

reduced part and then restrict the above algebra to the intersection of these

components.

Definition 2.2.2 (Pl Flip) Let 1 ≤ s and S =
∑s

i=1 Si be a sum of

reduced Weil divisors on X. A birational contraction f : X → Z is a pl

contraction if:
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• KX + B + S is dlt and plt if s = 1.

• −(KX + B + S) is f -ample.

• each Si is Q-Cartier and Si ∼Q ri,jSj for rational numbers ri,j > 0.

Moreover, f is an elementary pl contraction if in addition the following hold:

• f is extremal, that is the relative Picard number ρ(X/Z) = 1.

• −S is f -ample.

• f is small.

• X is Q-factorial and projective/Z.

The S-flip for this contraction is a pl flip if it exists. The S-flip is as in

definition 2.2.1 replacing KX + B and KX+ + B+ by S and S+ respectively.

Remark 2.2.3 Special termination claims that in any sequence of flips,

after a finite number of steps the flipping locus (the locus of those curves

contracted by the flipping contraction) does not intersect the reduced part of

the boundary. More generally, it does not intersect any log canonical centre

on X.

The following theorem indicates why we are interested in pl flips.

Reduction Theorem 2.2.4 Log flips exist in dimension n if the follow-

ings hold:

Pl Flips Pl flips exist in dimension n.
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Special Termination special termination holds in dimension n.

See Shokurov [Sh4]. Sketch of proof: The main idea is to choose a re-

duced Cartier divisor H on Z such that it contains all singularities of Z and

singularities of the push down of the boundary on Z. Moreover, that the

components of ∗H, on any model W/Z, generate the Neron-Severi group of

W . Then, we take R → X to be a log resolution for the pair (X, B) and

put D = B∼ + H∼ +
∑

Ei where the superscript ∼ stands for the strict bi-

rational transform and Ei are all exceptional divisors of the resolution. Now

we start running the LMMP for the pair (R,D). In each step, discarding the

relatively ample components of D, we face a pl contraction or a divisorial

contraction if we choose our contractions to be extremal. So, we are fine by

the assumptions on pl flips. Moreover, at each step some component of the

reduced part of the boundary is relatively negative (by the assumptions on

H) so, the special termination applies to this case.

Remark 2.2.5 LMMP in dimensions less than n implies special termi-

nation in dimension n [Sh4, 2.3], so we do not have to worry about special

termination in dimension four. The important thing is to prove the existence

of pl flips.

To deal with special termination using LMMP in lower dimensions, we

note that log canonical centres on a dlt pair (R,B) (in particular irreducible

components of the reduced part of B) on R are located in the local inter-

section of irreducible components of the reduced part of B. Let (Ri, Bi) 99K

(Ri+1, Bi+1)/Ti be a sequence of flips starting from (R0, B0) = (R,B) and

suppose that ω is a log canonical centre on (R0, B0) such that its birational
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transform on Ri and Ti is ωi and γi respectively. Then, using adjunction, we

get a sequence of birational maps (ωi, Bωi
) 99K ωi+1, Bωi+1

)/γi where we may

have both divisorial and small contractions /γi. We have to get rid of the

divisorial ones (using versions of difficulty introduced by Shokurov) and get

a sequence of log flips for (ω,Bω) and use the LMMP to conclude that the

original sequence of flips induces isomorphisms on (ω,Bω). Then, we can get

special termination from this. Because if any flipping curve Ci intersects ωi,

then Ci · ωi > 0 (note by the above ω does not contain any flipping curve ).

So, we have Ci+1 ·ωi+1 < 0 for some flipped curve Ci+1, that is, ωi+1 contains

Ci+1 which is a contradiction.

2.3 Reduction to Lower Dimensions and b-divisors

To prove the existence of pl flips, now we know how to use induction (of course

after Shokurov!). The targeted lower dimensional variety is the intersection

of all Si given in the definition of pl flips (definition 2.2.2). Y =
⋂s

i=1 Si is

called the core of f and its dimension d is called the core dimension. The

smaller d, the easier life is. Y is normal because (X, KX + B + S) is a dlt

pair. It is irreducible near the fibres of a point P ∈ Z (we can shrink Z as

our problem is local with respect to Z). Using adjunction, we also know that

the new pair (Y/T, BY ) is Klt where T = f(Y ).

Moreover, special termination is proved up to dimension 4, so the ex-

istence of pl flips in dimension 4 implies the existence of all log flips in

dimension 4.

The existence of pl flips is equivalent to the finite generation of a graded sheaf

of algebras, namely RX/Z(D) for a suitable D ∼Q S. Now we can restrict
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this algebra naturally to Y via maps ri : OX(iD) → OY (iD|Y ) and denote

it by R|Y . Unfortunately, the resulting algebra is not divisorial. That is,

it is not of the form RY/T (D′) =
⊕∞

i=0 f∗OY (i(D′)) for a divisor D′ on Y .

This difficulty is remedied by another beautiful idea of Shokurov [Sh4, ], the

notion of b-divisor or birational divisor.

A prime b-divisor P over Y is a valuation of the function field K(Y )

which corresponds to a prime divisor PW (possibly zero) on any birational

model W . A b-divisor is a formal sum D =
∑∞

i=1 diPi where di ∈ Z and Pi

is a prime b-divisor, such that the trace DW :=
∑

i diPiW is a finite sum on

any birational model W . And also, it should be compatible with pushdown

of divisors for any birational morphism W → W ′. Similarly, b-divisors can

be defined with rational or real coefficients.

For any Cartier divisor D on Y , we can naturally define a b-divisor D

which has trace f ∗D on any birational model f : W → Y . This b-divisor is

called the Cartier closure of D.

Lets define a b-divisorMi as

Mi = lim sup{−(s) : s ∈ Ri}

where R|Y =
⊕∞

i=0Ri. Put

R|Y :=
∞⊕
i=0

f∗OY (Mi)

Theorem 2.3.1 R is f.g. if and only if R|Y is f.g. if and only if R|Y is

f.g.

40



Proof See [Sh4, 3.43] and [Sh4, 4.15].

We now convert our problem to another about b-divisors. PutDi =Mi/i.

Theorem 2.3.2 (Limiting Criterion) R|Y is f.g. if and only if the sys-

tem {Di}∞i=0 stabilises, that is, Di = D for all large i where D = limi→∞Di.

Proof See [Sh4, 4.28].

In practise, first we always try to prove that D is a b-divisor over Q and

then, prove that the system stabilises. To prove this rationality condition,

Shokurov introduced the notion of (asymptotic) saturation of linear systems

and proved that our system has this property [Sh4, section 4]:

Log canonical asymptotic saturation There is an integer I, the index

of the saturation, such that for any i and j which satisfies I| i,j we have

Mov pjDi +AqW ≤ (jDj)W

on any high resolution W , where A is the discrepancy b-divisor, that

is, AW = KW − ∗(KY + BY ).

Remark 2.3.3 (Truncation principle) It is easy to prove that
⊕∞

i=0Ri

is f.g. if and only if
⊕∞

i=0Ril is f.g. for a natural number l. So we may replace

our sequence Di with lDil without mention.

2.4 The FGA Conjecture

The following conjecture implies our original conjecture and Shokurov proves

that it holds in dimension two:
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The FGA Conjecture 2.4.1 Let (Y/T, B) be a Klt weak log Fano con-

traction. Then, any system of b-divisors {Di}∞1 which satisfies the following,

stabilises.

• ∗OY (iDi) is a coherent sheaf on T for all i.

• Log canonical asymptotic saturation.

• iDi + jDj ≤ (i + j)Di+j for all i, j.

First, we consider the 1-dimensional case of this conjecture. On curves,

b-divisors are the usual divisors. Let (C/pt., B) be a 1-dimensional klt pair,

P ∈ C and b the coefficient of P in B. Then, the saturation (at P ) looks like

the following

pjdi + aq ≤ jdj

where a = −b, b < 1 and di is the coefficient of P in Di. Note that divisors

with high degree have no fixed part, so they are movable. Let d = limi→∞ di,

hence

pjd− bq ≤ jd

This inequality implies that d is a rational number. If d is not rational, then

the set {< jd > : j ∈ N} is dense in [0, 1], where < x > stands for the

fractional part of x. This fact and the fact that b < 1 imply that d must be

rational. So, for some j, we have jd + p−bq ≤ jdj, hence d ≤ dj and then

d = dj (for infinitely many j). This approximation procedure is an essential

part of the proof of the limiting criterion also in higher dimension. To get

this approximation, we use the fact that semiampleness is an open condition.

But we must first prove that DY is semiample on certain models. We can
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make DY nef using LMMP and then the weak log Fano condition plays its

role: in this case, nef divisors are semiample (/T ).

2.5 Finding Good Models

The b-divisors iDi appearing in section 2.3 in the restriction algebra have

many good properties. I mentioned the log canonical asymptotic saturation

property. iDi are b-free (and so b-nef), which means that there is a model

W such that iDi = iDiW and iDiW is a free divisor and in particular a nef

divisor, but for different Di we have different W (the ultimate goal is to prove

that many of them share the same model). Di also have all properties listed in

the statement of the FGA conjecture (2.4.1). In the last section, I mentioned

the approximation procedure and used it to prove the FGA conjecture in the

1-dimensional case. But in higher dimensions it is more complicated. To use

this method, we first make infinitely many Di nef on a single model/T of

(Y,B) without losing the weak log Fano condition and the other mentioned

properties of Di. We replace (Y, B) by this model, denote it again by (Y,B).

In the course of obtaining this model, the boundary may increase (see [Sh4,

Example 5.27] for full details). Now all DiY nef/T implies that DY is also

nef/T and so semiample/T . The difficulty is that we do not know if D = DY

is a Q-divisor so we cannot simply say that a multiple of it is free/T . But we

know that Q-divisors very close to it are eventually free. Assuming that D is

not a Q-divisor and using Diophantine approximation, we can get Q-divisors

{Dα}α∈N such that:

• Dα � D for any α.
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• αDα is free.

• for any ε there is an N such that |αDα − αD| ≤ ε if N ≤ α.

To prove our stabilisation it is enough to prove that for a crepant model

(U,BU)/T of (Y,B)/T , we have the following:

1. Di = (Di)U .

2. DU = (Di)U for infinitely many i.

Now let us consider how we can solve this problem using the above infor-

mations assuming that the approximation has been carried out on a crepant

model of (Y, B)/T , say (Y ′, B′):

Mov pjDi +AqW

= p(A− jDiY ′ + jDi) + (jDiY − jD) + (jD − jDα) + jDαqW

≤ (jDj)W ≤ (jD)W

Denote N Y ′ − N by EN ,Y ′ for any b-divisor N . By negativity lemma

0 ≤ NY ′ − N if N is b-nef. To get a contradiction, the only problematic

term in the above formula is −j(DiY ′ −Di) +A = −jEDi,Y ′ +A. If we can

prove that 0 ≤ −riEDi,Y ′ + A for all i for a subsequence ri → ∞, we get

a contradiction. It is even enough to prove that 0 ≤ p−riEDi
+ Aq. This

inequality is one of the most important things that Shokurov tries to prove

and this leads to the CCS conjecture. It is important to have the following

conditions on a crepant model (Y ′, B′)/T of (Y,B)/T :

Semiampleness DY ′ is semiample.
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Canonical asymptotic confinement There are positive real numbers

ri such that ri →∞ and 0 ≤ −riEDi,Y ′ +A holds for any i.

I discussed the first condition and the second one will be discussed in the

next section. Note that the second one implies that 0 ≤ A(Y ′, B′) since Di

are b-nef. This means that (Y ′, B′) is canonical. So this predicts that to get

the asymptotic confinement it is better to work on a terminal crepant model

of (Y,B)/T .

2.6 The CCS Conjecture

The conditions at the end of the last section are sufficient to solve our prob-

lem. The second condition has a very important advantage, that is, EN = EN ′

if N ∼ N ′ or even if N ≡ N ′. We know that the saturation condition is

preserved under linear equivalence. So, we may move our divisors linearly

and use their freeness properties.

Canonical confinement of singularities(CCS) Let {Dα}α∈A be a set

of divisors on (Y ′, B′). We say that singularities of these divisors is

confined up to linear equivalence, if there is c > 0 such that for any α

there is D′
α ∈ |Dα| s.t. the pair (Y ′, B′ + cD′

α) is canonical.

Note that the general member of a free linear system is reduced and

irreducible. So, any such divisor can be confined by a c which just depends

on the model and not on the free divisor. Actually, all but a bounded family

of the b-divisors in the bellow conjecture are free on the terminal model.

The bounded family in the conjecture corresponds to this bounded family of
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divisors such that each of these divisors is free on a model depending on the

divisor.

Back to our set of b-divisors {Di}. Suppose there is a c which confines

the singularities of these divisors on (Y ′, BY ′) and D′iY ′ ∈ |DiY ′| (see 6.1).

Then, for any model W over Y ′ we have:

(A(Y ′, BY ′)− icEDi,Y ′)W = (A(Y ′, BY ′)− icED′i,Y ′)W

= KW −∗ (KY ′ + BY ′)− ic(ED′i,Y ′)W

= KW −∗ (KY ′ + BY ′ + ciD′iY ′) + ci(D′i)W

≥ ci(D′i)W ≥ 0.

In other words, the b-divisors Di over (Y ′, BY ′) satisfy the asymptotic

confinement. Now, can we find such a model? This is what CCS conjecture

is about.

Roughly speaking the CCS conjecture is as follows:

The CCS Conjecture 2.6.1 Let M(Y ′, BY ′) be the set of b-free b-divisors

which are log canonically saturated (i.e. MovpM+Aq ≤M. Then, there is a

bounded family of models on which M(Y ′, BY ′) has canonically confined sin-

gularities. In other words, there is c > 0 s.t.for eachM∈M(Y ′, BY ′) there is

a crepant terminal model (Y ′
M, BM) and M′ ∈ |M| in which BYM + cM′

Y ′M

is canonical. Moreover, if (Y,BY )/T is birational, then this family can be

taken finite (for our problem we can take just one model).

See [Sh4, 6.14]. Now, by asymptotic saturation for {Di}, we get canonical

saturation forMj = jDj:
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Mov pjDj +AqW ≤ (jDj)W

where we take i = j. So, we may apply the above conjecture to prove

the canonical confinement of singularities. Also on this model we have the

semiampleness property because it is a crepant model of (Y,B), so this gives

a solution to our problem. This conjecture has been proved up to dimension

2 [Sh4, 6.25 and 6.26].
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3 Boundedness of epsilon-log canonical com-

plements on surfaces

3.1 Introduction

The concept of complement was introduced and studied by Shokurov [Sh1,

Sh2]. He used complements as a tool in the construction of 3-fold log flips

[Sh1] and in the classification of singularities and contractions [Sh2]. Roughly

speaking, a complement is a “good member” of the anti-pluricanonical linear

system i.e. a general member of |−nKX | for some n > 0. The existence of

such a good member and the behaviour of the index n are the most important

problems in the theory of complements. Below we give the precise definition

of “good member”.

Throughout this chapter and chapter four, we assume that the varieties

involved are algebraic varieties over C. In this chapter, the varieties are all

surfaces unless otherwise stated. By a log pair (X,B), we mean a normal

variety X and an R-boundary B [Sh5]. A log pair (X/Z,B) consists normal

algebraic varieties X and Z equipped with a projective contraction X → Z

(we often use the notation X → Z instead of f : X → Z) and B is an R-

boundary on X. When we write (X/P ∈ Z,B), we mean a log pair (X/Z,B)

with a fixed point P ∈ Z; in this situation, we may shrink Z around P in the

Zariski topology without mention. If Z = X and the morphism X → Z is the

identity, then we may use (P ∈ X, B) instead of (X/P ∈ X, B). We denote

the log discrepancy [Sh1, §1] of (X, B) at a prime divisor E as a(E, X, B).

We use the definition of terminal, canonical, Kawamata log terminal (Klt),

divisorial log terminal (dlt), purely log terminal (plt) and log canonical (lc)
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singularities as in [Sh5]. In particular, KX + B must be R-Cartier. The pair

(X/Z, B) is weak log Fano (WLF) if (X,B) is lc and −(KX + B) is nef and

big/Z and X is Q-factorial.

When we say that a property holds/P , we mean that that property holds

in U−1 where U is an open subset of Z containing P and U−1 ⊆ X is the

set-theoretic pullback of U .

For the basic definitions of the Log Minimal Model Program (LMMP), the

main references are [KMM] and [KM]. And to learn more about the theory

of complements [Sh2] and [Pr] are the best.

Definition 3.1.1 Let ε ∈ R. A log pair
(
X, B =

∑
i biBi

)
is ε-lc in

codimension 2 (codim 2) if for any exceptional/X divisor E on any log res-

olution W → X the log discrepancy satisfies the inequality a(E, X, B) ≥ ε.

Moreover, (X, B) is ε-lc if it is ε-lc in codim 2 and every bi ≤ 1− ε.

Definition 3.1.2 Let (X,B) be a log pair of dimension (dim) d. A log

divisor KX+B+ is an (ε, R)-complement/P ∈ Z for KX+B if (X, KX+B+) is

ε-lc/P ∈ Z, KX +B+ ∼R 0/P ∈ Z and B+ ≥ B. An (ε, Q)-complement/P ∈

Z can be similarly defined where ∼R is replaced by ∼Q.

Definition 3.1.3 (ε-lc complements) Let
(
X/Z, B =

∑
i biBi

)
be a pair

of dim d. Then, KX +B+ is called an (ε, n)-complement/P ∈ Z for KX +B,

where B+ =
∑

i b
+
i Bi, if the following properties hold:

� (X, KX + B+) is an ε-lc pair/P ∈ Z and n(KX + B+) ∼ 0/P ∈ Z.

� x(n + 1)biy ≤ nb+
i .
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We say (X/P ∈ Z,B) is (ε, n)-complementary/P if there exists an (ε, n)-

complement/P for KX + B.

Definition 3.1.4 (ε-lc complements in codim 2) An (ε, n)-complement,

(ε, R)-complement or (ε, Q)-complement in codim 2 is defined as in Definition

3.1.3 and Definition 3.1.2 replacing the ε-lc condition by ε-lc in codim 2.

Remark 3.1.5 In Definitions 3.1.2 and 3.1.3, if we take ε = δ = 0 then

we have the usual notion of complement as defined in [Sh2].

Despite the somewhat tricky definition above, complements have very

good birational and inductive properties which make the theory a powerful

tool to apply to the LMMP. Complements do not always exist even with

strong conditions such as −(KX + B) nef [Sh2, 1.1]. But they certainly do

exist when (X/Z,B) is a Klt WLF and B is a Q-divisor [Example 3.1.29].

In this thesis, complements usually exist. Therefore, we concentrate on the

second main problem about complements, namely boundedness. This relates

to several open problems in the LMMP. We state Shokurov’s conjectures on

the boundedness of complements.

Definition 3.1.6 Let Γ ⊆ [0, 1]. For a divisor B =
∑

i biBi, we write

B ∈ Γ if all bi ∈ Γ. The set Φsm = {k−1
k
|k ∈ N} ∪ {1} is called the set of

standard boundary multiplicities. Γf denotes a finite subset of [0, 1].

Conjecture 3.1.7 (Weak ε-lc complements) Let Γ ⊂ [0, 1] be a set of

real numbers which satisfies the descending chain condition (DCC). Then,

for any δ > 0 and d there exist a finite set Nδ,d,Γ of positive integers and
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ε > 0 such that any d-dimensional δ-lc weak log Fano pair (X/P ∈ Z,B),

where B ∈ Γ, is (ε, n)-complementary/P ∈ Z for some n ∈ Nδ,d,Γ .

We refer to this conjecture as WCδ,d,Γ. We prove WCδ,2,{0} when Z = pt.

(Theorem 3.7.1) and WCδ,2,Φsm when dim Z ≥ 1 (Theorem 3.10.1) for any

δ > 0.

Conjecture 3.1.8 (Weak ε-lc complements in codim 2) Let Γ ⊂ [0, 1]

be a set of real numbers which satisfies the DCC. Then, for any δ > 0 and

d there exist a finite set Nδ,d,Γ,codim 2 of positive integers and ε > 0 such that

any d-dimensional δ-lc in codim 2 weak log Fano pair (X/P ∈ Z,B), where

B ∈ Γ, is (ε, n)-complementary/P ∈ Z in codim 2 for some n ∈ Nδ,d,Γ,codim 2.

We refer to this conjecture as WCδ,d,Γ,codim2.

Conjecture 3.1.9 (Strong ε-lc complements) For any ε > 0 and d

there exists a finite set Nε,d of positive integers such that any d-dimensional

ε-lc weak log Fano pair (X/P ∈ Z,B) has an (ε, n)-complement/P ∈ Z for

some n ∈ Nε,d.

We refer to this conjecture as SCε,d. If we replace ε > 0 with ε = 0 in

the above conjecture (it makes a big difference), we get the usual conjecture

on the boundedness of lc complements which has been studied by Shokurov,

Prokhorov and others [Sh2, PSh, PSh1, Pr]. It is proved in dim 2 [Sh2] with

some restrictions on the coefficients of B.

Conjecture 3.1.10 (Strong ε-lc complements in codim 2) For any ε >

0 and d there exists a finite set Nε,d,codim2 of positive integers such that any
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d-dimensional ε-lc in codim 2 weak log Fano pair (X/P ∈ Z,B) has an (ε, n)-

complement/P ∈ Z in codim 2 for some n ∈ Nε,d,codim 2.

We refer to this conjecture as SCε,d,codim 2.

The following important conjecture, due to Alexeev and the Borisov

brothers, is related to the above conjectures [Mc, A1, PSh, MP].

Conjecture 3.1.11 (BAB) Let δ > 0 be a real number, d > 0 and Γ ⊂

[0, 1]. Then, varieties X for which (X/pt., B) is a d-dimensional δ-lc WLF

pair for a boundary B ∈ Γ form a bounded family (Definition 3.2.1).

BAB stands for Borisov-Alexeev-Borisov. We refer to this conjecture

as BABδ,d,Γ. Alexeev [A1] proved BABδ,2,Γ for any δ > 0 and Γ. This

conjecture was proved by Kawamata [K1] for terminal singularities in dim 3

and BAB1,3,{0} was proved by Kollar, Mori, Miyaoka and Takagi [KMMT].

The smooth case was proved by Kollar, Mori and Miyaoka in any dimension.

The conjecture is open even in dim 3 when δ < 1. In any case, in many

interesting applications δ < 1.

Definition 3.1.12 The index of a Q-divisor D at Q ∈ X is the Cartier

index of D at Q, that is, the smallest natural number I such that ID is

Cartier at Q. We denote the index of D at Q as indexQ(D). The index of

D is the smallest natural number I such that ID is Cartier. We denote it as

index(D). The index of a pair (X, B) is the index of KX + B.

The following special case of Conjecture 3.1.11 was proved by Borisov in

dim 3 [B] and by McKernan in any dimension [Mc].
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Theorem 3.1.13 (Borisov-McKernan) The set of all Klt WLF pairs (X/pt., B)

with a fixed given index form a bounded family of pairs (Definition 3.2.2).

Definition 3.1.14 Let (X, B) be a lc pair and η ∈ X where codim η ≥

2. The minimal log discrepancy (mld) of (X, B) at η ∈ X denoted as

mld(η, X,B) is the minimum of {a(E, X, B)} where E runs over all excep-

tional divisors/η on all log resolution W → X.

The following conjecture is due to Shokurov.

Conjecture 3.1.15 (ACC for mlds) Suppose Γ ⊆ [0, 1] satisfies the DCC.

Then, the following set satisfies the ascending chain condition (ACC):{
mld(η, X, B)

∣∣ (X, B) is lc of dim d, η ∈ X and B ∈ Γ
}

We refer to this conjecture as ACCd,Γ. Alexeev [A2] proved ACC2,Γ for

any DCC set Γ ⊆ [0, 1]. This conjecture is open in higher dimension except

in some special cases.

Conjecture 3.1.16 (Log termination) Let (X, B) be a d-dimensional

Klt pair. Then, any sequence of (KX + B)-flips terminates.

This conjecture guarantees that LMMPd terminates after finitely many

steps. We refer to it as LTd. Kawamata [K2] proved LT3 and the 4-

dimensional case with terminal singularities [KMM]. Actually, LT4 is the

main missing component of LMMP4, without which we cannot apply the

powerful LMMP to problems in algebraic geometry. At first sight, this con-

jecture does not seem to be that difficult at least because of the short proof

of Kawamata to LT3 where he uses the classification of terminal singular-

ities. The latter classification is not known in higher dimension (probably
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intractable). Recent attempts by Kawamata and others to solve LT4 showed

that this problem is much deeper than expected. There is speculation that

it may be even more difficult than the flip problem.

We listed several important conjectures with no obvious relation. It is

Shokurov’s amazing idea to put all these conjectures in a single framework

that we refer to as Shokurov’s Program:

(3.1.16.1)

ACCd → LTd Shokurov proved that LTd follows from ACC (Conjecture

3.1.15) up to dim d and the following problem up to dim d [Sh4]:

Conjecture 3.1.17 (Lower semicontinuity) For any Klt pair

(X, B) of dim d and any c ∈ {0, 1, . . . , d− 1} the function

mldc(µ, X,B) : {codim c points of X} −→ R

is lower semicontinuous.

This conjecture is proved up to dim 3 by Ambro [Am]. This conjecture

does not seem to be as tough as the previous conjectures. Shokurov

[Sh4, Lemma 2] solved this problem in dim 4 for mlds in [0, 2] . Thus,

ACC in dim 4 is enough for log termination in dim 4 [Sh4, Corollary

5]. Actually ACC for mlds in [0,1] for closed points is enough [Sh4,

Corollary 5].

BABd−1 → ACCd Shokurov [Sh2, 7.11] defines a new invariant reg(P ∈

X, B+) ∈ {0, . . . , d−1} for any d-dimensional lc singularity (P ∈ X, B)
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and proves (see [Sh2, 7.16] for 3-dimensional case and [PSh, 4.4] or

[Sh2, 7.17] for general case when B ∈ Φsm) that ACCd,Γ (Conjecture

3.1.15) for pairs with reg(P ∈ X, B+) = 0 follows from BABd−1 (Con-

jecture 3.1.11). If reg(P ∈ X, B+) = 0, then the singularity is excep-

tional (see Definition 3.2.9). Also if reg(P ∈ X, B+) ∈ {1, . . . , d − 2},

then ACCd,Γ can be reduced to lower dimensions ([Sh2, 7.16 and 7.17]

and Shokurov’s unpublished work). Thus, the only remaining part

of ACCd,Γ is when reg(P ∈ X, B+) = d − 1. This case is expected

to be proved using different methods (similar to toric singularities

[Sh2, 7.16]). So in particular ACC4,Γ follows from the BAB3 and

the reg(P ∈ X, B+) = 3 case. Moreover, ACC3,Γ follows from the

reg(P ∈ X, B+) = 2 case.

WCd−1 → BABd−1 For us, this is possibly the most important appli-

cation of the theory of complements: WCδ,d−1,{0} (Conjecture 3.1.7)

“implies” BABδ,d−1,[0,1] (Conjecture 3.1.11). More precisely, these two

problems can be solved at the same time. In other words, in those

situations where boundedness of varieties is difficult to prove, bound-

edness of complements is easier to prove. And that is exactly what

we do in this thesis for the 2-dimensional case: we prove WCδ,2,{0}

and BABδ,2,[0,1]. Our main objective is to find a proof of WCδ,2,{0} and

BABδ,2,[0,1] using as little of the geometry of the algebraic surfaces as

possible, so that it can be generalised to higher dimension. In other

words, the methods used in the proof of these results are the most im-

portant for us. After finishing this work, we expect to finish the proof

that WCδ,3,{0} “implies” BABδ,3,[0,1] in the not-too-distant future!
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The program in dim 4 Let us mention that by carrying out Shokurov’s

program in dim 4, in which the main ingredient is WCδ,3,{0} (Conjecture

3.1.7) i.e. boundedness of ε-lc complements in dim 3, one would prove

the following conjectures:

• ACC for mlds in dim 3 (Conjecture 3.1.15).

• Boundedness of δ-lc 3-fold log Fanos BAB3 (Conjecture 3.1.11).

• ACC for mlds in dim 4.

• Lower semicontinuity for mlds in dim 4 (Conjecture 3.1.17).

• Log termination in dim 4 and then LMMP4 (Conjecture 3.1.16).

Plan of remaining sections:

1. Chapter 3 (current chapter) studies complements on log surfaces.

2. In 3.2, we recall some definitions and lemmas.

3. In 3.3, we prove WCδ,1,[0,1], that is, the boundedness of ε-lc complements

in dim 1 (Theorem 3.3.1).

4. In 3.5, we prove WCδ,2,{0} for the case X = Z i.e. the boundedness of

ε-lc complements in dim 2, locally, for points on surfaces with B = 0

(Theorem 3.5.1).

5. In 3.6, we prove WCδ,2,{0} when X/Z is a birational equivalence i.e.

the boundedness of ε-lc complements in dim 2, locally, for birational

contractions of surfaces with B = 0 (Theorem 3.6.1). This proof

is a surface proof i.e. we make heavy use of the geometry of algebraic
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surfaces, so it seems unlikely that it can be generalized to higher dimen-

sions. A second proof of the birational case is given in 3.10 (Theorem

3.10.1).

6. In 3.7, we prove WCδ,2,{0} when Z = pt., that is, boundedness of ε-

lc complements on surfaces, globally, with B = 0 (Theorem 3.7.1).

The proof is based on the LMMP and we expect it to generalise to

higher dimension. As a corollary, we give a completely new proof to the

boundedness of ε-lc log del Pezzo surfaces (Corollary 3.7.9). Another

application of our theorem is a proof of boundedness of lc (ε = 0) com-

plements only using the theory of complements (Theorem 3.1.24).

The latter boundedness was proved by Shokurov [Sh2].

7. In 3.8, we give a second proof of WCδ,2,{0} in the global case, that is,

when Z = pt. (Theorem 3.8.1). This proof also uses surface geometry

and we do not expect it to generalise to higher dimension.

8. In 3.10 we give a proof of WCδ,2,Φsm in all local cases, in particular, the

case where X/Z is a fibration over a curve (Theorem 3.10.1). This

proof is also based on the LMMP.

9. Chapter 4 is about higher dimensional ε-lc complements. We discuss

our joint work in progress with Shokurov.

10. In 4.1-2, we discuss Plans for attacking the boundedness of ε-lc com-

plements in dimension 3, one due to myself and the second suggested

by Shokurov.

We summarize the main results of chapter 3:
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Theorem 3.1.18 Conjecture 3.1.7 holds in dim one for Γ = [0, 1].

See 3.3.1 for the proof.

Theorem 3.1.19 Conjecture 3.1.7 holds in dim two in the global case,

that is, when Z = pt. and Γ = {0}.

See 3.7.1 and 3.8.1 for proofs.

Theorem 3.1.20 Conjecture 3.1.7 holds in dim two in the local cases,

that is, when dim Z > 0 and Γ = Φsm.

See 3.10.1 , 3.5.1 and 3.6.1 for proofs.

Corollary 3.1.21 Conjecture 3.1.11 holds in dim two.

See 3.7.9 for proof. Conjecture 3.1.11 in dim 2 was first proved by Alexeev

using different methods [A1].

Corollary 3.1.22 Theorem 3.1.24 can be proved using only the theory of

complements.

See the discussion following Theorem 3.1.24.

Remark 3.1.23 (ε-lc complements method) Though formally speak-

ing the list above are the main results in chapter 3, we believe that the

method used to prove 3.7.1 and 3.10.1 is the most important result of this

chapter.

Here we mention some developments in the theory of complements. The

following theorem was proved by Shokurov [Sh2] for surfaces.
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Theorem 3.1.24 There exists a finite set N2 of positive integers such that

any 2-dim lc weak log Fano pair (X/P ∈ Z,B) has a (0, n)-complement/P ∈

Z for some n ∈ N2 if B is semistandard, that is, each coefficient b of B,

satisfies b ≥ 6
7

or b = m−1
m

for some natural number m. Moreover if dim Z > 0

then the theorem holds for a general boundary.

Shokurov uses BAB2 (3.1.11) in the proof of the above theorem. As men-

tioned before, the results of this thesis imply the BAB2 (Corollary 3.7.9). So,

the above theorem can be proved only based on the theory of complements.

A similar theorem is proved by Prokhorov and Shokurov in dim 3 modulo

BAB3 and the effective adjunction in dim 3 (Conjecture 4.2.2). However,

the local case does not need the latter assumptions as the following theorem

shows [PSh].

Theorem 3.1.25 Let (X/P ∈ Z,B) be a Klt WLF 3-fold pair where

dim Z ≥ 1 and B ∈ Φsm. Then, KX + B is (0, n)-complementary/P ∈ Z for

some n ∈ N2.

Complements have good inductive properties as Theorem 3.1.25 shows.

This theorem is stated and proved in higher dimensions in more general

settings (see [PSh]). To avoid some exotic definitions, we stated only the

3-fold version.

Finally, we give some examples of complements and their boundedness.

More examples can be found in [Sh1, Sh2, Pr, PSh, PSh1].

Example 3.1.26 Let (X/Z, B) = (P1/pt., 0) and let P1, P2, P3 be distinct

points on P1. Then, KX + P1 + P2 is a (0, 1)-complement for KX but it is
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not an (ε, n)-complement for any ε > 0 since KX + P1 + P2 is not Klt. On

the other hand, KX + 2
3
P1 + 2

3
P2 + 2

3
P3 is a (1

3
, 3)-complement for KX .

Example 3.1.27 Let (X1/Z1, B1) = (P2/pt., 0) and

(X2/Z2, B2) = (P2/P2, 0). Then, KX2 is a (2, 1)-complement/Z2 at any point

P ∈ Z2, but obviously KX1 is not even numerically zero/Z1 though KX1 =

KX2 .

Example 3.1.28 Let (X/Z, B) = (X/X, 0) where X is a surface with

canonical singularities. Then, the index of KX is 1 at any point P ∈ X. So

we can take B+ = 0 and KX is a (1, 1)-complement/X for KX at any P ∈ X.

Example 3.1.29 Let (X/P ∈ Z,B) be a δ-lc WLF pair of dim d where

δ > 0 and B ∈ Q. Then, there exists a (δ, n)-complement/P for some

n ∈ N. By the base point free theorem, −l(KX + B) is free/P for all large

enough l ∈ N. There is an l and a general member H in the free/P linear

system |−l(KX + B)| such that KX + B + 1
l
H is δ-lc/P . KX + B + 1

l
H is a

(δ, n)-complement/P for n = l. Obviously, l(KX + B + 1
l
H) ∼ 0/P by the

construction. Moreover, x(l + 1) t
l
y = xt + t

l
y = t for any coefficient b = t

l
of

B.

In particular, if Z = X and n(KX + B) is Cartier at P then KX + B+ =

KX+B is a (δ, n)-complement/P . Thus, the existence of complements for Klt

singularities (P ∈ X, B), where B ∈ Q, is not a problem. We are interested

in the boundedness of such complements (as in Conjecture 3.1.7. See section

3.5).

Example 3.1.30 Let (P ∈ X, 0) be a surface δ-lc singularity for some
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δ > 0. By Example 3.1.29, there is a (δ, n)-complement for KX where n is

the index of KX .

The singularity at P is either of type Ar, Dr, E6, E7 or E8 [Pr, 6.1.2].

In section 3.5, we prove that if the singularity at P is of type Dr, E6, E7 or

E8 then the index of KX at P is bounded. In other words, complements are

bounded in the sense of Conjecture 3.1.7. However, if the singularity at P

is of type Ar, then the index of KX at P is not bounded. In section 3.5, we

construct a (ε, n)-complement for KX with a bounded n and ε > 0. Ar type

singularities are always (0, 1)-complementary (3.5.3).

Example 3.1.31 Let X be a bounded set of WLF pairs (X/pt., B) (Def-

inition 3.2.2). Then, there is an n such that −n(KX + B) is a free divisor

for any (X/pt., B) ∈ X . Hence, by Example 3.1.29 and the boundedness of

X there is an ε > 0 such that KX + B is (ε, n)-complementary/pt. for any

(X/pt., B) ∈ X .

To prove the boundedness of complements (Conjecture 3.1.7), in some

situations, we first prove the boundedness of pairs. However, we are more

interested in the other way around. In other words, we try to use the bound-

edness of complements to get the boundedness of pairs (Corollary 3.7.9).

Example 3.1.32 Let I ∈ N. Suppose (X/Z,D) is a 2-dimensional Klt

pair with index I where X is projective and Z is a curve. Moreover, assume

that −(KX +D) is nef/pt.. If −(KX +D) is big/pt. then, we can use Borisov–

McKernan (Theorem 3.1.13) to get the boundedness of (X, D) and also the

boundedness of complements for KX + D (Example 3.1.31). However, if

KX + D ≡ 0/Z then we cannot use Theorem 3.1.13. In this case, there
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is a Klt pair (X1/Z,D1) with index I such that X1 → Z is an extremal

contraction (we get X1 by contracting some curves on X). Moreover, assume

that Z = P1 (for example when X is pseudo-WLF/pt. as in Definition 3.2.6)

and KX1 + D+
1 is a (0, n)-complement/pt. for KX1 + D1 where n is bounded.

Let D+
1 −D1 =

∑
i fiFi ≥ 0 where Fi are fibres over Z. The index of D+

1 −D1

is bounded by assumptions. Thus, we can replace D+
1 −D1 by

∑
j f ′jF

′
j where

F ′
j are general fibres such that KX +D+

∑
j f ′jF

′
j is a (1

I
, m)-complement/pt.

for a bounded m.

This example shows how one can use boundedness of (0, n)-complements

to get boundedness of (ε, m)-complements. This method is used in the proof

of Theorem 3.7.1.
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3.2 Preliminaries

In this section, we discuss some basic definitions and constructions.

Definition 3.2.1 A set X of varieties of the same dimension is bounded if

there are schemes X and S of finite type and a morphism φ : X→ S such that

every geometric fibre of φ is a variety in X , and every X ∈ X is isomorphic

to a geometric fibre of φ.

Definition 3.2.2 Let X be a set of pairs (X, BX) of the same dimension.

X is bounded if there are schemes X and S of finite type, a divisor B on

X, a morphism φ : X → S and a finite set Γf ⊂ [0, 1] such that for every

(X, BX) ∈ X , the variety X is isomorphic to a geometric fibre Xs for some

s ∈ S, Supp BX = Supp B|Xs and BX ∈ Γf . In addition, every (Xs, Supp X|s),

with Xs a geometric fibre, must be isomorphic to some (X, Supp BX) ∈ X .

Remark 3.2.3 For a morpishm f : X → Z and divisors A and B on X

and Z respectively, we usually use ∗A instead of f∗A and use ∗B instead of

f ∗B (if B is R-Cartier). This is especially useful when we have a morphism

X → Z with no name.

Definition 3.2.4 Let (X,B) be a lc pair of dim d. Let (Y/X, BY ) be

a log pair such that KY + BY := ∗(KX + B). Then, Y is called a partial

resolution of (X, B).

Lemma 3.2.5 Let X = {X} be a bounded set of projective Klt varieties

of dim d such that −KX is nef and big. Then, the set of partial resolutions

for all X ∈ X is bounded.
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Proof Let Y be the set of partial resolutions for all X ∈ X . Since X is

bounded, there is a natural number I such that IKX is Cartier for every

X ∈ X . Let Y ∈ Y . There are X ∈ X and a boundary BY such that

KY + BY = ∗KX . Thus I(KY + BY ) is Cartier. So the index of (Y, BY ) is

bounded. (X,B) is Klt WLF so will be (Y, BY ). Now by Borisov–McKernan

(Theorem 3.1.13) the set Y is bounded. �

Definition 3.2.6 A variety X/Z of dim d, is pseudo-WLF/Z if there ex-

ists a boundary B such that (X/Z, B) is WLF. Moreover, we say that X is

Klt pseudo-WLF/Z if there is a Klt WLF (X/Z, B).

Remark 3.2.7 Pseudo-WLF varieties have good properties. For example,

NE(X/Z) (see [KM] for definition), the closure of the cone of effective curves,

is a finite rational polyhedral cone ([Sh2] or [Sh3]). Moreover, each extremal

face of the cone is contractible [Sh3]. In addition, any nef divisor on a Klt

pseudo-WLF variety is semiample [Sh3].

Lemma 3.2.8 The Klt pseudo-WLF/Z property is preserved under ex-

tremal flips and divisorial contractions/Z with respect to any log divisor.

Proof Let X be a Klt pseudo-WLF/Z and B a boundary such that (X/Z,B)

is a Klt WLF. Now let X 99K X ′/Z be an extremal flip corresponding

to an extremal ray R on X. Since (X/Z, B) is a Klt WLF, there is a

boundary D ∈ Q such that KX + D is antiample/Z and Klt (remember

that X is Q-factorial by definition). Now let H ′ be an ample/Z divisor

on X ′ and H its transform on X. There is a rational t > 0 such that

KX + D + tH is antiample/Z and Klt. Now take a Klt (0, Q)-complement
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KX + D + tH + A ∼Q 0/Z. Thus, KX′ + D′ + tH ′ + A′ ∼Q 0/Z on X ′. From

the assumptions KX′ + D′ + A′ is antiample/Z and Klt. So X ′ is also a Klt

pseudo-WLF.

If X → X ′ is a divisorial extremal contraction, then proceed as in the flip

case by taking an ample/Z divisor H ′ on X ′. �

Definition 3.2.9 (Exceptional pairs) Let (X/Z, B) be a pair of dim

d. If Z = pt., then (X/Z, B) is exceptional if there is at least a (0, Q)-

complement/Z for KX + B and any (0, Q)-complement/Z KX + B+ is Klt.

If dim Z > 0 then (X/Z, B) is exceptional if there is at least a (0, Q)-

complement/Z for KX +B and any (0, Q)-complement/Z KX +B+ is plt on

a log terminal resolution. Otherwise (X/Z, B) is called nonexceptional.

Example 3.2.10 Let (X/pt., B) be a Klt pair of dim d such that KX +

B ∼Q 0. Then, (X/pt., B) is exceptional. Since if KX + B+ is a (0, Q)-

complement for KX + B, then B+ = B.

Example 3.2.11 It is easy to see that
(
P1/pt., B = 1

3
P1+

1
2
P2+

1
2
P3+

1
2
P4

)
is exceptional where P1, P2, P3 are distinct points on P1.

Example 3.2.12 Let (P ∈ X, 0) be a Klt surface singularity. Then, (P ∈

X, 0) is exceptional if and if the singularity is of type E6, E7 or E8 [Pr, 6.1.2].

Moreover, (P ∈ X, 0) is nonexceptional if and only if the singularity is of

type Ar or Dr.

Example 3.2.13 Let (X/pt., B) be a Klt WLF pair in dim 2. Then,

(X/pt., B) is nonexceptional if and only if there is a boundary D ∈ Q such
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that KX + D is antinef and strictly lc. Suppose there is a D with the

mentioned properties. Then, −(KX + D) is semiample [sh2]. Moreover,

there is a (0, n)-complement for KX + D for some n ≤ 57 [Sh2, 2.3.1]. This

important result is repeatedly used in this chapter. Conjecturally a similar

statement holds in any dimension under B ∈ Φsm [PSh, 1.12] or maybe under

B ∈ Γf .

Example 3.2.14 Let (P ∈ X, B) be a 2-dimensional Klt singularity where

B ∈ Φsm. Suppose mld(P, X, B) < 1
6
. Then, (P ∈ X,B) is nonexcep-

tional. By [PSh, 3.1] there is a (0, n)-complement/P KX + B+ where n ∈

{1, 2, 3, 4, 6}. Let T → X be a terminal model of (P ∈ X, B) and E

an exceptional/P divisor such that a(E, X, B) < 1
6
. Define KT + BT :=

∗(KX + B) and KT + BT
+ := ∗(KX + B+). Since B ∈ Φsm then B+ ≥ B.

Hence, µE(BT
+), the coefficient of E in BT

+, is > 5
6
. On the other hand,

n(KX + B) is Cartier so µE(BT
+) = t

n
for some t ∈ N. Thus µE(BT

+) = 1

which in turn implies that KX + B+ is strictly lc.

Example 3.2.15 Let X = P2/G for a finite subgroup G ⊂ PGL3(C) and

B a divisor such that KP2 = ∗(KX + B) for the quotient morphism P2 → X.

Then, (X/pt., B) is exceptional if and only if G has no semiinvariants of

degree ≤ 3 [Pr, 10.3.3].

Remark 3.2.16 Boundedness of analytic (ε, n)-complements (that is, com-

plements over an analytic neighbourhood of P ∈ Z) implies the boundedness

of algebraic (ε, n)-complement because of the general GAGA principle [Sh1].

Lemma 3.2.17 Let Y/X/Z and KY + BY be nef/X and KX + B :=

∗(KY + BY ) be (ε, n)-complementary/Z. Moreover, assume that each
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nonexceptional/X component of BY that intersects an exceptional divisor/X

has a standard coefficient then (Y,BY ) will also be (ε, n)-complementary/Z.

Proof See [PSh, 6.1].

Definition 3.2.18 (D-LMMP) Let D be an R-Cartier divisor on a nor-

mal variety X. We say D-LMMP holds if the following hold:

D-contraction Any D-negative extremal ray R (in other words, D ·R <

0) on X can be contracted. And the same holds in the subsequent steps

for the birational transform of D.

D-flip If X → Z is a small extremal D-negative contraction (flipping) as

in the first step, then the corresponding D-flip exists, that is, there is

a normal variety X+ and a small extremal contraction X+ → Z such

that D+, the birational transform of D, is R-Cartier and ample/Z.

D-termination Any sequence of D-flips terminates.

By running anti-LMMP on a divisor D we mean (−D)-LMMP. If D :=

K + B for a lc R-Cartier divisor K + B, then D-LMMP holds in dim 3 by

[Sh5].

Remark 3.2.19 Let D be an R-Cartier divisor on a variety X of dim d

and assume that LMMPd holds. Moreover assume that βD ∼R K + B for a

lc R-Cartier log divisor K+B and β > 0. Then, D-LMMP holds since in this

case D-LMMP and (K + B)-LMMP are equivalent. In particular, for any

effective R-Cartier divisor D on a Klt pair (X, B) the KX + B + D-LMMP

holds if KX + B + D is Klt.
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Example 3.2.20 Let (X/pt., B) be a d-dimensional Klt WLF where B ∈

Q and suppose LMMPd holds. Then, (−K)-LMMP holds. By the as-

sumptions and the base point free theorem [KMM] there is a Klt (0, Q)-

complement K +B+ ∼Q 0. There is a t > 0 such that K +B+ + tB+ ∼Q tB+

is Klt. Since −K ∼Q B+, (−K)-LMMP is equivalent to (B+)-LMMP and

in turn equivalent to (tB+)-LMMP. Since (K + B+ + tB+)-LMMP holds so

does (−K)-LMMP.

Example 3.2.21 Let (X/pt., B) be a 2-dimensional Klt WLF. Then, for

any divisor D on X the D-LMMP holds. Note that by definition X is Q-

factorial. Thus D is R-Cartier. The WLF property guarantees D-contraction

of any D-negative extremal ray on X [Sh3, Sh5]. The D-termination holds

since the Picard number decreases after every contraction.

3.3 The case of curves

In this section we prove 3.1.7 for the case of curves. Note that 1-dimensional

global weak log Fano pairs are just (P1, B) for a boundary B =
∑

i biBi where∑
i bi − 2 < 0. The local case for curves is trivial.

Theorem 3.3.1 WCδ,1,[0,1] holds; more precisely, suppose m−1
m
≤ 1− δ <

m
m+1

for m a natural number, then we have:

� Nδ,1,[0,1] =
⋃

0<k≤m{k, k + 1}.

� (P1, B+) can be taken 1
m+1

-lc.
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Proof Let B =
∑

i biBi, bh = max{bi} and k−1
k
≤ b < k

k+1
for a natural

number k. If k = 1, then b < 1
2

and so we have a (1, 1)-complement KP1 +B+

where B+ = 0. Since x2biy = 0.

Now assume that k > 1 and define ai,t = x(t + 1)biy. Note that since∑
i bi < 2, then

∑
i

ai,k =
∑

i

x(k + 1)biy ≤
∑

i

(k + 1)bi < 2k + 2

If K + B does not have a (0, k)-complement then
∑

i ai,k = 2k + 1. Since

k−1
k
≤ bh < k

k+1
we have

(k + 1)(k − 1)

k
= k + 1− k + 1

k
= k − 1

k
≤ (k + 1)b <

(k + 1)k

k + 1
= k

Thus ah,k = x(k + 1)bhy = k − 1 and 1 − 1
k
≤ 〈(k + 1)bh〉 < 1 where 〈·〉

stands for the fractional part.

Now ai,k+1 = x(k + 2)biy = x(k + 1)bi + biy. So ai,k+1 is equal to ai,k or

ai,k + 1. The latter happens iff 1 ≤ bi + 〈(k + 1)bi〉. In particular, bh + 〈(k +

1)bh〉 ≥ k−1
k

+ 1− 1
k
≥ 1 so ah,k+1 = ah,k + 1. On the other hand since

∑
i

ai,k = x(k + 1)biy = 2k + 1

and∑
i

(k + 1)bi =
∑

i

ai,k +
∑

i

〈(k + 1)bi〉 = 2k + 1 +
∑

i

〈(k + 1)bi〉 < 2k + 2

then
∑

i〈(k + 1)bi〉 < 1. Hence if i 6= h, then 〈(k + 1)bi〉 < 1
k

because

1− 1
k
≤ 〈(k + 1)bh〉. So if i 6= h and 1 ≤ 〈(k + 1)bi〉+ bi, then 1− 1

k
< bi.
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If K + B has no (0, k + 1)-complement, then
∑

i ai,k+1 = x(k + 2)biy =

2k + 3 therefore 1 ≤ 〈(k + 1)bj〉 + bj must hold at least for some j 6= h.

So 1 − 1
k

< bj ≤ bh which in turn implies 1 − 1
k
≤ 〈(k + 1)bj〉. Thus

1 ≤ 2(1 − 1
k
) ≤ 〈(k + 1)bj〉 + 〈(k + 1)bh〉 and this is a contradiction. Hence

K+B has a (0, k) or (0, k+1)-complement. If K+B has a (0, k)-complement,

then x(k+1)bhy
k

= 1 − 1
k

and
∑

i ai,k ≤ 2k. If it has a (0, k + 1)-complement,

then x(k+1)bhy
k+1

≤ k
k+1

and
∑

i ai,k+1 ≤ 2k + 2. Therefore, we can construct a

( 1
k
, k)-complement or a ( 1

k+1
, k+1)-complement KP1 +B+ for KP1 +B. Since

0 < k ≤ m, Nδ,1,[0,1] =
⋃

0<k≤m{k, k + 1}. �

3.4 The case of surfaces

We divide the surface case of Conjecture 3.1.7 into the following cases:

Local isomorphic X → Z is the identity.

Local birational X → Z is birational.

Local over curve Z is a curve.

Global Z = pt.

3.5 Local isomorphic case

The main theorem in this section is Theorem 3.5.1. We use classification of

surface singularities.

Theorem 3.5.1 Conjecture WCδ,2,{0} (3.1.7) holds in the local isomorphic

case, that is, when X → Z is the identity and Γ = {0}.
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Proof Note that (X, 0) is Klt/P ∈ Z by assumptions of Conjecture 3.1.7

(δ > 0). If δ > 1, then X is smooth at P so we are already done. If

δ = 1 then X is canonical at P so KX is Cartier. In this case KX is a

(1, 1)-complement/P for KX . From now on we assume that δ < 1.

If the singularity at P is of type E6, E7 or E8, then there are only a

finite number of possibilities for such singularities up to analytic isomorphism

because of the δ-lc assumption [Pr, 6.1.2].

If the singularity at P is of type Ar, then the graph of the resolution is

as

O−αr . . . O−α2 O−α1

where αi ≥ 2. If the singularity at P is of type Dr, then the graph is as

O−2

O−αr . . . O−α2 O−α1

O−2

where αi ≥ 2.

Ar case: Let KW −
∑

i eiEi = ∗KZ where ei are the discrepancies for

a log resolution W → Z near P . The following lemma is well known and a

proof can be found in [AM, 1.2].

Lemma 3.5.2 The numbers (−E2
i ) are bounded from above in terms of δ.
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By computing the intersection numbers (KW −
∑

i eiEi) · Ej we get the

following system:



a1(−E2
1)− a2 − 1 = 0

a2(−E2
2)− a1 − a3 = 0

a3(−E2
3)− a2 − a4 = 0

...

ar−1(−E2
r−1)− ar−2 − ar = 0

ar(−E2
r )− ar−1 − 1 = 0

where ai is the log discrepancy of Ei with respect to KZ .

From the equation ai(−E2
i ) − ai−1 − ai+1 ≤ 0 we get the inequality

ai(−E2
i − 2) + ai − ai−1 ≤ ai+1 − ai which shows that if ai−1 ≤ ai, then

ai ≤ ai+1 and moreover if ai−1 < ai then ai < ai+1 . So the solution for the

system above must satisfy the following:

a1 ≥ · · · ≥ ai ≤ · · · ≤ ar (3.5.2.1)

for some i ≥ 1. If r ≤ 2 (or any fixed number), then the theorem is trivial. So

we may assume that r > 3 and also can assume i 6= r unless a1 = a2 = · · · =

ar. Now, for any i ≤ j < r, if −E2
j > 2, then aj+1 − aj ≥ aj(−E2

j − 2) ≥

δ. Hence if l := #{j | −E2
j > 2 and i ≤ j < r}, then ar ≥ lδ. Thus

ar(−E2
r − 1) + ar − ar−1 ≥ lδ, which contradicts the last equation in the

system for l large enough. In any case, lδ ≤ 1 and l ≤ 1
δ
, so l is bounded .
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Similarly, we deduce that l′ := #{j | −E2
j > 2 and 1 ≤ j ≤ i} is bounded.

Then, l + l′ ≤ 2
δ
.

Now suppose that ai2 = · · · = ai = · · · = ai1 , ai1−1 6= ai1 (unless i1 = 1)

and ai2 6= ai2+1 (unless i2 = r) where i2 ≤ i ≤ i1. Assume that i1 6= i or

i2 6= i. If i1 6= i and all aj are not equal (to 1), then we have

1 = (−E2
r − 1)ar + ar − ar−1

≥ (r − i1)(ai1+1 − ai1)

= (r − i1)[(−E2
i1
− 2)ai1 + ai1 − ai1−1]

= (r − i1)(−E2
i1
− 2)ai1 ≥ (r − i1)δ

because −E2
i1

cannot be equal to 2.

So (r−i1)δ ≤ 1 which in turn implies that r−i1 ≤ 1
δ

is bounded. Similarly,

we deduce that i2 is bounded.

These observations show that, given that all −E2
k are bounded, the de-

nominators of ak are bounded. Therefore, the index of KZ at P is bounded

and so we are done in this case.

But if i1 = i = i2, then the situation is different. Note that in this case

δ ≤ (−E2
i −2)ai = ai−1−ai +ai+1−ai. Hence δ

2
≤ ai−1−ai or δ

2
≤ ai+1−ai.

If δ
2
≤ ai+1 − ai, then similar to the calculations we just carried out above,

r− i is bounded. But it can happen that ai−1−ai is very small so we will not

be able to bound i. The same argument applies to the case δ
2
≤ ai−1 − ai.

Actually, we try to find a solution with bounded denominators for the

following system:
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u1(−E2
1)− u2 − 1 ≤ 0

u2(−E2
2)− u1 − u3 ≤ 0

u3(−E2
3)− u2 − u4 ≤ 0

...

ur−1(−E2
r−1)− ur−2 − ur ≤ 0

ur(−E2
r )− ur−1 − 1 ≤ 0

To find such a solution, note that if −E2
i−1 > 2, then δ ≤ (−E2

i−1 −

2)ai−1 = ai−2−ai−1 +ai−ai−1 ≤ ai−2−ai−1. Hence similar computations to

the above show that i is bounded. Now let j be the smallest number such that

−E2
j = · · · = −E2

i−1 = 2 (remember that we have assumed δ
2
≤ ai+1 − ai).

Hence j is bounded. Now take uj = · · · = ui = 1
I

for a natural number I.

Then, the following equations are satisfied if i− j > 2:


uj+1(−E2

j+1)− uj − uj+2 = 2uj − uj − uj = 0
...

ui−1(−E2
i−1)− ui−2 − ui = 2ui−1 − ui−2 − ui = 0

Since r − i and j are bounded the number of remaining equations is

bounded. Therefore, there is a bounded I such that there is a solution

(u1, . . . , ur) where uj = · · · = ui = 1
I
. This completes the proof of Ar case.

Form the solution (u1, . . . , ur) we construct a Klt log divisor KW + D

with bounded index such that −(KW + D) is nef and big/P ∈ Z. Now we

may use Remark 3.2.16. This completes the proof of Ar case.
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Remark 3.5.3 In Shokurov’s case [Sh1, §5], where δ = ε = 0, we just

take u1 = · · · = ur = 0.

Dr case: We have a chain E1, . . . , Er of exceptional divisors together

with E and E ′, where E and E ′ intersect only E1. In this case we have the

following system:



a(−E2)− a1 − 1 = 0

a′(−E ′2)− a1 − 1 = 0

a1(−E2
1)− a− a′ − a2 + 1 = 0

a2(−E2
2)− a1 − a3 = 0

a3(−E2
3)− a2 − a4 = 0

...

ar−1(−E2
r−1)− ar−2 − ar = 0

ar(−E2
r )− ar−1 − 1 = 0

Note that −E2 = −E ′2 = 2, so 2a − a1 − 1 = 0 and 2a′ − a1 − 1 = 0.

Hence a + a′ = a1 + 1 and the third equation becomes a1(−E2
1 − 1)− a2 = 0.

We now consider the system obtained from the last system after ignoring the

first two equations:



a1(−E2
1 − 1)− a2 = 0

a2(−E2
2)− a1 − a3 = 0

a3(−E2
3)− a2 − a4 = 0

...

ar−1(−E2
r−1)− ar−2 − ar = 0

ar(−E2
r )− ar−1 − 1 = 0
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Any solution of this system satisfies the following:

a1 = · · · = ai < ai+1 < · · · < ar

If i = r, then a = a′ = a1 = · · · = ar = 1. So we may assume i < r. We

show that r−i is bounded. In this case, if i > 1, then−E2
1 = · · · = −E2

i−1 = 2

but −E2
i > 2. Now δ(−E2

i − 2) ≤ ai(−E2
i − 2) + ai − ai−1 = ai+1 − ai (if

i = 1 then δ(−E2
1 − 2) ≤ a1(−E2

1 − 2) = a2 − a1). We also have ak+1 − ak ≤

ak+2 − ak+1 for i ≤ k < r − 1. On the other hand,
∑

i≤k<r ak+1 − ak ≤ ar <

ar + ar − ar−1 < 1. So we conclude that r − i is bounded.

Moreover since −E2
k is bounded, this proves that the denominators of all

ak in the Dr case are bounded hence the index of KZ at P is bounded. In

this case B+ = 0 and we complete the proof of Theorem 3.5.1.

�

Remark 3.5.4 All the bounds occurring in the proof are effective and can

be calculated in terms of δ.

Remark 3.5.5 Essentially, the boundedness properties that we proved

and used in the proof of Theorem 3.5.1 have been more or less discovered by

other mathematicians independently. In particular, Shokurov has used these

ideas in an unpublished preprint on mlds [Sh8].

Remark 3.5.6 Here we recall the diagrams for the E6, E7 and E8 types of

singularities [Pr, 6.1.2]. The following is a general case of such singularities:
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C2/Zm1 O−p C2/Zm2

O−2

where the only possibilities for (m1, m2) are (3, 3), (3, 4) and (3, 5). So the

only possible diagrams are as follows: For (m1, m2) = (3, 3) we have

1

O−3 O−p O−3

O−2

2

O−2 O−2 O−p O−3

O−2

3

O−2 O−2 O−p O−2 O−2

O−2

For (m1, m2) = (3, 4) we have

4

O−3 O−p O−4

O−2
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5

O−2 O−2 O−p O−4

O−2

6

O−3 O−p O−2 O−2 O−2

O−2

7

O−2 O−2 O−p O−2 O−2 O−2

O−2

Finally for (m1, m2) = (3, 5) we have

8

O−3 O−p O−5

O−2

9

O−2 O−2 O−p O−5

O−2

10

O−3 O−p O−2 O−3

O−2
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11

O−2 O−2 O−p O−2 O−3

O−2

12

O−3 O−p O−3 O−2

O−2

13

O−2 O−2 O−p O−3 O−2

O−2

14

O−3 O−p O−2 O−2 O−2 O−2

O−2

15

O−2 O−2 O−p O−2 O−2 O−2 O−2

O−2
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3.6 Local birational case

In this section whenever we write /Z we mean /P ∈ Z for a fixed point P

on Z.

Theorem 3.6.1 Conjecture WCδ,2,{0} (3.1.7) holds in the birational case,

that is, when X → Z is birational and Γ = {0}.

Strategy of the proof: Let W be a minimal resolution of X and let

{Ei}, {Fj} be the exceptional divisors /Z on W where the Ei are exceptional/X

but Fj are not. We use the notation E for a typical Ei and similarly F for Fj

or its birational transform). We construct an antinef/Z and Klt log divisor

KW + Ω = KW +
∑

i uiEi +
∑

j ujFj where ui, uj < 1 are rational numbers

with bounded denominators. Then, we use Remark 3.2.16.

Proof By contracting those curves where −KX is numerically zero, we can

assume that −KX is ample/Z (we can pull back the complement). Let W

be the minimal resolution of X. Then, since KW is nef/X by the negativity

lemma we have KW −
∑

i eiEi = KW +
∑

i(1− ai)Ei ≡ ∗KX where ei ≤ 0.

Definition 3.6.2 For any smooth model Y where W/Y/Z we define exc(Y/Z)

to be the graph of the exceptional curves ignoring the birational transform

of exceptional divisors of type F . For an exceptional/Z divisor G on Y not

of type F , exc(Y/Z)G means the connected component of exc(Y/Z) where G

belongs to.

Lemma 3.6.3 We have the following on W :

� The exceptional divisors/Z on W are with simple normal crossings.
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� Each F (that is, each exceptional divisor of type F ) is a −1-curve.

� The model W obtained by blowing down −1-curves/Z is the minimal

resolution of Z.

� Each F cuts at most two exceptional divisors of type E.

Proof Let F be an exceptional divisor/Z on W which is not exceptional/X.

Then, (KW −
∑

i eiEi) · F = KW · F +
∑

i(−ei)Ei · F = 2pa(F )− 2− F 2 +∑
i(−ei)Ei · F < 0 where pa(F ) stands for the arithmetic genus of the curve

F . Then, 2pa(F ) − 2 − F 2 < 0 and so pa(F ) = 0 and −F 2 = 1. In other

words F is a −1-curve.

On the other hand by contracting −1-curves/Z (i.e. running the classical

minimal model theory for smooth surfaces on W/Z) we get a model W/Z

where KW is nef/Z. Actually W is the minimal resolution of P ∈ Z.

The exceptional divisors/Z on W are with simple normal crossings and

since W is obtained from W by a sequence of blow ups, then the exceptional

divisors/Z on W are also with simple normal crossings. Further, since all

the F , exceptional/Z but not/X, are contracted/W then they can intersect

at most two of Ei because exc(W/Z) is with simple normal crossings and F

is exceptional/W .

W

  B
BB

BB
BB

B

~~}}
}}

}}
}}

X

  A
AA

AA
AA

A W

~~}}
}}

}}
}}

Z
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Moreover no two exceptional divisors of type F can intersect on W be-

cause they are both −1-curves. This means that the intersection points of

any two exceptional divisor/Z on X is a singular point of X. Also any

exceptional divisor/Z on X contains at most two singular points of X.

Let {Qk}k be the singular points of X. If none of the points {Qk} is

of type Ar, then the proof of Theorem 3.5.1 shows that the index of KX is

bounded so we are done. But if there is one point of type Ar, then the proof

is more complicated. Surprisingly, the Ar type is the most simple case in the

sense of Shokurov, that is, when δ = 0 (see Remark 3.5.3). Similar to the

proof of Theorem 3.5.1 we try to understand the structure of exc(W/Z) and

the blow ups W → W .

Definition 3.6.4 A smooth model Ẅ where W/Ẅ and Ẅ/W are series

of smooth blow ups, is called a blow up model of W . Such a model is perfect

if there is X ′ such that KẄ is nef/X ′ and X/X ′/Z. In other words, it is

the minimal resolution of X ′. The connected components of exc(Ẅ/Z) are

either of type Ar, Dr, E6, E7 or E8 for a perfect blow up model.

Definition 3.6.5 We call the divisor KW + ω = KW +
∑

i(1 − ai)Ei =

∗KX the primary log divisor. The pair (X, B) has a (0, n)-complement

KX + B+ over Z by Shokurov [Sh2] (n ∈ {1, 2, 3, 4, 6}). From now on we

call it a Shokurov complement. So KW + ωSh + C = KW +
∑

i(1− aSh
i )Ei +∑

j(1−aSh
j )Fj +C = ∗(KX + B+) where C is the birational transform of the

nonexceptional part of B+. We call KW +ωSh a Shokurov log divisor and the

numbers aSh
i and aSh

j Shokurov log discrepancies.
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Definition 3.6.6 Consider the graph exc(W/Z). If we ignore those F

that appear with zero coefficient in ωSh (that is, aSh = 1), then we get a

graph exc(W/Z)>0 with some connected components. The connected graph

C consisting of exceptional/Z curves with aSh = 0, belong to one of the

components of the graph exc(W/Z)>0 which we show by G (C is connected

because of the connectedness of the locus of log canonical centres/P ∈ Z).

Now contracting all −1-curves/Z in G and continuing the contractions of

subsequent −1-curves/Z which appear in G, we finally get a model which we

denote by WG. The transform of G on WG is denoted by G1 and similarly the

transform of C is C1.

Definition 3.6.7 A chain of exceptional curves consisting of Gβ1 , . . . , Gβr

is called strictly monotonic if r = 1 or if aβ1 < aβ2 < · · · < aβr (these are log

discrepancies with respect to KX). Gβ1 is called the base curve.

Definition 3.6.8 Let G ∈ exc(Ẅ/Z) for a smooth blow up model Ẅ .

Then, we define the negativity of G on this model as NẄ (G) = (KẄ +∗ω)·G ≤

0. We also define the total negativity by NẄ =
∑

α NẄ (Gα) where Gα

runs over all exceptional divisors/Z on Ẅ . For G ∈ exc(Ẅ/Z) we define

NẄ ,G =
∑

α NẄ (Gα) where the sum runs over all members of exc(Ẅ/Z)G.

Similarly, we define the negativity functions NSh and N+ replacing ω with

ωSh and ωSh + C respectively. Note that the latter is always zero, because

KW + ωSh + C ≡ 0/Z.

Definition 3.6.9 Let Ẅ/Z be a smooth blow up model and ξ ∈ Ẅ . If

ξ belongs to two exceptional divisors/Z, then the blow up at ξ is a double

blow up. If ξ belongs to just one exceptional divisor/Z, then the blow up at
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ξ is a single blow up. If ξ belongs to two components of ∗(ωSh + C), then

the blow up at ξ is a double+ blow up. If ξ belongs to just one component of

∗(ωSh + C), then the blow up at ξ is a single+ blow up.

Lemma 3.6.10 For any exceptional Gβ ∈ exc(Ẅ/Z) on a blow up model

Ẅ we have:

� −1+δ ≤ NẄ ,Gβ
if exc(Ẅ/Z)Gβ

is of type Dr, E6, E7 or E8. In particular,

in these cases −1 + δ ≤ NẄ (Gβ) holds.

� 2(−1 + δ) ≤ NẄ ,Gβ
and −1 + δ ≤ NẄ (Gβ) if exc(Ẅ/Z)Gβ

is of type Ar

unless it is strictly monotonic.

Proof Dr case: Similar to the notation in the proof of Theorem 3.5.1 let

Gβ, Gβ′ , Gβ1 , . . . , Gβr be the exceptional divisors in exc(Ẅ/Z)Gβ
. Then, from

the equations in the proof of Theorem 3.5.1 for the Dr case we get the fol-

lowing system for the log discrepancies:



2aβ − aβ1 − 1 ≤ 0

2aβ′ − aβ1 − 1 ≤ 0

2aβ1 − aβ − aβ′ − aβ2 + 1 ≤ 0

2aβ2 − aβ1 − aβ3 ≤ 0
...

2aβr−1 − aβr−2 − aβr ≤ 0

2aβr − aβr−1 − 1 ≤ 0

Adding the first and the second inequalities gives 2aβ+2aβ′−2aβ1−2 ≤ 0.

Accordingly, the third inequality becomes aβ1 ≤ aβ2 and so aβ1 ≤ aβ2 ≤ · · · ≤
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aβr . Therefore

NẄ ,Gβ

≥ aβ + aβ′ + aβr − aβ1 − 2

≥ aβ + aβ′ + aβ2 − aβ1 − 2

≥ 2aβ1 + 1− aβ1 − 2

≥ aβ1 − 1 ≥ δ − 1

because 2aβ1 + 1 ≤ aβ + aβ′ + aβ2 and X is δ-lc.

Ar case (nonstrictly monotonic): In this case assume that the exceptional

divisors in exc(Ẅ/Z)Gβ
are Gβ1 , . . . , Gβr . We get the system:



2aβ1 − aβ2 − 1 ≤ 0

2aβ2 − aβ1 − aβ3 ≤ 0
...

2aβr−1 − aβr−2 − aβr ≤ 0

2aβr − aβr−1 − 1 ≤ 0

So there will be k such that aβ1 ≥ aβ2 ≥ · · · ≥ aβk
≤ aβr . Thus

NẄ (Gβ1) ≥ aβ1 + aβ1 − aβ2 − 1 ≥ aβ1 − 1 ≥ δ − 1. In this way we get

the similar inequalities for all other inequalities except for NẄ (Gβk
). Sup-

pose NẄ (Gβk
) < δ − 1. So we get 2aβk

− aβk−1
− aβk+1

< δ − 1 and so

1 − δ < aβk−1
+ aβk+1

− 2aβk
≤ aβ1 + aβr − 2aβk

. On the other hand by

adding all the inequalities in the system we get NẄ ,Gβ
≥ aβ1 + aβr − 2 >

1− δ + 2aβk
− 2 ≥ δ− 1. This contradicts the fact that NẄ (Gβk

) ≥ NẄ ,Gβk
.
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To get the inequality for NẄ ,Gβk
add all the equations in the system

above. Note that if r = 2, then aβ1 = aβ2 and lemma is immediate.

E6, E7, E8 cases:3.6.10.1 In these cases the graph exc(Ẅ/Z)Gβ
is as in

Remark 3.5.6. It is enough to substitute 2 for all the self-intersection numbers

because the negativity becomes smaller. We start from the smallest possible

graph, that is, case 1 in 3.5.6.



2aβ − aβ2 − 1 ≤ 0

2aβ2 − aβ − aβ1 − aβ3 + 1 ≤ 0

2aβ1 − aβ2 − 1 ≤ 0

2aβ3 − aβ2 − 1 ≤ 0

Adding all inequalities we get NẄ ,Gβ
= aβ + aβ1 + aβ3 − aβ2 − 2. By

the second inequality we have aβ + aβ1 + aβ3 − aβ2 ≥ aβ2 + 1, so NẄ ,Gβ
≥

aβ2 +1−2 ≥ δ−1. In fact, this was a special case of the Dr type inequalities

(the similarity of the system not necessarily the graph exc(Ẅ/Z)Gβ
). Note

that the inequality for the total negativity implies the inequality for the

negativity of each exceptional curve.

Now we prove the other cases by induction on the number of the excep-

tional curves. The minimum is four exceptional curves and we have just

proved this case. Suppose we have proved the lemma for graphs with ≤ k−1

exceptional curves and that our graph has k members. Let the exceptional

curves be Gβ, Gβ1 , . . . , Gβk−1
and such that Gβl

cuts Gβ, Gβl−1
and Gβl+1

. If

l = 2 or l = k − 2, then we obtain again a system of type Dr. Otherwise,

3.6.10.1I only prove that −1 + δ ≤ NẄ (G) for any exceptional G. We will not need the

inequality for total negativity.
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since −aβ + 1 ≥ 0 we get a system as follows



2aβ1 − aβ2 − 1 ≤ 0

2aβ2 − aβ3 − aβ1 ≤ 0
...

2aβk−1
− aβk−2

− 1 ≤ 0

This is a system of type Ak−1, so we have either aβ1 ≥ aβ2 or aβk−1
≥

aβk−2
. We study the first case (the other case being similar). Now note that

NẄ (Gβ1) ≥ 2aβ1 − aβ2 − 1 = aβ1 − aβ2 + aβ1 − 1 ≥ δ− 1. By ignoring Gβ1 we

get a system for a graph with a smaller number of elements:



2aβ2 − aβ3 − 1 ≤ 2aβ2 − aβ3 − aβ1 ≤ 0
...

2aβl
− aβl−1

− aβl+1
− aβ + 1 ≤ 0

...

2aβk−1
− aβk−2

− 1 ≤ 0

and the lemma is proved by induction. �

Lemma 3.6.11 Suppose ξ ∈ Ẅ/W (Ẅ is a blow up model). Let W̃ be

the blow up of Ẅ at ξ and Gα the exceptional divisor of the blow up. Then,

If Gα is the double blow up of Gβ and Gγ (that is, ξ ∈ Gβ ∩Gγ), then:

� NW̃ (Gα) = aα − aβ − aγ where aα is the log discrepancy of Gα for KX

and similarly aβ and aγ.

� NW̃ (Gβ) = NẄ (Gβ)−NW̃ (Gα) and NW̃ (Gγ) = NẄ (Gγ)−NW̃ (Gα).

� NW̃ = NẄ −NW̃ (Gα).
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If Gα is the single blow up of Gβ, then:

� NW̃ (Gβ) = NẄ (Gβ) − NW̃ (Gα), NW̃ (Gα) = aα − aβ − 1 ≤ −δ and

NẄ (Gβ) + δ ≤ 0.

� NW̃ = NẄ .

Proof Standard computations. �

Corollary 3.6.12 Let Ẅ be a blow up model/W . If Gα is a single blow

up of Gβ on Ẅ and NẄ (Gβ) ≥ δ − 1, then aα ≥ aβ + δ.

Proof Since Gα is a single blow up of Gβ, 1 + aβ − aα + NẄ (Gβ) ≤ 0 and

so 1 + aβ − aα + δ − 1 ≤ 0. Therefore, aβ + δ ≤ aα.

Definition 3.6.13 Let ξ be a point on a blow up model Ẅ . Define the

multiplicity of double blow ups as

µdb(ξ) = max
{
#{double blow ups/ξ before having a single blow up/ξ}

}
where the maximum is taken over all sequences of blow ups from Ẅ to W .

The next lemma shows the boundedness of this number.

Lemma 3.6.14 µdb(ξ) is bounded.

Proof By Lemma 3.6.11 each double blow up adds a non-negative num-

ber to the total negativity of the system. Moreover, the total negativity is
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bounded because the total negativity on W is bounded.3.6.14.1 Therefore,

except for a bounded number of double blow ups, we have

−δ

2
≤ NW̃ (Gα) = aα − aβ − aγ ≤ 0

where Gα is the double blow up of some Gβ and Gγ and Gβ ∩ Gγ/ξ. The

inequality shows that aβ + δ
2
≤ aβ + aγ − δ

2
≤ aα and similarly aγ + δ

2
≤ aα.

In other words the log discrepancy is increasing at least by δ
2
. Since log

discrepancies are in [δ, 1], the number of these double blow ups has to be

bounded. �

Definition 3.6.15 Let ξ ∈ Ẅ/W a blow up model. Define the single blow

up multiplicity of ξ as:

µsb(ξ) = max
{
#{G : G is the exceptional divisor of a single blow up/ξ}

}
The maximum is taken over all sequences of blow ups from Ẅ to W .

Moreover, define µsb(Gβ) =
∑

ξ∈Gβ
µsb(ξ) and µsb(Ẅ ) =

∑
ξ∈Ẅ µsb(ξ) .

So, if ξ2/ξ1 (these points may be on different models), then µsb(ξ1) ≥

µsb(ξ2).

Remark 3.6.16 Usually there is not a unique sequence of blow ups from

Ẅ to W . In fact, if ξ1, ξ2 are distinct points on Ẅ and they are centres of

some exceptional divisors on W , then it does not matter which one we blow

up first in order to get to W .

3.6.14.1This boundedness for the Ar and Dr cases is shown in Lemma 3.6.10 and in the other

cases it is obvious.
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Definition 3.6.17 Let ξ ∈ exc(Ẅ/Z) be a point on a blow up model Ẅ .

We call such a point a generating point if there is an exceptional divisor Gα/ξ

on a blow up model W̃ such that NW̃ (Gα) < δ − 1.

Remark 3.6.18 By Lemma 3.6.10 and Lemma 3.6.11 if ξ ∈ exc(Ẅ/Z)Gβ

and exc(Ẅ/Z)Gβ
is of type Ar (non-strictly monotonic) , Dr, E6, E7 or E8,

then ξ can not be a generating point. Moreover, again by Lemma 3.6.10, if

exc(Ẅ/Z)Gβ
is strictly monotonic, then there can be at most one generating

point in exc(Ẅ/Z)Gβ
and it can only belong to the base curve.

Lemma 3.6.19 µsb(ξ) is bounded if ξ ∈ Ẅ is not a generating point.

Proof If Gα/ξ is a single blown up exceptional divisor, then δ − 1 ≤

NW̃ (Gα) since ξ is not a generating point. So if Gα is a single blow up/ξ of

Gβ, then aα ≥ aβ + δ, that is, it increases the log discrepancy at least by δ.

Moreover, as in the proof of Lemma 3.6.14, except for a bounded number of

double blow ups, any double blow up/ξ increases the log discrepancy at least

by δ
2
. Hence, there can be only a bounded number of blow ups/ξ from Ẅ to

W . �

Corollary 3.6.20 The number of exceptional curves/ξ on W is bounded

for any nongenerating point ξ ∈ Ẅ .

We now continue the proof of Theorem 3.6.1. If no divisor in ωSh has

coefficient 1, then this is what we are looking for. Since in this case KW +ωSh

will be a 1
6
-lc log divisor. If the opposite happens,that is, some divisors appear

with coefficient 1 in ωSh, then these divisors will form a connected chain C
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which does not intersect with any other exceptional divisor/Z with positive

coefficient in ωSh, except the edges of this chain. Some of the exceptional

divisors of type F may appear with positive coefficients and some with zero

coefficients in ωSh.

The image of the graph G on WG, that is G1 (see Definition 3.6.6), is

either of type Ar, Dr, E6, E7 or E8 because similar to what we proved above

for W the model WG is the minimal resolution of some surface, namely, the

minimal resolution of the surface XG obtained from X by contracting the

exceptional/Z curves on X whose birational transform belong to G. In fact,

there is no −1-curve/XG on WG.

Now, suppose G1 is of type Ar and not strictly monotonic. Let the push-

down on WG of the chain C be C1. Let the exceptional divisors of G1 be

Gβ1 , . . . , Gβr and assume that the chain C1 consists of Gβk
, . . . , Gβl

. Hence

NSh
WG

(Gβk
) ≤ −1

6
, NSh

WG
(Gβk+1

) = · · · = NSh
WG

(Gβl−1
) = 0 and NSh

WG
(Gβl

) ≤ −1
6

. Here the superscript Sh means that we compute the negativity accord-

ing to the Shokurov log divisor not the primary log divisor. Note that

if aSh
β > 0 for some β, then aSh

β ≥ 1
6

because the denominator of aSh
β is

in {1, 2, 3, 4, 6}. The chain C1 is of type Al−k+1. From the constructions

in the local isomorphic section we can replace the Shokurov log numbers

aSh
βk

= 0, . . . , aSh
βl

= 0 with new log numbers with bounded denominators and

preserve all other Shokurov log numbers in the graph exc(WG/Z) so that

we obtain a new log divisor KWG + Ω1 on WG which is antinef/Z and Klt.

Now put KW + Ω =∗ (KWG + Ω1). The only problem with Ω is that it may

have negative coefficients (it is a subboundary). Remark 3.6.18 and Corol-

lary 3.6.20 guarantee that the negativity of these coefficients is bounded from
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below. Moreover if an exceptional divisor has negative coefficient in Ω, then

it must belong to the graph G. But any exceptional divisor in G appears

with positive coefficient in ωSh. Since ωSh ≥ ω and by the definition of G,

any exceptional divisor of type F in G has positive coefficient at least 1
6
. If

E is not of type F but belongs to G, then since B+ is not zero P ∈ Z we

get positive coefficients in ωSh for all exceptional/Z curves which are not of

type F . Thus all members of G = exc(W/Q) appear with positive coefficient

in ωSh.

Now, consider the sum

KW + Ω + I[KW + ωSh] = (1 + I)KW + [Ω + IωSh]

where I is an integer. Given that the negative coefficients appearing in Ω are

bounded from below, this implies that there is a large bounded I such that

the sum Ω + IωSh is an effective divisor. So by construction the log divisor

KW + [Ω+IωSh]
1+I

is ε-lc and antinef/Z for some fixed rational number 0 < ε and

the denominators of the coefficients in the log divisor are bounded.

Now assume that G1 is strictly monotonic and the generating curve is

Gβ1 . By Corollary 3.6.20 and Remark 3.6.18 the only place where we may

have difficulties is a generating point ξ on the generating curve if there is any

such point.

We blow up ξ and get the exceptional divisor Gα1 . The chain Gα1 , Gβ1 , . . . , Gβr

is not exactly of type Ar+1 because Gα1 is a −1-curve. But still we can claim

that there is at most a base on this chain and it can only be on Gα1 . Obvi-

ously a generating point cannot be on Gβ2 , . . . , Gβr . Now suppose that the

intersection point of Gα1 and Gβr is a generating point. Then, the sum of
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negativities of all Gα1 , Gβ1 , . . . , Gβr must be less than 2δ − 2. This is im-

possible because the sum of negativities of all Gβ1 , . . . , Gβr on WG is at least

2δ − 2 (remember that blowing up reduces negativity).

Now if on Gα1 there is a generating point ξ1, then again we blow up this

point to get Gα2 and so on. This process has to stop after finitely many steps

(not after bounded steps!). Let the final model be Wξ and let Gα1 , . . . , Gαs be

the new exceptional divisors. In fact, we have constructed a chain (because

there was at most one generating point on each curve) and by adding the

new exceptional divisors to G1 we get a new graph G2. Now there is no base

point on G2. All the divisors Gαi
have self-intersection equal to −2 except

Gαs which is a −1-curve.

Next let C2 be the pushdown of C, that is, the connected chain of curves

with coefficient one in ωSh on Wξ. If Gαs is not in C2, then we proceed exactly

as in the non-monotonic case above; that is we assign appropriate coefficients

to the members of C2 and keep all other coefficients in ωSh on Wξ. If Gαs is

in C2, then let C ′ be the chain C2 except the member Gαs . This new chain

(i.e. C ′) if of type Ax and so we can assign appropriate coefficients to its

members and put the coefficient of Gαs simply equal to zero and retain all

other coefficients in ωSh on Wξ. In any case, we construct a Klt log divisor

K + Ω on Wξ which is antinef/Z and the boundary coefficients are with

bounded denominators. The rest is as in the non-monotonic case above.

Suppose the graph G1 is of type Dr and C∞ 6= ∅ (if it is empty, then we

already have Ω1). Assume that the members of G1 are Gβ, Gβ′ , Gβ1 , . . . , Gβr

and the members of C1 are Gβk
, . . . , Gβl

. As in the proof of Lemma 3.6.10 for

the Dr case, we have aSh
β1
≤ aSh

β2
≤ . . . . So k = 1, therefore 2aSh

β − 0− 1 ≤ 0
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and so aSh
β ≤ 1

2
. Similarly aSh

β′ ≤ 1
2
. The chain C1 is of type Al and so we

can change the coefficients of its members in ωSh on WG. The rest of the

argument is very similar to the above cases. Just note that there is no base

point in this case.

The cases E6, E7 and E8 are settled by Remark 3.6.18 and Corollary

3.6.20. In these cases, the graph G is bounded, so assigning the primary log

numbers to the members of G1 and Shokurov log numbers to the rest of the

graph exc(WG/Z) gives a log divisor which can be used as KWG + Ω1. This

completes the proof of Theorem 3.6.1.

�

3.7 Global case

The main theorem of this section is the following theorem. A generalised

version of this and the BAB2 follow as corollaries.

Theorem 3.7.1 Conjecture WCδ,2,{0} (3.1.7) holds in the global case, that

is, when Z = pt. and Γ = {0}.

Proof We divide the problem into two main cases: exceptional and nonex-

ceptional. (X, 0) is nonexceptional if there is a strictly lc (0, Q)-complement

KX + M . By [Sh2, 2.3.1], under our assumptions on X, nonexceptional-

lity is equivalent to the fact that KX has a strictly lc (0, n)-complement for

some n < 58. We prove that the exceptional cases are bounded. But in the

nonexceptional case we only prove the existence of an (ε, n)-complement for

a bounded n. Later we show that this implies the boundedness of X.
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First assume that (X, 0) is nonexceptional.

1. Lets denote the set of accumulation points of the mlds in dim 2 for lc

pairs (T,B) where B ∈ Φsm, by Accum2,Φsm . Then, Accum2,Φsm ∩[0, 1] =

{1 − z}z∈Φsm = { 1
k
}k∈N ∪ {0} [Sh8]. Now if there is a τ > 0 such that

mld(P, T,B) /∈ [ 1
k
, 1

k
+τ ] for any natural number k and any point P ∈ T ,

then there will be only a finite number of possibilities for the index of

KT +B at P if (T, B) is 1
m

-lc for some m ∈ N. Now Borisov-McKernan

[Mc, 1.2] implies the boundedness of all such T if −(KT +B) is nef and

big and τ and m are fixed. In the following steps we try to reduce our

problem to this situation in some cases.

2. Definition 3.7.2 Let B =
∑

biBi be a boundary on a variety T

and τ > 0 a real number. Define

Dτ :=
∑

bi /∈[ k−1
k
−τ, k−1

k
]

biBi +
∑

bi∈[ k−1
k
−τ, k−1

k
]

k − 1

k
Bi

where in the first sum bi /∈ [k−1
k
− τ, k−1

k
] for any natural number k

but in the second sum k is the smallest natural number satisfying bi ∈

[k−1
k
− τ, k−1

k
].

Lemma 3.7.3 For any natural number m, there is a real number

τ > 0 (depending only on m) such that if (T, B) is a surface log pair,

P ∈ T , KT +B is 1
m

-lc at P and Dτ ∈ Φsm, then KT +Dτ is also 1
m

-lc

at P .

Proof By applying the ACC to all surface pairs with standard bound-

ary, we get a fixed rational number v > 0 such that, if any KT + Dτ is
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not 1
m

-lc at P , then mld(P, T,Dτ ) < 1
m
− v.

Now assume that the lemma is not true. Then, there is a sequence τ1 >

τ2 > . . . and a sequence of pairs {(Ti, Bi)} such that the lemma does not

hold for τi and (Ti, Bi) and Pi ∈ Ti. In other words mld(Pi, Ti, Dτi
) <

1
m
− v.

Write Bi = Fi + Ci where Fi =
∑

fi,xFi,x and Ci =
∑

ci,yCi,y have no

common components and the coefficient of any component of Ci is equal

to the coefficient of the same component in Dτi
but the coefficient of

any component of Fi is less than the coefficient of the same component

in Dτi
.

Now there is a set {s1,x} ⊆ [m−1
m
− τ1,

m−1
m

] of rational numbers such

that mld(P1, T1,
∑

s1,xF1,x + C1) = 1
m
− v. There is an i2 such that

max{s1,x} < m−1
m
− τi2 . So there is also a set {s2,x} ⊆ [m−1

m
− τi2 ,

m−1
m

]

such that mld(Pi2 , Ti2 ,
∑

s2,xFi2,x + Ci2) = 1
m
− v

2
. By continuing this

process we find {sj,x} ⊆ [m−1
m
− τij ,

m−1
m

] such that max{sij−1,x} <

m−1
m
− τij . Hence we can find a set {sj,x} ⊆ [m−1

m
− τij ,

m−1
m

] such that

mld(Pij , Tij ,
∑

sj,xFij ,x + Cij) = 1
m
− v

j
.

We have thus constructed a set
⋃
{sj,x} of rational numbers which

satisfies the DCC condition but such that there is an increasing set of

mlds corresponding to boundaries with coefficients in
⋃
{sj,x}. This is

a contradiction with the ACC for mlds. �

3. Let m be the smallest number such that 1
m
≤ δ. Let h = min{k−1

k
− u

r!
>

0}1≤k≤m where u, k are natural numbers and r = max{m, 57}. Now

choose a τ for m as in Lemma 3.7.3 such that τ < h.
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Blow up one exceptional divisor E via f : Y → X such that the log

discrepancy satisfies 1
k
≤ a(E, X, 0) ≤ 1

k
+ τ for some k > 1 (if such E

does not exist, then go to step 1). The crepant log divisor KY + BY is

1
m

-lc and so by Lemma 3.7.3 KY + Dτ is also 1
m

-lc (Dτ is constructed

for BY ). Let KX + B+ be a (0, n)-complement for some n < 58 and

let KY + B+
Y be the crepant blow up. Then, by the way we chose τ

we have Dτ ≤ B+. Now run the anti-LMMP on KY + Dτ (Definition

3.2.18 and Example 3.2.21), i.e., contract any birational type extremal

ray R such that (KY + Dτ ) · R > 0. At the end of this process we get

a model X1 and the corresponding map g : Y → X1. After contracting

those birational extremal rays where KX1 + Dτ is numerically zero, we

get a model S1 with one of the following properties:

� ρ(S1) = 1 and KS1 + Dτ ≡ KS1 + B+
S1
≡ 0 and 1

m
-lc.

� ρ(S1) = 2 and (KS1 +Dτ ) ·R = 0 for a nonbirational type extremal

ray R on S1 and KS1 + Dτ is 1
m

-lc.

� −(KS1 + Dτ ) is nef and big and KS1 + Dτ is 1
m

-lc.

where KS1 + Dτ is the birational transform of KY + Dτ .

In any case −(KS1 + Dτ ) is nef because Dτ ≤ B+
S1

and so Dτ can not

be positive on a non-birational extremal ray. KS1 + Dτ is 1
m

-lc by the

way we have chosen τ .

4. If the first case occurs in the division in step 3, then we are done.

5. If the second case occurs in the division in step 3, then R defines a

fibration φ : S1 → Z. In this case, B+
S1

= Dτ +N where each component
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of N is a fibre of φ and there are only a finite number of possibilities

for the coefficients of N . Now if the index of KS1 + Dτ is bounded,

then we can replace N by N ′ ∼Q N such that each component of N ′ is

a general fibre of φ, there are only a finite number of possibilities for

the coefficients of N ′, KS1 + Dτ + N ′ is 1
m

-lc and has a bounded index.

Note that the components of N ′ are smooth curves and intersect the

components of Dτ transversally in smooth points of S1.

6. Now assume that the third case or the second case occurs in the division

in step 3. Let C be a curve contracted by g : Y → X1 constructed in

step 3. If C is not a component of BY , then the log discrepancy of C

with respect to KX1+BX1 is at least 1 where KX1+BX1 is the birational

transform of KY + BY . Moreover g(C) ∈ Supp BX1 6= ∅. So the log

discrepancy of C with respect to KX1 is more than 1. This means that

C is not a divisor on a minimal resolution W1 → X1. Let W → X

be a minimal resolution. Then, there is a morphism W → W1. Hence

exc(W1/X1) ⊆ exc(W/X). Now if C ∈ exc(W/X) is exceptional/X1,

then a(C, X1, Dτ ) < a(C, X, 0).

7. Let (X1, B1) := (X1, Dτ ) and repeat the process. In other words we

blow up again one exceptional divisor E via f1 : Y1 → X1 such that

the log discrepancy satisfies 1
k
≤ a(E, X1, B1) ≤ 1

k
+ τ for some natural

number k > 1. The crepant log divisor KY1 + B1,Y1 is 1
m

-lc and so by

Lemma 3.7.3 KY1 +D1,τ is 1
m

-lc. Note that the point which is blown up

on X1 can not be smooth since τ < h as defined in step 3. So according

to step 6 the blown up divisor E is a member of exc(W/X). Now we
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again run the anti-LMMP on KY1 + D1,τ and proceed as in step 3.

W

��

//W1

��

//W2

��

// . . .

Y

f

��

g

!!B
BB

BB
BB

B Y1

f1

��

g1

!!C
CC

CC
CC

C Y2

�� !!B
BB

BB
BB

BB
. . .

X X1

��

X2

��

. . .

S1 S2
. . .

8. Steps 6,7 show that each time we blow up a member of exc(W/X)

say E. And if we blow that divisor down in some step, then the log

discrepancy a(E, Xj, Bj) will decrease. That divisor will not be blown

up again unless the log discrepancy drops by at least 1
2(m−1)

− 1
2m

. So

after finitely many steps either case one occurs in the division in step

3 or we get a model Xi with a standard boundary Bi such that there

is no E where 1
k
≤ a(E, Xi, Bi) ≤ 1

k
+ τ for any 1 < k ≤ m. The latter

implies the boundedness of the index of KXi
+ Bi = KXi

+ Di−1,τ . If

−(KXi
+ Bi) is nef and big (case one), then (Xi, Bi) will be bounded

by step 1. Otherwise we have the second case in the division above and

so by step 5 we are done (the index of KXi
+ Di−1,τ + N ′ is bounded).

Now we treat the exceptional case: From now on we assume that

(X, 0) is exceptional.

9. Let W → X be a minimal resolution. Let τ ∈ (0, 1
2
) be a rational

number. If (X, 0) is 1
2
+τ -lc, then we know that X belongs to a bounded

family according to step 1 above. So we assume that (X, 0) is not 1
2
+τ -
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lc. Then, blow up an exceptional curve E1 with log discrepancy aE1 =

a(E1, X, 0) ≤ 1
2
+ τ to get Y → X. Put KY + BY = ∗KX . Let t ≥ 0 be

such that there is an extremal ray R such that (KY +BY + tE1) ·R = 0

and E1 · R > 0 ( and s.t. KY + BY + tE1 Klt and antinef). Such R

exists otherwise there is a t > 0 such that KY + BY + tE1 is lc (and

not Klt) and antinef. This is a contradiction by [Sh2, 2.3.1]. Now if R

is of birational type, then contract it via Y → Y1.

Again by increasing t we obtain an extremal ray R1 on Y1 such that

(KY1 + BY1 + tE1) · R1 = 0 and E1 · R1 > 0 (preserving the nefness of

−(KY1 + BY1 + tE1) ). If it is birational, then contract it and so on.

After finitely many steps we get a model (V1, BV1 + t1E1) and a number

t1 > 0 with the following possible outcomes:

(3.7.3.1)

� (V1, BV1 + t1E1) is Klt, ρ(V1) = 1 and KV1 + BV1 + t1E1 is antinef.

� (V1, BV1 + t1E1) is Klt and ρ(V1) = 2 and there is a non-birational

extremal ray R on V1. Moreover KV1 + BV1 + t1E1 and KV1 are

antinef.

� (V1, BV1 + t1E1) is Klt and ρ(V1) = 2 and there is a non-birational

extremal ray R on V1. Moreover KV1 + BV1 + t1E1 is antinef but

KV1 is not antinef.

Define KV1 + D1 := KV1 + BV1 + t1E1. Note that in all the cases above

E1 is a divisor on V1 and the coefficients of BV1 and D1 are ≥ 1
2
− τ .
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Lemma 3.7.4 Let P ∈ U be a δ-lc surface singularity. Moreover

suppose that there is at most one exceptional/U divisor such that

a(E, U, 0) < 1
2

+ τ . Then, the index of KU is bounded at P and the

bound only depends on δ and τ .

Proof We only need to prove this when the singularity is of type

Ar (otherwise the index is bounded). If there is no E/P such that

a(E, U, 0)) < 1
2

+ τ
2
, then step 1 shows that the index is bounded. But

if there is one E/P such that a(E, U, 0) < 1
2
+ τ

2
, then using the notation

of 3.5.2.1, we have ai+1 − ai ≥ τ
2

and ai−1 − ai ≥ τ
2
. This implies the

boundedness of r and hence the boundedness of the index of KU at P .

�

10. Let U/pt. be a surface with the following properties:

� ρ(U) = 1.

� KU + GU antinef, Klt and exceptional.

� KU antiample.

Now blow up two divisors E and E ′ as f : YU → U such that a(E, U, 0) <

1
2
+ τ and a(E ′, U, 0) < 1

2
+ τ (suppose there are such divisors). Choose

t, t′ ≥ 0 such that (f ∗(KU +GU)+tE+t′E ′) ·R = 0 for an extremal ray

R s.t. R·E ≥ 0 and R·E ′ ≥ 0 and f ∗(KU +GU)+tE+t′E ′ is antinef and

Klt. We contract R to get g : YU → U ′. We call such operation a hat

of first type. Note that E and E ′ are divisors on U ′ and ρ(U ′) = 2.

Define KU ′ + GU ′ to be the pushdown of f ∗(KU + GU) + tE + t′E ′.
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If KU is δ-lc and such E, E ′ do not exist as above, then the index of

KU will be bounded by Lemma 3.7.4. So U will be bounded.

11. Let U/pt. be a surface with the following properties:

� ρ(U) = 2.

� KU + GU antinef, Klt and exceptional.

� −KU nef and big.

Now blow up a divisor E to get f : YU → U such that a(E, U, 0) < 1
2
+τ

(suppose there is such E). Let t ≥ 0 be such that (f ∗(KU +GU)+ tE) ·

R = 0 for an extremal ray R s.t. R · E ≥ 0 and f ∗(KU + GU) + tE

is antinef and Klt. We contract R to get g : YU → U ′. We call such

operation a hat of second type. Note that E is a divisor on U ′ and

ρ(U ′) = 2. Define KU ′ +GU ′ to be the pushdown of f ∗(KU +GU)+ tE.

If KU is δ-lc and such E does not exist as above, then the index of KU

and so U will be bounded by Lemma 3.7.4.

12. Let U/pt. be a surface with the following properties:

� ρ(U) = 2 and U is pseudo-WLF/pt..

� There is a birational type extremal ray Rbir and the other extremal

ray of U is of fibration type.

� KU + GU is antinef, Klt and exceptional.

� KU ·Rbir > 0.
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Then, we say that U is of 2-bir type. Let C be the divisor that defines

Rbir on U . There is a c ∈ (0, 1) such that (KU + cC) · C = 0. Now

blow up E as YU → U such that a(E, U, cC) < 1
2

+ τ (suppose there

is such E). Now let t ≥ 0 such that f ∗(KU + GU + tC) · R = 0 for

an extremal ray R s.t. R · E ≥ 0, R · C ≥ 0 and f ∗(KU + GU + tC)

is antinef and Klt. We contract R to get g : YU → U ′. We call such

operation a hat of third type. Define KU ′ + GU ′ to be the pushdown

of f ∗(KU +GU + tC). Note that in this case E and C are both divisors

on U ′ and ρ(U ′) = 2.

If KU + cC is δ-lc and such E does not exist as above, then contract

C : U → U1. Thus the index of KU1 will be bounded at each point by

Lemma 3.7.4 and so U1 and consequently U will be bounded.

YU

f

��

g

  B
BB

BB
BB

B

U U ′

13. Let U/pt. be a surface such that ρ(U) = 2. Moreover suppose that

KU + GU is antinef, Klt and exceptional where GU 6= 0. Moreover

suppose there are two exceptional curves H1 and H2 on U . In this case

let C be a component of GU and let t ≥ 0 such that (KU+GU+tC)·Hi =

0 for i = 1 or 2 and KU +GU + tC Klt and antinef (assume i = 1). We

contract H1 as U → U1 and define KU1 + GU1 to be the pushdown of

KU + GU + tC.

Definition 3.7.5 Define KU + ∆U as follows: KU + ∆U := KU
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in step 10 and step 11. KU + ∆U := KU + cC in step 12. Finally

KU1 + ∆U1 := KU1 in step 13.

14. The following lemmas are crucial to our proof.

Lemma 3.7.6 Let U be a bounded family of surfaces with Picard

number one or two and let 0 < x < 1 be a rational number. Moreover

assume the following for each member U :

� −(KU + B) is nef and big for a boundary B with coefficients ≥ x.

� KU + B is Klt.

Then, (U, Supp B) is bounded.

Proof We prove that there is a finite set Λf such that for each U there

is a boundary M ∈ Λf s.t. −(KU + M) is nef and big and M ≤ B.

If ρ(U) = 1, then simply take M = x
∑

α Bα where B =
∑

α bαBα.

Obviously −(KU +M) is nef and big and since U belongs to a bounded

family hence (U, Supp M) is bounded.

Now suppose ρ(U) = 2. Let N = x
∑

α Bα. If −(KU + N) is not nef,

then there is an exceptional curve E on U with (KU + N) ·E > 0. Let

θ : U → U ′ be the contraction of E. By our assumptions, KU ′ +B′, the

pushdown of KU +B, is antiample. So KU ′+N ′, the pushdown of KU +

N , is also antiample. The boundedness of U implies the boundedness of

U ′ (since we have a bound for the Picard number of a minimal resolution

of U ′). Thus −(KU + M) := −θ∗(KU ′ + N ′) = −(KU + N + yE) is
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nef and big and there is only a finite number of possibilities for y > 0.

This proves the boundedness of (U, Supp(N + yE)). Note that in the

arguments above Supp B = Supp M . �

Main Lemma 3.7.7 Suppose that U = {(U, Supp D)} is a bounded

family of log pairs of dim d where KU + D is antinef and ε-lc for a

fixed ε > 0. Then, the set of partial resolutions of all (U,D) ∈ U is a

bounded family.

Note that here we do not assume (U,D) to be bounded, that is, the

coefficients of D may not necessarily be in a finite set.

Proof Let (U,D) be a member of the family. By our assumptions the

number of components of D is bounded (independent of (U,D)) and so

we can consider any divisor supported in D as a point in a real finite

dimensional space. Let D =
∑

1≤i≤q diDi and define

HU := {(h1, . . . , hq) ∈ Rq | KU +
∑

1≤i≤q

hiDi is antinef and ε-lc}

So HU is a subset of the cube [0, 1]q and since being ε-lc and antinef

are closed conditions, then HU is a closed and hence compact subset

of [0, 1]q. For each H ∈ HU the corresponding pair (U,H) is ε-lc. Let

YH → U be a terminal blow up of (U,H) and denote by RH the set of

exceptional/U divisors on YH . For different H we may have different

RH , but the union of all RH is a finite set when H runs through HU .
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Suppose otherwise, so there is a sequence {H1, . . . , Hm, . . . } ⊆ HU such

that the union of all RHi
is not finite. Since HU is compact, there is

at least an accumulation point for the sequence in HU , say H (we can

assume that this is the only accumulation point). So (U,H) is ε-lc. Let

v = (1, . . . , 1) ∈ Rq. Then, there are α, β > 0 such that KU + Hα is

ε−β-lc where ε−β > 0 and Hα is the corresponding divisor of H +αv.

In particular this implies that there is a d-dimensional disc B ⊆ [0, 1]q

with positive radius H as its centre such that KU + H is ε − β-lc and

RH ⊆ RHα for any H ∈ B. This contradicts the way we chose the

sequence {H1, . . . , Hm, . . . }. The function R : HU → N gives a finite

decomposition of the set HU . This means that there is only a finite

number of partial resolutions for all (U,H) where H ∈ HU for a fixed

U . Using Noetherian induction we complete the proof of the lemma.

�

Now we prove a statement similar to [Sh2, 4.2].

Lemma 3.7.8 Let U = {(U, Supp D)} be a bounded family where we

assume that each (U,D) is Klt and exceptional and K + D is antinef.

Then, there is a constant γ > 0 such that each (U,D) is γ-lc.

Proof For (U, Supp D) a member of the family let

HU = {H =
∑

hkDk| K + H is log canonical and− (K + H) is nef}

where D =
∑

dkDk.
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HU is a closed subset of a multi-dimensional cube (with bounded di-

mension) and so it is compact. There is a biggest number eU > 0 such

that (U,H) is eU -lc for any H ∈ HU . Since the family is bounded,

{eU}U∈U is bounded from below away from zero. �

Now we return to the division in 3.7.3.1 and deal with each case as

follows:

15. (First case in 3.7.3.1) Perform a hat of the first type for U := V1 and

KU +GU := KV1 +D1 (so we blow up E, E ′). Then, we get V2 := U ′ and

KV2 + D2 := KU ′ + GU ′ as defined above and Y1 := YU . Now V2 would

be as in step 11, 12 or 13 so we can perform the appropriate operation

as explained in each case. If V2 is as in step 11, then a(E, V2, ∆V2) = 1

and a(E ′, V2, ∆V2) = 1. If V2 is as in step 12, then E or E ′ is not

exceptional so we have a(E, V2, ∆V2) = 1 or a(E ′, V2, ∆V2) = 1. But

if V2 is as in step 13, then we get U1 as defined in step 13 and so

a(E, U1, ∆U1) = 1 or a(E ′, U1, ∆U1) = 1. In the latter case we define

(replace) (V2, D2) := (U1, GU1).

So, whatever case we have for V2 we have a(A, V2, ∆V2) = 1 for at least

one A ∈ exc(Y/X).

16. (Second case in 3.7.3.1) Here we perform a hat of second type for U :=

V1 and KU +GU := KV1+D1 to get V2 := U ′ and KV2+D2 := KU ′+GU ′ .

If V2 is as in step 11, then a(E, V2, ∆V2) = 1. If V2 is as in step 12, then

go to step 17. But if V2 is as in step 13, then we get U1 as defined in

step 13 where KU + GU := KV2 + D2 and then continue the process for

U1 as in step 15.
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Here, in some cases we may not be able to make the singularities better

for K +∆ immediately on V2 but the algorithm ensures us that we will

be able to do that in latter steps.

17. (Third case in 3.7.3.1) In this case V1 is 2-bir. We perform a hat of

the third type where U := V1 and KU + GU := KV1 + D1 so we get

V2 := U ′ and Y1 := YU and KV2 + D2 := KU ′ + GU ′ . If V2 is as in

step 11, then a(E, V2, ∆V2) = 1 and a(C, V2, ∆V2) = 1 (E is the blown

divisor and C is on V1, as in step 12 for U := V1). If V2 is as in step

12, then a(E, V2, ∆V2) = 1 or a(C, V2, ∆V2) = 1. Now if V2 is as in step

13, then we get U1 as defined in step 13 and so a(E, U1, ∆U1) = 1 or

a(C, U1, ∆U1) = 1. Then, we define (replace) (V2, D2) := (U1, GU1).

So whatever case we have for V2 we have a(A, V2, ∆2) = 1, after the

appropriate operations, for at least one A ∈ exc(Y/X).

18. After finitely many steps we get Vr where W/Vr such that KW + D :=

∗(KVr + Dr) with effective D where Vr is bounded. Since all the coeffi-

cients of BVr are ≥ 1
2
− τ (BVr is the birational transform of BW where

KW + BW = ∗KX), (Vr, BVr) is also bounded by Lemma 3.7.6. By

construction Supp Dr = Supp BVr and so (Vr, Dr) is bounded. Lemma

3.7.7 implies the boundedness of W and so of X.
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Corollary 3.7.9 The BABδ,2,[0,1] (Conjecture 3.1.11) holds.

Proof Reduction to the case B = 0: We run the anti-LMMP on the

divisor KX (Definition 3.2.18 and Example 3.2.21); if there is an extremal

ray R such that KX · R > 0, then contract R to get X → X1. Note that

B ·R < 0 (because (KX +B) ·R ≤ 0) so the bigness of −KX will be preserved

(So R has to be of birational type). Repeat the same process for X1, that is,

if there is an extremal ray R1 such that KX1 ·R1 > 0, then contract it and so

on. Since in each step we get a pseudo-WLF then the canonical class cannot

become nef. Let X be the last model in our process, then −KX is nef ad big.

Now the boundedness of X implies the boundedness of X. So we replace X

by X, that is, from now on we can assume B = 0.

By Theorem 3.7.1 (X, 0) has an (ε, n)-complement KX + B+ for some

n ∈ Nδ,2,{0}. Now let W → X be a minimal resolution and φ : W → S be

the map obtained by running the classical MMP on W , that is, contracting

−1-curves to get a minimal S. As it is well known S is P2 or a smooth ruled

surface with no −1-curves.
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Let B+
S =

∑
b+
i,SB+

i,S be the pushdown of B+
W on S where KW + B+

W is

the crepant pullback of KX + B+. Then, define

AS :=
b+
1,S

2
B+

1,S +
∑
i6=1

b+
i,SB+

i,S

If S = P2, then−(KS+AS) is ample and Supp AS = Supp B+
S . By Lemma

3.7.6 (S, Supp AS = Supp B+
S ) is bounded. Then, Lemma 3.7.7 implies the

boundedness of W and so of X.

Now assume that S is a ruled surface. If there is no exceptional curve

(with negative self-intersection) on S, then −(KS + AS) is nef and big if we

take B+
1,S a non-fibre component of B+

S . Since S is smooth, S is bounded

and so (S, Supp AS = Supp B+
S ) is bounded.

But if there is an exceptional divisor C on S, then contract C as S → S ′.

So S is a minimal resolution of S ′. Since ρ(S) = 2 and (S ′, 0) is δ-lc, the

index of each integral divisor on S ′ is bounded. So, S ′ is bounded and hence

(S ′, Supp B+
S′) is also bounded. This implies the boundedness of S, W and

so of X. Note that B+
S′ 6= 0 as S ′ is WLF.

�

Corollary 3.7.10 Conjecture WCδ,2,Γf
(3.1.7) holds for any finite set Γf ⊆

[0, 1] of rational numbers.

Proof It follows from Corollary 3.7.9 �.
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3.8 Second proof of the global case

Remember that all the varieties are algebraic surfaces unless otherwise stated.

We first prove the boundedness of varieties and then prove the boundedness

of complements. This is somehow the opposite of what we did in the last

section. However our proof was inspired by the theory of complements. The

following proof makes heavy use of properties of algebraic surfaces. That

means that it is not expected to generalise to higher dimension. The method

also has some similarity with the proof of Alexeev and Mori [AM] in the

sense that both analyse a series of blow ups, but in different ways.

Theorem 3.8.1 The BABδ,2,[0,1] (3.1.11) holds.

Proof Now we reduce to the case B = 0. Run the anti LMMP on the

pair (X, 0) i.e. if −KX is not nef, then contract an extremal ray R where

KX · R > 0. This obviously contracts a curve in B. Repeating this process

gives us a model (X ′, 0) where −KX′ is nef and big. Otherwise X ′ must

be with Picard number one and KX′ nef. But this is impossible by our

assumptions. We prove the boundedness of {X ′} which in turn implies the

boundedness of {X}. Now we replace (X, B) with (X ′, 0) but we denote it

by (X, 0). We also assume that δ < 1 otherwise X will be smooth and so

with bounded index.

Let W → X be a minimal resolution. The main idea is to prove that

there is only a bounded number of possibilities for the coefficients in BW

where KW + BW = ∗KX , that is, the index of KX is bounded.

Strategy: We apply the familiar division into nonexceptional and excep-

tional cases.
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First assume that (X, 0) is nonexceptional. So there will be a (0, n)-

complement KX + B+ for n < 58. If we run the classical MMP on the

pair (W, 0), then we end up with S which is either P2 or a ruled surface.

Since −(KS + BS) = −∗(KW + BW ) is nef and big, KS cannot be nef. Let

KW + B+
W = ∗(KX + B+

X)

Lemma 3.8.2 Let G be a component of the boundary B+
S where KS +

B+
S = ∗(KW + B+

W ). Then, G2 is bounded from below and above. Moreover

there is only a bounded number of components in B+
S .

Proof The boundedness of G2 follows from the next lemma and the fact

that X is δ-lc. The boundedness of number of components in B+
S is left to

the reader. �

The more general lemma below will also be needed later.

Lemma 3.8.3 Let (T/Z,BT ) be an δ-lc WLF pair where T is either P2/pt.

or a smooth ruled surface (with no −1-curves) over a curve and suppose

KT + B is antinef and lc for a boundary B. Let M, B′
T be effective divisors

with no common component such that B = B′
T + M . Then, M2 is bounded

from above.

Proof First assume that T = P2. In this case the lemma is obvious because

if M2 is too big, then so is deg M and so it contradicts the fact that deg M ≤

3.

Now assume that T is a ruled surface where F is a general fibre other

than those curves in the boundary and let C be a section. The Mori cone

of T is generated by its two edges. F generates one of the edges. If all the
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components of M are fibres, then M2 = 0 and we are done. So, assume

otherwise and let M ≡ aC + bF , then 0 < M · F = (aC + bF ) · F = a so a

is positive. Let C2 = −e and consider the following two cases:

1. e ≥ 0: We know that KT ≡ −2C + (2g − 2 − e)F where g is a

non-negative number [H, V, 2.11]. So we have

0 ≥ (KT + M + tC) · F = −2 + a + t

for some t ≥ 0 where B′
T ≡ tC + uF (u ≥ 0 since e ≥ 0). Hence a + t ≤ 2.

Calculations give M2 = a(2b− ae). Since a and e are both nonnegative, M2

big implies that b is big. But on the other hand we have:

0 ≥ (KT + M + tC) · C = (−2 + a + t)(−e) + 2g − 2− e + b

This gives a contradiction if b is too big because e is also bounded. The

boundedness of e follows from the fact that T is δ-lc. In the local isomorphic

section, we proved that exceptional divisors have bounded selfintersection

numbers.

2. e < 0: in this case, by [H, V, 2.12] we have e + 2g ≥ 0 and so:

0 ≥ (KT + M) · C = (−2 + a)(−e) + 2g − 2− e + b

= 2g + e− 2− (ae/2) + (2b− ae)/2

Now since 2g + e − (ae/2) ≥ 0, (2b − ae)/2 ≤ 2. So, M2 is bounded

because a is also bounded. �

Let P ∈ X be a singular point. If P is not in the support of B+, then the

index of KX at P is at most 57 and so bounded. Now suppose that P is in

the support of B+. If the singularity of P is of type E6, E7, E8 or Dr, then
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again the index of KX at P is bounded. So assume that the singularity at P

is of type Ar. The goal is to prove that the number of curves in exc(W/P ) is

bounded. We must prove that the number of −2-curves is bounded because

the number of other curves is bounded by the proof of local isomorphic case.

Note that the coefficient of any E ∈ exc(W/P ) in B+
W is positive and there

is only a bounded number of possibilities for these coefficients. Let C be

the longest connected subchain of −2-curves in exc(W/P ). Run the classical

MMP on W to get a model W ′ such that there is a −1-curve F on W ′ s.t. it

is the first −1-curve that intersects the chain C (if there is no such W ′ and

F , then C must consist of a single curve). We have two cases:

1. F intersects, transversally and in one point, only one curve in C, say

E. First suppose that E is a middle curve, that is, there are E ′ and E ′′ in

the chain which both intersect E. Now contract F so E becomes a −1-curve.

Then, contract E and then E ′ and then all those which are on the side of E ′.

In this case by contracting each curve we increase E ′′2 by one. Hence E ′′ will

be a divisor on S in B+
S with high self-intersection. By Lemma 3.8.3 there

can be only a bounded number of curves in C on the side of E ′. Similarly

there is only a bounded number of curves on the side of E ′′. So we are done

in this case.

Now suppose that E is on the edge of the chain and intersects E ′. Let tE

and tF be the coefficients of E and F in B+
W and similarly for other curves.

Let h be the intersection number of F with the curves in B+
W ′ except those

in C and F itself. Now we have

0 = (KW ′ + B+
W ′) · F = tE + h− 1− tF

and hence h = 1 + tF − tE. If h 6= 0, then F intersects some other curve
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not in the chain C. By contracting F then E and then other curves in the

chain we get a contradiction again. Now suppose h = 0, that is, tE = 1 and

tF = 0. In this case let x be the intersection of E with the curves in B+
W ′

except those in C. So we have

0 = (KW ′ + B+
W ′) · E = −2tE + tE′ + x

therefore x = 2tE − tE′ > 0 and similarly we again get a contradiction.

2. Now assume that F intersects the chain in more than one curve or

intersects a curve with intersection number more than one. Suppose the

chain C consists of E1, . . . , Es and F intersects Ej1 , . . . , Ejl
. Note that l is

bounded. If F · Ejk
> 1 for all 0 ≤ k ≤ l, then contract F . So E2

jk
≥ 0 after

contraction of F . In addition, they will not be contracted later and so they

appear in the boundary B+
S . Now replace C with longest connected subchain

when we disregard all Ejk
. Now go to step one again. If it does not hold

return to step two and so on.

Now suppose F ·Ejk
= 1 for some k. So F must intersect at least another

Ejt where t = k +1 or t = k−1. Now contract F so Ejk
becomes a −1-curve

and it will intersect Ejt . Contracting Ejk
and possible subsequent −1-curves

will prove that there is a bounded number of curves between Ejt and Ejk
.

Now after contracting Ejk
and all other curves between Ejt and Ejk

we have

E2
jm
≥ 0 for each m 6= k. So we again take the longest connected subchain

excluding all Ejt . Repeat the procedure. It must stop after a bounded

number of steps because the number of curves in B+
S is bounded. This

boundedness implies that there is only a bounded number of possibilities for

the coefficients in BW where KW + BW = ∗KX . By Borisov-McKernan W

belongs to a bounded family and so complements will be bounded.
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Here the proof of the nonexceptional case finishes and from now on we

assume that (X, 0) is exceptional.

Let W → X be a minimal resolution. Let τ ∈ (0, 1
2
) be a rational number.

If (X, 0) is 1
2

+ τ -lc, then we know that X belongs to a bounded family

according to step 1 in the proof of Theorem 3.7.1. So we may assume that

(X, 0) is not 1
2
+ τ -lc. Blow up all exceptional curves E with log discrepancy

aE = a(E, X, 0) ≤ 1
2

+ τ to get Y → X and put KY + BY = ∗KX . Fix

E1, one of these exceptional divisors. Let t ≥ 0 be such that there is an

extremal ray R such that (KY + BY + tE1) · R = 0 and E1 · R > 0 (and

s.t. KY + BY + tE1 is Klt and antinef). Such R exists otherwise there is a

t > 0 such that KY + BY + tE1 is lc (and not Klt) and antinef. This is a

contradiction by [Sh2, 2.3.1]. Now contract R : Y → Y1 if it is of birational

type.

Again by increasing t there will be an extremal ray R1 on Y1 such that

(KY1 + BY1 + tE1) · R1 = 0 and E1 · R1 > 0 (preserving the nefness of

−(KY1 + BY1 + tE1) ). If it is of birational type, then contract it and so

on. After finitely many steps we get a model (V1, BV1 + t1E1) and a number

t1 > 0 with the following possible outcomes:

(3.8.3.1)

� (V1, BV1 + t1E1) is Klt, ρ(V1) = 1 and KV1 + BV1 + t1E1 ≡ 0.

� (V1, BV1 + t1E1) is Klt and ρ(V1) = 2 and there is a non-birational

extremal ray R on V1 such that (KV1 + BV1 + t1E1) · R = 0. Moreover

KV1 + BV1 + t1E1 is antinef.
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Note that for each element E ∈ exc(Y/X), either E is a divisor on V1 or

it is contracted to a point in the support of E1.

Lemma 3.8.4 For any h > 0 there is a µ > 0 such that if (T,B) is a δ-lc

pair (δ is already fixed) with a component C of B passing through P ∈ T ,

with a coefficient t ≥ h, then either KT is δ+µ-lc at P or 1−aE > µ for each

exceptional divisor E/P on a minimal resolution of T (aE = log discrepancy

of (T, B) at E).

Proof If P is smooth or has E6, E7, E8 or Dr type of singularity, then the

lemma is clear since the index of KT at P is bounded in all these cases (see

the local isomorphic section). In all these cases there will be an µ > 0 such

that KT is δ + µ-lc at P .

Now suppose that the singularity at P is of type Ar. Take a minimal

resolution WT → T with exc(WT /P ) = {E1, . . . , Er} (notation as in the

local isomorphic section) and suppose that j is the maximal number such

that mld(P, T, 0) = a′j (a′∗ is the log discrepancy of (T, 0) at E∗) for an

exceptional divisor Ej/P . Actually we may assume that r − j is bounded.

By the local isomorphic section , the distance of Ej from one of the edges

of exc(WT /P ) is bounded. We denote the birational transform of C on WT

again by C. Suppose C intersects Ek in exc(WT /P ). If k 6= 1 or r, then

(−E2
k)ak−ak−1−ak+1 +x = 0 where a∗ shows the log discrepancy of the pair

(T,B) at E∗ and x ≥ h. So either ak−1 − ak ≥ h
2

or ak+1 − ak ≥ h
2
. In either

case the distance of Ek is bounded from one of the edges of exc(WT /P ). If

this edge is the same edge as for Ej, then again the lemma is clear since the

coefficients of Ek and Ej in ∗C (now C is on T and ∗C on WT ) are bounded
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from below (in other words they are not too small).

Now assume that Ek and Ej are close to different edges. In this case

we claim that the coefficients of the members of exc(WT /P ) in BWT
are

bounded from below where KW + BWT
= ∗(KT + tC). Suppose that the

smallest coefficient occurs at Em. A simple calculation shows that we can

assume that Em is one of the edges of exc(WT /P ). Hence Em is within a

bounded distance from Ej or from Ek.

Suppose that Em is within a bounded distance from Ej. If a′j ≥ 1+δ
2

, then

KT is 1+δ
2

-lc at P . So we can assume that a′j < 1+δ
2

. We prove that all the

numbers 1 − a′j, . . . , 1 − a′r are bounded from below. In fact, if 1 < j < r,

then (−E2
j )a

′
j − a′j−1 − a′j+1 = 0 (note that −E2

j > 2 in this case). Now if

a′j−1−a′j ≥ δ
2
, then the chain will be bounded and thus the index of KT at P .

But if a′j+1−a′j ≥ δ
2

then a′r−a′r−1 ≥ δ
2

and so (−E2
r−1)a′r = 1−(a′r−a′r−1) ≤

1− δ
2
. Hence if m = r, then we are done. But if m = 1, then again the whole

chain is bounded and so the index of KT at P . Now if j = r, then again the

chain is bounded if m = 1 and a′m = a′j = a′r < 1+δ
2

if m = r.

In the second case, that is, if Em is within a bounded distance from Ek,

then the coefficient of Em in ∗C on W is bounded from below. �

Lemma 3.8.5 For any h > 0 there is a γ > 0 such that if (T/pt., B) is a

δ-lc WLF pair (δ is already fixed) with a component C of B passing through

P ∈ T and t ≥ h where t is the coefficient of C in B, then KT is δ + γ-lc at

P .

Proof As discussed in Lemma 3.8.4 we may assume that the singularity

at P is of type Ar. Moreover, we assume that 1 − ak > µ for some fixed
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number µ > 0 where ak is the log discrepancy of the pair (T,B) at an

exceptional divisor Ek/P on WT . Here WT → T is a minimal resolution and

exc(WT /P ) = {E1, . . . , Er}. Let C be the longest connected sub-chain of −2-

curves in exc(WT /P ) and W1 a model where C is intersected by a −1-curve

F for the first time, that is, we blow down −1-curves on WT until we get a

model W1 and a morphism WT → W1 such that W1 is the first model where

there is a −1-curve F intersecting C (on W1). Let KWT
+ B+ ≡ 0 be a (lc)

(0, Q)-complement of KWT
+BWT

. Assume that F intersects Ej in C and let

tEj
and tF be the coefficients of Ej and F in B+ on WT (similar notation for

the coefficients of other exceptional divisors). Then, an argument as in the

proof of the nonexceptional case gives a contradiction:

1. Suppose F intersects, transversally and in one point, only one curve

in C , say Ej. First suppose that Ej is a middle curve, that is, there are

Ej−1 and Ej+1 in C which both intersect Ej. Now contract F so Ej becomes

a −1-curve. Then, contract Ej and then Ej−1 and then all those which are

on the of Ej−1. By contracting each curve we increase E2
j+1 by one. If we

continue contracting −1-curves we get S (S = P2 or a ruled surface with no

−1-curve) where Ej+1 is a component of BS. By Lemma 3.8.3 there can be

only a bounded number of curves in C on the side of Ej−1. Similarly there is

only a bounded number of curves in C on the side of Ej+1. So we are done

in this case.

Now suppose that Ej is on the edge of the chain C and that it intersects

Ej−1. Let B+
W1 = Ḃ+ +M (M and Ḃ+ with no common component) where

each component of Ḃ+ is either F or an element of C. Now we have

0 = (KW1 + B+
W1) · F = tEj

− 1− tF + (M · F )
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and thus M · F = 1 + tF − tEj
. Similarly let B+

W1 = B̈+ + N ( N and B̈+

with no common component) where each component of B̈+ is either F or an

element of C. Then, we have

0 = (KW1 + B+
W1) · Ej = −2tEj

+ tEj−1
+ tF + (N · Ej)

and so tEj
= tEj−1

− tEj
+ tF +(N ·Ej) > µ. Hence tEj−1

− tEj
> µ

3
or tF > µ

3

or (N · Ej) > µ
3
.

If tF > µ
3
, then by contracting F we increase M2 by at least (M · F )2 ≥

t2F > (µ
3
)2. We have the same increase when we contract Ej and then Ej−1

and so on. So Lemma 3.8.3 shows the boundedness of C.

If (N · Ej) > µ
3
, then proceed similar to the last paragraph.

If tEj−1
− tEj

> µ
3
, then tEj−1

> tEj
+ µ

3
. This implies that tEj

≤ 1 − µ
3
,

hence M · F ≥ µ
3

and so we continue as above.

2. Now assume that F intersects C in more than one curve or intersects

a curve in C with intersection number more than one. Suppose the chain C

consists of Es, . . . , Eu and F intersects Ej1 , . . . , Ejl
. Note that l is bounded.

If F · Ejk
> 1 for all 1 ≤ k ≤ l, then contract F . So E2

jk
≥ 0 after

contraction of F hence Ejk
can not be contracted. Therefore, it appears in

the boundary on a “minimal” model S (namely, S is the projective plane

or a smooth ruled surface with no −1-curve). Replace C with its longest

connected subchain when we disregard all Ejk
. From here we can return to

step one and repeat the argument.

Now suppose F ·Ejk
= 1 for some k. So F must intersect at least another

Ejq where q = k+1 or q = k−1. Now contract F so Ejk
becomes a −1-curve

and would intersect Ejq . Contracting Ejk
and possible subsequent −1-curves

will prove that there are only a bounded number of curves between Ejq and
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Ejk
in C. Now after contracting Ejk

and all other curves between Ejq and

Ejk
we will have E2

jm
≥ 0 for each m 6= k. So again we take the longest

connected subchain excluding Ej1 , . . . , Ejl
and return to step one.

This process must stop after a bounded number of steps because the num-

ber of curves in B+
S with coefficient > µ is bounded (S is again a “minimal”

model). To prove this latter boundedness note that (KS + B+
S) · F = 0,

where we assume that S is a ruled surface and F a fibre. This implies that

there is only a bounded number of non-fibre components in B+
S with coeffi-

cient > µ. Let L be a section and tL be its coefficient in B+
S and Fi fibre

components of B+
S with tFi

> µ. Then,

0 ≥ (KS + tLL +
∑

i tFi
Fi) · L

= (−2L + (2g − 2− e)F + tLL +
∑

i tFi
Fi) · L

= −tLe + e + 2g − 2 +
∑

i tFi

which proves that there is a bounded number of Fi (L2 = −e and e + 2g ≥ 0

if e < 0). So the chain C must have a bounded length. This implies that if

we throw C away in the boundary B, then the mld at P will increase by at

least a fix number γ > 0 (γ does not depend on P or T ). This proves the

lemma. �

Lemma 3.8.5 settles the first case in 3.8.3.1 by deleting the boundary BV1 .

Now assume the second case in 3.8.3.1. Let F be a general fibre of the

contraction defined by the extremal ray R. If the other extremal ray of V1

defines a birational map V1 → Z, then let H be the exceptional divisor of

this contraction (otherwise delete the boundary and use 3.8.5).
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If KV1 is antinef, then use again 3.8.5. If KV1 is not antinef and if E1 6= H

then apply Lemma 3.8.5 to (Z,BZ). Boundedness of Z implies the bound-

edness of V1 and so we can apply Lemma 3.7.6. But if KV1 is not antinef

and E1 = H, then perform a hat of the third type as defined in the proof of

Theorem 3.7.1 with (U,GU) := (V1, BV1 + t1E1) and V2 := U ′. We can use

Lemma 3.8.5 on V2 or after contracting a curve on V2 to get the boundedness

of V2. Boundedness of V2 implies the boundedness of V1. �

Corollary 3.8.6 Conjecture WCδ,2,Γf
(3.1.7) holds in the global case where

Γf is a finite subset of rational numbers in [0, 1].

Proof Obvious by Theorem 3.8.1.

3.9 An example

Example 3.9.1 Let m be a positive natural number. For any µ ∈ (0, 1)

and any τ > 0 there is a model (X, 0) satisfying the following:

1. X is 1
m

-lc.

2. There is a partial resolution Y → X such that KY + BY := ∗KX is

1
m

+ µ-lc in codim 2 and bi > m−1
m
− µ. Set D :=

∑
m−1

m
Bi.

3. KY + D is not 1
m

+ τ -lc in codim 2.

Proof Let P ∈ X with X smooth outside P . Suppose that the minimal

resolution of P has the following diagram:
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O−3 O−2 . . . O−2 O−2 O−4

where the numbers show the self-intersections.

This diagram has the following corresponding system on a minimal reso-

lution where ai stand for the log discrepancies:



3a1 − a2 − 1 = 0

2a2 − a1 − a3 = 0
...

2ar−1 − ar−2 − ar = 0

4ar − ar−1 − 1 = 0

Now let t = ar−1 − ar. Then, ar−2 − ar−1 = t, . . . , a1 − a2 = t and

ar = 1+t
3

and a1 = 1−t
2

. The longer the chain the smaller the t is and

the discrepancies vary from −1+t
2

to t−2
3

. Other ai can be calculated as

ai = a1 − (i− 1)t = 1−t
2
− (i− 1)t = 1−(2i−1)t

2
.

Suppose that j is such that aj < 1
m

+ µ but aj−1 ≥ 1
m

+ µ. So the

exceptional divisors corresponding to ar, ar−1, . . . , aj will appear on Y but

the others will not. Now we try to compute the log discrepancies of the pair

(Y,D). The minimal resolution for P ∈ X is also the minimal resolution for

Y . But only E1, . . . , Ej−1 are exceptional/Y . The system for the new log

discrepancies (for (Y, D)) is as follows:
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3a′1 − a′2 − 1 = 0

2a′2 − a′1 − a′3 = 0
...

2a′j−2 − a′j−3 − a′j−1 = 0

2a′j−1 − a′j−2 − 1
m

= 0

Let s = a′j−2−a′j−1 so as before, we have a′j−1 = 1
m

+s and a′1 = 1−s
2

. If j is

big (i.e. if t is small enough), then s will be small and so a′j−1 = 1
m

+s < 1
m

+τ .

Hence (Y, D) is not 1
m

+ τ -lc.

�

3.10 Local cases revisited

Using the methods in the proof of the global case, we give a new proof of the

local cases. Here again by /Z we mean /P ∈ Z for a fixed P . The following

is the main theorem in this section.

Theorem 3.10.1 Conjecture WCδ,2,Φsm (3.1.7) holds in the local case, that

is, when we have dim Z ≥ 1 and Γ = Φsm.

Proof Our proof is similar to the nonexceptional global case. Here the pair

(X/Z, B) is a WLF surface log pair where (X, B) is δ-lc and B ∈ Φsm. Fix

P ∈ Z. Then, there exists a regular (0, n)-complement/P ∈ Z, K + B+ for

some n ∈ {1, 2, 3, 4, 6} by [Sh2].

1. Recall the first step in the proof of Theorem 3.7.1.
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2. Recall Definition 3.7.2 and Lemma 3.7.3. Let m be the smallest number

such that 1
m
≤ δ. Let h = min{k−1

k
− u

r!
> 0}1≤k≤m where u, k are

natural numbers and r = max{m, 6}. Now choose a τ for m as in

Lemma 3.7.3 such that τ < h.

Blow up one exceptional divisor E/P via f : Y → X such that the log

discrepancy satisfies 1
k
≤ a(E, X, B) ≤ 1

k
+τ for some k (if such E does

not exist, then return to step 1). The crepant log divisor KY + BY is

1
m

-lc and so by the choice of τ , KY +Dτ is also 1
m

-lc (Dτ is constructed

for BY ). Let KY + B+
Y be the crepant blow up of KX + B+. Then,

again by the way we chose τ we have Dτ ≤ B+
Y . Now run the anti-

LMMP/P ∈ Z (reflmmp) over KY + Dτ i.e. contract any birational

type extremal ray R/P ∈ Z such that (KY + Dτ ) · R > 0. At the end

we get a model X1 with one of the following properties:

� (KX1 + Dτ ) ≡ 0/P ∈ Z and KX1 + Dτ is 1
m

-lc.

� −(KX1 + Dτ ) is nef and big/P ∈ Z and KX1 + Dτ is 1
m

-lc.

where KX1 +Dτ is the birational transform of KY +Dτ and let g : Y →

X1 be the corresponding morphism.

The nefness of −(KX1 + Dτ ) comes from the fact that Dτ ≤ B+
1 . We

see that KX1 + Dτ is 1
m

-lc by applying Lemma 3.7.3.

3. Whichever case occurs above, to construct a complement, it is enough

to bound the index of KX1 + Dτ/P .

4. Let C be a curve contracted by g : Y → X1. If C is not a component of

BY , then the log discrepancy of C with respect to KX1 +BX1 is at least
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1 where KX1 + BX1 is the birational transform of KY + BY . Moreover

g(C) ∈ Supp BX1 6= ∅. So the log discrepancy of C with respect to

KX1 is more than 1. This means that C is not a divisor on a minimal

resolution W1 → X1. Let W → X be a minimal resolution. Then,

there is a morphism W → W1. Hence exc(W1/X1) ⊆ exc(W/X) ∪

Supp(B = BX). Now if C ∈ exc(W/X) ∪ Supp B is contracted by g,

then a(C, X1, Dτ ) < a(C, X, B).

5. Let (X1, B1) := (X1, Dτ ) and repeat the process. In other words again

we blow up one exceptional divisor E via f1 : Y1 → X1 such that the log

discrepancy satisfies 1
k
≤ a(E, X1, B1) ≤ 1

k
+τ for some natural number

k > 1. The crepant log divisor KY1 + B1,Y1 is 1
m

-lc and so by Lemma

3.7.3 KY1 + D1,τ is 1
m

-lc. Note that the point which is blown up on X1

cannot be smooth since τ < h as defined above. So according to the

last step the blown up divisor E is a member of exc(W/X) ∪ Supp B.

Now we run again the anti-LMMP on KY1 + D1,τ and proceed as in

step 2.

W

��

//W1

��

//W2

��

// . . .

Y

f

��

g

!!B
BB

BB
BB

B Y1

f1

��

g1

!!C
CC

CC
CC

C Y2

�� !!B
BB

BB
BB

BB
. . .

X

!!C
CC

CC
CC

C X1

��

X2

}}zz
zz

zz
zz

. . .

Z

6. Steps 4 and 5 show that each time we blow up a member of exc(W/X)∪
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Supp B say E. If we blow that divisor down in some step, then the log

discrepancy a(E, Xj, Bj) will decrease. That divisor will not be blown

up again unless the log discrepancy drops by at least 1
2(m−1)

− 1
2m

(this

is not a sharp bound). So after finitely many steps we get a model

Xi with a standard boundary Bi for which there is no E/P where

1
k
≤ a(E, Xi, Bi) ≤ 1

k
+ τ for any 1 < k ≤ m. Hence the index of

−(KXi
+ Bi)/P is bounded and so we can construct an appropriate

complement for (Xi, Bi)/Z. This implies the existence of the desired

complement for (X, B)/Z.

�
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4 Epsilon-log canonical complements in higher

dimensions

In this chapter we consider the (ε, n)-lc complements in higher dimensions,

that is, in dimensions more than two. This is a joint work in progress with

V.V. Shokurov. In subsection 4.1 we try to work out the proof of Theorem

3.7.1 in dimension 3 and we point out the problems we have to solve in order

to finish the proof of Conjecture 3.1.7 in dimension 3. In subsection 4.2 we

outline Shokurov’s plan on the same problem.

Let X → Z be an extremal KX-negative contraction where X is a 2-

dimensional pseudo-WLF and Z is a curve. We know that Z ' P1 since Z

must be rationally connected as X is. Moreover ρ(X) = 2. Similar Mori fibre

spaces in higher dimensions are not that simple. This makes the boundedness

problem of (ε, n)-lc complements more difficult in higher dimensions. We also

don’t know yet whether the index of KX + B will be bounded if we fix the

mld at a point.

In chapter 3 we first proved the boundedness of ε-lc complements (Theo-

rem 3.7.1 and Theorem 3.10.1) and then the BAB (Corollary 3.7.9). But in

higher dimensions we expect to solve both problems together. In other words

in some cases where it is difficult to prove the boundedness of varieties, it

seems easier to prove the boundedness of complements; specially when we

deal with a fibre space. Conversely when it is difficult to prove the bounded-

ness of ε-lc complements, it is better to prove the boundedness of pairs; this

is usually the case when the pairs are exceptional.

Lemma 4.0.2 Let X 99K X ′ be a flip/Z and assume that (X, B) is (ε, n)-
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complementary/Z. Then, (X ′, B′) is (ε, n)-complementary/Z where B′ is the

birational transform of B.

Proof Obvious from the definition of (ε, n)-complements. �

Note that in the previous Lemma it doesnot matter with respect to which

log divisor the flipping is taken to be.

Lemma 4.0.3 Let (Y,B) be a pair and Y 99K Y ′/Z be a composition

of divisorial contractions and flips/Z such that in each step we contract an

extremal ray R where (K+B).R ≥ 0. Suppose B′ =
∑

b′iB
′
i is the birational

transform of B, the pair (Y ′, B′) is (ε, n)-complementary/Z and (n + 1)b′i ≥

nb′i for each coefficient b′i. Then, (Y, B) is also (ε, n)-complementary/Z.

Proof Clear by Lemmas 3.2.17 and 4.0.2. �

4.1 Epsilon-lc complements in dimension 3

In this section we propose a plan toward the resolution of Conjecture 3.1.7

in dimension 3.

We repeat the proof of 3.7.1, in dimension 3, step by step:

1. Under the assumptions of Conjecture 3.1.7 for d = 3 and Γ = {0}, first

assume that (X, 0) is nonexceptional.

2. We do not have much information about the accumulation points of

mlds in dimension 3. Actually we still have not proved ACC in di-

mension 3 (Conjecture 3.1.15). As pointed out in the introduction of
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chapter 3, only one case of ACC in dimension 3 is remained to be

proved. Remember that Shokurov’s program tries to use complements

in dimension d− 1 in order to prove the ACC in dimension d. So it is

reasonable to assume ACC in dimension d− 1.

Lets denote by Accumd,Γ the set of accumulation points of mlds of

d-dimensional lc pairs (T, B), where B ∈ Γ.

3. We may be able to use inductive complements; since (X, 0) is not ex-

ceptional, it is expected that there is an inductive (0, n)-complement

KX + B+ where n ∈ N2. Inductive complements are those which are

extended from lower dimensional complements [PSh, 1.12].

4. Remember definition 3.7.2. We can similarly define Dτ,A for a boundary

B, with respect to a real number τ ≥ 0 and a set A ⊆ [0, 1]:

Dτ,A :=
∑

bi /∈[a−τ,a]

biBi +
∑

bi∈[a−τ,a]

aBi

where in the first term bi /∈ [a − τ, a] for any a ∈ A but in the second

term a ∈ A is the biggest number satisfying bi ∈ [a− τ, a].

Definition 4.1.1 Let A ⊆ [0, 1] and let (T,B) be a log pair. We

say that (T, B) is A-lc if (T,B) is x-lc where x := 1− sup{A}.

Assuming the ACC in dimension 3 a statement similar to Lemma 3.7.3

may hold: For any γ > 0 and finite set A ⊆ [0, 1] containing 1−γ there

is a real number τ > 0 such that if (T,BT ) is a 3-fold log pair, P ∈ T ,

KT + BT is γ-lc in codim 2 at P and Dτ,A ∈ A, then KT + Dτ,A is also

γ-lc in codim 2 at P .
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Moreover we expect that there is a τ > 0 such that the following

conditions hold as well:

• If BT ∈ A and E is the exceptional divisor of a smooth blow up

of T , then a(E, T,BT ) /∈ [1− a, 1− a + τ ] for any a ∈ A.

• If BT ∈ A and the pair (T,BT ) is nonexceptional, then we can

refine N2 so that there is a (0, n)-complement KT + B+
T for some

n ∈ N2 with BT ≤ B+
T .

5. Let A1 := {a1} where 1− a1 = max
(
Accum3,{0} ∩[0, δ]

)
. Now blow up

all exceptional divisor E such that a(E, T,BT ) ∈ [1− a, 1− a + τ ] for

some a ∈ A1 to get f : Y → X. Construct Dτ,A1 for BY where KY +BY

is the crepant pull back. Hence (Y,Dτ,A1) is A1-lc. Run the D-LMMP

where D := −(KY +Dτ,A1). At the end we get Y 99K X1 and X1 99K S1

such that −(KX1 +Dτ,A1) is nef and ≡ 0/S1 and −(KS1 +Dτ,A1).R > 0

for any birational type extremal ray R.

6. There are the following possibilities for the model S1:

� ρ(S1) = 1, −(KS1 + Dτ,A1) = −(KS1 + B+) ≡ 0 and KS1 + Dτ,A1

is A1-lc.

� There is a fibration type extremal ray R such that , −(KS1 +

Dτ,A1).R = 0 and KS1 + Dτ,A1 is A1-lc.

� −(KS1 + Dτ,A1) is nef and big and KS1 + Dτ,A1 is A1-lc.

7. In the first case of the above division we are done. In the second and

third case we replace (X, 0) by (X1, B1) := (X1, Dτ,A1) and return to
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step one and repeat. At each repetition of the process, we get new

coefficients. In other words, we need to replace Ai with Ai+1 such that

Ai ⊆ Ai+1. We need to prove that ∪i→∞Ai is finite.

8. At the end, we get a model (Xr, Br) which is terminal in codim 2. Then,

we hope to prove the boundedness of the index of KXr + Br possibly

after some more blow ups and blow downs. This will settle the problem

if −(KXr + Br) is nef and big. Otherwise we may have a fibration and

KXr + B+
r = KXr + Br + N where N is vertical. Then, we may replace

N by N ′ and construct a desirable complement KXr +Br +N ′. At the

end we need to prove that the boundedness of the complement implies

the boundedness of the pairs.

9. Next let (X, 0) be exceptional. Since BAB1,3,{0} (3.1.11) holds by

[KMMT], by assuming ACC in dimension 3, we can see that there is a

τ > 0 such that BAB1−τ,3,{0} also holds. Blow up an exceptional/X di-

visor E1 with log discrepancy aE1 = a(E1, X, 0) ≤ 1− τ to get Y → X

and put KY + BY = ∗KX . Let t ≥ 0 be a number such that there is

an extremal ray R with the properties (KY + BY + tE1).R = 0 and

E1.R > 0 ( and KY + BY + tE1 Klt and antinef). Such R exists other-

wise there is a t > 0 such that KY + BY + tE1 is lc (and not Klt) and

antiample. This contradicts the fact that (X, 0) is exceptional. Now

contract R : Y → Y1 if it is of birational type (and perform the flip if

it is a flipping).

By increasing t again, we find that there is an extremal ray R1 on

Y1 such that (KY1 + BY1 + tE1).R1 = 0 and E1.R1 > 0 (preserving the
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nefness of −(KY1 +BY1 +tE1) ). If it is of birational type, then contract

it and so on. After finitely many steps we get a model (V1, BV1 + t1E1)

and a number t1 > 0 with the following possible outcomes:

� (V1, BV1 + t1E1) is Klt, ρ(V1) = 1 and KV1 + BV1 + t1E1 ≡ 0.

� (V1, BV1 + t1E1) is Klt and there is a fibre type extremal ray R on

V1 such that (KV1 + BV1 + t1E1).R = 0 and KV1 + BV1 + t1E1 is

antinef.

If the second case occurs, then we do not know ρ(V1) unlike the surface

case where ρ(V1) = 2.

10. In the proof of Theorem 3.7.1 we introduced three types of hat. Here,

also we can similarly define hats but it is not clear yet how to proceed.

4.2 Epsilon-lc complements in dimension 3: Shokurov’s

approach

Here we explain Shokurov’s approach to the problem discussed in 4.1.

1. We know that BAB1,3,{0} (3.1.11) holds by [KMMT]. Let a be the small-

est positive real number with the following property: BABa′,3,{0} holds

for any a′ > a. The idea is to prove that BABa,3,{0} holds and thus,

assuming the ACC in dimension 3, to prove a = 0. Now assume that

BABε′,3,{0} holds for any ε′ > ε where 1 > ε > 0.

2. Prove SCε,3 (Conjecture 3.1.9) in the local case. Moreover prove that

the local ε-lc complement indices can be chosen in a way that there is
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a τ > 0 such that if 1− ε− τ ≤ b ≤ 1− ε, then x(n + 1)by ≥ n(1− ε)

for any local ε-lc complement index n.

3. Blow up all exceptional divisor E such that ε ≤ a(E, X, 0) ≤ ε + τ to

get f : Y → X. Then, Dτ,{1−ε} :=
∑

i(1 − ε)Bi where BY =
∑

i biBi

is the crepant pull back boundary. Then, run the D-LMMP for D :=

−(KY + Dτ,{1−ε}). At the end we get g : Y 99K X1 and X1 99K S1 such

that −(KX1 +Dτ,{1−ε}) is nef and ≡ 0/S1 and −(KS1 +Dτ,{1−ε}).R > 0

for any birational type extremal ray R.

4. There are the following possibilities for the model S1:

� ρ(S1) = 1, KS1 + Dτ,{1−ε} is ample and KS1 + Dτ,{1−ε} is ε-lc.

� −(KS1 + Dτ,{1−ε}).R = 0 for a fibre type extremal ray R and the

log divisor KS1 + Dτ,{1−ε} is ε-lc.

� −(KS1 + Dτ,{1−ε}) is nef and big and KS1 + Dτ,{1−ε} is ε-lc.

5. If the first case happens in the above division, then delete the boundary,

so (S1, 0) is ε + τ -lc and so the pair is bounded by the assumptions.

6. Definition 4.2.1 Let f : T → Z be a contraction and KT + B ∼R

0/Z. Put DZ :=
∑

i diDi where di is defined as follows:

1− di = sup{c | KT + B + cf ∗Di is lc over the generic point of Di}

7. If the second case of step 4 occurs, then we need the following gen-

eral Conjecture, due to Shokurov [PSh1] and Kawamata [K3], which is

useful in many situations:
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Conjecture 4.2.2 (Adjunction) Let (T/Z, B) be a lc pair of di-

mension d such that KT + B ∼R 0/Z. Define the unique class MZ up

to R-linear equivalence as KT + B ∼R
∗(KZ + DZ + MZ). Then, the

followings hold:

Adjunction We can choose an MZ ≥ 0 in its R-linear equivalence

class so that (Z,DZ + MZ) is lc.

Effective adjunction Fix Γf . Then, there is a constant I ∈ N

depending only on d and Γf such that |IMZ | is a free linear system

for an appropriate choice of MZ. In addition

I(KT + B) ∼ ∗I(KZ + DZ + MZ).

It is expected that the effective adjunction implies the boundedness of

S1 under our assumptions.

8. If the third case of step 4 occurs, then we need to repeat the process

with a bigger ε. We have new coefficients in the boundary. Moreover

we need to prove that this process stops after a bounded number of

steps.

9. If every time the third case occurs, then at the end we get a pair

(Xr, Br) which is terminal in codim 2 and −(KXr + Br) is nef and big.

After some more blow ups and blow downs we may prove that the index

of KXr + Br is bounded.
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4.3 List of notation and terminology for chapter three-

four

N The set of natural numbers {1, 2, . . . }.

R+ The set of positive real numbers. Similar notation for

Q.

dim Dimension or dimensional.

WLF Weak log Fano. (X/Z, B) is WLF if X/Z is a projective

contraction and −(KX + B) is nef and big/Z and X is

Q-factorial.

pseudo-WLF Pseudo weak log Fano/Z, that is, there is a B where

(X/Z, B) is WLF.

Φsm The set of standard boundary multiplicities, that is,

{k−1
k
}k∈N ∪ {1}.

Γf A finite subset of [0, 1].

mld(µ, X,B) The log minimal discrepancy of (X, B) at the centre µ.

P (D) The smallest positive natural number r such that rD is

a Cartier divisor at P .

WCδ,d,Γ The weak Conjecture on the boundedness of ε-lc comple-

ments in dimension d. See 3.1.7

SCδ,d The strong Conjecture on the boundedness of ε-lc com-

plements in dimension d. See 3.1.9

BABδ,d,Γ The Alexeev-Borisovs Conjecture on the boundedness of

d-dimensional δ-lc WLF varieties. See 3.1.11

LTd The log termination Conjecture in dimension d. See

3.1.16

ACCd,Γ The ACC Conjecture on mlds in dimension d. See

3.1.15
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