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Structure-function similarities in deep brain stimulation targets 
cross-species 
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a Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The 
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b Newcastle Cognition Lab, University of Newcastle, Callaghan, NSW, Australia   
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A B S T R A C T   

Deep Brain Stimulation (DBS) is an effective neurosurgical treatment to alleviate motor symptoms of advanced 
Parkinson’s disease. Due to its potential, DBS usage is rapidly expanding to target a large number of brain regions 
to treat a wide range of diseases and neuropsychiatric disorders. The identification and validation of new target 
regions heavily rely on the insights gained from rodent and primate models. Here we present a large-scale 
automatic meta-analysis in which the structure-function associations within and between species are 
compared for 21 DBS targets in humans. The results indicate that the structure-function association for the 
majority of the 21 included subcortical areas were conserved cross-species. A subset of structures showed 
overlapping functional association. This can potentially be attributed to shared brain networks and might explain 
why multiple brain areas are targeted for the same disease or neuropsychiatric disorder.   

1. Introduction 

With the development of implantable electrodes in the mid-20th 
century, the modern era of Deep Brain Stimulation (DBS) started (Mio
cinovic et al., 2013; Pycroft et al., 2018; Schwalb and Hamani, 2008). 
DBS involves the placement of a neurostimulator that, through 
implanted electrodes, delivers electrical pulses to specific brain regions 
(Lozano et al., 2019). By placing the electrode in the thalamus, globus 
pallidus internal segment (GPi) or subthalamic nucleus (STN), DBS has 
been successful in alleviating motor symptoms of a number of neuro
motor disorders including Parkinson’s disease. Similarly, stimulation of 
the thalamus has been used to reduce (chronic) pain. This initial success 
has since been leveraged to expand the usage of DBS for a wide range of 
diseases and neuropsychiatric disorders. As DBS is considered for an 
increasing number of conditions, there is a corresponding increase of 
potential target regions. Interestingly an individual brain region can 
now be considered a target region for multiple diseases and neuropsy
chiatric disorders (Lozano et al., 2019; Pycroft et al., 2018). 

In the last decade alone, DBS has been used to target the nucleus 
accumbens (NAc) in treatment-resistant depression (TRD), addiction, 
anorexia, obsessive compulsive disorder (OCD), and schizophrenia (e.g., 
(Bewernick et al., 2012; Corripio et al., 2020; Denys et al., 2010; Peisker 

et al., 2018; Wu et al., 2013)). Other structures that are considered for 
OCD are the internal capsule and the caudate nucleus (e.g., (Huys et al., 
2019; Welter et al., 2020)). Related, the lateral habenula and subcallosal 
area are targeted in anorexia, TRD and schizophrenia (e.g., (Kocabicak 
et al., 2015; Schneider et al., 2013; Wang et al., 2020)). The amygdala is 
a target region for post-traumatic-stress-disorder (PTSD; e.g., (Langevin 
et al., 2016)) and the globus pallidus external segment (GPe) has been 
shown to ameliorate insomnia (e.g., (Castillo et al., 2020)). The fornix is 
considered in Alzheimer’s disease, traumatic brain injury, Rett syn
drome and epilepsy (e.g., (Liu et al., 2020; Lozano et al., 2016)) and the 
innominate substance has been targeted for dementia (e.g., (Gratwicke, 
2013; Kumbhare et al., 2018)). 

There are a number of structures such as the ventral posterolateral 
nucleus of the thalamus (VPlN), the periaqueductal and periventricular 
grey matter (PaG, PvG) that are used to alleviate neuropathic pain (e.g., 
(Ben-Haim et al., 2018; Keifer et al., 2014; Pereira and Aziz, 2014)). The 
posterior hypothalamus and ventral tegmental area (VTA) are targeted 
for other pain related disorders such as cluster headache (e.g., (Akram 
et al., 2017; Fontaine et al., 2010)). 

Additional targets are considered for a number of movement-related 
disorders. In addition to Parkinson’s disease, the GPi serves as a DBS 
target in Huntington’s disease and Tourette’s syndrome (e.g. (Gonzalez 
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et al., 2014; Smeets et al., 2016)). Other DBS targets include the puta
men for bradykinesia (e.g., (Montgomery et al., 2011)), the red nucleus 
for cerebellar tremor (e.g., (Lefranc et al., 2014)), the substantia nigra 
(SN) and pedunculopontine nucleus (PPN) for gait disorders (e.g., 
(Valldeoriola et al., 2019; Wang et al., 2017)), and the ventral poster
omedial nucleus of the thalamus (VPN) for essential tremor (e.g., 
(Degeneffe et al., 2018)). As such, a many-to-one mapping exists be
tween DBS target sites and the individual disease and disorder (Lozano 
et al., 2019; Pycroft et al., 2018). 

These mappings between structure and disorders heavily rely on the 
exchange between clinical practice and translational work in animals. 
Substantial insights have been gained by using 6-Hydroxydopamine (6- 
OHDA)-lesioned rodent and 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri
dine (MPTP)-treated primate models (Desmoulin-Canselier and Mou
taud, 2019; Kringelbach et al., 2007; Temel, 2013; Vitek and Johnson, 
2019; Wichmann et al., 2018). The benefit of such translational work is 
that it helps bridge the explanatory gap (Barron et al., 2021). However, 
cross-species comparisons and extrapolation of animal data to the 
human situation are challenging due to interspecies differences (Grow 
et al., 2016; Uylings et al., 2003; Van Essen et al., 2019; van Heukelum 
et al., 2020). 

Here, we aim to provide insight in the many-to-one mapping, while 
taking into account interspecies differences. The aim of the current study 
is twofold: investigate what the functional similarities are between DBS 
targets and whether these associations can be transferred across species. 
To address these two questions, we applied an unsupervised machine- 
learning approach to conduct a large-scale analysis of the primate and 
rodent literature focusing on 21 DBS targets. 

2. Methods 

2.1. PubMed search query 

A comprehensive literature search was conducted by querying the 
PubMed database (www.pubmed.org) using the Entrez search tools 
implemented in the Biopython Bio.Entrez module (V1.83; (Cock et al., 
2009)) and PyMed (V0.8.9; (Wobben, 2019)). The query date was 30th 
of March 2021 and used the following search query structure: structure 
name AND species [MESH]. We included the following 21 regions that 
have (recently) been used as DBS targets in humans: amygdala, caudate 
nucleus, fornix, globus pallidus external segment, globus pallidus in
ternal segment, hypothalamus, internal capsule, lateral habenula nu
cleus, nucleus accumbens, periaqueductal grey substance, 
pedunculopontine tegmental nucleus, periventricular grey substance, 
putamen, red nucleus, subcallosal area, innominate substance, sub
stantia nigra, subthalamic nucleus, ventral tegmental nucleus, ventral 
posterolateral nucleus of the thalamus and the ventral posteromedial 
nucleus of the thalamus. We did not include potential subnuclei for the 
21 regions in our search query. 

The spelling and synonyms of the structure name was based on the 
2017 Terminologia Neuroanatomica (TNa; http://fipat.library.dal.ca/) 
from the Federative International Programme for Anatomical Termi
nology (FIPAT). All English and Latin spelling of each structure and 
corresponding officially acknowledged equivalent or synonym was 
included (FIPAT, 2017). As noted in our previous work (Keuken et al., 
2018a), the TNa terminology is not fully adopted by the scientific 
community. We therefore also included the most common names and 
abbreviations as noted on the English Wikipedia page for that given 
structure. Finally, as the TNa nomenclature is based on human anatomy 
we also included the rodent nomenclature for the 21 structures as pro
posed by (Hamani et al., 2011; Swanson, 2018; Wise, 2008). 

For species the two MeSH terms ‘Primates’ and ‘Rodentia’ were used. 
Due to the explosion feature in PubMed each term captures a separate 
eutherian mammal class containing a number of taxonomic orders, 
families, genera and species. The ‘Primates’ term will therefore include 
literature on species such as the Macaca mulatta and homo sapiens, 

whereas the ‘Rodentia’ term will include literature on rodent species 
such as guinea pigs, mice and rats. All species per included class can be 
found online in the MeSH hierarchical tree (https://meshb.nlm.nih.gov 
/treeView). 

The different nomenclatures resulted in 95 search terms for the 21 
structures. On average there were 4.52 (SD: 2.44) search terms per 
anatomical structure. The primate query resulted in one or more hits for 
76 of the 95 search terms. For the rodent query this was 72 of the 95 
search terms. In total, the PubMed query resulted in 144,394 and 
165,083 hits for the primates and rodents, respectively. The different 
spellings, synonyms and abbreviations resulted in a number of duplicate 
publications for some structures. To reduce the bias between structures, 
these duplicates were removed. Duplicates were not removed if they 
implicated in more than one structure. 

For each of the PubMed ID’s, the title, keywords and abstracts were 
used for further analysis. Any paper that had an empty title or abstract 
field was excluded. We would like to note that topic modeling is ideally 
done on the full text document. However, in light of the corpus size and 
the high information density of abstracts, the use of title, keywords and 
abstracts is considered to be sufficient to reliably estimate the latent 
topics (Schuemie et al., 2004; Shah et al., 2003; Syed and Spruit, 2017). 
A benefit of not having to rely on full text documents is that there are no 
paywall restrictions. 

2.1.1. Topic modeling 
Topic modeling is an unsupervised machine-learning approach that 

allows the identification of latent concepts, or topics, in a large corpus of 
documents (Blei et al., 2003; Griffiths and Steyvers, 2004). As such the 
automated approach allows the analyses of ~310k PubMed hits, which 
would not be feasible using a manual approach. 

Standard data cleaning steps were performed, including the con
version of text to lowercase and the removal of numeric values, punc
tuations marks, double spaces and single character words. The text was 
then lemmatized using the SpaCy Large NLP model (V3.0.0; (Honnibal 
and Montani, 2017)), keeping the nouns and removing stop words using 
a standard stop word list using NLTK (V3.5; (Loper and Bird, 2002)). 
Subsequently, bigrams were created for every individual document 
(Loper and Bird, 2002) and were added to the corpus if they occurred 
three times or more in a given document. Finally, the preprocessed data 
were used to create a dictionary where words that occurred in less than 
10 documents or in more than 75 % of the documents were removed. 
These steps were done to improve the interpretability of the resulting 
topics (Debortoli et al., 2016; Martin and Johnson, 2015; Schofield et al., 
2017). The preprocessing steps resulted in a set of 20,127 and 19,195 
unique tokens for the primate and rodent literature. 

The Latent Dirichlet Allocation (LDA) topic model (Blei et al., 2003) 
as implemented in GenSim (V3.8.3; (Hoffman et al., 2010; Rehurek and 
Sojka, 2010)) was applied to the resulting dataset using standard 
hyperparameter settings with a chunk size of 20k, 100 passes, and 500 
iterations. Probabilistic topic models were applied to the primate and 
rodent literature separately. The number of topics were estimated using 
the coherence value (Röder et al., 2015; Syed and Spruit, 2017) where a 
crude search of 16 different levels of granularity in topics (2, 12, 22 … 
152, step size 10) was followed by a fine-grained search of 15 different 
levels of topic granularity centered on the winning model of the crude 
search (step size 1). The winning model resulted in 43 topics for the 
primate and 49 topics for the rodent literature. 

2.1.2. Topic categorization 
To assess whether the probabilistic topic modeling resulted in 

semantically coherent topics, the topics were labeled by two indepen
dent raters (AA, MCK). Per topic, the top 40 most relevant terms were 
extracted and exported to an excel document. The order of primate and 
rodent topics were randomized and both raters categorized each topic 
into one or more of the following (sub)categories: 1. Anatomy and 
Physiology, 1.1. Endocrinology, 1.2. Metabolism, 1.3. Autonomous 
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functions, 2. Pharmacology, 2.1. Psychopharmacology, 2.2. Other, 3. 
Methodology, 4. Disease and disorders, 4.1. Neuropsychiatry, 4.2. 
Neurodegeneration, 4.3. Development, 4.4. Other, 5. Higher order 
functions, 5.1 Cognitive, 5.2. Limbic, 5.3. Motor, 6. Other. Interrater 
reliability was quantified using the Cohen’s Kappa coefficient based on 
the Jaccard distance between the label sets per topic (Gwet, 2019) as 
implemented in NLTK (V.3.5; (Loper and Bird, 2002)). 

2.2. Statistical analysis 

The distribution of PubMed hits per structure and species was tested 
with a Pearson’s χ2 test and the effect size was estimated using Cramér’s 
V as implemented in R (R Core Team, 2021). The structure-structure 
similarity between species was quantified using a correlation matrix 
and hierarchical dendrogram as implemented in Seaborn, Python 
(Waskom, 2021). To identify clusters of structures the Euclidean dis
tance between topic loading and Wards clustering method was used 
(Müllner, 2011; Ward, 1963). Assumptions of normality were tested 
using quantile-quantile (Q-Q) plots. The Q-Q plot indicated that the data 
was normally distributed and therefore Pearson correlations were used 
to compare the structure-structure similarity matrices between species 
(R Core Team, 2021). To check whether the correlation between simi
larity matrices occurred due to noise, we randomly shuffled the struc
ture labels in the primate and rodent similarity matrix 10k times. This 
shuffling resulted in a matrix with the same mean and standard devia
tion as the observed similarity matrix but without the underlying 
anatomical structure. The 10k random matrices were then correlated 
between species and resulted in a null distribution of primate and rodent 
correlations. Finally, we calculated how many standard deviations the 
observed correlation was removed from the permutated null 
distribution. 

2.3. Open science and data availability 

All abstracts resulting from the search query, code used to analyze 
the data and to generate the figures are available on OSF (link; DOI 10 
.17605/OSF.IO/GXCB5). The 40 most salient keywords per topic and 
species are also made available. 

3. Results 

3.1. Number of PubMed ID’s per structure and species 

After the removal of duplicates and PubMed IDs that had no title 
and/or abstract, the primate and rodent query resulted in 121,967 and 
138,323 IDs, respectively. The number of documents per structure and 
species is shown in Fig. 1. After data cleaning, there were on average 
79.02 (SD: 29.27) and 80.67 (SD: 27.47) tokens per document for the 
primate and rodent literature. 

A Pearson’s χ2 test indicated that the distribution of PubMed IDs per 
structure was significantly different between species (χ2 (20) = 26789, 
p < 0.001; Cramér’s V = 0.32 and indicates a moderate effect size). This 
means that depending on the species there is a different amount of focus 
on a given structure. 

3.2. Topic fingerprint 

Based on the coherence value, the number of topics for the primate 
literature was 43 and 49 for the rodent literature. The interpretability of 
topics was quantified by two independent raters who labelled the 92 
topics into a number of categories. The interrater reliability was mod
erate (Cohen’s Kappa for all categories: 0.54; Cohen’s Kappa for only the 
main categories was 0.58) and indicated that the LDA topic modeling 
resulted in semantic coherent topics. 

A given primate topic was on average the dominant topic for 2836.44 
documents (SD: 1514.35). For the rodent topics this was 2822.92 (SD: 
1619.73) indicating that on average the topics were based on a similar 
number of documents cross-species. The mean number of topics for a 
given structure was 38.14 (SD: 7.79) for the primate literature and 44.71 
(SD: 4.83) for the rodent literature. The topic fingerprint for the 21 
structures per species is given in Fig. 2. 

3.3. Structure-function similarity 

A number of brain areas such as the NAc, amygdala, hypothalamus, 
SN, STN, and VTA showed comparable structure-function associations in 
both groups of species. The two largest topics for the primate amygdala 
both focus on limbic processes as indicated by the salient terms that 
contribute to the individual topic (primate topic 13: ‘emotion’, ‘face’, 
‘recognition’ and ‘aggression’; primate topic 33: ‘stress’, ‘fear’, ‘ptsd’, 
and ‘threat’). For the rodent, the two largest topics associated with the 

Fig. 1. The number of PubMed ID’s for a given structure and species. The top three structures for the primate search query are the substantia nigra, hypothalamus, 
and amygdala. The top three structures for the rodent search query are the hypothalamus, substantia nigra, and the nucleus accumbens. 
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amygdala relate to epilepsy and limbic processes (rodent topic 5: 
‘seizure’, ‘kindling’ and ‘convulsion’; rodent topic 36: ‘memory’, ‘fear’, 
‘learning’, ‘avoidance’ and ‘extinction’). The hypothalamus was strongly 
associated with topics associated with metabolism, homeostasis, and 
hormones (primate topic 20: ‘food’, ‘sleep’ and ‘obesity’; rodent topic 
37: ‘hormone’, ‘secretion’ and ‘crf’; rodent topic 14: ‘food’, ‘leptin’, 
‘intake’, and ‘weight’). Given the neurodegeneration observed in the SN 
in Parkinson’s disease it was expected that the largest topic for the SN for 
primates is disease specific (primate topic 22: ‘pd’, ‘neuron’, ‘loss’, and 
‘dopamine’) and that the second largest topic relates to biochemistry 
(primate topic 28: ‘acid’, ‘enzyme’, and ‘phospholipid’). Similarly, for 
the rodent, the largest two topics for the SN are disease and biochemistry 
related (rodent topic 7: ‘neurodegeneration, ‘parkinson’, and ‘model’; 
rodent topic 38: ‘acid’, ‘phospholipid’, and ‘rhythm’). As a frequently 
used target in the disease of Parkinson, the STN has a similar structure- 
function association in both species (primate topic 30: ‘stimulation’, 
‘dbs’, ‘parkinson’, and ‘motor’; rodent topic 44: ‘stimulation’, ‘fre
quency’, and ‘selfstimulation’). The VTA was associated with reward 
and addiction related topics in both species (primate topic 21: 

‘dopamine’, ‘alcohol’, ‘cocaine’, ‘addiction’ and ‘reward’; rodent topic 
27: ‘dopamine’, ‘nicotine’, and ‘accumbens’). 

The NAc initially showed a different structure-function association as 
the largest topic for primates was cancer related (primate topic 25: ‘cell’, 
‘cancer’, ‘growth’ and ‘apoptosis’) whereas in rodent the largest topic 
relates to antioxidant processes (rodent topic 11: ‘oxide’, ‘glutathione’, 
‘oxygen’ and ‘nacetylcysteine’). In both cases the structure-function 
association is most likely a misattribution as the abbreviation used for 
N-acetylcysteine is NAC, and the abbreviation for the accumbens nu
cleus is NAc. The antioxidantic properties of N-acetylcysteine are widely 
used in the prevention and therapy of a number of cancers (Breau et al., 
2019; Lee et al., 2013, 2011). As a result, the PubMed query appears to 
have resulted in the inclusion of studies that do not focus on the 
accumbens nucleus but rather on N-acetylcysteine. The second largest 
topic for the accumbens nucleus in primate and rodent is, however, 
reward and addiction related (primate topic 21: ‘dopamine’, ‘alcohol’, 
‘cocaine’, ‘addiction’ and ‘reward’; rodent topic 22: ‘cocaine’, ‘reward’, 
‘heroin’ and ‘addiction’). 

Another structure where the two groups of species seemed to have a 

Fig. 2. Topic loading per structure over spe
cies. Every polar plot shows the topic loading 
for a given anatomical structure. The three left 
columns show the 43 different topics in purple 
for the primate literature, the three right col
umns show the 49 different topics in red for the 
rodent literature. Every polar segment corre
sponds to a given topic where the length of the 
segment indicates the number of documents 
with that dominant topic. The 40 most salient 
terms per topic and species can be found on 
OSF.   
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different structure-function association is the caudate. The two largest 
topics for the primate caudate focus on methodology and higher order 
functions (primate topic 17: ‘volume’, ‘diffusion’, ‘dti’, ‘mri’; primate 
topic 39: ‘memory’, ‘reward’, ‘learning’ and ‘decision’). For the rodent 
the two largest topics are on neurotransmitters and neurovascular 
methodology (rodent topic 15: ‘serotonin’, ‘monoamine’, ‘norepineph
rine’ and ‘turnover’; rodent topic 24: ‘ischemia’, ‘injury’, ‘occlusion’, 
and ‘artery’). 

3.4. Structure-structure similarity 

Using the topic loading fingerprint per structure, we asked the 
question which of the subcortical structures are functionally similar and 
whether the relationship between structures is similar across species. As 
shown in Fig. 3, there are a number of structures that (irrespective of 
species) are clustered together: the cluster of the internal capsule, 
caudate nucleus, and putamen; the amygdala and subcallosal area; the 
STN and GPe; and the cluster of the innominate substance, ventral 
posteromedial nucleus of the thalamus and red nucleus. 

Interestingly, a number of structures have different group members 
based on the primate literature compared to the rodent. For instance, the 
NAc and VTA are thought to have a comparable structure-function as
sociation in rodent but this is not the case for primates (as both struc
tures belong to two distinct cluster branches). Similarly, the PPN is 
thought to have a comparable topic loading to the STN and GPe in 
primates whereas in rodent the PPN is thought to be more similar to the 
innominate substance, ventral posteromedial nucleus, and red nucleus. 
Regardless of these differences between species, the primate structure- 
structure similarity matrix correlates (moderately) with the rodent 
structure-structure similarity matrix (r = 0.60, p < 0.001). To test 
whether this correlation was spurious, a correlation null distribution 
was estimated. The permutation results indicate that the correlation 
between structure-structure similarity matrices is 8.61SD removed from 
the permuted null distribution (see Fig. 4). 

4. Discussion 

We set out to investigate the structure-function associations between 
DBS target sites and whether these associations were comparable across 
species. Topic modeling revealed that topics most frequently associated 

with a number of structures seemed to capture similar semantic themes 
cross-species. For instance, in both groups, the amygdala is predomi
nantly associated with limbic processes, the hypothalamus associated 
with homeostasis, the SN with Parkinson’s disease and the VTA with 
reward and addiction related processes. 

4.1. Limitations 

Our study is inherently limited by the publication bias of statistically 
significant differences. Additionally, those published results potentially 
suffer from confirmation bias – cases in which experiments are unin
tentionally designed to further strengthen a structure-function associa
tion prevalent in the literature (Holman et al., 2015; Nickerson, 1998). 
As a result, the literature and resulting reviews become strongly biased 
towards a specific functional association and potentially overlook other 
functional roles that a structure might have (Greenwald et al., 1986; 
Keuken et al., 2012). Additionally, the search query only included sci
entific publications from a single database. As such the inclusion of grey 
literature (i.e., literature that is not formally published in sources such as 
peer-reviewed journals) in the current study is limited (Haddaway et al., 
2020; Shultz, 2007). Another factor that might have introduced unin
tended biases within and between species is the inclusion of specific 
anatomical nomenclature and the actual use by the scientific community 
(Keuken et al., 2018a). We tried to minimize this bias by including 
multiple recently published nomenclatures for different species but even 
so we might have missed certain (historical) naming conventions. Two 
examples are the terms entopeduncular nucleus and the ventral inter
mediate nucleus (VIM) of the thalamus. The entopeduncular nucleus is 
frequently used to refer to the globus pallidus internal segment in rats. In 
the rodent nomenclature used in the current study this term was, how
ever, deemed anomalous and as such not included in the search query 
(Swanson, 2018). For the VIM, the nomenclature was challenging as a 
number of competing and conflicting nomenclatures for the thalamus 
exist (Mai and Majtanik, 2019). This makes large scale automatized 
meta-analytic approaches challenging and calls for the standardization 
and use of anatomical nomenclature. While keeping these limitations in 
mind there are a number of conclusions that can be drawn from the 
current study. 

Fig. 3. The correlation and hierarchical clustering between structures over species. Note that the order of structures follows the hierarchical clustering layout and 
therefore differs for the primate and the rodent panel. 
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4.2. Structure-function (dis)similarities 

The similarity in topic fingerprint between a number of brain areas 
indicated overlapping functional associations. The amygdala and sub
callosal area are examples of such clusters where, irrespective of species, 
the main functional associations relate to limbic processes. It is therefore 
not surprising that these areas are candidate DBS target sites for 
neuropsychiatric disorders such as TRD and PTSD (Langevin et al., 2016; 
Merkl et al., 2013). 

From the DBS literature on Parkinson’s disease, we initially expected 
that the STN, GPi and posterior ventrolateral nucleus, which includes 
the VIM of the thalamus, would have similar structure-function associ
ations (Hartmann et al., 2019). This was neither the case for the primate 
or rodent literature as the STN did not belong to the same cluster as the 
GPi and posterior ventrolateral nucleus. Instead, the STN was found to 
be in the same functional association cluster as the GPe. This could be 
due to the substantial bidirectional connections between the two nuclei 
and the joint role of these two nuclei in motor control and optimal action 
selection (Benarroch, 2008; Bogacz et al., 2016; Ditterich, 2010; Lepora 
and Gurney, 2012). A white matter connection which is known to be 
present in both primate and rodents (Milardi et al., 2019). 

The structure-structure cluster analysis also hinted at species specific 
clusters. Based on the primate structure-function association, the STN 
and PPN are two structures that were similar in their topic loading. This 
can potentially be explained since the STN is one of the first target re
gions to alleviate PD symptoms whereas the PPN is one of the emerging 
region for the same disease (Anderson et al., 2017; Hamani et al., 2016). 
We did not find such a similar functional association in rodent literature 
as the PPN was neither associated with the STN, GPi, or posterior 
ventrolateral nucleus; the three most frequently used targets for DBS in 
PD (Anderson et al., 2017). Whether this cross-species discrepancy for 
the PPN is caused by the substantial interspecies differences in afferent 
and efferent white matter connections remains unknow (Alam et al., 
2011). 

There is considerable work highlighting commonalities and differ
ences in the white matter micro and macro anatomy between primate 
and rodents (Mota et al., 2019; Scholtens et al., 2018; Van Essen et al., 
2019). An interesting future application of probabilistic topic modeling 
could be to solely focus on white matter tracts, and testing associations 
with certain diseases and disorders. Such an analysis could potential 
reveal novel white matter targets to consider for DBS (Rodrigues et al., 
2018; Sui et al., 2021). Another factor to consider is the massive cortical 
expansion between primates and rodents resulting in less homologous 
cortical regions projecting to the subcortex (Fernández et al., 2016; 
Schaeffer et al., 2020; Van Essen et al., 2019). So while a single 
subcortical area might have similar functional associations between 
species, these areas and associated networks in primates seem to receive 

a wider range of cortical information which can accommodates more 
complex behavior (Buckner and Krienen, 2013; Halloway, 1967). 

4.3. Many-to-one mapping 

In cases where multiple structures are used as a DBS target for the 
same disorder, one would perhaps expect some level of overlapping 
structure-function associations. An example of such a many-to-one 
mapping is the internal capsule and the NAc for OCD (Borders et al., 
2018). Given the cluster membership differences of both structures 
within and between species this is clearly not the case. One explanation 
why both areas are considered for the treatment of OCD is that a similar 
region is targeted, but that the nomenclature used to describe the region 
is not precise enough (Haber et al., n.d.). Another explanation is that two 
adjacent areas are targeted, and that as a result of imprecision in elec
trode placement and/or the spread of current it is unclear which area is 
responsible for the clinical improvement (Horn et al., 2019). A third 
explanation why multiple target regions are successful in alleviating a 
disease or disorder is that they are part of the same structural and 
functional connectome (Clelland et al., 2014; Horn et al., 2021; Li et al., 
2020). Finally, a more speculative explanation might be that as the 
disease progresses, networks are reorganized (Calabresi et al., 2007; 
Chu, 2020), and other regions develop into more clinically relevant 
targets for that given disease stage. 

We also identified many-to-many mappings such as the nucleus 
accumbens and the subcallosal area for the treatment of depression and 
anorexia. In such mappings it is possible that the disorders share a 
number of symptomatologic and neurobiological features (Oudijn et al., 
2013). To understand which disorders share a common structural and 
functional network, it is necessary to identify the entire network and 
role of each of the individual nuclei in vivo. The subcortex is, however, 
notoriously difficult to image with conventional MRI methods and a 
given structure requires tailored structural and functional sequences (de 
Hollander et al., 2017; Forstmann et al., 2017; Keuken et al., 2018b). 
While challenging, future work would benefit from focusing on the 
multimodal mapping of the human subcortex including a detailed con
nectome to mimic what is done with the cortex (Glasser et al., 2016; Van 
Essen et al., 1998). Such mapping will be invaluable to better under
stand the occurrence of side-effects as well as to understand the 
many-to-one and many-to-many mapping of DBS targets and disease and 
disorders. 

5. Conclusion 

Overall, while some differences are present, the structure-function 
association for most of the 21 included subcortical areas were similar 
cross-species. A number of structures were also similar to one another in 

Fig. 4. The correlation coefficient of structure-structure association similarity between the two groups of species. The red line indicates the observed correlation 
coefficient (0.60) which is 8.61SD removed from the permutated null distribution. 
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their functional associations. This is potentially due to being part of the 
same brain network and might explain why multiple DBS target sites are 
considered for a single disease or neuropsychiatric disorder. 
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Keuken, M.C., Uylings, H.B.M., Geyer, S., Schäfer, A., Turner, R., Forstmann, B.U., 2012. 
Are there three subdivisions in the primate subthalamic nucleus? Front. Neuroanat. 
6 https://doi.org/10.3389/fnana.2012.00014. 

Keuken, M.C., Isaacs, B.R., Trampel, R., van der Zwaag, W., Forstmann, B.U., 2018a. 
Visualizing the human subcortex using ultra-high field magnetic resonance imaging. 
Brain Topogr. 31, 513–545. https://doi.org/10.1007/s10548-018-0638-7. 

Keuken, M.C., van Maanen, L., Boswijk, M., Forstmann, B.U., Steyvers, M., 2018b. Large 
scale structure-function mappings of the human subcortex. Sci. Rep. 8, 15854. 
https://doi.org/10.1038/s41598-018-33796-y. 

Kocabicak, E., Temel, Y., Hoellig, A., Falkenburger, B., Tan, S., 2015. Current 
perspectives on deep brain stimulation for severe neurological and psychiatric 
disorders. Neuropsychiatr. Dis. Treat. 1051. https://doi.org/10.2147/NDT.S46583. 

Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., Aziz, T.Z., 2007. Translational principles 
of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–635. https://doi.org/10.1038/ 
nrn2196. 

Kumbhare, D., Palys, V., Toms, J., Wickramasinghe, C.S., Amarasinghe, K., Manic, M., 
Hughes, E., Holloway, K.L., 2018. Nucleus basalis of meynert stimulation for 
dementia: theoretical and technical considerations. Front. Neurosci. 12, 614. 
https://doi.org/10.3389/fnins.2018.00614. 

Langevin, J.-P., Chen, J.W.Y., Koek, R.J., Sultzer, D.L., Mandelkern, M.A., Schwartz, H. 
N., Krahl, S.E., 2016. Deep brain stimulation of the basolateral amygdala: targeting 
technique and electrodiagnostic findings. Brain Sci. 6, 1–9. 

Lee, Y.-J., Lee, D.M., Lee, C.-H., Heo, S.-H., Won, S.Y., Im, J.-H., Cho, M.-K., Nam, H.-S., 
Lee, S.-H., 2011. Suppression of human prostate cancer PC-3 cell growth by N- 
acetylcysteine involves over-expression of Cyr61. Toxicol. In Vitro 25, 199–205. 
https://doi.org/10.1016/j.tiv.2010.10.020. 

Lee, M.-F., Chan, C.-Y., Hung, H.-C., Chou, I.-T., Yee, A.S., Huang, C.-Y., 2013. N- 
acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box- 
containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral Oncol. 
49, 129–135. https://doi.org/10.1016/j.oraloncology.2012.08.003. 

Lefranc, M., Manto, M., Merle, P., Tir, M., Montpellier, D., Constant, J.-M., Le Gars, D., 
Macron, J.-M., Krystkowiak, P., 2014. Targeting the red nucleus for cerebellar 
tremor. Cerebellum. https://doi.org/10.1007/s12311-013-0546-z. 

Lepora, N.F., Gurney, K.N., 2012. The basal ganglia optimize decision making over 
general perceptual hypotheses. Neural Comput. 24, 2924–2945. https://doi.org/ 
10.1162/NECO_a_00360. 

Li, N., Baldermann, J.C., Kibleur, A., Treu, S., Akram, H., Elias, G.J.B., Boutet, A., 
Lozano, A.M., Al-Fatly, B., Strange, B., Barcia, J.A., Zrinzo, L., Joyce, E., 
Chabardes, S., Visser-Vandewalle, V., Polosan, M., Kuhn, J., Kühn, A.A., Horn, A., 
2020. A unified connectomic target for deep brain stimulation in obsessive- 
compulsive disorder. Nat. Commun. 11, 3364. https://doi.org/10.1038/s41467- 
020-16734-3. 

Liu, H., Temel, Y., Boonstra, J., Hescham, S., 2020. The effect of fornix deep brain 
stimulation in brain diseases. Cell. Mol. Life Sci. 77, 3279–3291. https://doi.org/ 
10.1007/s00018-020-03456-4. 

Loper, E., Bird, S., 2002. NLTK: the natural language toolkit. Proc. ACL Workshop Eff. 
Tools Methodol. Teach. Nat. Lang. Process. Comput. Linguist. 

Lozano, A.M., Fosdick, L., Chakravarty, M.M., Leoutsakos, J.-M., Munro, C., Oh, E., 
Drake, K.E., Lyman, C.H., Rosenberg, P.B., Anderson, W.S., Tang-Wai, D.F., 
Pendergrass, J.C., Salloway, S., Asaad, W.F., Ponce, F.A., Burke, A., Sabbagh, M., 
Wolk, D.A., Baltuch, G., Okun, M.S., Foote, K.D., McAndrews, M.P., Giacobbe, P., 
Targum, S.D., Lyketsos, C.G., Smith, G.S., 2016. A phase II study of fornix deep brain 
stimulation in mild Alzheimer’s disease. J. Alzheimers Dis. 54, 777–787. https://doi. 
org/10.3233/JAD-160017. 

Lozano, A.M., Lipsman, N., Bergman, H., Brown, P., Chabardes, S., Chang, J.W., 
Matthews, K., McIntyre, C.C., Schlaepfer, T.E., Schulder, M., Temel, Y., 
Volkmann, J., Krauss, J.K., 2019. Deep brain stimulation: current challenges and 
future directions. Nat. Rev. Neurol. 15, 148–160. https://doi.org/10.1038/s41582- 
018-0128-2. 

Mai, J.K., Majtanik, M., 2019. Toward a common terminology for the thalamus. Front. 
Neuroanat. 12, 114. https://doi.org/10.3389/fnana.2018.00114. 

Martin, F., Johnson, M., 2015. More efficient topic modelling through a noun only 
approach. Proc. Australas. Lang. Technol. Assoc. Workshop 2015 111–115. 
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