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ABSTRACT With recent advances in the field of sensing, it has become possible to build better assistive
technologies. This enables the strengthening of eldercare with regard to daily routines and the provision of
personalised care to users. For instance, it is possible to detect a person’s behaviour based on wearable
or ambient sensors; however, it is difficult for users to wear devices 24/7, as they would have to be
recharged regularly because of their energy consumption. Similarly, although cameras have been widely
used as ambient sensors, they carry the risk of breaching users’ privacy. This paper presents a novel sensing
approach based on deep learning for human activity recognition using a non-wearable ultra-wideband
(UWB) radar sensor. UWB sensors protect privacy better than RGB cameras because they do not collect
visual data. In this study, UWB sensors were mounted on a mobile robot to monitor and observe subjects
from a specific distance (namely, 1.5–2.0 m). Initially, data were collected in a lab environment for five
different human activities. Subsequently, the data were used to train a model using the state-of-the-art deep
learning approach, namely long short-term memory (LSTM). Conventional training approaches were also
tested to validate the superiority of LSTM. As a UWB sensor collects many data points in a single frame,
enhanced discriminant analysis was used to reduce the dimensions of the features through application of
principal component analysis to the raw dataset, followed by linear discriminant analysis. The enhanced
discriminant features were fed into the LSTMs. Finally, the trained model was tested using new inputs.
The proposed LSTM-based activity recognition approach performed better than conventional approaches,
with an accuracy of 99.6%. We applied 5-fold cross-validation to test our approach. We also validated our
approach on publically available dataset. The proposed method can be applied in many prominent fields,
including human–robot interaction for various practical applications, such as mobile robots for eldercare.

INDEX TERMS Human Activity Recognition, LSTM, LDA, PCA, XeThru UWB Sensor,

I. INTRODUCTION

ACCORDING to a 2017 report by the Department of
Economic and Social Affairs in the United Nations,

the population of older adults is increasing more rapidly
than other age groups [1]. In 2015, one out of eight people
worldwide were aged 60 years or older. By 2050, the number
of older adults is expected to reach nearly 2.1 billion. A major
challenge in working with an ageing population is the effec-
tive delivery of healthcare services [2]. Moreover, healthcare
for older adults is a matter of great concern for their rela-
tives. This is particularly true when older adults are alone at
home as they are at a risk of being affected by unforeseen
circumstances, such as falls. Recently, independent living
among older adults has become a significant challenge from

both social and economic perspectives. Therefore, assisting
older adults with their well-being and autonomy has become
a research topic of great interest [3].

Understanding the current state and context of users is
crucial for assisting in their everyday lives. Human move-
ment has been actively studied using distinguished ambient
sensors [4], [5]. Previously, video-based sensors have been
used for human activity recognition and fall detection [6].
However, video-based sensors often face challenges in their
use owing to privacy issues. In contrast, a non-contact am-
bient sensor that has no such privacy issues is the XeThru
ultra-wideband (UWB) radar [7]–[9]. Hence, sensors, such as
UWB radars, can be used for general robot navigation sens-
ing and emergency analysis based on human body movement
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while preserving privacy, particularly for older adults living
independently.

Sensors with wireless communication ability make
human-machine interaction robots suitable for human be-
haviour and vital sign analysis [9]. Many researchers have
explored ambient sensors for monitoring human behaviour
and health status [10]–[15]. For instance, CASAS adopted
machine learning tools for user behaviour analysis [10].
GatorTech is an earlier research project wherein many ambi-
ent sensors were used to provide user services, such as voice
and behaviour recognition [11]. Zhang et al. [12] proposed
an assisted living environment to help prolong the time for
which older adults could live in their homes. SWEET-HOME,
a French project, aimed at developing an assisted living tech-
nology mainly based on audio analysis [13]. Billias et al. [14]
adopted ambient sensors, such as cameras and microphones,
to analyse the daily activities of older users. Recently, Lio
[15], a personal robot assistant developed by F&P Robotics,
was introduced with a multifunctional arm. The robot could
assist patients autonomously and provide several healthcare
functions. During the long COVID-19 pandemic, additional
functions, such as disinfection operations and remote detec-
tion of elevated body temperature, were performed by Lio.

Human activity recognition (HAR) and emergency detec-
tion have made significant progress in recent years through
machine learning techniques [16]. Most previous HAR stud-
ies have relied on hand-crafted features, which are sometimes
difficult to distinguish with sufficient accuracy to classify
activities [17]. Conventional pattern recognition techniques,
such as K-nearest neighbour (KNN) [18], support vector
machines (SVMs) [19], artificial neural networks (ANNs)
[20], and random forest (RF) [21], perform well in HAR and
emergency detection. Meanwhile, in recent years, we have
witnessed an incredible growth in machine learning research
enabled by advancements in deep learning approaches. Deep
learning has resulted in remarkable performance in many
research areas, such as computer vision [22], business ana-
lytics, and natural language processing [23]. Recently, con-
volutional neural networks (CNNs) have shown significant
improvement in classifying human activities [24]. Yang et al.
[25] built a CNN-based architecture that could analyse multi-
channel time-series data. A unified layer was introduced to
merge multiple channels prior to classification. Moreover, the
CNN-based multi-channel time-series architecture is task-
dependent and is characterised by a higher discrimination
accuracy for classifying human activities. Previous research
has shown the use of UWB sensors to recognize human
activities [26], [27]. Singh et al. [28] proposed a framework
for HAR using point clouds generated by mmWave radar.
Their activities were related to exercise. Sharma et al. [29]
introduced a channel impulse response based HAR system
which can recognize sitting, standing and lying positions.

It has been observed that the deep network structure
in deep learning is more suitable than traditional machine
learning approaches for supervised and incremental learning
[30]. Thus, deep learning is an ideal approach for analysing

FIGURE 1: Basic flows of the proposed enhanced discrimi-
nant features–based activity recognition system using LSTM.

human behaviour and health status using data from newly
introduced sensors, such as XeThru UWB radars [8], [9],
[31]. A recurrent neural network (RNN) is one of the most
popular deep learning techniques for time-series data [30],
[32]. An RNN is adopted to decode time-sequential data
for modelling various events, such as an emergency due to
an unusual heart rate. Therefore, a special type of RNN,
namely long short-term memory (LSTM), is proposed in this
study to classify the XeThru UWB radar data. The perfor-
mance of conventional approaches, such as SVM, AdaBoost,
multilayer perceptron (MLP), quadratic discriminant analysis
(QDA), KNN, RF, and decision trees (DTs), have also been
evaluated and compared with that of LSTM. Furthermore, as
XeThru UWB radar sensors collect a large number of data
points in a single frame, principal component analysis (PCA)
and linear discriminant analysis (LDA) are introduced for
dimensionality reduction. Figure 1 illustrates the basic flows
of the proposed system in two steps, namely training (left-
hand side) and testing (right-hand side).

In this study, we investigate whether a XeThru UWB radar
sensor can recognise different complex human activities.
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Thus, the contributions of this work are two-fold:
• A XeThru UWB radar sensor is used with a novel

LSTM-based approach to classify activities.
• Enhanced discriminant analysis (EDA), combining

PCA with LDA, is proposed to reduce data dimension-
ality and extract significant features before feeding them
into the classifiers.

METHODOLOGY
SUBJECTS
This study aimed to classify five different activities using a
UWB sensor. Overall, 13 participants were included in the
study with six of them being female subjects. All of them
were normal healthy people. The ages of the participants vary
from 22 – 50 years. All subjects voluntarily participated in
the experiments, and written consent was obtained from all
subjects before participation. The experiments and data col-
lection were approved in advance by the Norwegian Centre
for Research Data (NSD). All experiments were performed
in accordance with relevant guidelines and regulations.

DATA ACQUISITION FROM UWB RADAR
The UWB radar has been used for imaging in sensing through
walls, [33]–[35], detecting humans [36], [37], assisting in
public security [38], and recognising moving subjects [39],
[40]. In the current study, we used XeThru X4, a compact
impulse-radio UWB radar system on a chip, as shown in
Figure 2. The radar is configurable and provides developers
with a high degree of freedom to develop new applications,
ranging from basic presence detection to vital sign analy-
sis. The pulse transmitted by the radar can be configured
within two bands, namely the lower and upper bands. The
lower pulse generator enables transmission within the 6.00–
8.50 GHz band, whereas the higher pulse generator enables
transmission within the 7.25–10.20 GHz band. To capture the
reflected energy, the radar applies a high-speed sampler with
a sampling rate of 23.328 GS/s, which can sample up to 1,536
samples [8]. The distance from the radar to an object is called
the slant range, which can be determined by

R =
CxT

2
, (1)

where C is the speed of light and T is the time required
for signal reflection. The divisor 2 is used because the radar
signal travels to the target and then travels the same distance
back to the radar. The radar system is dependent on waveform
design in several ways. The range resolution is proportional
to the bandwidth, and the signal-to-noise ratio (SNR) of the
output signal is directly proportional to the waveform energy.
In contrast, the signal wavelength affects the radial velocity
resolution [41]. Because of its short duration, good spectrum
coverage, and ease of implementation in CMOS, a frequency-
shifted Gaussian pulse can be considered as an excellent
candidate for a UWB. The frequency-shifted Gaussian pulse
can be determined by

FIGURE 2: Ultra-wideband Xethru X4 sensor [8].

g(t) = p(t) cos (ωct) = VTX exp

(
− t2

2τ2

)
cos (ωct) , (2)

where p(t) denotes the Gaussian pulse envelope and τ
determines the −10dB bandwidth.

τ =
(

2πfB(log10(e))
1/2
)−1

. (3)

The pulse amplitude VTX is dependent on the regulatory
limits for the peak and average output power [42]. For swept-
threshold (ST) sampling, the sweep time is dependent on the
number of pulses (npulses) and the pulse repetition frequency
(PRF).

tsweep =
npulses

PRF
. (4)

The matched filter radar equations are used to obtain the
SNR for an ideal pulse-based radar receiver (RX) from a
target, given its range R and radar cross-section (RCS) σRCS

[43]:

SNRideal =
Pt · tp · npulses ·G2 · σRCS · λ2

kB · T0 · F · (4π)3 ·R4
, (5)

where G is the antenna gain, kB is Boltzmann’s constant,
λ is the wavelength, T0 is the temperature in Kelvin, Pt is
the transmitted pulse power, F is the RX noise factor, and tp
is the pulse duration. The transmitted pulse is approximated
as a rectangular windowed pulse with length tp such that the
energy of the pulse Ep equals

Ep = Pt · tp =
V 2

TX

2ZL
· tp. (6)

In an ST-based pulse radar, (5) becomes

SNRST =
Pt · tp · npulses ·G2 · σRCS · λ2 ·GST

kB · T0 · F · (4π)3 ·R4 · nsteps
, (7)
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FIGURE 3: Schematic setup of the five indoor activities in the experiment.

FIGURE 4: An A3 posture and the robot with a UWB sensor.

where nsteps is the number of steps in the threshold
sweep that causes an SNR loss and GST is the SNR gain
obtained from multiple threshold levels covering the noise
region around the signal value, which results in an integration
effect. The largest signal in the sampled frame can be used
to determine the threshold sweep range, which occurs at
the minimum distance, in addition to the noise. Assuming
5 · sigmanoise is sufficient as the maximum noise voltage,
the number of threshold steps required is

nsteps ≥
2 · (VRX ·AFE + 5 · σnoise)

q
− 1, (8)

where AFE is the voltage gain of the RX front end, and
the received pulse amplitude VRX is given by

VRX = VTX ·

√
G2 · σRCS · λ2

(4π)3 ·R4
. (9)

The ST-SNR loss can be expressed as

LST = 10 · log10((Vsweep + q)/(1.772 · σnoise)). (10)

The major advantage of using ST rather than a multi-bit
system is that it only requires a 1-bit quantiser, which can

increase the inherent linearity of the system and simplify the
design. Moreover, with no reduction in the SNR, ST can be
operated over longer consecutive ranges.

In our study, we used a UWB impulse radar, which can
sense vital sign data, such as presence, breathing patterns,
and movement from people who are either sitting on a bed
or walking around. The UWB signal returns to obtain the
required echo matrix with frames corresponding to each
range bin, as shown below [44]:

M = {r(x)[y] : x = 1, 2, .., X; y = 1, 2.., Y }, (11)

where x and y denote the range and time, respectively,
while X is the extent of the range and Y is the extent of
the time span of the data. Hence, the total size of the data
is XY . The frame M further passes through PCA, which is
discussed in more detail in theDatasetandMetrics section.

DATASET AND METRICS
The obtained dataset comprised five normal activities: lying
(A1), sitting on the bed with the legs on the bed (A2), sitting
on the bed with the legs on the floor (A3), standing (A4),
and walking (A5). An illustration of each activity is given in
Figure 3. Figure 4 shows an A3 posture wherein a robot with
a UWB sensor monitors a subject.

The possible classification outcomes are based on true
positives (TP ), true negatives (TN ), false positives (FP ),
and false negatives (FN ). To measure the performance, we
used the following metrics.

Accuracy is the ratio of the number of correctly predicted
observations to the total number of observations.

Accuracy =
TP + TN

TP + FP + FN + TN
(12)

Precision is the ratio of the number of correctly predicted
positive observations to the total number of predicted positive
observations.

Precision =
TP

TP + FP
(13)

Recall is the ratio of the number of correctly predicted
positive observations to the total number of observations in
the actual class.

Recall =
TP

TP + FN
(14)

F1-score is an overall measure of the accuracy of the model
combining precision and recall.
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FIGURE 5: Top 20 eigenvalues corresponding to the eigen-
vectors.

F1− score = 2× Precision×Recall
Precision×Recall

(15)

FEATURE EXTRACTION USING PRINCIPAL
COMPONENT ANALYSIS (PCA)
We apply Gaussian kernel–based PCA to the input data to
approximate the original data with fewer dimensions. PCA
focuses on the direction of the maximum covariance in the
new feature space. It reduces the dimensions by focusing
mainly on the essential variations in the data. Because the
data are nonlinear, a Gaussian kernel–based PCA was used
[45]. The covariance matrix of the data is defined as

K =
1

N

N∑
i=1

(∇(Mi).∇(Mi)
T ), (16)

∇(Mi) = γ(Mi)− γ̄, (17)

γ̄ =
1

N

N∑
i=1

γ(Mi), (18)

where γ̄ is a Gaussian kernel and N is the total number of
events in the activity period. Eigenvalue decomposition can
be applied as

K = ETαE, (19)

whereE represents the principal components, α represents
the eigenvalues, and K is the diagonal matrix of the eigen-
values. Then, the features for an event can be represented by
projection of the principal components as

P = MET
m. (20)

The size of the matrix E becomes t × m, where t is
the dimension of each vector, m is the number of principal
components to be considered, and K is an m ×m diagonal
matrix. Moreover, E reflects the original coordinate system
onto the eigenvectors. The eigenvector corresponding to the

FIGURE 6: 3D scatter plot of the features after applying
PCA.

largest eigenvalue indicates the axis of largest variance, and
the eigenvector corresponding to the next largest eigenvalue
indicates the axis that is orthogonal to the first indicating
the second largest variance, and so on. Typically, eigenvalues
close to zero have negligible variance and can thus be ex-
cluded. Hence, the m eigenvectors corresponding to certain
large eigenvalues can be used to define the subspace. Figure
5 shows the top 20 eigenvalues corresponding to the first 20
eigenvectors.

PCA is a second-order statistics-based method of analysis
that represents global information [46]. Applying PCA to
human activities produces global features that represent fre-
quently moving parts of the human body engaged in various
activities [47], [48]. Because we apply EDA, which is a
combination of PCA and LDA, for dimensionality reduction,
the principal components extracted through PCA are passed
through LDA.

FEATURE EXTRACTION USING LDA
LDA is popular in supervised classification approaches. It
creates hyperplanes to separate the different classes. The
hyperplanes maximise the separation between classes and
minimise the intra-class variance. LDA, which is known to
extract the best features and reduce the dimensionality of
the data [49], projects the input data in a lower-dimensional
space. The equations below define the within-class SW and
between-class SB scattering comparison.

SB =
C∑
i=1

Ji(ni − n)(ni − n)T (21)

SW =
C∑
i=1

∑
mk∈Ci

Ji(nk − ni)(nk − ni)T , (22)

where Ji is the number of vectors in the ith class Ci, c is
the number of classes (number of activities), ni is the mean
of class ci, and mk is the vector of a specific class.
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FIGURE 7: 3D scatter plot of the features after applying
LDA.

The optimal discrimination matrix is selected by maximis-
ing the ratio of the determinant of the between- and within-
class scatter matrices as

Dopt = argmax
|DTSBD|
|DTSWD|

, (23)

where Dopt is the set of discriminant vectors of SW and
SB corresponding to the (c−1) largest generalised eigenval-
ues λ, and can be obtained by solving (24):

SBdi = λiSW di, i = 1, 2, ..., (c− 1), (24)

where the rank of SB is (c − 1) or less; hence, the upper
bound value of t is (c− 1). The PCA features of the different
activities are projected onto the LDA features as

L = PDT
opt. (25)

Thus, the EDA features (i.e. L) are obtained to apply machine
learning algorithms for training and testing of activities.

CLASSIFICATION
We applied different classification algorithms to the dataset
for comparative and performance analyses. SVM [50], intro-
duced by Vapnik, uses support vectors. It has been widely
used in HAR systems owing to its high classification per-
formance [51], [52]. It creates hyperplanes to maximise the
margins between classes. By minimising the cost function,
the optimal solution can be obtained, namely, the solution
that maximises the distance between the hyperplane and the
nearest training point. Herein, a nonlinear multiclass SVM
with a sigmoid kernel was used. Sigmoid is used as it’s
a popular kernel. However, we also implemented RBF and
Gaussian kernel, but it didn’t improve the results remarkably.

Adaptive boosting, known as AdaBoost [53], is used pri-
marily for ensemble learning or meta-learning. It applies an
iterative approach to learn from the mistakes of classifiers to

improve their performance. AdaBoost has been widely used
in HAR by researchers [54]. MLP [55] is also known as a
feed-forward ANN. It consists of multiple hidden layer in
addition to the input and output layers. With the help of error
backpropagation, it can be trained to classify data that are not
linearly separable. MLP has been used in ambient assisted
living to recognise poses and to monitor dangerous situations
[56]. QDA is closely related to LDA, but it does not assume
that the covariance of each class is identical [57].

KNN is the simplest classification technique used for
machine learning. The KNN algorithm determines the points
from the training data that are close enough to be considered
when selecting the class to predict a new observation [58].
The RF [59] method is used for both classification and
regression problems. It generates multiple DTs based on
the random selection of variables and data, and recognises
dependent variables based on the DTs. RF has been widely
used to recognise different human activities [60], [61]. In this
study, 10 DTs were used to explore the classes.

A decision support tool that utilises a model of decisions
or tree-like graphs and their possible consequences, including
the utility and probability of event outcomes, is called a
decision tree. A decision tree is a well-known classifier used
in machine learning. Its structure is similar to a flowchart in
which each internal node represents a test of an attribute, such
as the probability a coin flip producing heads or tails. Each
branch corresponds to a possible test outcome, and each leaf
node corresponds to the class label. The decision is taken
after applying all the features. The classification rules are
based on the paths from the root to the leaf [62].

Recurrent neural networks

The events are represented based on time-sequential data
from the sensor. A machine learning model able to encode
time-sequential data is suitable for our purpose. Hence,
RNNs were used in this study. They are one of the most
widely applied deep learning methods for modelling events
underlying time-sequential data. An RNN typically con-
sists of recurrent relations within the model’s hidden units,
which connect its history (i.e. memory) to the present.
RNNs often face vanishing gradient problems that cause
challenges in processing long-term information. This phe-
nomenon is known as long-term dependency. LSTM, pro-
posed by Hochreiter and Schmidhuber [63], can solve the
vanishing gradient problem typical of RNNs. RNNs and
LSTMs have performed well in various fields, such as hand-
writing and speech recognition [64]. Figure 8 shows a sample
deep RNN consisting of N LSTM units. Each LSTM block
consists of an input gate I , a forget gate F , and an output gate
U . The input gate I is expressed as

It = s (YLILt + YHIHt−1 + aI) . (26)

The input gate Y represents the weight matrix, bias a, and
sigmoid function s. The forget gate F is expressed as follows:

6 VOLUME 4, 2016
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FIGURE 8: Basic architecture of an RNN.

Ft = s (YLFLt + YHFHt−1 + aF ) . (27)

The long-term memory is stored by a cell in a state vector
B, which can be represented as

Bt = FBt−1 + I tanh (YLBLt + YHBHt−1 + aB) . (28)

The output gate O represents the output as

Ut = s (YLULt + YHUHt−1 + aU ) . (29)

The hidden state H is represented as

Ht = Ut tanh (Bt) . (30)

The final output N can be determined by

Ni = softmax (YUHi + aU ) , (31)

where i represents the LSTM number andH hidden states.
We have used four hidden layers stacked LSTM. The

first three layers have 100 memory units (or smart neurons)
followed by 50 memory units in the next layer. Finally,
because this is a classification problem, we use a dense output
layer with a softmax activation function to make predictions
for five classes. Our model has 847,055 trainable parameters.

RESULTS AND DISCUSSION
In this section, we describe the experiments performed on
the XeThru UWB sensor dataset to recognise various human
activities. The dataset consisted of data from 13 participants,
with a total of 65,000 samples for the five activities. Ten
radar frames per second were used, with 1,535 data points
in each frame. Therefore, the data size for each sample was
10 × 1, 535. In total, we used nine different classification
approaches, with 80% of the total mixed up dataset used for
training all models and 20% used for testing. Moreover, 10%
of the training dataset was used for validation.

For performance measures, the accuracy, precision, re-
call, and F1-scores were evaluated for each classifier. The

accuracy of each classifier is listed in Table 2. All classi-
fiers were tested using a built-in Python library, scikit-learn.
Two conventional classifiers, SVM and AdaBoost, performed
poorly in classifying activities, with accuracies of less than
50% as shown in Figure 10a and 10b, respectively. Neither
classifier could distinguish between the standing and walking
activities. MLP performed only slightly better than these
classifiers, with an accuracy of 51.3%. This classifier could
detect the lying posture well, as shown in Figure 10c.

The QDA and KNN classifiers performed moderately well
and classified all activities with an accuracy of 75%. Figure
10d and 10e shows the confusion matrices of QDA and KNN.
QDA primarily misclassified the activities when the subjects
were sitting on the bed with their legs on the bed or floor.
RF and DT were the only two conventional approaches with
accuracies of approximately 90%. The confusion matrices
of these two classifiers are shown in Figure 10f and 10g,
respectively.

Finally, we tested the dataset using a state-of-the-art
LSTM, built using Keras [65], with Tensorflow as the back
end. It outperformed all other classifiers by achieving an
excellent accuracy of 98%. Figure 10h shows the confusion
matrices, while graphs of the model’s accuracy and the
model’s loss are shown in Figure 11.

As we had 1,535 data points in each frame, EDA was intro-
duced to reduce the dimensionality. In the EDA, a PCA was
introduced to reduce the dimensions. The performance was
insufficient when using PCA alone, as shown in the scatter
plot in Figure 6; thus, LDA was introduced. The combination
of PCA and LDA, which we refer to as enhanced discrimi-
nant analysis (EDA), outperformed all other approaches. The
3D plot of the features extracted after application of LDA is
shown in the scatter plot in Figure 7. The EDA with LSTM
training model performed better than the LSTM model alone
and demonstrated excellent performance in all activities, as
shown in Figure 10i. The trained model and loss graphs
are shown in Figure 12. The overall accuracies of all nine
classifiers that were implemented are listed in Table 2. The
precision, recall, and F1-scores of the top four classifiers
alone are presented in Table 1. Furthermore, to validate our
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(a) LSTM (b) EDA + LSTM

FIGURE 9: Confusion matrix of 5-fold cross-validation.

Approach Activity Precision Recall F1-score

Random Forest

Lying 0.95 0.97 0.96
Sitting on the bed while the legs are also on the bed 0.88 0.91 0.89
Sitting on the bed while the legs are on the floor 0.85 0.86 0.86
Standing 0.81 0.81 0.81
Walking 0.86 0.81 0.83

Decision Trees

Lying 0.98 0.99 0.98
Sitting on the bed while the legs are also on the bed 0.94 0.95 0.94
Sitting on the bed while the legs are on the floor 0.89 0.90 0.90
Standing 0.89 0.86 0.88
Walking 0.84 0.85 0.85

LSTM

Lying 0.97 0.90 0.93
Sitting on the bed while the legs are also on the bed 0.99 0.99 0.99
Sitting on the bed while the legs are on the floor 0.89 1.00 0.94
Standing 0.97 0.99 0.98
Walking 0.99 0.94 0.96

Enhanced Discriminant Analysis
(EDA) + LSTM

Lying 0.92 0.99 0.95
Sitting on the bed while the legs are also on the bed 0.99 0.99 0.99
Sitting on the bed while the legs are on the floor 1.00 0.99 0.99
Standing 1.00 0.99 0.99
Walking 0.99 0.93 0.96

TABLE 1: Classification performances of top four classifiers.

Classifier Accuracy (%)
SVM 34.7
AdaBoost 47.3
Multilayer Perceptron 51.3
Quadratic Discriminant Analysis 74.4
KNN 76.5
Random Forest 87.1
Decision Trees 91.0
LSTM 98.0
EDA + LSTM 99.6

TABLE 2: Accuracies of all classifiers.

approach, 5-fold cross-validation was performed on LSTM
and EDA with LSTM for HAR. The confusion matrices of
both approaches are shown in Figure 9.

Afterwards, we continued our experiments using leave-
one-subject-out validation. Initially, we took 5% data out
from the testing subjects, mixed it with the training data, and
obtained an average accuracy of 86%. Figure 13 shows the

average confusion matrix of our results. In the next exper-
iments, we applied no data taken from the testing subjects,
i.e., leave one whole subject out and obtained the average
accuracy of 66%, as shown in Figure 14. Given the lower
performance, we are planning to work on improving the
subject generic validation results in the future by improving
the model. However, during the experiments with similar
data selections, we experienced that none of the traditional
approaches yielded accuracies more than 60%.

Singh et al. [28] introduced exercise-based activities by
using mmWave radar. Bouchard et al. [66] introduced 15
daily life activities based on ten males. No female partici-
pated in their study. Moreover, the age range was between
22 to 39. In our case, we have quite a diverse age range,
and almost half of the participants were females to avoid
bias in the study. Sharma et al. [29] proposed a channel
impulse response based activity recognition system, but their
activities were limited, i.e. standing, sitting and lying. While
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(a) SVM (b) AdaBoost (c) MLP

(d) QDA (e) KNN (f) Random Forest

(g) Decision Trees (h) LSTM (i) EDA + LSTM

FIGURE 10: Confusion Matrices of all classifiers.

FIGURE 11: Accuracy and loss graphs of LSTM.
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FIGURE 12: Accuracy and loss graphs of proposed approach, EDA + LSTM.

FIGURE 13: Confusion matrix of partial-leave-one-person-
out validation.

our activities also cater to a different sitting posture, i.e.
either legs are on the bed or the floor. Furthermore, we also
introduced an EDA based feature extraction approach. We
also tested our approach on a Ahmed et al. [67] dataset (as
they used a similar UWB sensor), which showed promising
results and outperformed their results. Figure 15 shows the
confusion matrix and a–l show the twelve different dynamic
hand gestures as proposed in [67]. To the best of the author’s
knowledge, there is no current study based on UWB sensors
that focused on enhanced discriminant features analysis be-
fore feeding the data into the machine learning algorithms.

CONCLUSION
In this study, a novel approach was proposed for HAR using a
UWB sensor and state-of-the-art deep learning models. The
proposed approach is beneficial for older adults because it
is difficult for them to wear actigraphy devices 24/7 or to
be monitored through an RGB camera, which could breach
their privacy. In this work, a UWB sensor was mounted on
a robot at a certain distance. Because the UWB sensor has
several features, EDA was used to reduce the dimensions

FIGURE 14: Confusion Matrix of leave-one-person-out val-
idation.

of the features before feeding them into the deep learning
model. The results were compared with those of conventional
approaches. The proposed approach was found to perform
significantly better, with an accuracy of 99.6%. Moreover,
5-fold cross-validation was performed for generalisation of
the system. Furthermore, we implemented our approach on
publically available dataset and got better results.

In the future, we intend to perform more complex exper-
iments in real-time environments. Furthermore, we plan on
extending the algorithms by introducing the heart rate into the
monitoring system to detect emergencies. Moreover, we also
need to acquire data from older people since the approach
focuses on eldercare. Finally, we can also introduce multiple
UWB sensors in the apartment or other thermal/depth-based
sensors to localize the exact position of persons. In that
context, different sensor fusion strategies might be explored.
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