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ABSTRACT

The adjoint-derived observation impact method is used as a diagnostic to derive the impact of assimilated

observations on a metric representing the forecast intensity of a tropical cyclone (TC). Storm-centered com-

posites of observation impact and the model background state are computed across 6-hourly analysis/forecast

cycles to compute the composite observation impact throughout the life cycle of Hurricane Joaquin (2015) to

evaluate the impact of in situ wind and temperature observations in the upper and lower troposphere, as well as

the impact of brightness temperature and precipitable water observations, on intensity forecasts with forecast

lengths from 12 to 48 h. The compositing across analysis/forecast cycles allows for the exploration of consistent

relationships between the synoptic-scale state of the initial conditions and the impact of observations that are

interpreted as flow-dependent interactions between model background bias and correction by assimilated

observations on the TC intensity forecast. The track ofHurricaneMatthew (2016), with an extended period of

time near the coasts of Florida, Georgia, and the Carolinas, allows for a comparison of the impact of aircraft

reconnaissance observations with the impact of nearby overland rawinsonde observations available within

the same radius of the TC.

1. Introduction

The evaluation of observing system changes on the

forecast has been a crucial part of advancing operational

numerical weather prediction (NWP), which has seen

significant gains in forecast skill in the last few decades

through advancement of data assimilation (Bauer et al.

2015). Often, this evaluation is obtained through ob-

serving system experiments (OSEs) in which obser-

vations are either excluded or added to assimilation,

relative to a control, to assess their impact on forecast

skill (e.g., Andersson et al. 1991; Bouttier and Kelly

2001; Zapotocny et al. 2007, 2008; Hilton et al. 2009;

Lupu et al. 2012; Bauer et al. 2014). These experiments

are capable of assessing this impact but at a very high

computational cost. In addition, OSEs can provide an

incomplete picture of the value of observations because

the exclusion of routinely assimilated observations will

necessarily redistribute weighting coefficients on the re-

maining observations, possibly allowing remaining ob-

servations to degrade the analysis if the assimilation

system was optimally tuned to include the excluded

observations (Gelaro and Zhu 2009).

Alternatively, the impact of assimilated observations

can be estimated through the sensitivity of the forecast

error to the assimilated observations using the adjoint

of the forecast model and the data assimilation system

(Langland and Baker 2004). This allows for an estimate

of each individual observation’s contribution to the re-

duction in forecast error. Observation impact computed

using the adjoint method has become a routine moni-

toring technique used at major centers including the

Naval Research Laboratory (NRL; Langland and

Baker 2004), the European Centre for Medium-Range

Weather Forecasts (Cardinali 2009), the Met Office

(Lorenc and Marriott 2014), the Japan Meteorological

Agency (Ishibashi 2010), and the Korea Meteorological

Administration (Kim and Kim 2014, 2018), as well as

the NASA Global Modeling and Assimilation Office

and Environment and Climate Change Canada (Gelaro

et al. 2010). In operational usage, the impact of obser-

vations is computed for the 24-h forecast on an energy-

based forecast error norm evaluated globally from the

surface through the depth of the troposphere and lower

stratosphere, relative to self-analysis. A strategy to

estimate observation impact has been developed in

ensemble systems as well (e.g., Liu and Kalnay 2008;

Kalnay et al. 2012; Kunii et al. 2012; Ota et al. 2013),Corresponding author: Brett T.Hoover, brett.hoover@ssec.wisc.edu
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which does not require the use of an adjoint, but relies

on the necessarily limited phase-space exploration

provided by an ensemble and requires empirical locali-

zation strategies to remove the influence of spurious

correlations at long distances.

The observation-impact technique has been applied

to investigate the relative contributions of observations

to reducing forecast error for a variety of applications.

Observation impact has been used to assess the relative

contribution of various satellite platforms (Joo et al.

2013; Cardinali and Healy 2014), and to provide de-

tailed estimates of the value added in observing system

experiments by special observation datasets like re-

connaissance campaign dropsondes (Langland 2005),

high-density satellite derived wind observations (Kim

et al. 2017), experimental observational coverage strat-

egies (Reale et al. 2018), model reconfiguration allowing

for assimilation of more observations over a deeper layer

of the stratosphere (Charron et al. 2012), and assimila-

tion of commercially available observations (Zhang et al.

2015). It has also been applied in observing system ex-

periments to provide detailed information on the impact

of synthetic observations with implications for issues

of analysis bias and redundancy of observation im-

pact across different observation platforms (Hoover

and Langland 2017). The observation-impact method

provides complementary but not necessarily overlapping

information with observing system experiments (Gelaro

and Zhu 2009). Some diagnostic studies using observa-

tion impact focus on specific regions of the forecast, like

subset regions covering the full track of tropical cyclones

throughout a cycled experiment (Jung et al. 2013) or small

regions centered on a single weather system (Holdaway

et al. 2014). The technique has been expanded beyond

NWP analysis/forecast systems to use in ocean models

(Cummings and Smedstad 2014) and high-resolution

two-dimensional surface analysis models (Tyndall and

Horel 2013). A sensitivity measurement based on the

ensemble Kalman Filter has been adapted to investigate

the impact of carbon dioxide (CO2) observations on the

optimized CO2 flux in a CO2 inversion system (Kim

et al. 2014).

This study expands the application of observation

impact as a diagnostic tool by computing the impact

of observations on a dynamical aspect of the forecast

rather than computing the impact on forecast error.

Through use of a norm representing the intensity of a

tropical cyclone (TC), and storm-centered compositing

of observation impact throughout the TC life cycle, a

noise reduction for the observation impact on the fore-

cast intensity of the TC is achieved and systemic impacts

from various observation types are compared to features

of the TC’s near and remote environments. In this way,

some of the flow-dependent relationships between

features of the atmosphere and TC intensity are in-

vestigated from the perspective of the role of model

background bias and its influence, or the erosion of

its influence through data assimilation, on the intensity

forecast. Repeated correction of model background er-

rors by observations that yield consistent changes to the

TC intensity forecast at forecast lengths from 12 to 48h

are revealed by composites, providing new insight into

the impact of observations on TC forecast intensity. A

description of the NWPmodel, data assimilation system,

and observational data is provided in section 2. In

section 3, the method for deriving the observation

impact on the TC intensity forecast is described, as

well as the method for computing storm-centered com-

posites of the observation impact and displaying them

in a grid space for comparison to the model background

state. Results of the method applied to Hurricane Joaquin

(2015) are provided in section 4, alongwith an examination

of the relative impact of reconnaissance dropsondes in

comparison with nearby routine rawinsonde observa-

tions for Hurricane Matthew (2016). Conclusions and

directions for future work are presented in section 5.

2. Model and data

Experiments are performed in the Navy Global

Environmental Model (NAVGEM). The description

here is adapted from Hoover and Langland (2017),

which used the same model and platform and further

description is provided there. The NAVGEM is an up-

grade of the Navy Operational Global Atmospheric

Prediction System (NOGAPS; Hogan and Rosmond

1991) spectral model redesigned with a semi-Langrangian

advection scheme, run at T425 spectral resolution with 60

vertical levels. The 6-hourly analysis cycle is performed

using theNRLAtmosphericVariationalDataAssimilation

System–Accelerated Representer (NAVDAS-AR; Xu

et al. 2005), which is a four-dimensional variational data

assimilation system in observation space (Rosmond and

Xu 2006) utilizing the tangent linear approximation of

the NOGAPS model and its adjoint (Rosmond 1997).

The analysis is cycled throughout the life cycle of each

tropical cyclone, starting from archived spectral history

files from the U.S. Navy Fleet Numerical Meteorology

andOceanographyCenter (FNMOC) operational analysis

archive. Bias correction coefficients for assimilation of ra-

diances are likewise obtained from FNMOC to allow for

immediate cycling without the need for a spin-up period to

establish the bias correction. Following initialization, the

systemperforms a 6-h analysis-forecast cycle that produces

atmospheric analyses at 0000, 0600, 1200, and 1800 UTC,

with 54-h forecasts produced for each cycle.

1334 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

Unauthenticated | Downloaded 05/17/22 06:20 AM UTC



All (FNMOC) operationally assimilated observation

types are assimilated: surface land/ship observations,

aircraft observations, atmospheric motion vectors (AMVs)

fromgeostationary satellite imagery and low-Earth-orbiting

satellite imagery, ocean surface wind observations obtained

from the Special SensorMicrowave Imager (SSM/I), ocean

surface scatterometer winds, rawinsonde observations,

synthetic tropical cyclone observations (Goerss and Jeffries

1994), total precipitable water measurements, bright-

ness temperatures, ozone observations, and bending

angle observations from global positioning satellite

radio occultation.

3. Method

a. Observation impact on forecast TC intensity

This study builds from previous work by applying the

observation-impact technique to a response function

defining the forecast intensity of a tropical cyclone. In

this way, rather than estimating the impact of each as-

similated observation on a global, energy-based forecast

error norm, the impact of assimilated observations is

estimated for the forecast intensity of the TC. This is

achieved by three changes to the method described

in Langland and Baker (2004), and the reader is di-

rected to their appendix for details on the derivation

of observation impact.

First, the response function is redefined to describe

the intensity of a TC in the forecast state. For each

forecast, the central minimum pressure of a chosen

TC is identified in the forecast state, and a response

function R is defined:

R5 �
i,j2D

p
s
j
i,j
, (1)

where ps represents the surface pressure for all grid

points indexed zonally by i andmeridionally by j in a box

D centered over the TC. Any impact on the forecast that

raises surface pressures in the boxD increasesR and can

be interpreted as a weakening of the TC. Conversely,

any impact on the forecast that lowers surface pressures

in the box D decreases R and can be interpreted as

an intensification of the TC. Response functions of

this form have been used in other studies investigating

the adjoint-derived sensitivity of the forecast intensity of

tropical storms (Hoover 2015) and midlatitude cyclones

(Ancell and Mass 2006; Chu and Yi 2016) to the model

initial state, while other studies have used response

functions defined by summed three-dimensional vol-

umes of kinetic energy (Doyle et al. 2012) or vorticity

(Vukićević andRaeder 1995; Langland and Errico 1996)

evaluated in a box centered on the cyclone extending

from the surface into the lower-to-middle troposphere.

The gradient of R with respect to the model initial state

x0 is computed by initializing the adjoint of the forecast

model with the gradient of R with respect to the forecast

state xf and evolving the gradient backward along the

forecast trajectory to the initial state:

›R

›x
0

5LT›R

›x
f

, (2)

where LT represents the adjoint model defined as

the transpose of the tangent linear approximation of

the nonlinear forecast model. The gradient of R with re-

spect to the observations y is computed by evolving ›R/›x0
through the adjoint of the data assimilation system:

›R

›y
5DT›R

›x
0

, (3)

whereDT is the transpose of the NAVDAS-AR achieved

by reordering of operations. Details on this calculation

can be found in Langland and Baker (2004).

Since the TC intensity response function [Eq. (1)] is

defined for a single model trajectory, the second change

to the method of Langland and Baker (2004) is that

sensitivity of R to observations is evaluated along the

background trajectory alone (i.e., the model trajectory

initialized from the background state, prior to assimi-

lation of observations for the current cycle). In this way,

the forecast intensity of the TC along the background

trajectory is assumed as a baseline, and the observation

impact represents the modulation to the forecast TC

intensity from the background trajectory as a result of

assimilating observations at the initial time, blending the

observational information with the model background

state and allowing that perturbation to the model initial

state to evolve through the forecast to impactR. In prior

studies of observation impact, the response function has

been defined as the difference between two quadratic

error expressions, which requires the use of sensitivity

gradients along both the background and analysis tra-

jectories. Since Eq. (1) is a function of the model state,

rather than the difference between two quadratic ex-

pressions, there is no necessity to compute sensitiv-

ities on both the background and analysis trajectories.

See the appendix of Langland and Baker (2004) for

details.

The third and final change to themethod is to estimate

the observation impact across a range of forecast lengths

instead of only the 24-h forecast. In this study, the ob-

servation impact is computed for the TC intensity in the

12-, 24-, 36-, and 48-h forecast. Investigation of obser-

vation impact at various forecast lengths allows for an

examination of how the distribution of high-impact
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observations—across observation type (i.e., observing

platform), observed variable, and observed pressure

level—varies as forecast length changes. For each

forecast length the impact is computed as the inner

product of ›R/›y and the innovation, defined as the

difference between the observation and the model

background state xb and a linear operator H that

projects the model state into observation space:

dR5

�
(y2Hx

b
),
›R

›y

�
. (4)

While it would otherwise be valuable to investigate

forecast lengths beyond 48h, the accuracy of the adjoint

model relies on the appropriateness of the tangent linear

approximation, and thus the adjoint model is quantita-

tively accurate for only a limited range of the forecast.

Previous studies have demonstrated that the linear ap-

proximation is appropriate for 48–72-h forecasts (Errico

et al. 1993) where highly nonlinear moist convection

does not dominate (Errico and Raeder 1999; Mahfouf

1999). Previous adjoint-based sensitivity studies of TC

intensity have been restricted to 18–24-h forecasts (Doyle

et al. 2012; Hoover 2015). Singular vector analysis using

an adjoint model approach, which identifies the fastest

growing perturbations in a forecast relative to a chosen

initial/finalmetric, forecast length, and verification region

(e.g., Palmer et al. 1998), have been employed to inves-

tigate tropical cyclones for forecast lengths of 36–48h

(Peng andReynolds 2006; Chen et al. 2009; Kim and Jung

2009; Reynolds et al. 2009; Kim et al. 2011). Based on

these previous studies, the 48-h forecast is chosen as the

limit to which observation impact can conceivably be

computed and compared. Because sensitivity is com-

puted on the background trajectory, the 6–54-h forecast

initialized from the previous 6-hourly analysis is used to

define this 48-h forecast period.

b. Storm-centered observation-space compositing

For each assimilated observation, the observation

impact on the 12-, 24-, 36-, and 48-h TC intensity is

computed and normalized by the area of the response

function box D, which is defined using an 118 3 118 box
for Hurricane Joaquin (2015), with the area of each re-

sponse function box varying slightly by latitude. The

zonal and meridional distance of the observation from

the latitude and longitude of the TC center is computed.

Observations within 4000km of the TC center are re-

tained for compositing onto a storm-centered grid with

163 points in the zonal and meridional directions and

34 pressure levels, creating three-dimensional grid boxes

that are 50.31 km on a side and 30hPa deep in the ver-

tical direction from 1040 to 100 hPa. Observation impact

at each forecast lead time are averaged in each box for

each observed variable, representing the composited

per-observation impact for each observed variable in

each grid box. Observation impact for Joaquin is com-

posited across forecasts initialized from each 6-hourly

analysis period from 0600 UTC 30 September to

1800 UTC 4 October 2015.

In addition, model-state variables are interpolated

from the 18 3 18 grid on pressure levels to the observa-

tion’s three-dimensional location (latitude, longitude,

pressure level) using bilinear interpolation in the horizontal

and log interpolation in the vertical. These model-state

quantities include vorticity, divergence, streamfunction,

velocity potential, and dewpoint depression, obtained

from the model background state (xb), providing infor-

mation about the state of the initial conditions prior to

assimilation of observations. These model-state variables

are averaged in each grid box to produce a storm-centered

composite of the model state in which observations are

assimilated, which is used to compare observation im-

pacts to features of the near- and far-storm environment

in section 4.

Composite plots are computed by vertically averaging

the observation impact through some chosen depth of

the 30hPa pressure slabs, and ameanmodel state within

each column is likewise computed as a vertical average

within every horizontal gridbox location. Since columns

only have a horizontal footprint of 50.31 km on a side,

there are many cases where columns with data are ad-

jacent to columns with missing values (no observations

present in that box), especially away from the conti-

nental United States where in situ observations are

sparse. Observation impact retains its missing-value

columns, but columns with fewer than six observations

are excluded from the analysis and set to amissing value,

since these low-density regions can produce large out-

liers in impact. To compute a relatively smooth model

state field, missing values for the model state are elimi-

nated through smoothing. The field is recursively con-

volved with a 33 3 smoother molecule eight times, each

time involving a two-stage process in which the field is

convolved with missing values set to zero and normal-

ized against a convolution in which missing values are

set to zero and nonmissing values are set to 1. In this

way, within a column with missing data, information

from surrounding grid points informs the gridded model

state within the void. Zonal and meridional (model back-

ground) wind fields use the same method but with three

recursions instead of eight.

The geographic distribution of observations varies by

observed variable (Fig. 1). Joaquin developed in the

Caribbean Sea and recurved into the western Atlantic

Ocean, consistently staying 108–158 longitude east of the
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U.S. coast. A high density of in situ observations of

temperature and winds over the continental United

States is visible northwest of the TC center in the com-

posite, while observations over the ocean are far less

numerous, and a dearth of observations is visible near

the TC center itself (Figs. 1a,b). Total-column precipi-

table water observations are sparse to the northwest of

the TC center and more evenly distributed over the

ocean (Fig. 1c). Brightness temperature observations

are more evenly distributed across the entire domain

than any other observations (Fig. 1d). The geographic

distribution of observations is important to consider

when evaluating the geographic distribution of obser-

vation impact, since the collocation of high impact and a

synoptic-scale feature of the atmosphere can be artifi-

cially enhanced or weakened by differences in where

particular observed variables sample the atmosphere.

Compositing of observation impact across time serves

a useful purpose in identifying observations that routinely

impact the forecast, which can be useful for identifying

regions of the model background that are routinely

influenced by assimilation of observations to provoke a

consistent impact in the forecast and identifying rela-

tionships between model bias (or possibly observation

bias) and the forecast. The presence of a consistent,

spatially coherent observation impact across several

analysis cycles is a symptom of some persistent and

spatially coherent disagreement between the model

background and observations, which can be caused

by either a model background bias or an observation

bias. In Hoover and Langland (2017), a warm bias

in the model background at high latitudes was related to

the consistent, large impact of high-latitude AMVs on

the 24-h forecast error through thermal wind balance.

In Cummings and Smedstad (2014), monthly averages

of impact from sea surface temperature observations

retrieved from GOES-13 satellite data were found to

provide detrimental impact (i.e., increased forecast

error) when observations were assimilated near the pe-

riphery of the observed disk. These detrimental impacts

were suspected to be caused by high zenith angles cre-

ating longer atmospheric path lengths to reach the sea

FIG. 1. Density of observations in the column between 980 and 200 hPa in storm-centered composite of Hurricane

Joaquin (2015) for (a) temperature observations, (b) wind observations, (c) precipitable water observations, and

(d) brightness temperature observations (not constrained between pressure levels). The star in the center represents

the TC center.
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surface, resulting in additional noise in the sea surface

temperature retrieval from aerosol contamination

and increased total-column water vapor, creating larger

errors in these periphery-of-disk observations and

degrading the forecast.

The goal of this study is to similarly seek out rela-

tionships in the interaction between model bias, ob-

servations, and the TC intensity forecast by using time

compositing of observation impact in a geographic space

centered on the TC.

4. Results

a. Impact of observations by observation type

One of the most common evaluations of observation

impact is summed observation impact by observation

type. This evaluation can be performed either as a sum

across all observations of a given type or normalized by

the total number of observations (i.e., impact per ob-

servation). In previous studies, the response function

defines a forecast error norm, in which positive (nega-

tive) impacts are considered detrimental (beneficial).

For a response function representing the forecast in-

tensity of a TC, a distinction between detrimental and

beneficial impacts cannot be made a priori. As a result, a

further distinction can be made between the summed

observation impact and the summed absolute value of

observation impact, the latter representing the total

impact of the observation type on the TC, whether that

impact is positive or negative. These can be computed

on a sum-total or a per-observation basis, creating four

observation-impact evaluations by observation type:

total impact, per-observation impact, total absolute

impact, and per-observation absolute impact.

On a per-observation basis, synthetic observations de-

rived from TC reconnaissance (Goerss and Jeffries 1994)

impose the largest absolute impact (Fig. 2d), as well as

the largest consistently negative (i.e., intensifying) impact

among all observation types (Fig. 2c). Previous research

using a traditional data impact study framework has

shown that these synthetic observations are assumed to

have small errors and have a significant impact on the

TC track forecast (Reynolds et al. 2013). Synthetic TC

observations have the largest impact on the 12-h forecast

with impact tapering off as the forecast length is in-

creased, with the impact on Joaquin decreasing by about

35% (Fig. 2a) between the 12- and 48-h forecasts. This

is despite the fact that almost universally the absolute

impact increases in magnitude for each observation

type as the forecast length increases (Fig. 2b). It can be

concluded that the impact of synthetic TC observations

grows inmagnitude but ismore evenly distributed between

positive and negative impacts as the forecast length in-

creases. This could be due, for example, to the forecast

TC intensity being less strongly controlled by the initial

intensity and structure as defined by the synthetic ob-

servations and more strongly controlled by evolving

interactions with the environment as the forecast length

increases. Impact by observation type is distributed

almost equally between raising and lowering the TC

intensity in much the same way that it has been found to

be distributed almost equally between raising and low-

ering the 24-h forecast error (Gelaro et al. 2010), with

the total impact by observation type being positive or

negative based on a relatively small margin.

The largest absolute impact for Joaquin comes from

in situ aircraft observations from the U.S. Meteorological

Data Collection and Reporting System (MDCRS), a

U.S. branch of theWorldMeteorological Organization’s

Aircraft Meteorological Data Relay (AMDAR) pro-

gram. These observations include winds, temperatures,

and moisture observations collected both at flight level

and in profiles when aircraft are ascending and descend-

ing at airports. AMDAR observations have been shown

to contribute substantially to short-range (3–12h) regional

forecasts over the continental United States and to global

forecasts out to 48h (Petersen 2016), with aircraftmoisture

observations expressing the largest observation impact

among all U.S. in situ moisture observations in 24-h

NAVGEM forecasts (Petersen et al. 2016). Aircraft ob-

servations from theTroposphericAirborneMeteorological

Data Reporting (TAMDAR) system have been shown to

be a major contributor to reducing the 24-h forecast error

over the continental United States in adjoint-based obser-

vation-impact experiments with theWeather Research and

Forecasting Model (Zhang et al. 2015). The absolute ob-

servation impact of MDCRS observations on Joaquin’s

intensity forecast is roughly commensurate with the

number of observations for each variable: wind ob-

servations command roughly 75% of the total MDCRS

observations and contributes about 81% of the total

absolute observation impact fromMDCRS; temperature

observations make up roughly 21% of the observations

and contribute roughly 19% of the impact. MDCRS

moisture observations, while making up roughly 4% of

the total MDCRS observations, only contribute roughly

0.3% of MDCRS absolute observation impact. The small

impact ofmoisture observations is likely a by-product of the

limitedmoisture physics available to the adjointmodel, and

likewise represents a limitation of the observation impact

to properly identify the impact of moisture observations.

It is also possible that the impact ofmoisture observations

is small because of the choice of response function.

Previous studies computing the impact of observations

on the 24-h global forecast error reduction have shown
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that AMSU-A radiance observations are a leading con-

tributor to reducing forecast error (Gelaro et al. 2010),

butAMSU-A radiances are a small contributor to the TC

intensity forecast, with only a roughly 4% contribution to

the total absolute impact from AMSU-A and 18% contri-

bution from radiance observations from Aqua, Advanced

Technology Microwave Sounder (ATMS), AMSU-A,

IASI, Microwave Humidity Sounding (MHS), and SSMIS

collectively. Assimilation of satellite-derived wind obser-

vations from geostationary satellites have been shown to

improve the track forecast of tropical cyclones in both

regional NWP models (Leslie et al. 1998) and global

NWP models (Goerss 2009; Langland et al. 2009). Some

improvement to intensity forecasts has also been identified

(e.g., Osuri et al. 2012). These winds contribute 21% of

the total absolute impact, predominantly contributing to

an increase in the response function, or a weakening of

the TC in the forecast.

b. Impact of upper-tropospheric wind observations

Wind and temperature observations are separated

into an upper-tropospheric (380–200hPa) and a lower-

tropospheric (980–620 hPa) layer. Within each layer, the

impact of observations is averaged in each column, and a

mean model state for the column is computed for all obser-

vations existing within the column as discussed in section 3b.

FIG. 2. Observation impact by observation type for Hurricane Joaquin. Observation impact is evaluated by

(a) total impact, (b) total absolute impact, (c) per-observation impact, and (d) per-observation absolute impact.

Observation impact is provided for 12-, 24-, 36-, and 48-h forecasts for all observations included in storm-centered

composites, normalized by the size of the response function box. For each panel, the bars are separated into three

zones that correspond to in situ observations (bottom), observations of wind and thermodynamic fields inferred

or derived from remote sensing observations (middle), and brightness temperature observations from observed

radiance (top).
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The composite upper-tropospheric environment for

Joaquin as described by the streamfunction includes a

deep trough to the northwest and a ridge to the north-

east, which is likely aided by Joaquin’s outflow (Fig. 3).

Impact of wind observations in this layer is larger for

longer forecast lengths than for shorter forecast lengths;

this is a characteristic that is consistent across all

observation-impact analyses performed in this study. In

general, regions of positive impact (i.e., columns where

the average observation impact raises the forecast

surface pressure in the response function box) tend to

become more positive, and regions of negative impact

tend to become more negative, as the forecast length

increases.

Observation impact of wind observations on the 12-h

forecast is concentrated to the near environment of

the TC with little impact of observations sampling the

trough to the northwest (Fig. 3a), and as the forecast

length is increased to 24-h observation impact extends

into observations sampling the outflow-enhanced ridge

and the region south of the trough (Fig. 3b). Through the

36-h (Fig. 3c) and 48-h (Fig. 3d) forecast, observation

impact extends further into regions to the south and

southwest, as well as northwest into the high-speed flow

north of the ridge. The region upstream of the trough

axis also expresses observation impact, but the region

around the trough axis itself expresses very little ob-

servation impact. Based on the sign of the impact, it is

estimated that wind observations in the ridge and south

of the TC have a tendency, on average, to intensify

Joaquin at longer forecast lead times; wind observations

sampling the base of the trough weaken Joaquin at

longer forecast lead times, but these are not clearly

defined features.

c. Impact of upper-tropospheric
temperature observations

The composite impact of upper-tropospheric tempera-

ture observations shows sparse impact from temperature

observations for short forecast lengths (Figs. 4a,b), and as

the forecast length approaches 48h (Figs. 4c,d) a consistent

growth and intensification of negative observation impact

FIG. 3. Storm-centered composite of the impact of assimilated wind observations between 380 and 200 hPa on the

forecast intensity of Hurricane Joaquin in the (a) 12-, (b) 24-, (c) 36-, and (d) 48-h forecasts. Composite layer-average

streamfunction is contoured, and composite layer-average wind is plotted as green vectors. The magenta star

represents the latitude and longitude of the TC center in the composite.
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(i.e., an increase in forecast intensity) develops within

the trough northwest of the TC center. Observation

impact near the TC center is high amplitude but sparse,

and no significant impact develops within the outflow-

enhanced downstream ridge. Consistently negative im-

pact occurs in and around the trough axis where wind

observations displayed little impact (Fig. 3).

The composite temperature innovation relative to the

model background, calculated as the difference between

the observed temperature and the temperature in the

model background state interpolated to the observa-

tion’s location, is largest in the well-sampled northwest

quadrant where the impacts are largest (Fig. 5). The

innovation is predominantly positive within the region

of the upstream trough where observation impact of

temperature observations on the 36–48-h intensity

forecastwas found to bepredominantly negative (Figs. 4c,d).

A direct relationship between the composite tempera-

ture innovation and the observation impact on forecast

intensity cannot be made absolutely clear through this

technique, but it is noteworthy that Joaquin expresses

enhanced divergent flow, represented by the gradient in

model state velocity potential in the analysis-minus-

background difference, as a consequence of assimilating

(all) observations. The composite velocity potential

of the model background state expresses a strong

gradient to the north of the TC center along the

northern edge of the ridge (Fig. 5b); the composite

velocity potential increment, representing the differ-

ence in velocity potential between the model analysis

state and the model background state (Fig. 5d), ex-

presses an enhancement of this gradient in the region

where these high-impact temperature observations

reside. This is coincident with an enhancement of

ridging expressed as a positive streamfunction in-

crement (Fig. 5c).

It is important to realize that, since observation im-

pact can be either positive or negative, the compositing

technique shown here expresses large values where

observation impact is consistently of a particular sign.

Therefore, regions of the composite expressing low am-

plitude can either represent low-amplitude impact from

the existing observations or a more balanced distribution

between negative and positive impacts. To address this, a

composite was computed using the mean absolute value

of the 48-h forecast observation impact (Fig. 6). The

composite shows that high-amplitude impact of wind

observations in the 48-h forecast is asymmetrically

FIG. 4. As in Fig. 3, but for temperature.
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distributed over a wide region south and east of the

strongly sampled northwest quadrant (Fig. 6a), while

high-amplitude impact of temperature observations

appears to be restricted to the near-storm environment

and the northwest quadrant where wind observations

express less impact (Fig. 6b). These results imply that

interactions between Joaquin and its remote environ-

ment are relevant to the forecast intensity at longer lead

times. It is noteworthy that temperature observations

demonstrate large composite observation impact in the

well-sampled northwest quadrant of the composite, de-

spite that this region of the continental United States,

being highly sampled, is expected to have smaller analysis

errors than more sparsely sampled regions over open

ocean (Langland et al. 2008). This indicates, in the time-

composited average, that there are regular corrections

to the model background during assimilation of upper-

tropospheric temperature observations that have a con-

sistent impact on the forecast intensity of Joaquin in the

36–48-h forecast range, and that these regular corrections

to the model background are not a product of poor in situ

observational coverage over the ocean.

d. Impact of lower-tropospheric wind and
temperature observations

As opposed to the observation impact of upper-

tropospheric wind and temperature observations, the

observation impact of lower-tropospheric wind and

temperature observations expresses less spatial co-

herence (spatial distribution and consistent sign and

magnitude of impact). Total absolute observation im-

pact from upper-tropospheric winds grows between the

12- and 48-h forecast lead times by a factor of 2.8, and

upper-tropospheric temperature observation impact

grows by a factor of 4.2. By contrast, lower-tropospheric

wind and temperature observation impact grows by only

a factor of 2.2 and 2.3, respectively. However, observa-

tion impact of lower-tropospheric winds is consistently

1.2–1.6 times that of upper-tropospheric winds, and

observation impact of lower-tropospheric temperature

FIG. 5. Storm-centered composite of the layer-average innovation of temperature observations in the

380–200 hPa layer for hurricane Joaquin, contoured with (a) layer-average streamfunction, (b) layer-average

velocity potential, (c) layer-average streamfunction model increment (xa 2 xb), and (d) layer-average velocity

potential model increment (xa 2 xb). Dashed contours are negative, and composite layer-average wind

is plotted as green vectors. The magenta star represents the latitude and longitude of the TC center in the

composite.
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observations is 5.6–10 times as large. This indicates that

lower-tropospheric wind and temperatures consistently

exert a significant influence on the forecast intensity of

Joaquin regardless of forecast length, while the impact

of upper-tropospheric wind and temperature observa-

tions are small in the 12-h forecast but increase with

increasing forecast length. Since observation impact of

winds in the upper troposphere tends to appear in the

near- and far-storm environment, it is speculated that

the increase in impact with forecast length in the upper

troposphere is due to modulation of the TC’s environ-

ment and features of the large-scale flow that exert a

greater influence on the TC intensity forecast for longer

forecast lead times.

The composite lower-tropospheric streamfunction en-

vironment around Joaquin (Fig. 7) is typified by a broad

trough immediately to its west and an anticyclone to the

northeast. Observation impact is strongly concentrated

near the TC center for both lower-tropospheric wind and

temperature observations. There is growth in negative

observation impact of winds in the high-velocity wind

between the TC and the anticyclone at longer forecast

lengths (Fig. 7), but otherwise very little spatial coherence

of any kind exists, with positive and negative observation

impact of winds distributed seemingly randomly within

the small radius of the TC center in which they express

influence. Likewise, large impact of lower-tropospheric

temperature observations is constrained to a small region

around the TC, with the exception of some sparse regions

of impact to the northeast for 36- and 48-h forecasts (Fig. 8).

If observations were correcting purely random errors

in the model background, as is sometimes assumed in

simplified data assimilation theory, the resulting inno-

vations would likewise be distributed randomly, and the

product of the innovation and sensitivity gradient would

lack spatial coherence. The presence of spatial coher-

ence in the observation impact therefore implies the

presence of spatially coherent error in the model back-

ground that is being corrected by the data assimilation

process. The same is true of systemic analysis increments

for the same reason (Dee 2005), although in the present

study the spatial coherence of the observation impact

is focused specifically on spatially coherent errors in

the model background that have an impact on the TC

intensity forecast. The spatially coherentmodel background

error in a time-averaged composite can be interpreted as

an error of bias. Biases exist in the model background

in the upper troposphere, especially in the temperature

field within the upstream trough, that produce analysis

increments during data assimilation that translate to

intensification of the TC in the forecast at 36–48-h

forecast lengths. By contrast, there is no evidence in

these composites of significant model-background bia-

ses in lower-tropospheric wind and temperatures that

consistently produce analysis increments that intensify

or weaken TCs in the forecast, though observation im-

pacts in the lower troposphere are large.

e. Observation impact of radiance and precipitable
water observations

Both radiance and precipitable water are satellite-

derived measurements that sample throughout the

atmospheric column. Storm-centered composites are

computed across all available radiance channels from

SSMI, IASI, ATMS, AMSU, and MHS platforms, and

precipitable water observations derived from SSMI

and WindSat. The composited observation impact is

plottedwith themodel background dewpoint depression

averaged from 980 to 380hPa, representing regions of

deep-layer-mean saturation in the environment.

FIG. 6. Storm-centered composite of absolute value of observation impact from (a) wind and (b) temperature

observations in the 380–200 hPa layer on the 48-h intensity forecast for Hurricane Joaquin. Composite layer-average

streamfunction is contoured. The magenta star represents the latitude and longitude of the TC center in the com-

posite. Observation impact is computed as per observation (i.e., normalized by number of observations).
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Composite observation impact of brightness temper-

atures derived from radiance observations (Fig. 9) are

strongly positive directly over the TC and weakly neg-

ative within the near environment. The magnitude of

the observation impact is also largest near the TC and

decays with distance from the TC center but displays

no clear relationship to the moisture content of the en-

vironment as described by the layer-average dewpoint

depression. By contrast, the composite observation

impact of precipitable water is small in regions of low

dewpoint depression (including the near environment of

the TC, where observations of precipitable water are

sparse; see Fig. 1c) and large in regions of large gradients

in dewpoint depression adjacent to the high dewpoint

depression regions to the north and northeast of the TC

(Fig. 10). Observation impact is predominantly nega-

tive, indicating that precipitable water observations tend

to intensify the forecast TC. The relationship between

observation impact and precipitable water innovation

unsurprisingly favors intensification or weakening of the

forecast TC when innovations are positive or negative,

respectively. The distribution of precipitable water ob-

servation impact is skewed toward intensification (i.e.,

negative impact) for observations with positive innova-

tions, while the distribution is skewed toward weakening

(i.e., positive impact) for those with negative innova-

tions and there is no clear signal in the amount of

skewness as a function of forecast length (not shown).

It can be inferred that there are biases in the model

background precipitable water that favor drier condi-

tions, which translate into weaker TC intensity forecasts

as the dry bias is ingested into the TC from the north

and northeast, and these biases are mitigated through

assimilation of total precipitable water observations.

f. Observation impact of reconnaissance
dropwinsondes relative to routine observations

Targeted observations are often deployed within a

tropical cyclone and its immediate environment for

the explicit purpose of improving the track or intensity

forecast. Observations such as dropwindsondes are

deployed from reconnaissance aircraft, and the impact

FIG. 7. Storm-centered composite of the impact of assimilated wind observations between 620 and 980 hPa on

the forecast intensity of Hurricane Joaquin in the (a) 12-, (b) 24-, (c) 36-, and (d) 48-h forecasts. Composite layer-

average streamfunction is contoured, and composite layer-average wind is plotted as green vectors. Themagenta star

represents the latitude and longitude of the TC center in the composite.
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of those observations is computed in anOSE framework

(e.g., Burpee et al. 1996; Aberson and Franklin 1999;Wu

et al. 2007; Aberson 2011; Chou et al. 2011; Majumdar

et al. 2013). Impacts on TC track indicate statistically

significant improvement within the first 72 h of the

forecast, and generally positive impact on intensity

with results depending on case and choice of model

(e.g., Aberson 2010). As with any OSE study, direct

comparison between impact of observations is made

difficult by the redistribution of weights on the rest of

the observations when a set of observations is included

or excluded. In addition, as can be seen in the results

presented in this study, observation impact can be dis-

tributed between positive and negative impacts on in-

tensity for any subset of observations, resulting in large

cancellations that may be mistaken for low sensitivity of

the forecast to the observations.

HurricaneMatthew (2016) was a unique case in which

the TC remained just off the coast of the United States,

not quite making landfall for a significant portion of

its life. National Hurricane Center best-track data

identify two periods between 1200UTC 6 and 1800UTC

8October 2016 during whichMatthew’s center intersected

land—once at 0000UTC 7October whenMatthew passed

over Grand Bahama near Freeport, and again on

1500 UTC 8 October when Matthew made landfall

again roughly 30 miles north of Charleston, South

Carolina. During this time, reconnaissance dropwind-

sonde observations were collected asMatthew remained

close to the coastlines of Florida, Georgia, and South

Carolina and were ingested into the NAVDAS-AR

to produce initial (analysis) states for the NAVGEM

model. The model was cycled throughout the 1200 UTC

6–1800 UTC 8 October 2016 period, using the same

model configuration that was used to compute the im-

pact of observations on the TC intensity forecast for

Joaquin.

The impact of ‘‘sonde’’ observations on Matthew is

compared between those sondes that originate from

routine rawinsonde launches and those that were col-

lected from reconnaissance. The routine rawinsondes

are filtered by removing all observations outside a radius

of 1100km from the TC center and pressures below

69hPa, which represent the maximum-radius andminimum-

pressure bounds of the reconnaissance observations.

After filtering the routine rawinsondes, reconnaissance

observations compose roughly 40% of the wind obser-

vations, 33% of the temperature observations, and

FIG. 8. As in Fig. 7, but for temperature.
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37% of the moisture observations. In total, there are

15 096 wind observations, 9489 temperature observa-

tions, and 7063 moisture observations available for

comparison. These are referred to as dropsonde and

‘‘nearby’’ rawinsonde observations.

The distribution of observation impact for reconnais-

sance observations is separated into 200 bins, computed

separately for the 12-, 24-, 36-, and 48-h forecasts and for

each of the observation variables (temperature, wind, and

relative humidity). The distribution of positive observa-

tion impact and negative observation impact is plotted in

log space (Fig. 11), expressing a quasi-linear distribution

in the space, representative of a power-law distribution.

For each distribution of reconnaissance observations,

10 000 Monte Carlo resamplings are performed on the

available routine observations, generating 10000 log-space

distributions. The distribution of reconnaissance obser-

vation impact is compared with the mean of distribu-

tions from the resampled routine observation impact

and a range around the mean defined by two standard

deviations. This comparison should identify whether

dropsonde observations provide information to the

intensity forecast, above and beyond what is supplied

by the routine observation network, in a case where the

Hurricane is very close to the coastal routine observa-

tion network.

Observation impact from reconnaissance observa-

tions expresses a distribution of larger impacts than the

nearby routine observations for wind and temperature

observations at 12- and 48-h forecast lead times (Fig. 11),

with a trend in the distributions toward less exceptional

impact from reconnaissance observations with in-

creasing forecast lead time. For temperature observa-

tions and wind observations, reconnaissance provides

fewer low-impact and more high-impact observations

than 2 standard deviations above the mean for nearby

routine observations across nearly the entire sampled

distribution for the 12-h forecast (Fig. 11a). This can be

interpreted as a statistically significant increase in obser-

vation impact of reconnaissance observations relative to

the observation impact of nearby rawinsonde observa-

tions within the same maximum radius and depth of the

FIG. 9. Storm-centered composite of the impact of assimilated brightness temperature observations on the forecast

intensity of Hurricane Joaquin in the (a) 12-, (b) 24-, (c) 36-, and (d) 48-h forecasts. Composite 980–380-hPa layer-

average dewpoint depression is color contoured (top color bar in each panel). The magenta star represents the

latitude and longitude of the TC center in the composite.
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troposphere. By contrast, the reconnaissance relative

humidity observation impact is far less statistically dis-

tinguishable from that of routine observations for most

of the sampled distribution. The impact of dropwind-

sonde observations on the 48-h forecast displays less

statistical significance (Fig. 11b), with dropwindsonde

temperature and wind observations being less distinct

from conventional observations while the change in sig-

nificance of impact of dropwindsonde relative humidity

observations between 12- and 48-h forecasts is less clear.

Despite these changes, the distributions for 48-h forecasts

retain much of the same qualitative trend toward fewer

low-impact observations and more high-impact observa-

tions relative to nearby rawinsonde observations.

The exceptionally high impact of reconnaissance

dropwindsondes as compared with the nearby rawin-

sondes can only be attributable to a few possible sources.

The dropwindsondes must sample regions of higher er-

ror and/or larger dynamical relevance to forecast TC

intensity, or the dropwindsondes must be of higher

quality than rawinsondes, or dropwindsondes must be

assimilated differently from rawinsondes in such a way

as to allow the dropwindsondes to express larger impact

(e.g., lower assumed observational errors allowing for

larger observational weighting coefficients during as-

similation). Differences in assumed observational errors

are less than 3% for all variables, possibly owing to

identical error profiles but minor differences in pressure

levels at which dropwindsondes and nearby rawinsondes

sample the atmosphere. Mean (absolute) innovations

for temperature and moisture observations from drop-

windsondes vary by only 1%–5% relative to those from

rawinsondes, indicating that temperature and moisture

observations sample regions of the atmosphere of roughly

the same certainty in the model background. However,

mean (absolute) innovations from wind observations are

30% larger for dropwindsondes as compared with nearby

rawinsondes, indicating that the dropwindsonde obser-

vations sample regions with less certainty in the back-

ground wind field than do nearby rawinsondes.

In addition, the mean (absolute) sensitivity of the 12-h

forecast to observations, computed as the observation

impact normalized by the innovation, is 130% higher

for temperature dropwindsondes than for nearby ra-

winsondes, 85% higher for wind observations, and

130% higher for moisture observations; dropwind-

sondes are therefore clearly sampling regions of higher

dynamical significance to the forecast than nearby

FIG. 10. As in Fig. 9, but for precipitable water.
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rawinsondes, even before accounting for the size of

their innovations.

Dropwindsondes are distributed both in the Gulf of

Mexico to the west of Florida and the Caribbean and

along the Gulf Stream in the tropical and subtropical

Atlantic to the east of Florida, as far north as North

Carolina (Fig. 12). Nearby rawinsondes are largely

confined to the southeastern continental United States

with a few stations in the Caribbean. The impact of

dropwindsonde temperature (Fig. 12a) and wind ob-

servations (Fig. 12b) shows significant impact from

observations just off the east coast within the path of

Matthew, with smaller impacts from temperature ob-

servations upstream or downstream.Wind observations,

containing the union of high-sensitivity and large inno-

vations, express the largest individual impacts. Moisture

observations (Fig. 12c) show the smallest impacts with

little dependence on geographic location. Small impacts

from moisture observations are likely influenced by the

NAVGEM adjoint’s limited moisture physics, and is

likely producing a muted sensitivity to the initial mois-

ture field. In other studies utilizing adjoint models with

more sophisticated moisture physics, the forecast in-

tensity of tropical and severe extratropical cyclones

is more sensitive to the moisture field than the wind

field (e.g., Doyle et al. 2012, 2014), and ensemble-based

sensitivity studies making use of the full-physics non-

linear NWPmodel to extract sensitivity information also

elevate the importance of initial moisture perturbations

(Brown and Hakim 2015). While cross-variable compar-

isons may be subject to artifacts caused by the simplified

physics of the adjoint, comparisons of observations

within a variable, such as comparisons between drop-

windsonde and nearby rawinsonde observations of the

same variable, may be more reliable.

5. Conclusions

Adjoint-derived observation impact is a powerful

tool for estimating the impact of individual observa-

tions on the forecast, and while this technique has

been almost exclusively applied to response functions

defining the domain-wide forecast error, it is possible

to apply this technique to more phenomena-specific

aspects of the forecast. In this study, the adjoint-derived

observation-impact technique was applied to a func-

tion defining the forecast intensity of a TC for two

Atlantic hurricane cases: Hurricane Joaquin (2015)

and Hurricane Matthew (2016).

A compositing technique was used to draw generalized

conclusions about observation impact from otherwise

very noisy information on the impact of observations on

FIG. 11. Distribution of observation impact of (top) temperature observations, (middle) wind observations, and

(bottom) moisture observations in relative humidity space on the intensity forecast of Hurricane Matthew (2016).

Impact is shown for the (a) 12- and (b) the 48-h forecasts. The red lines indicate the impact of reconnaissance

dropsonde observations. Impact of nearby rawinsonde observations is provided in blue; the distribution of impacts

from rawinsonde is defined by a 10 000-member Monte Carlo resampling of available observations, with the mean

represented by the dark-blue line and 2 standard deviations from themean represented by the light-blue shading. For

each plot, the distribution of positive impacts and distribution of negative impacts is computed separately, with

negative impactsmultiplied by21 for the purposes of computed a log-space distribution. Note the x axis (observation

impact) reversing direction across the middle of each plot.
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the intensity forecast of Joaquin for four forecast lengths

(12-, 24-, 36-, and 48-h forecasts), and the resulting com-

posites were used to identify indications of spatially co-

herent and time-consistent observation impact and how

the impact evolves in the forecast.

Composites reveal a general trend toward larger ob-

servation impact for longer forecast times, but some

observation types trend in the opposite direction, such

as synthetic TC observations. Composites show weak

spatial coherence in the impact of upper-level wind

observations, but the asymmetric distribution of impacts

is possibly due to significant interaction of Joaquin

with features of themidlatitude flow.Upper-tropospheric

temperature observations show significant spatial co-

herence, expressed as larger impacts and more nega-

tive impacts of temperature observations sampling the

upstream midlatitude trough for Joaquin. The com-

posite temperature innovations reveal that the obser-

vations were continually correcting a cold bias in the

model background and that increased divergent flow in

the outflow channel on the eastern side of the trough

was coincident with these temperature corrections. Wind

and temperature observations in the lower troposphere

show no significant biases of this kind, with little spatial

coherence of observation impact.

Impact of brightness temperature observations ex-

presses spatial coherence in the form of positive (fore-

cast weakening) impact very close to the TC center and

negative (forecast intensifying) impact at larger radii.

Observation impact of total-column precipitable water

tends to be greatest in moisture gradient regions be-

tween the TC and nearby drier areas.

Hurricane Matthew (2016) offered an opportunity

to compare the impact of temperature, wind, and

moisture observations from both reconnaissance drop-

windsondes and rawinsondes within similar distances of

the cyclone—this was caused by Matthew’s track, which

followed very close to the coastline along Florida and

the Carolinas for an extended period of time, without

undergoing landfall. Comparing these observations

shows that dropwindsondes appear to express larger

impacts than do rawinsondes, especially for tempera-

ture and wind observations, and these differences are

statistically significant. It is expected that the impact of

simplified moisture physics in the adjoint is muting the

impact of moisture observations, and their small impact

relative to available wind and temperature observations

is not considered authoritative.

This study serves as a proof of concept for the

observation-impact method as a valuable tool for

revealing characteristics of data assimilation relevant

to specific aspects of the forecast, which may be difficult

or impossible to achieve with other techniques. Future

work includes investigating these relationships using

more sophisticated adjoints with more fully represented

moist physics, producing more comprehensive composites

with a greater number of cases, and exploring some issues

in data assimilation and their impact on extreme weather.

Future work could also extend beyond the scope of

this study to investigate the impact of observations on

FIG. 12. Composite scatterplot of observation impact of dropwindsonde (red) and nearby rawinsonde (blue) observations between

1200UTC 6 and 1800UTC 8Oct 2016, with dots scaled by absolute value of observation impact on the 24-h intensity forecast of Hurricane

Matthew (2016). Observation impact is plotted for (a) temperature observations, (b) wind observations, and (c) moisture observations

in relative humidity space. The black line represents the National Hurricane Center best track of Matthew, with black open circles at

0000, 0600, 1200, and 1800 UTC.
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the TC intensity forecast error, possibly relative to a

verifying analysis. A study of this kind may face addi-

tional challenges; for example, the forecast model may

consistently underpredict the forecast intensity of a TC,

and observations that contribute to weakening the TC

may be characterized as detrimental, implying they

could be excluded from assimilation into the initial

conditions to improve the forecast. But those observations

may be revealing characteristics of the environment that

should impose a weakening on the TC, such as the pres-

ence of shear, and their exclusion may more realistically

represent the adding of a compensating error into the

initial conditions that improves the TC intensity forecast.

Future research could also include compositing of cases by

segment of TC life cycle, separating periods of intensifi-

cation and periods of weakening, to observe any potential

change in impact based on the phase of storm evolution.
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