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Abstract 9 
 10 
Visual search is a universal human activity in naturalistic environments. Traditionally, 11 
visual search is investigated under tightly controlled conditions, where head-restricted 12 
participants locate a minimalistic target in a cluttered array presented on a computer 13 
screen. Do classic findings of visual search extend to naturalistic settings, where 14 
participants actively explore complex, real-world scenes? Here, we leverage advances 15 
in virtual reality (VR) technology to relate individual differences in classic visual search 16 
paradigms to naturalistic search behavior. In a naturalistic visual search task, 17 
participants looked for an object within their environment via a combination of head-18 
turns and eye-movements using a head-mounted display. Then, in a classic visual 19 
search task, participants searched for a target within a simple array of colored letters 20 
using only eye-movements. We tested how set size, a property known to limit visual 21 
search within computer displays, predicts the efficiency of search behavior inside 22 
immersive, real-world scenes that vary in levels of visual clutter. We found that 23 
participants’ search performance was impacted by the level of visual clutter within real-24 
world scenes. Critically, we also observed that individual differences in vi1–3sual search 25 
efficiency in classic search predicted efficiency in real-world search, but only when the 26 
comparison was limited to the forward-facing field of view for real-world search. These 27 
results demonstrate that set size is a reliable predictor of individual performance across 28 
computer-based and active, real-world visual search behavior.  29 
  30 
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Introduction 31 
 32 
Locating an object in a cluttered environment is a ubiquitous visual behavior. The 33 
mechanisms by humans accomplish visual search have been comprehensively studied 34 
in both artificial arrays (Treisman & Gelade, 1980) and complex scene images (Wolfe, 35 
Võ, et al., 2011). Yet, little is known about whether the principles of visual search 36 
revealed by these studies extend to naturalistic visual contexts, where real-world 37 
environments are actively explored from a first-person perspective.  38 
 39 
One key factor known to limit search performance is set size: the number of items within 40 
a visual array. Increasing set size impairs search performance in both artificial arrays 41 
(Neider & Zelinsky, 2008; Palmer, 1994) and pictures of complex scenes (Castelhano & 42 
Henderson, 2007; Henderson et al., 2009). However, it remains unclear whether set 43 
size effects analogously limit behavioral performance during active exploration of real-44 
world environments, where environmental structure and memory are available to aid 45 
attentional guidance (Bar 2004, Vo 2019). Further, to our knowledge, whether individual 46 
differences in search efficiency in artificial displays predict naturalistic search 47 
performance in real-world environments has never been explored. This knowledge gap 48 
has important implications for understanding clinical conditions such as autism (Plaisted 49 
et al., 1998) and informing real-world applications such as radiology (Wolfe, 2020), 50 
where computer-based visual search paradigms are often used to model real-world 51 
behavior.  52 
 53 
Here, we leverage advances in virtual reality (VR) technology to relate individual 54 
differences in classic visual search paradigms to naturalistic search behavior. 55 
Participants completed two tasks: (1) a classic conjunctive search paradigm with arrays 56 
varying in set size and (2) a naturalistic search behavior inside of immersive, real-world 57 
environments varying in levels of visual clutter (Rosenholtz et al., 2007). Across the two 58 
tasks, we characterized the impact of set size on visual search performance. We also 59 
tested whether efficiency was related across artificial and naturalistic contexts. 60 
 61 
Methods 62 
 63 
Participants 64 
 65 
25 adults participated in two experiments (N=16 females; mean age 22.96 +/- 4.08 STD 66 
years). Participants were recruited based on (1) having normal or corrected-to-normal 67 
vision and no colorblindness, (2) having no neurological or psychiatric conditions, and 68 
(3) having no history of epilepsy. Written consent was obtained in accordance with the 69 
Declaration of Helsinki via a protocol approved by the Dartmouth College Committee for 70 
the Protection of Human Subjects (CPHS).  71 
 72 
Remote data collection 73 
 74 
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Participants received a standalone headmounted display (Oculus Quest 2, 75 
www.oculus.com, single fast-switch LCD, 1832×1920px per eye; ~90° field of view; 72 76 
Hz refresh rate) preconfigured with the ManageXR (www.managexr.com) device 77 
management software. Experiments were built in Unity version 2018.4.12f1 78 
(www.unity.com) with custom scripts written in C#. Experimental data was collected 79 
through a custom pipeline written in C# and PHP. Specifically, a virtual private server 80 
(VPS) was created though Amazon Web Services Lightsail and configured with the 81 
Linux, Apache, MySQL, and PHP (LAMP) stack. An additional Dropbox SDK 82 
(www.github.com/kunalvarma05/dropbox-php-sdk) was used to connect lab Dropbox 83 
accounts to the VPS allowing for direct transmission of data from the HMD to Dropbox.  84 
 85 
Experiment 1 – Naturalistic Visual Search 86 
 87 
Exp. 1 – Stimuli and set size manipulation. In the naturalistic search experiment, stimuli 88 
consisted of 360° “photospheres” of real-world scenes, sourced from an online photo 89 
sharing website (www.flickr.com). We curated 54 photospheres with four criteria to 90 
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Figure 1. Schematic of visual clutter and depth estimation. (A) Example visualizations of visual clutter estimated by the 
proto-object segmentation algorithm. Photospheres were divided into three quantiles, and average clutter of each 
quantile significantly differed from the others (F(2,51) = 144.7, p < 0.001). (B) Example visualizations of scene depth esti-
mated by the big-to-small algorithm. The average depth of each clutter quantile did not significantly differ (F(2,51) = 1.20, 
p = 0.31). In all plots, error bars represent 1 SEM. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. p > 0.05 difference between 
conditions.
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minimize the complications of defining set size in real scenes (Wolfe, Alvarez, et al., 91 
2011). First, we selected photospheres of indoor scenes, as outdoor scenes contain few 92 
segmented regions which may not be representative of the true set size. Second, we 93 
ensured the photospheres did not contain humans to avoid the possibility that humans 94 
are a unique object category. Third, we confirmed that each photosphere contained a 95 
“singleton” target object: an object that appeared only once inside a given photosphere. 96 
Fourth, given the importance of distance to scene processing in early visual areas on 97 
the brain (Kravitz et al., 2011), we ensured that all photospheres had comparable depth. 98 
To this end, we estimated the depth of each photosphere using the big-to-small (BTS) 99 
algorithm (Lee et al., 2020). 100 
 101 
We adopted the concept of visual clutter as a proxy for set size in real-world scenes 102 
(Neider & Zelinsky, 2008; Rosenholtz et al., 2007) and approximated the visual clutter of 103 
each photosphere using the proto-object segmentation algorithm (Yu et al., 2014). 104 
Subsequently, we divided the photospheres into three bins (18 photospheres each) 105 
based on the estimated clutter measurements (low, medium, and high clutter) and 106 
ensured that the average clutter of each bin significantly differed from the others (Figure 107 
1A). The average depth of photospheres in each quantile did not significantly differ 108 
(Figure 1B). 109 
 110 
Target object locations were balanced across photospheres within each clutter bin. For 111 
each scene, the yaw of each photosphere was randomly rotated such that the target 112 
object was located in one of three quadrants of the immersive environment relative to 113 
the participant’s initial facing direction: (1) to the left of the participant, (2) in front of the 114 
participant, or (3) to the right of the participant. This resulted in an equal distribution of 115 
target object locations relative to the participant across the three possible quadrants (6 116 
photospheres per quadrants), and across the clutter bins (18 photosphere per 117 
quadrant). 118 
 119 
Exp. 1 – Paradigm. On each trial of the naturalistic visual search experiment (54 trials), 120 
participants were presented with a photosphere via the headmounted display (HMD) for 121 
a maximum of 30 seconds, or until the controller trigger was pressed indicating 122 
detection of the target object (Figure 2A). In all scenes, an occluding wall obstructed the 123 
90° immediately behind the participant such that the 270° in front of the participant was 124 
visible. Accordingly, participants were informed that the area behind them would not be 125 
visible and instructed to explore the forward, left, and right portions of the photosphere. 126 
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To mitigate confusion during the real-world visual search task, we informed participants 127 
that the target object would always be present inside the virtual environment. 128 

 129 
Before each trial, participants were presented with a pretrial fixation target at screen 130 
center to ensure participants entered each photosphere facing the same direction. 131 
Participants were required to align their head-center with the target for 3 seconds. 132 
Subsequently, participants were presented with a conjunctive word cue (e.g. green 133 
bottle) describing the target object in the following photosphere. Participants were 134 
instructed to “find the target as quickly as possible”. To report the target, participants 135 
centered their head on the target (specifically, they centered a light gray circle, which 136 
was locked to screen center, on the target) and pressed the controller trigger. A 137 
response was considered correct if the participant’s head coordinate was within a 7.5° 138 
visual angle radius from target center when the trigger was pressed, and reaction time 139 
was calculated as the time of the trigger press relative to trial start. After pressing the 140 
trigger, participants were given feedback on the accuracy of their response. The gray, 141 
head-locked circle would turn green if the participant selected the correct object and 142 
would turn red if the participant selected an incorrect object. After each trial, participants 143 
were returned to a virtual home environment where they were informed of their reaction 144 
time and instructed to take a break. A mandatory break occurred after each quarter of 145 
the experiment (14 trials) to allow participants to rest their eyes.  146 
 147 
At the start of the study, participants were shown a set of instructions orienting them to 148 
the task. Following the instructions, participants completed two practice trials to ensure 149 
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Figure 2. Experimental paradigms. (A) Naturalistic visual search paradigm. After a pre-trial fixation, participants were 
presented with a conjunctive word description of a target object. Participants subsequently searched for the described 
object inside a photosphere. (B) Classic visual search paradigm. After a pre-trial fixation, participants searched for a 
red T embedded within a cluttered array.
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familiarity with the task. Participants were highly accurate during practice trials (mean 150 
accuracy: 92%), indicating comprehension of the task. 151 
 152 
Experiment 2 – Classic Visual Search 153 
 154 
Exp 2 – Stimuli and set size manipulation. In the classic visual search experiment, 155 
stimuli consisted of letter arrays, which were presented on a grey background around a 156 
central fixation point (Figure 2B). The letters in the array had two feature dimensions: 157 
form (Ts and Ls) and color (red and black). Arrays spanned 25°x25° visual angle, and 158 
letters within the array were randomly distributed around a central fixation point and 159 
spaced from others by 2° visual angle. Displays had three potential set size conditions: 160 
5, 15, or 25 letters.  161 
 162 
Exp 2 – Paradigm. On each trial of the classic conjunctive search task (180 trials), 163 
participants were instructed to report the presence/absence of a target letter (a red T) 164 
using a keypad. Note, the target letter shared a feature dimension with each type of 165 
distractor (black Ts and red Ls). There were two trial types, target present or target 166 
absent, which each occurred 50% of the time. On trials without a conjunction target, an 167 
additional distractor was added at random.  168 
 169 
Each trial lasted for a maximum of 10 seconds or until a key press. Before each trial, 170 
participants were shown a black fixation cross and required to press a button to start the 171 
trial. Participants were instructed to fixate on the cross until trial start, after which point 172 
they were free to move their eyes. Participants were instructed to “find the target as 173 
quickly as possible” and to “press 4 if the target is present or 6 if the target is absent”.  174 
Participant reaction time was calculated as the time of the button press relative to trial 175 
start. Following each trial, participants were given feedback on the accuracy of their 176 
response (a green check for correct responses and a red X for incorrect responses). A 177 
mandatory break occurred every 45 trials to allow participants to rest their eyes.  178 
 179 
At the start of the study, participants were shown a set of instructions orienting them to 180 
the task. Following the instructions, participants completed a set of practice trials (12 181 
trials) to ensure familiarity with the task. Participants were highly accurate during 182 
practice trials (mean accuracy: 100%), indicating comprehension of the task. 183 
 184 
 185 
Motor response control task 186 
 187 
To acclimatize participants to selecting targets in VR and to establish a base-rate 188 
reaction time for each participant, a motor response control task was presented at the 189 
beginning of each session. On each trial (36 trials), participants were presented with a 190 
gray photosphere containing a red dot (target) within their front-facing field of view at a 191 
random location around a circle with a radius of either: 7.5°, 17.5°, or 27.5° visual angle 192 
from world center (12 trials each, balanced for visual quadrant) (Supplementary Figure 193 
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1A). Participants were instructed to move a gray circle, locked to the center of the HMD, 194 
to the red dot and press the controller trigger as quickly as possible. There was a non-195 
significant difference in reaction time as stimuli moved further from world center 196 
(Supplementary Figure 1B; F(2,72) = 1.94, p = 0.151).  197 
 198 
Results 199 
 200 
To investigate if classic findings of visual search extend to naturalistic settings, we 201 
developed a novel paradigm in which participants locate objects inside 360° real-world 202 
scenes. In the naturalistic visual search task, we evaluated the impact of visual clutter, 203 
an estimate of set size for scenes, on visual search performance. In the classic visual 204 
search task, we estimated the impact of set size effects on individual performance using 205 
a minimalistic visual display of letters. Finally, we directly compared individual efficiency, 206 
the slope of the relationship between set size and reaction time, within each task to 207 
understand the relationship between computer-based measurements of visual search 208 
and naturalistic search behavior. 209 
 210 
Naturalistic Visual Search Performance 211 
 212 
We first examined the relationship between visual clutter and search performance inside 213 
immersive, real-world scenes. Overall, we found that participants were faster and more 214 
accurate to locate the target in lower- as compared with higher-cluttered scenes. 215 
Combining data across our participants, we found a significant correlation between 216 
clutter-level and reaction times to correctly detect a target (Figure 3A; rs = 0.654, p < 217 
0.001). This correlation was significant in all three sections of the environment (right, 218 

Amount of Clutter (0-1)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

5

10

15

Ti
m

e 
to

 T
ar

ge
t (

s)

Visual Clutter Modulates Reaction Time

rho=0.654
p<0.001

Low
Medium
High

Binned Clutter Group Reaction Times

Low Medium High
0

5

10

15

Ti
m

e 
to

 T
ar

ge
t (

s)

*
***

*

A B Individual Average Reaction Times

Low Medium High
0

5

10

15

Ti
m

e 
to

 T
ar

ge
t (

s)

***
***

***

C

Figure 3. Experiment 1 - Naturalistic visual search results. (A) Amount of visual clutter correlates with reaction time in 
real-world environments (rs = 0.654, p < 0.001). (B) Average reaction time across participants for each scene binned 
into clutter groups (F(2,51) = 12.74, p < 0.001). (C) Individual participant average reaction times binned into clutter groups 
(F(2,72) = 76.25, p < 0.001). In all plots, error bars represent 1 SEM. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. p > 0.05 dif-
ference between conditions.
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left, and center of the participant) (left frame: rs = 0.709, p < 0.001; front frame: rs = 219 
0.806, p < 0.001; right frame: rs = 0.536, p = 0.024). A one-way ANOVA revealed a 220 
significant main effect of clutter on reaction times across scenes (Figure 3B; F(2,51) = 221 
12.74, p < 0.001). This significant effect of clutter is further demonstrated in the 222 
individual participant average reaction times for each clutter quantile (Figure 3C; F(2,72) = 223 
76.25, p < 0.001) along with individual participant false alarm rate (ANOVA: F(2,72) = 224 
11.09, p < 0.001). Overall, these results suggest that visual clutter modulates visual 225 
search performance inside real-world scenes.  226 
 227 
Classic Visual Search Performance 228 
 229 
We next evaluated the relationship between set size and search performance in a 230 
classic visual search paradigm. Within each set size, we calculated the average 231 
reaction time of each participant separately for the target present and target absent 232 
trials. For target present trials, we performed a one-way ANOVA which revealed a 233 
significant main effect of set size (Figure 4A; F(2,72) = 62.81, p < 0.001). Similarly, we 234 

found a main effect of set size for target absent trials (Figure 4B; F(2,72) = 52.41, p < 235 
0.001). Finally, we calculated the false alarm rate of each participant within each set 236 
size and performed a one-way ANOVA which showed no main effect of clutter (F(2,72) = 237 
1.77, p = 0.177). In sum, these results dovetail with previous findings of classic visual 238 
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Figure 4. Experiment 2 - Classic visual search results. (A) Individual reaction times are modulated by set size on target 
present trials (F(2,72) = 62.81, p < 0.001) and (B) target absent trials (F(2,72) = 52.41, p < 0.001). In all plots, error bars 
represent 1 SEM. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. p > 0.05 difference between conditions.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464609


search paradigms demonstrating the impact of set size on visual search performance 239 
(Wolfe & Horowitz, 2017). 240 
 241 
Reliability of Individual Reaction Times 242 
 243 
Before examining the relationship between the two experimental paradigms, we 244 
established the reliability of individual reaction times for each task by iteratively 245 
calculating split-half reliability. Specifically, within each task for each participant, we 246 
divided reaction times within each set size in half and calculated the average 247 
Spearman’s correlation over 10,000 unique combinations. For the naturalistic visual 248 
search task, we conducted a one-sample t-test which showed that participant reaction 249 
times were significantly reliable (t(24) = 10.92, p < 0.001). Likewise, for the classic 250 
visual search task, we performed a one-sample t-test which revealed that participant 251 
reaction times were significantly reliable (t(24) = 8.17, p < 0.001). 252 
 253 
Relating Performance on Naturalistic and Classic Visual Search Tasks 254 
 255 
Having established that each experimental paradigm exhibits within-individual reliability, 256 
we next investigated how individual differences in search performance on the two tasks 257 
related to one another. Within each task, we calculated the z-scored efficiency, the 258 
slope of a linear function mapped between set size and reaction time, of visual search 259 
for each participant. We first compared individual efficiency in the front quadrant of the 260 
naturalistic visual search task with each trial type of the classic visual search task. We 261 
found a significant relationship between search efficiency on the naturalistic search task 262 
and the target present trials of the classic visual search task (Figure 5A; rs = 0.428, p = 263 
0.034). The correlation between the naturalistic search and classic search tasks 264 
remained significant even when regressing out motor response times obtained from the 265 
motor response control task (rs = 0.426, p = 0.038), suggesting that this finding was not 266 
mediated by individual differences in motor response times. We found a similar 267 
relationship of individual efficiency between the front frame of the naturalistic search 268 
task and the target absent trials of the classic visual search task (Figure 5B; rs = 0.537, 269 
p = 0.006), which again remained significant even when regressing out motor response 270 
times obtained from the motor response control task (rs = 0.537, p = 0.007). Together, 271 
these results suggest that efficiency on a classic visual search task, indexed by a set 272 
size manipulation, predicts efficiency in naturalistic visual search, indexed by a clutter 273 
manipulation in complex, visual scenes.  274 
 275 
Importantly, this relationship between naturalistic and classic search performance did 276 
not hold when left and right quadrants were included in the analysis (Figure 5C; rs = 277 
0.059, p = 0.781). Likewise, we found no relationship between individual efficiency in 278 
the naturalistic visual search task and the target absent trials of the classic visual search 279 
task (Figure 5D; rs = 0.104, p = 0.62). Further, we found no relationship between the left 280 
and right frames of the naturalistic visual search task to the target present and absent 281 
trials of the classic visual search task (left-present: rs = 0.022, p = 0.917; left-absent: rs = 282 
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-0.017, p = 0.937; right-present: rs = -0.021, p = 0.922; right-absent: rs = -0.039, p = 283 
0.853). These results suggest that the increased motor and working memory demands 284 
associated with searching through an immersive environment to out of sight locations 285 
may disrupt the relationship observed between classic and naturalistic search.  286 

 287 
Discussion 288 
 289 
We find that visual search in immersive, real-world environments bears remarkable 290 
similarities to classic search in two important senses. First, naturalistic and classic 291 
search respect a common principle of “set size efficiency”: just as classic search 292 
efficiency is limited by the “set size” of a visual display (i.e. the number of distractors in 293 
the display), so naturalistic search efficiency is limited by a real-world analogue of “set 294 
size”, visual clutter (i.e. the number of non-target objects in a real-world environment). 295 
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Figure 5. Relating individual performance across tasks. An individual’s efficiency on the classic visual search task pre-
dicts efficiency within the initial field of view of the naturalistic visual search task for both (A) target present (rs = 0.428, 
p = 0.034) and (B) target absent trials (rs = 0.537, p = 0.006). (C,D) However, when all fields of view are considered in 
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target present (rs = 0.059, p = 0.781) and (D) target absent trials (rs = 0.104, p = 0.62).
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Second, individual differences in classic and naturalistic search efficiency are related: 296 
individuals with steeper costs of set size in a classic search arrays were more severely 297 
hindered by visual clutter in real-world environments, although only when targets 298 
appeared in the initial field of view. Together, these findings suggest that classic search 299 
is an excellent model of the pervasive real-world activity of visual search and suggest 300 
that action contributes an additional layer of complexity to behavior. 301 
 302 
Naturalistic paradigms present a valuable opportunity to validate and extend models of 303 
human behavior derived in laboratory settings to the conditions and demands of 304 
everyday life (Felsen & Dan, 2005; Leopold & Park, 2020). Within the vision sciences, 305 
advances in virtual reality technology present a promising avenue to investigate 306 
behavior within naturalistic contexts while simultaneously balancing experimental 307 
control (Doucet et al., 2016; Scarfe & Glennerster, 2015). This opportunity enables 308 
researchers to exact experimental rigor while presenting diverse real-world stimuli and 309 
compare models of visual processing within active visual settings (Haskins et al., 2020). 310 
Accordingly, an increasing number of studies employ virtual reality headsets to 311 
investigate visual function under naturalistic constraints (Beitner et al., 2021; Cohen et 312 
al., 2020; Li et al., 2018), providing essential connections between computer-based 313 
findings and naturalistic behavior. Yet, few studies have sought to relate models of 314 
visual performance on classic paradigms with behavior in real-world settings. 315 
 316 
Most previous studies of naturalistic search have primarily used computer-based 317 
paradigms featuring photographs of real-world scenes. Such studies have revealed 318 
many attributes guiding attention in real-world scenes not present in classic search 319 
(Wolfe, Võ, et al., 2011). For example, recent studies of search using naturalistic 320 
photographs reveal the important interplay of memory (Võ & Wolfe, 2012), semantic 321 
structure (Vo & Henderson, 2009; Võ et al., 2019), and top-down attentional guidance 322 
(Castelhano & Heaven, 2010; Castelhano & Henderson, 2007) during the visual search 323 
of scenes. Based on these findings, it is not a given that basic principles of classic 324 
search, such as the relationship between set size and visual search efficiency, would 325 
extend to naturalistic settings where additional cues guide search behavior.  326 
 327 
Recently, a few studies have investigated search performance in head-mounted 328 
displays using virtual environments. These studies have found that active exploration of 329 
and interaction with environments bolsters memory and aids visual search performance 330 
(Draschkow & Võ, 2017; Li et al., 2018). Additionally, a recent study found that 331 
engaging spatial priors through perceptual priming increases search efficiency (Beitner 332 
et al., 2021), further underscoring a pivotal role of memory in visual search. While these 333 
findings uncover important top-down properties guiding attention, the degree to which 334 
basic features limit visual search performance in real-world scenes is left unknown. 335 
 336 
To our knowledge, no previous study has, to our knowledge investigated the common 337 
mechanisms underlying classic and active, naturalistic search. Our results therefore 338 
build on previous work in two important ways. First, we demonstrate that set size, a 339 
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property that limits visual search, continues to limit performance during naturalistic 340 
search behavior in photospheres of real-world scenes. Second, we show that while an 341 
individual’s search efficiency is correlated between the two visual search tasks within 342 
the initial field of view, the incorporation of action alters the relationship of behaviors. All 343 
in all, our findings dovetail with previous studies in suggesting that naturalistic behavior 344 
engages additional mechanisms that guide attention during visual search. 345 
 346 
Certainly, our experimental paradigm has shortcomings. First, in contrast to many 347 
studies of visual search in which eye-tracking measures are employed, we were only 348 
able to use a combination of head-tracking data and key-press reaction times. This 349 
method is undoubtably noisier than measuring eye-tracking reaction times in each task. 350 
However, given the close coupling of head and eye movements (Freedman, 2008) and 351 
the presence of set size effects within both paradigms, we do not believe a different 352 
measurement would drastically alter our results. Second, dissimilarities of the stimuli 353 
used in each paradigm, specifically the minimalistic nature of letter displays as opposed 354 
to real-world scenes, creates difficulties in drawing a direct comparison across the two 355 
tasks. That said, the correlation of individual efficiency between the two paradigms 356 
within the initial field of view makes it unlikely that stimulus content hindered the direct 357 
comparison of tasks. A continuum of stimulus naturalism exists, moving from well-358 
controlled psychophysics displays into real-world settings, which may expose divergent 359 
guiding mechanisms of attention dependent on stimulus content. Thus, future studies 360 
may look to alter the stimulus along this naturalistic continuum; for example, performing 361 
searches for isolated objects on complex, real-world backgrounds. 362 
 363 
In sum, we find that visual clutter limits visual search performance in immersive, real-364 
world scenes. Individual efficiency relates across a naturalistic and classic visual search 365 
task when considering targets within participants’ immediate field of view, but this 366 
connection disappears when active exploration was required to find the target. 367 
Together, these findings suggest that active search alters the properties guiding 368 
attention during visual search and highlight the importance of relating computer-based 369 
and naturalistic tasks to better inform models of behavior. 370 
  371 
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Supplementary Figure 1. Motor response control trials. (A) Participants were asked to orient to a red dot appearing at 
one of three distances from screen center. (B) No differences were found in reaction times binned by distance from 
screen center (F(2,72) = 1.94, p = 0.151). Error bars represent 1 SEM. n.s. p > 0.05 difference between conditions.
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