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ABSTRACT
This paper presents the design and evaluation of an energy-efficient
seizure detection system for emerging EEG-based monitoring ap-
plications, such as non-convulsive epileptic seizure detection and
Freezing-of-Gait (FoG) detection. As part of the BrainWave system,
a BrainWave processor for flexible and energy-efficient signal pro-
cessing is designed. The key system design parameters, including
algorithmic optimizations, feature offloading and near-threshold
computing are evaluated in this work. The BrainWave processor is
evaluated while executing a complex EEG-based epileptic seizure
detection algorithm. In a 28-nm FDSOI technology, 325 `J per classi-
fication at 0.9 V and 290 `J at 0.5 V are achieved using an optimized
software-only implementation. By leveraging a Coarse-Grained Re-
configurable Array (CGRA), 160 `J and 135 `J are obtained, respec-
tively, while maintaining a high level of flexibility. Near-threshold
computing combined with CGRA acceleration leads to an energy
reduction of up to 59%, or 55% including idle-time overhead.

KEYWORDS
Wearable EEG monitoring, energy-efficiency, system-level trade-
offs, edge processing, reconfigurable accelerators.

1 INTRODUCTION
Brain-related diseases, such as epilepsy and Parkinson’s disease
(PD), are severely degrading people’s quality of life. Approximately
50 to 60 million people worldwide suffer from epilepsy or PD, mak-
ing them one of the most common neurological diseases globally.
Existing diagnosis and treatment methods for these require long-
term in-hospital monitoring, which is costly, time-consuming and
uncomfortable for the patients. Commercial devices for wearable
ambulatory (Electroencephalography) EEGmonitoring do exist, but
these do generally support only a small number of EEG channels
(e.g. EEG patch), have limited battery lifetime (e.g. TMSi Mobita,
g.Nautilus-PRO), or use non-EEG sensors that are insufficient to reli-
ably detect more complex brain-related seizure types[2]. This paper
aims to address the energy problem for a wearable multi-channel
EEG-based monitoring system.

An overview of the BrainWave monitoring system is shown in
Fig. 1. To obtain pro-longed battery lifetime (>1 week) without
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Figure 1: Overview of BrainWave system. BrainWave aims to enable
ambulatory EEG monitoring through a portable battery-powered
device.
compromising signal quality, different components in an EEG mon-
itoring system need to be carefully tuned. State-of-the-art platforms
utilize 10–12 bit ADCs, low noise amplifiers and advanced filter-
ing in the Analog Front-End (AFE) to maximize battery life[3–5].
Biomedical signal processing platforms are commonly designed
with multiple processor cores and are typically coupled with hard-
ware accelerators[5–8]. Unfortunately, these architectures either
lack energy-efficiency if the architecture is fully programmable,
or are specialized towards a limited set of kernels. For emerging
and complex monitoring tasks such as non-convulsive epileptic
seizure detection and PD FoG prediction, research is ongoing on
what algorithms and sensors work best. These applications demand
an energy-efficient and flexible platform.

In this work we present the design and evaluation of an energy-
efficient and flexible BrainWave seizure detection system, targeted
towards wearable 24/7 EEG monitoring. To the best of our knowl-
edge, we are the first to present energy numbers for a signal process-
ing system with CGRA running complex EEG features, including
idle-time overhead. The main contributions are:

(1) Design of an efficient EEG monitoring system for a repre-
sentative seizure detection pipeline (Sections 3.1 and 3.2);

(2) A new BrainWave processor for flexible and energy-efficient
signal processing, which includes a CGRA specifically sized
for complex EEG features (Section 4);

(3) Evaluation of key system design parameters, including cloud
vs edge processing (Section 3.2), algorithmic optimizations
(Section 3.1.2), feature offloading and voltage scaling to near-
threshold region and duty-cycling (Section 5).

The rest of this paper is organized as follows: Section 2 covers re-
lated work. Section 3 introduces the seizure detection algorithm
and baseline implementation and discusses energy trade-offs and
requirements of wearable EEG monitoring systems. Section 4 intro-
duces the BrainWave processor. Experimental results are provided
in Section 5, followed by conclusion remarks in Section 6.

2 RELATEDWORK
This section presents an overview of recent works related to EEG
seizure detection algorithms and bio-medical monitoring systems.

1) EEG-based epileptic seizure detection: Acharya et al.[9] present
an overview of common epileptic seizure detection algorithms.

https://doi.org/10.1145/3370748.3406571
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Figure 2: Overview of complete epileptic seizure classification pipeline that is evaluated in this work (based on the work of Wang et al.[1]).

The study points out that a wide variety of pre-processing, feature
extraction algorithms and classifiers are currently being used for
automated seizure detection. A survey and feature importance anal-
ysis on 47 common EEG features is conducted by Wang et al.[1].
Their findings indicate that the features in the (time-)frequency
domain contribute the most to algorithm performance. Also non-
linear features, such as entropy, are considered important.

2) Energy-efficient bio-medical processing platforms: Kwong et
al.[6] employs a micro-processor with hardware accelerators for
common bio-medical kernels (FFT, CORDIC, FIR and Median fil-
tering) and reports platform-level energy-savings over 10× on two
biomedical applications over a processor-only mapping. Lee et
al.[7] propose a more flexible approach sharing a CORDIC, spe-
cialized data-path unit and a scratch-pad memory between an
SVM and active-learning accelerator. This solution results in an
68.3× speedup and 144.7× energy reductionwith respect to a processor-
only approach. More recently, Coarse-Grained Reconfigurable Ar-
chitectures (CGRAs) are being advertised as a good compromise
between flexibility and energy-efficiency[10–12]. Das et al.[12] in-
troduce a CGRA as a co-processor of a multi-core platform targeted
towards ultra-low power edge processing. They obtain an energy
gain of 6–18× for several common signal processing kernels, com-
pared to a RISC processor. The authors of [11] extend a multi-core
system with a CGRA and report 37.2% energy savings over a multi-
core only implementation on a complex ECG algorithm. In this
work we consider a signal processing system with CGRA running
a more complex EEG-based seizure detection algorithm.

3) Powermanagement for duty-cycled applications: In bio-medical
monitoring applications the processor is only busy processing for a
fraction of the epoch (i.e. the duty cycle). Therefore it is important
to minimize system energy consumption during idle time. Power
management knobs are also extensively explored[8, 13]. Montagna
et al.[8] suggest that parallel processing in combination with near-
threshold voltage operation leads to the best energy-efficiency for a
EEG classification pipeline at different latency constraints. Hulzink
et al.[13] propose an ECGmonitoring systemwith a low-power sam-
pling domain, which reduces the energy consumption by 3×while
sampling. This work exploits duty-cycling to reduce energy con-
sumption in idle mode and near-threshold computing to improve
energy-efficiency. Also the idle-time energy overhead is considered.

3 SYSTEM DESIGN AND OPTIMIZATION
3.1 EEG-based epileptic seizure detection
EEG-based seizure detection algorithms typically operate in a peri-
odic or windowed way, as is illustrated in Fig. 3. A time window (or
epoch) of EEG samples is collected, the signal is cleaned (i.e. move-
ment artifacts are removed) and important signal characteristics
are computed using feature extraction algorithms. Based on the
resulting feature values, the likelihood of a seizure being present in
the current epoch is predicted by a machine learning classifier. To
optimize the ratio between false positive and false negative classifi-
cations, a post-processing step is often employed. This step ranges
from a patient-specific decision threshold to using a number of
previous predictions for the final decision[14].
3.1.1 Epileptic Seizure detection algorithm. An overview of the
seizure detection algorithm is depicted in Fig. 2. First an epoch
with 𝑁 samples and 𝐶 EEG channels is sampled with a length of
2.56 s without overlap (i.e. stride 𝑆 = 𝑁 ). Then each channel is pre-
processed using a 10th order 1Hz–45Hz Butterworth band-pass
filter (BPF). This filter aims to suppress low-frequency movement
artifacts and 50Hz alternating current (AC) mains interference.

Several feature types are calculated from each EEG channel,
including basic time-series statistics, traditional Spectral and Time-
Frequency features and 2 non-linear features: Approximate Entropy
(ApEn) to quantify the irregularity of a time-series and Hurst ex-
ponent to quantify the predictability of a time-series. The feature
selection is motivated by the feature importance evaluation that is
conducted in the work of Wang et al.[1]. More information on the
calculation of these features can be found in[9]. In the classification
stage the feature values of all channels are averaged. To aid Support

Figure 3: Illustration of duty-cycled seizure detection application.
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Vector Machine (SVM) training, the feature vector is standardized
using the training set statistics. A 2nd order polynomial kernel is
used as a nice compromise between computational efficiency and
seizure detection performance[15].

The complete pipeline is implemented in C and functionally ver-
ified against a high-precision Matlab reference implementation. For
efficient deployment on an embedded platform with a 32-bit integer
data path, the pipeline is quantized to fixed-point. Commonly used
complex functions such as exp(), log() and sqrt() are implemented
using fixed-point lookup tables.
3.1.2 Algorithm bottleneck analysis and optimization. To identify
bottlenecks in the baseline mapping, analysis is performed using
an open-source RISC-V micro-controller[16]. This micro-controller
consists of a RISC-V core, whose performance is comparable to
an ARM Cortex-M4 core; a popular low-power embedded signal
processing core. The resulting execution time in cycles per classifi-
cation is shown in Table 1. The results indicate that over 95% of the
execution time is spend in the feature extraction stage and that the
non-linear features account for 81.20% (ApEn: 79.24%, Hurst: 1.96%).
Also the Band-pass filter and the computation of Time-Frequency
features consumes a significant portion of the total run-time.

Based on these findings, 3 bottlenecks were further optimized:
1) Band-pass filter: The baseline implementation of the 10th

order (21 taps) Butterworth filter takes approximately 16 cycles
per MAC when implemented in direct-form II. To maintain filter
stability, the coefficients require at least 24 bits of integer precision.
As such, 64-bit multiplications and accumulation are emulated,
which require 2–4 instructions per operation. Therefore, the filter
was implemented using a cascade of 5 second-order sections, which
requires only 12 bits of coefficient precision.

2) Non-linear features - ApEn: To compute this feature we con-
sider a time series with 𝑁 samples: ®𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }. From this
sequence we extract 𝑁 −𝑚 + 1 partially overlapping subvectors of
length𝑚, where 𝑋𝑚

𝑖
= {𝑥𝑖 , 𝑥𝑖+1, ..., 𝑥𝑖+𝑚−1}. We define 𝑃𝑖 (𝑚, 𝑟 ) as

the likelihood of any subvector to be similar to 𝑋𝑚
𝑖
:

𝑃𝑖 (𝑚, 𝑟 ) = (𝑁 −𝑚 + 1)−1
𝑁−𝑚+1∑
𝑗=1

𝐶 (𝑋𝑚
𝑖 , 𝑋𝑚

𝑗 ) (1)

where the similarity condition for threshold 𝑟 is defined as:

𝐶 (𝑋𝑚
𝑖 , 𝑋𝑚

𝑗 ) =
{
1, if max |𝑋𝑚

𝑖
− 𝑋𝑚

𝑗
| ≤ 𝑟 .

0, otherwise.
(2)

Approximate Entropy is now computed as follows:

𝐴𝑝𝐸𝑛(𝑚, 𝑟 ) = 𝜙 (𝑚, 𝑟 ) − 𝜙 (𝑚 + 1, 𝑟 ), (3)

where 𝜙 (𝑚, 𝑟 ) =
∑𝑁−𝑚+1
𝑖=1 ln 𝑃𝑖 (𝑚, 𝑟 )

𝑁 −𝑚 + 1
(4)

The run-time complexity of ApEn is determined by the number
of similarity checks. To reduce the execution time several basic op-
timizations are typically used[17]. First, the computation of 𝜙 (𝑚, 𝑟 )
and 𝜙 (𝑚 + 1, 𝑟 ) can be fused. Second, the distance between 𝑋𝑚

𝑖
and 𝑋𝑚

𝑗
is identical to the distance between 𝑋𝑚

𝑗
and 𝑋𝑚

𝑖
. A fast

algorithm to compute ApEn for small input vectors (𝑁 < 1000)
was proposed by Pan et al.[18]. By performing the vector similarity
check in Equation 1 in ascending order, i.e. sorted based on the

Table 1: Average run-time of fixed-point classification pipeline on
RISC-V processor (20 channels × 256 samples epoch size).

Stage Calls (#) Cycles (×106) Total (%)
Data acquisition 256 0.27 0.63
Band-pass filter 20 1.73 4.10
Basic statistics 20 0.11 0.27
Peak features1 20 0.58 1.36
Non-linear features1 20 34.35 81.20
Spectral features 20 1.34 3.18
Time-Frequency features 20 3.90 9.23
Construct feature vector 1 0.01 0.02
Trained SVM classifier 1 0.01 0.01
Total 42.31 100.00
1 The run-time of the peak and non-linear features is data-dependent, and will
therefore have a varying run-time for different input vectors.

first element of every subvector, an early stopping rule can be con-
structed. The main idea is that if we iterate 𝑗 in ascending order
until 𝑋𝑚

𝑗
becomes dissimilar to 𝑋𝑚

𝑖
, then the remaining subvectors

will also be dissimilar.
3) Time-Frequency features: Time-Frequency features are com-

puted using a multi-level wavelet decomposition followed by a re-
construction of the detailed coefficients of the first 6 levels. For each
of these reconstructed levels, the standard deviation and energy
ratio is used as a feature value. The decomposition and reconstruc-
tion operations are implemented using convolution-based discrete
wavelet transforms (DWT) and inverse DWT (IDWT). The filters
are derived from the Daubechies 4 (db4) wavelet, and consist of 8
taps per filter. The feature computation consists of one full multi-
level signal decomposition, and 6 partial signal reconstructions.

A commonly used approach to speed up DWT/IDWT kernels is
to implement a lifting scheme. For the db4 wavelet the filter length
is reduced from 16 taps per DWT/IDWT operation to 10. However,
the computational structure becomes more irregular due to the
multiple smaller filter stages. Additionally, the boundary handling
overhead for small input vectors is significant.

3.2 Wearable EEG monitoring systems
A system for wearable EEG monitoring is presented in Fig. 1. The
system is divided in Front-End (FE) and Back-End (BE). The FE is
responsible for data acquisition and analog-to-digital conversion.
The BE performs the signal conditioning and seizure classification
and optionally utilizes a wireless link to notify medical experts or
to store data in the cloud for post-analysis. An important system
design decision is whether the seizure detection pipeline is executed
at the edge (on-chip) or in the cloud. In the former case seizure
detection is performed on-chip, and only an alarm is send to a
wireless end-point. In the latter case there is no on-chip signal
analysis; the raw EEG data is transmitted to the end-point where
the seizure detection is performed.

Table 2 lists an estimated energy breakdown based on a represen-
tative system. The system consists of a power-optimized EEG front-
end, as proposed by Joo et al.[4], with an energy efficiency of up to
2 nJ/sample. For the wireless communication the Dialog DA14580
SoC[19] with integrated Bluetooth Low Energy (BLE) transceiver
is chosen, which consumes 4.7mA · 3 V / 128 kbit/s = 110 nJ/bit (pay-
load) in transmission mode. The energy consumption of the seizure
detection pipeline on a RISC-V micro-controller, as depicted in Ta-
ble 2, is approximately 1.18mJ/epoch (post-synthesis simulation;
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Table 2: Energy breakdown between cloud and edge seizure detec-
tion system (20 channels × 256 samples epoch size).

Component Cloud processing Edge processing
AFE + 10-bit ADC[4] 0.01mJ/epoch 0.01mJ/epoch
RISC-V micro-controller[16] not used 1.18mJ/epoch
Radio - Tx[19] 5.63mJ/epoch ≈ 0mJ/epoch
Total 5.64mJ/epoch ≈ 1.19mJ/epoch

0.9 V/100MHz). It can be observed that on-chip processing is more
attractive due to reduction in wireless traffic. This is in line with
other research, who generally perform digital signal processing and
data reduction on-chip to minimize wireless communication[5, 20].

We conclude that the FE is not the primary energy bottleneck,
when the ADCs are properly sized[21]. Therefore the main empha-
sis of this work focuses on optimization of the algorithm and digital
BE for on-chip processing.

4 BRAINWAVE PROCESSING PLATFORM
This section introduces the BrainWave processor: a processor plat-
form that is flexible and capable of performing energy-efficient
signal processing. The BrainWave processor offloads complex EEG
features to a CGRA and exploits duty-cycling with near-threshold
computing to improve energy-efficiency. The processor architec-
ture is depicted in Fig. 4a. The seizure detection algorithm runs on
the single-issue RISC-V core with tightly-coupled program (PMEM)
and data memories (DMEM). Periodic sampling from an (external)
ADC is implemented using a timer. Every sampling period the RISC-
V core will be waken up to issue an SPI read request to sample all
EEG channels, as is illustrated in Fig. 3. When the transfer is com-
pleted, the core will copy the data from FIFO to the DMEM. The
DMEM is sized to store up to 20 channels × 256 samples/epoch ×

Figure 4: (a) BrainWave processorwithCGRA (b) instantiatedCGRA
with memory and bus interfaces.

2 byte/sample elements (× 2 for double-buffering) and some scratch-
pad memory to perform the feature computations. An UART is
included to interface with an external radio module to notify a
medical expert in case of emergency.

Most blocks can be clock-gated or disabled when not used. The
Power Management Unit (PMU) supports explicit clock-gating of
most peripherals, cores and accelerators. All SRAM memories have
internal clock-gates and support for low-leakage retention modes.
Computationally-intensive features are offloaded to a CGRA ac-
celerator, as illustrated in Fig. 4b. This CGRA enables flexible and
energy-efficient processing by providing programmable function
units (FUs) and a reconfigurable data-path to bypass the register
file[22]. These FUs operate in lock-step and act as a (Very long
instruction word) VLIW processor.vector-processing (SIMD) is nat-
urally supported since multiple FUs can share the same instructions
and data via the reconfigurable data and instruction network. The
CGRA has a private memory where its network configurations
and programs are stored. CGRA programs and configurations can
be reused by consecutive acceleration requests to reduce recon-
figuration overhead. Typically the RISC-V core will issue a new
acceleration request. After this request, the CGRA will start execut-
ing the preloaded program. Important parameters such as which
kernel it should execute and where the data is stored, are read
from a fixed location in the (shared) DMEM. A CGRA acceleration
request takes 80–90 cycles.

The internal structure of the instantiated CGRA is illustrated in
Fig. 4b. The CGRA consists of 6 different types of FUs, which can
perform RISC-like instructions. More information on the instruc-
tion set can be found in[22]. Small local standard-cell memories
(SCM) are used for local processing. Every Load-Store Unit (LSU)
can access the shared data memory to access the EEG data. The
currently loaded program is also stored in SCMs. The instantiated
CGRA contains 20 FUs and 11 instruction decoders (IF/ID) that
can be connected to one or more FUs. It supports up to 4 multiply-
accumulations per cycle using 4-wide SIMD operation.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
5.1.1 System implementation. The complete design, as introduced
in the previous section, is synthesized (using Cadence Genus) and
evaluated in a commercial 28-nm FDSOI technology (SS corner),
12-track RVT standard cell library and Foundry SRAM memories.
Evaluation of software optimizations is performed using RTL simu-
lations. Power analysis is performed using post-synthesis netlist
simulations for the operation conditions listed in Table 3. In all
experiments the SRAM memories operate at 0.9 V and the IO pin
power dissipation is ignored.
Table 3: BrainWave processor operation points (ASIC synthesis).

𝑉𝑑𝑑,𝑙𝑜𝑔𝑖𝑐 0.5 V 0.6 V 0.7 V 0.8 V 0.9 V
𝑓𝑚𝑎𝑥 12.5MHz 25MHz 50MHz 72.5MHz 100MHz
* Simulations were performed under typical conditions (TT corner, 25 °C).
* SRAM voltage𝑉𝑑𝑑,𝑚𝑒𝑚 is fixed to 0.9 V under all operations points.

5.1.2 Algorithm validation setup. In order to evaluate the perfor-
mance degradation in epileptic seizure detection performance after
fixed-point quantization, the SVM classifier is trained on a represen-
tative epileptic seizure dataset[1]. We report the SVM classification
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Table 4: SVM classification performance summary on test folds.

Version Precision Recall Specificity
Baseline - float32 0.94 0.57 1.0000
Quantized - int321 0.68 0.57 0.9996
Quantized - int32 with retraining1,2 0.89 0.53 0.9999
1 Complete application mapped onto 32-bit integer data path.
2 SVM is retrained on quantized feature vectors.

Table 5: Application run-time (in cycles ×106) breakdown on Brain-
Wave processor (2.56s epoch with sampling rate Fs = 100Hz).

Baseline Optimized
Stage SW SW SW+CGRA
Band-pass filter 1.73 0.77 0.09

Non-linear features - ApEn1 33.53 4.13 1.03
Index sort 0.00 1.12 0.26
Similarity checking 32.93 2.42 0.70
Feature computation 0.59 0.59 0.07

Time-Frequency features 3.90 3.90 0.52
Db4 decomposition 0.46 0.46 0.08
Db4 reconstruction2 2.97 2.97 0.44
Feature computation 0.47 0.47 0.01

Remaining stages (Table 1) 3.14 3.14 3.14
Total 42.31 11.95 4.78
1 Subvector length𝑚 = 3 and threshold 𝑟 = 0.125 · 𝜎 ( ®𝑥) was used.
2 Reconstruction of detail coefficients using multiple IDWT calls with zero-ed LPF
at lowest level and zero-ed HPF at other levels.

accuracy on the test splits in terms of Precision (PPV), Recall (Sensi-
tivity) and Specificity, which are defined as follows (given 𝑡rue/𝑓 alse
𝑝ositive/𝑛egative classifications):

𝑃𝑟𝑒𝑐. =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑝
𝑅𝑒𝑐. =

𝑡𝑝

𝑡𝑝 + 𝑓 𝑛
𝑆𝑝𝑒𝑐. =

𝑡𝑛

𝑡𝑛 + 𝑓 𝑝

The dataset contains 24.7 h of continuous scalp EEG recording. 3
seizures are measured with an average duration of 28.3 s. All seizure
events were contaminated with seizure-related muscle (EMG) ar-
tifacts in all channels. The dataset is captured and annotated by
experts in a clinical environment, and is digitized using a 24-bit
ADC at 100 samples per second. The recording consists of 20 unipo-
lar EEG leads (referenced against ear lead) that were positioned
following the international 10-20 electrode placement system.

5-fold cross validation (CV) is performed to evaluate the SVM
performance. The subject data is split in 5 equal folds, of which
one fold is used as test set and the remaining folds are used as
training set. Test sets without seizures are excluded from the per-
formance evaluation. As shown in Fig. 2, both sets are segmented in
non-overlapping 2.56 s epochs. Epochs on the seizure onset/offset
boundary are excluded. Finally, the resulting feature vectors are
computed and standardized on the training split statistics.

The SVM classifier is optimized on the training set using a grid
search on margin parameter 𝛾 = 2𝑖 for 𝑖 ∈ {−1, 0, 1, 2, 3, 4} and

error penalty term 𝐶 = 10𝑗 for 𝑗 ∈ {−5,−4,−3}. C is kept small
to reduce training time and to prevent overfitting on the training
set. To account for the major class imbalance between seizure/non-
seizure epochs, the SVMs are optimized using the F1-score, which
is defined as the harmonic mean of Precision and Recall.

5.2 Results and Evaluation
5.2.1 Algorithm performance validation. The resulting training and
quantization results are summarized in Table 4. The reference im-
plementation is able to detect all 3 seizures. Quantizing the whole
pipeline increases the number of false positives. However, retrain-
ing the SVM on the quantized feature vectors recovers most of
the performance loss. It should be emphasized that the quantized
pipeline still detects all seizures. The increased number of false-
positives can likely be reduced using a post-processing stage[14],
where only one alarm is generated for every detected seizure.

5.2.2 Algorithmic optimizations. The impact of the algorithmic
optimizations from Section 3.1.2 are summarized in Table 5. The
throughput of BPF is increased by approximately 2.6× on the RISC-
V core (SW). The ApEn algorithmwith basic optimizations improves
the throughput by approximately 2.5×. When combined with the
algorithm of Pan et al.[18] we report a final speedup 8.1× on the
RISC-V core. Using the above-mentioned algorithmic optimizations,
we improve the baseline throughput of the classification pipeline
by 3.5×, without compromising on feature accuracy.

5.2.3 Energy efficient acceleration using the CGRA. Table 6 depicts
a performance evaluation of the CGRA while executing the main
bottleneck kernels. The BPF and DWT/IDWT kernels are computed
using the same CGRA configuration, which is optimized to perform
filter computations. The ApEn kernels (index sort and similarity
checking) use a different configuration, tailored towards efficient
sorting and similarity checking. Both configurations are able to
exploit data-level parallelism by computing two EEG channels in
parallel. As discussed in Section 3.1.2, the similarity checking kernel
has a data-dependent early stopping condition, which in SIMD-
mode has to wait until both channels are done. This approach
enables computing ApEn with multiple EEG channels in parallel.

It follows from Table 6 that the CGRA is able to obtain kernel-
level energy savings of 3.3×–4.6× over the RISC-V core. The ApEn
kernels consume significantly less energy per operation, as the
multipliers are not used. Also, the first 3 kernels have a significant
number of stall cycles (≈ 20%), which are caused by the lack of
latency hiding for global data memory accesses. For more complex
kernels this issue is less significant, as most accesses are on the
local data SCMs. Overall the results indicate that the CGRA is well-
tailored for processing a variety of EEG kernels efficiently.

Table 6: Platform performance evaluation for different kernels at 0.9V/100MHz (for 2 channels × 256 samples).

Execute on CGRA Execute on RISC-V core

Kernel Description Ops Cycles Utilization1 Energy (`J) Cycles Energy (`J)
BPF 5-stage biquad bandpass filter 76400 9149 42% 0.63 77100 2.10
DWT full db4 wavelet decomposition 56869 7788 37% 0.37 46360 1.40
IDWT full db4 wavelet reconstruction 58257 7820 37% 0.38 60148 1.74
Index sort mergesort that sorts array indices 166144 26433 31% 0.70 112302 2.54
Similarity checking 2-dim. vector comp. loop with early exit 546941 62336 39% 1.97 241570 6.69
1 Utilization = Ops / (FUs · Cycles). FUs = 20 for the instantiated CGRA.
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Figure 5: Energy consumption for different applications with
(SW+CGRA) and without (SW) CGRA offloading at 0.9V/100MHz.

5.2.4 Feature offloading using the CGRA. In the previous para-
graph the bottleneck kernels were offloaded to the CGRA to im-
prove energy-efficiency. Parts of the feature computations that
are not offloaded are computed on the RISC-V core. The resulting
speedup is denoted in Table 5. It follows that the CGRA is able
to obtain a speedup of 4.0×–8.6× for all offloaded kernels. It fol-
lows that CGRA offloading leads to a final speedup of 8.9×. The
RISC-V core was able to perform work in parallel to the CGRA
during the computation of both features. Fig. 5 depicts the energy
breakdown for a single execution of the seizure detection pipeline
at 0.9 V/100MHz. From the results it follows that the SW+CGRA is
able to save 70%–72% energy for the BPF and features, compared to
a SW-only approach. A large fraction of the energy-savings is due
the reduced number of processor PMEM and DMEM accesses. The
execution time of the classification pipeline is reduced by 73.7%. The
average energy savings for all three offloaded features combined
is 66%. At 0.9 V/100MHz, a single classification takes 325 `J on the
RISC-V core. In combination with the CGRA, 160 `J is obtained.
This results in an energy reduction of 50%.
5.2.5 Energy impact of near-threshold computing and duty-cycling.
We conclude by investigating the energy-efficiency of the proposed
platform and mapping while considering voltage scaling to near-
threshold and duty-cycling. To calculate the energy consumption
for a complete epoch, the following energymodel is considered. The
sampling and processing energy is computed using post-synthesis
netlist simulations. The sampling energy is based on an epoch-
length of 2.56 s. The CGRA is power-gated when the system is idle
(modelled by assuming a 100× leakage reduction, see e.g. [10]). The
resulting energy consumption for a complete epoch is depicted in
Fig. 6. It follows that voltage scaling to near-threshold improves
the energy-efficiency by up to 33% at 0.5 V/12.5MHz, or up to 55%
including CGRA acceleration. It should be noted that the sampling
energy is still very significant, even at low voltages. This can be
primarily attributed to the SRAM memory leakage, despite being
in low-leakage mode.

6 CONCLUSIONS
This paper presents the methodology of design and evaluation of
the energy efficient BrainWave system for wearable EEG-based
monitoring. The system combines a RISC-V core with a CGRA and
optimized mappings of several complex and common seizure detec-
tion features. Utilizing algorithmic optimizations leads to through-
put improvements up to 8.1× for the ApEn feature on the RISC-V
core. Feature offloading using the CGRA improves the throughput

Figure 6: Energy consumptionwith duty-cycling (processing energy
of 0.9V/100MHz corresponds to total energy in Fig. 5).

by 4× and energy by 60% over an optimized RISC-V implementa-
tion. The system-level efficiency using a complex and representative
epileptic seizure detection pipeline is validated. The results indicate
that combining near-threshold computing with CGRA acceleration
leads to an energy reduction of up to 55%, including idle-time over-
head. Future directions include improving the memory subsystem
and further specialization of the CGRA.
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