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ABSTRACT

A Bayesian processor of uncertainty for numerical precipitation forecasts is presented. The predictive

density is estimated on the basis of normalized variates, the use of censored distributions, and the imple-

mentation of a parameter-parsimonious and computationally efficient processor that is applicable in opera-

tional settings. The structure of the processor is sufficiently generic to handle mixed binary-continuous

random processes such as intermittent rainfall (and similarly ephemeral river flows), and an arbitrary number

of predictors. First, predictors and observations, the parent data sample, are mapped into standard Gaussian

variates, obtaining a nonparametric approximately multivariate normal distribution (MVND) that is con-

sidered censored for days with no precipitation. To convert the Gaussian binary-continuous multivariate

precipitation process into a continuous one, the parent sample is augmented into the negative range through

Bayesian imputation byGibbs sampling, recovering the true, a priori unknown variance–covariance structure

of the full uncensored sample. The dependency amongmarginal distributions of observations and predictions

is hereby assumed multivariate normal, for which closed-form expressions of conditional densities exist.

These are then mapped back into the variable space of provenience to yield the predictive density. The

processor is applied to a well-monitored study area in Switzerland. Standard forecast performance eval-

uation and verification metrics are employed to set the approach into perspective against Bayesian model

averaging (BMA).

1. Introduction

A wide series of forecasting applications require

forcing hydrological or reservoir models by means of

numerical weather predictions. Examples include river

stage and flow forecasting, coastal flood forecasting,

as well as irrigation or reservoir operations. Predictions

of meteorological forcing variables are inherently un-

certain due to the internal structure of specific atmo-

spheric models, the high nonlinearity of the underlying

physical processes, as well as the selection and propa-

gation of initial and boundary conditions. The forecast

uncertainty is assessed in terms of a probability density

function (PDF) of the predictand, conditional on fore-

cast series of atmospheric variables that serve as pre-

dictors. This conditional density function is referred

to as predictive density (Krzysztofowicz 1999; Hamill

and Whitaker 2006) and must be provided to forecast

end users:

f (xjX̂5 x̂) , (1)

with x̂ a realization of the multidimensional random

vector of predictors X̂ at n time steps and x a realiza-

tion of the random process X, say precipitation, that

we expect to observe at the same future times of x̂.

Predictors can include variables, such as forecasted

precipitation (Seo et al. 2000; Vrac and Naveau 2007;

Sloughter et al. 2007), atmospheric state variables like

pressure (Bárdossy and Plate 1992), precipitable water,

vorticity, or mean and variance of ensemble outputs

(Hamill andWhitaker 2006; Scheuerer andHamill 2015)

of such state variables.

Unlike temperature, wind or humidity, which are

envisaged as continuous random processes, precipi-

tation is intermittent. Stochastically, the precipitation

process is described as a mixture of binary and con-

tinuous variates, as described in appendix A. The

mixed binary-continuous structure poses particular
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challenges when estimating the predictive density in

(1) as it requires handling one-sided truncated dis-

tributions. Sloughter et al. (2007) applied Bayesian

model averaging (BMA) (Raftery et al. 2005) in esti-

mating the density in (1), and respectively (A3), and its

moments:

E(XjX̂5 x̂)

VAR(XjX̂5 x̂) . (2)

BMA is applied by mixing independent univariate

PDFs of precipitation, conditioned on respective

predictors, through linear weighting. The condi-

tional probability of precipitation (PoP) n̂ in (A3)

is chosen ad hoc following Hamill et al. (2004) as para-

metric logistic regression by using a power-transformed

precipitation depth forecast as predictor. Precipitation

depth is assumed gamma distributed (Wilks 1990). The

linear BMA weights are determined by log-likelihood

maximization.

Bárdossy and Pegram (2009) use copulas to obtain

multivariate probability distributions of precipitation

among gauges of a ground station network. Following

Sklar‘s (Sklar 1959) theorem unique copulas require

continuous marginal distributions for their construc-

tion, which poses difficulties when handling binary-

continuous processes such as precipitation. A wide

base of copula forms are available for modeling pur-

poses. One major drawback, however, is the high

number of parameters if parametric marginal distri-

butions are used. The parameters need to be estimated

through maximum-likelihood optimization. We will

show that the approach proposed here is akin to mod-

eling multivariate dependence using a nonparametric

Gaussian copula.

In a similar context Herr and Krzysztofowicz (2005)

proposed a closed-form approach of bivariate pre-

cipitation modeling. The mixed binary-continuous

precipitation process, observed at two sites, is mapped

to standard normal variates using the nonparametric

normal quantile transform (NQT). The bivariate

dependence is modeled in terms of the mutually condi-

tional PoP, two marginal and two conditional distribu-

tions and the covariance as parameter, 8 elements in

total. Assuming a bivariate standard normal depen-

dence is equivalent to using a Gaussian copula model.

Albeit rigorous verification of the model, the exten-

sion of the bivariate case to multivariate is impracti-

cal because of the prohibitive number of conditional

PoP combinations and conditional/marginal distri-

butions (see appendix A). For instance, for two

predictors and one predictand, the number of nec-

essary parameters is 10 and 6 univariate distributions.

For three andmore predictors, the number of parameters

grows factorially.

The above difficulties of proposing suitable para-

metric multivariate distribution models favors random

sampling. To avoid handling mixed binary-continuous

distribution structures with precipitation (and similarly,

intermittent river flows), variates can be assumed as

censored. Censored distributions describe random pro-

cesses, in which measurements are cut off beyond a

critical threshold, while the amount of censoring points

is known. We note that censoring is different from

truncation, as the latter by definition excludes values

beyond the truncation threshold. As a result, mean and

variance of a censored and a truncated distribution dif-

fer. Areas of application for censored distributions

include life sciences (Sorensen et al. 1998) and system

failure analysis (Kalbfleisch and Prentice 1980). The

parameters and conditional distributions for censored

distribution can be inferred by means of data augmen-

tation through Markov chain Monte Carlo (MCMC)

sampling. In hydrometeorology, censored distributions

have been used in different contexts for postprocessing

raw precipitation ensemble forecasts (Scheuerer and

Hamill 2015), or data series, that have been power

transformed to approximate a normal distribution.

Bárdossy and Plate (1992) applied a simple parametric

power transformation to precipitation data, while Frost

et al. (2007) and Wang et al. (2011) used a modified

Box–Cox and Yeo–Johnson power transform to nor-

malize river discharge data. All reported applications

are limited to a small number of predictors due to heavy

parameterization.

Here we propose an alternative approach by speci-

fying the predictive density (1) through a mixture of

concepts adopted in the previous approaches. The pro-

posal rests on the model-conditional processor (MCP)

proposed by Todini (2008) for probabilistic flow fore-

casting. Recently Reggiani et al. (2019) used theMCP to

process monthly precipitation reanalysis in poorly

gauged basins in Pakistan. So far the MCP has been

applied to the derivation of predictive densities for

continuous variates such as river stage and discharge

(Coccia and Todini 2011), monthly average precipita-

tion and temperature (Reggiani et al. 2016). Now we

extend the approach to multivariate mixed binary-

continuous variates, primarily daily precipitation. The

principal advantages of the approach can be summa-

rized as follows:

1) The processor is parameter-parsimonious and thus

applicable to large multivariate problems.

2) It does not require the use of ad hoc assumptions

on the choice of PoP or parametric precipitation
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depth CDFs due to the direct use of empirical

distributions obtained from observed data and the

use of nonparametric transformations to standard

normal variates.

3) It is extensible to probabilistic forecasting for

arbitrarily located ground stations and an arbitrary

number of predictors, suggesting applicability to

ensemble forecasting.

4) It is computationally efficient and thus optimized for

operational use.

We introduce the structure of the processor and show

its properties and performance verification on a spatially

limited example, while more extended applications will

be given in a sequel work. As such, the current work

should be envisaged as proof of concept rather than an

operational application. The text is structured as follows:

in section 2 we introduce the theory, in section 3 we

describe data and processor application, in section 4 we

describe processor execution and results, in section 5

we provide a discussion, and in section 6 we present the

conclusions. Implementation details are given in the

appendixes.

2. Methods

a. Processor model

Given F(X # x) and G(X̂# x̂) are marginal distribu-

tions, as well as monotonous and continuous functions

of predictand and predictor introduced in (1), their

Gaussian transforms are w 5 F21[F(x)] and z5
F21[G(x̂)] with F21 the inverse of the standard normal

distribution. As indicated in appendix B, any variate can

be transformed into a standard-normal one by means of

the nonparametric quantile transform (NQT) (Moran

1970). The Gaussian variates are random vectors that

are structured as follows:

W5 [W
1
, . . . ,W

n
]T

Z5 [(Z
11
, . . . ,Z

n1
), . . . , (Z

1m
, . . . ,Z

nm
)]T, (3)

where 1, . . . , n are the number of time steps and m is

the number of predictors. Next, we assume that the

standard-normal predictand W can be related to the

predictors Z through a linear model:

W5A1B � Z1V , (4)

where B is a 1 3 m vector consisting of the multilinear

regression coefficients of the model, A is a n 3 1 vector

of intercepts, and V;N(0, s2
z,V) is a Gaussian noise,

stochastically independent ofW and Z. The conditional

mean and variance of W are given as follows:

E(WjZ5 z)5A1B � z
Var(WjZ5 z)5s2

z,V. (5)

We note that s2
z,V varies with z for heteroscedastic de-

pendency and is constant for homoscedastic structures.

Prior to any verification for homoscedasticity, we retain

the dependency on z in the notation. As will be shown

in section 3e, the data used in this study are essentially

homoscedastic and thus independent of z. In our case

the predictand x with NQT transform w is an observed

point precipitation measurement series, spatially aver-

aged over a square grid cell (analysis cell), while the

predictors x̂ with NQT transform z are corresponding

forecast series provided by a weather model at 8 grid

cells surrounding the analysis cell and at the cell over-

lapping the latter (see Fig. 1), 9 cells in total.

ASSUMPTION

The joint n 3 (m 1 1)-sized sample of NQT-

transformed observations and predictions (w, z) is

multivariate normal distributed (MVND):

(W,Z);N
(m11)

(m,S), (6)

with density

f(w, z)5

exp 2
1

2
[(w, z)2m]TS21

[(w, z)2m]

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)m11jSj

q , (7)

where S is the covariance matrix of the joint sample

(w, z) and m 5 E(w, z) the (m 1 1)-sized row vector of

sample means, equal to zero for standard-normal dis-

tributed variables. We note that assuming the joint dis-

tribution multivariate normal is equivalent to choosing

a Gaussian copula dependence for the normal mar-

ginal distributions F and G. By virtue of the inherent

properties of multivariate normal distributions (Mardia

et al. 1979) closed-form conditional densities can be

obtained from (7):

f(wjz)5f(w, z)

f(z)
5

exp

�
2
1

2
(w2m

wjz)
2/s2

wjz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

wjz
q , (8)

with f(z) the marginal density of (7). Equation (8)

represents a family of predictive densities of type in (1)

in the standard normal space with conditional mean and

variance:

m
wjz 5S

wz
S

21
zz z

s2
wjz 5 12S

wz
S

21
zz Szw

, (9)
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where Szz is the m 3 m covariance matrix of Z and

Swz the 1 3 m covariance vector of Z and W. From

the equivalence between the model in (5) and (9)

it follows that A5 0, B5SwzS
21
zz , and s2

z,V 5
12SwzS

21
zz Szw, a constant value. In other words, in

the standard normal space the multilinear model in

(5) crosses the origin and has residuals with con-

stant variance over the entire range of z. The validity

of this model must undergo testing as discussed in

section 3e.

The predictive density in (8) is a well-calibrated

uncertainty assessor (Alpert and Raiffa 1982;

Krzysztofowicz 1999), as statistics of the processed

precipitation (mean and variance) match those of ret-

rospective observations. It is easy to verify that the

processor, which produces a density of w drawn from

the family of conditional densities ff(d jz);"zg, satisfies
the condition:

E
z
[f(wjz)]5f(w) , (10)

where the expectation, taken over all z, is equivalent

to marginalization, and f [ N(0, 1) is the prior cli-

matic density of standard normal observations. The

processor is moreover self-calibrating, meaning that it

delivers a well-calibrated output also if the predictors

output by the weather forecast model are not well cali-

brated. The Gaussian predictive density in (8) needs to

be finally mapped back into the predictive density of the

binary-continuous process in the real space, as described

in section 4a.

b. Censoring and nonignorable missing data

One way of handling precipitation, an intermittent

random process, is transforming it into a continuous

one. This is achieved by assuming zero precipitation

as a nonobserved value that has been censored below

the zero-precipitation threshold, respectively, its cor-

responding value in the standard normal space. The

only information known about the censored series is

the number r of missing values. The joint sample (w, z)

is horizontally subdivided into two parts, the observa-

tions yo and the censored values yc:

Y5 (w, z)5

2
64
yo1,1, . . . , y

o
1,m112r1

, yc1,1, . . . , y
c
1,r1

. . .

yon,1, . . . , y
o
n,m112rn

, ycn,1, . . . , y
c
n,rn

3
755 (y

j,k
),

(11)

with Y an n3 (m1 1) matrix obtained by horizontally

concatenating the NQT-transformed predictand w

and m predictors z defined in (3). For a given row

vector y 5 (yo, yc) of Y, the subvectors yo and yc can

have different lengths according to the censoring

threshold value c for that column. For reasons of no-

tational simplicity we omit the index j when addressing

a specific row. We also note that the sample contains

FIG. 1. The ERA-Interim weather model grid and analysis window including nine cells

evidenced by the shadowed area. The triangles represent 15 observing stations including

Bischofszell (BIZ) in the central analysis cell. Observed precipitation has been mapped from

points to cell averages by block kriging.
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rows, where all data are censored because at that par-

ticular time step observations and predictions are all

zero, thus r 5 m 1 1.

To fill (or impute) the gap of unknown missing values

in each row of the sample, we apply a random sampling

technique, which preserves the mean and the variance-

covariance structure of the whole sample, including the

yet unknown censored values. We note that these mo-

ments are different from those of the same but truncated

sample, where in contrast to censoring, no values exist

beyond the truncation threshold. Depending on the

method used, the sampling is known as data augmen-

tation (Tanner and Wong 1987) or imputation (Little

and Rubin 2002).

First we denote with f(yju) 5 f(yo, ycju) the joint

probability density function of y, conditional on the

parameter u. For a Gaussian model u 5 (m, S). In par-

ticular cases the mechanism leading to missing data

through censoring can be ignored, and the marginal

probability density of yo is thus obtained by integrating

out yc:

f (yoju)5
ð
f (yo, ycju) dyc. (12)

In our case, however, the censoring mechanism is per-

fectly known and thus nonignorable. The model in (12)

needs therefore to be enhanced. To this end we in-

troduce a missing data mechanism formulated in terms

of an n3 (m1 1)-dimensional matrix M, which a priori

is a variate describing the missingness pattern of yc.

In our case missing data arise from censoring the col-

umn k of Y below the precipitation threshold ck, so

that only values larger than ck are recorded. The mem-

bers of M are described by the conditional PDF of the

binary-discrete variate Mj,k:

f (M
j,k
jy

j,k
) (13)

taking on the following values:

f (M
j,k
jy

j,k
)5

8><
>:

1, if M
j,k
5 1 and y

j,k
# c

k
or

M
j,k
5 0 and y

j,k
. c

k
"j,k

0 otherwise

.

(14)

We restate (12) by explicitly carrying the dependence

on M:

f (yo,Mju)5
ð
f (Mjy)f (yju) dyc y5 fyo, ycg. (15)

If the data censoring mechanism is independent of

yc, data are said to be missing at random (MAR) (Little

and Rubin 2002). Contrarily and as in our case, data are

missing not at random (MNAR).

We note that the binary variate M introduces an

additional degree of randomization, which accounts for

the probability of a draw being at or below threshold.

This uncertainty is absent for MAR data and for trun-

cated distributions, which by definition are confined

inside the truncation boundaries. The additional ran-

domization leads to inflation of mean and variance of

the posterior distribution.

The parameters can be estimated by applying ex-

pectation maximization (EM) or the Newton-Raphson

method for maximum likelihood estimation (MLE) on

(15). Both approaches can become computationally

demanding if dealing with complex missingness pattern

and large multivariate MNAR data. An alternative ap-

proach is Bayesian imputation.

c. Bayesian imputation

We introduce Bayesian imputation by first consider-

ing the simple case of a semicomplete sample of data

yo with sparsely missing observations, effectively a MAR

situation with ignorable M. We apply Bayes’s theorem

and infer the posterior distribution on the parameter u:

f ujyo)}L (ujyo p(u) ,Þð (16)

where p(u) is the prior distribution of u, while the like-

lihood function is defined as a family of density functions

proportional to the posterior density:

L (ujyo)} f (yoju) , (17)

with the proportionality factor consisting of a normal-

izing constant independent of u:

f (ujyo)5 f (yoju)p(u)ð
f (yoju)p(u) du

. (18)

The integral at the denominator can be evaluated ana-

lytically only in particular cases. Otherwise one needs to

sample directly from the posterior distribution.

In our problem of interest, however, we need to

state the complete-case MNAR Bayesian problem,

which includes the missing data in addition to the

missing-data mechanismM specified by (14). Bayesian

inference leads to statement of the joint posterior

distribution for u and yc, conditional on known in-

formation M and yo:

f (u, ycjyo,M). (19)

This distribution can be factored by applying the chain

rule of probabilities:
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f (u, ycjyo,M)5 f (ujy,M)f (ycjyo,M); y5 fyo, ycg.
(20)

Marginalization with respect to yc yields the posterior

predictive density of the parameter u:

f (ujyo,M)5

ð
f (ujy,M)f (ycjyo,M) dyc. (21)

The complete-data posterior f(ujy, M) is used for

the complete-case analysis, as will become clear

below. Next, we perform an alternative factoriza-

tion of (19):

f (u, ycjyo,M)5 f (ycju, yo,M)f (ujyo,M) (22)

and marginalize out u:

f (ycjyo,M)5

ð
f (ycju, yo,M)f (ujyo,M) du (23)

to obtain the posterior predictive density on yc. From

this density we sample yc,(t), which is used in the

complete-data posterior f(ujy, M) to draw u(t) in suc-

cessive Markov chain Monte Carlo (MCMC) sampling

steps. It can be shown that the two sequences approach

the joint limiting density in (19) for t / ‘. The sub-

sequence u(t), marginalized with respect to yc, approxi-

mates the integral in (21) with limiting density f(ujyo,M),

while the imputed subsequence yc,(t) marginalized with

respect to u, approximates (23) with limiting density

f(ycjyo, M).

In Bayesian terms, a family of likelihood functions,

which are proportional to the densities L (ujy, M)}
f (y, Mju) andL (ycjyo, M, u)} f (u, yo, Mjyc), are used in
successive inference steps to revise prior into posterior

information:

yc,(t) ; f ycju(t21), yo,M)} p(yc)L (ycju(t21), yo,M
��
(24)

In practice we draw yc,(t) and u(t) of the random sequence

directly from the posterior distribution, a process also

known as imputation or data augmentation. Because the

sequential random sampling process is ergodic, conver-

gence toward the expectation of the joint posterior dis-

tributions (the ensemble mean) given by integrals (21)

and (23) is assured:

lim
n/‘

1

n
�
i51

n

f (ujyo, yc,i,M)/ f (ujyo,M)

lim
n/‘

1

n
�
i51

n

f (ycjui, yo,M)/ f (ycjyo,M). (25)

Effectively the conditional distributions of the poste-

riors (21) and (23) can be replaced by their summaries,

the conditional mean:

E(ujyo,M)5E[E(ujyo, yc,M)jyo,M]

E(ycjyo,M)5E[E(ycju, yo,M)jyo,M]. (26)

and variance:

Var(ujyo,M)5E[Var(ujyo, yc,M)jyo,M]

1Var[E(ujyo, yc,M)jyo,M]

Var(ycjyo,M)5E[Var(ycju, yo,M)jyo,M]

1Var[E(ycju, yo,M)jyo,M], (27)

which can both be approximated as sums analogous to

(25) for sufficiently large number of draws n (Little and

Rubin 2002).

d. MCMC sampling

We use MCMC simulation to generate a large num-

ber of sample values from the two distributions in

(24) for yc and the parameters u 5 (m, S), respectively,

and approximate the summaries E[d] and Var[d] of in-

terest directly from the sample. The MCMC simulator

is implemented as nested Gibbs sampler (Geman and

Geman 1984) with an ‘‘inner’’ sampler nested in an

‘‘outer’’ sampling cycle. The outer Gibbs sampler sweeps

over n time steps of the m 1 1-dimensional sample,

while the inner sampler is used to draw from a truncated

multinormal distribution at each time step, as recovery

of the censored observations requires simulation from

the corresponding truncated normal distribution

(Kotecha and Djurić 1999). Gibbs sampling in this latter

case worksmore efficiently than rejection sampling from

the truncated MVND. Details of the nested Gibbs

sampler implementation are given in appendix C.

After a series of sampling steps, during which the

MCMC process loses track about the arbitrarily cho-

sen set of initial parameter values (the burn-in pe-

riod), the values sampled at each iteration represent a

draw from the posterior distribution, and the statistics

in (26) and (27) can be computed to a degree of

approximation, which depends on of the number of

sampled values.

3. Application

a. Study site

A well-monitored area in the northern part of

Switzerland bordering on Lake Constance and depicted

in Fig. 1 was selected as study site. The area is served

by 15 meteorological stations operated by Meteo Swiss
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with an hourly recording interval. The figure also

shows the grid of the ERA-Interim weather forecasting

model at 0.1258 3 0.1258 spatial resolution.We note that

the chosen resolution corresponding to the Gaussian

N640 Grid is smaller than the one of the native 0.78 3
0.78 N128 Gaussian grid. The downsizing was per-

formed with the aid of the Meteorological Archival

and Retrieval System (MARS) of ECMWF. We select

the square containing station Bischofszell (BIZ) as

analysis cell and the 3 3 3 beige-shadowed window

centered on the analysis cell as spatial processing re-

gion. Analyzed precipitation reforecasts for the nine

cells at daily time step are used as predictors to cali-

brate and validate the processor. We emphasize that

we have used the forecasting field contained in the

ERA-Interim dataset, initialized from analyses at 0000

and 1200 UTC (Berrisford et al. 2011) and not a genuine

historical forecast or reforecast. However, the pro-

cedure outlined here remains independent of such

choice and can be applied to assess the uncertainty

of real-time forecasts as well as reanalyses in exactly

the same way.

A time window of observations and forecasts covering

a continuous period of 36 years starting on 1 January

1979 to 31 December 2015 is chosen. The reforecasts are

aggregated from 3-hourly to daily time steps. The whole

sample includes a continuous series of data with a total

number of 13 514 time steps. Precipitation lower than

0.5mmday21 is considered a nonevent. In summary we

study a m 1 1 5 10-dimensional multivariate problem

including 9 predictors and a single predictand of cell-

averaged daily observations at analysis cell BIZ.

b. Block kriging

To use predictors provided at the scale of a model

cell, precipitation needs to be upscaled from the hourly

point measurements at individual stations to daily

values at the scale of the analysis cell. For this pur-

pose block kriging is used, a geostatistical method,

in which the spatial correlation structure of the sta-

tion records is represented by an empirical semi-

variogram, which is modeled through parametric

functions. The semivariogram is time dependent and

thus needs to be refitted periodically. We chose from

four different semivariogram models, which were se-

lected on the basis of optimal weighted least squares

fitting (Cressie 1985). The optimal parameters are

found by means of the Newton–Raphson method by

minimizing the least squares error used as cost func-

tion. Alternatively one can consider the variogram

parameters as random variables, which are optimized

by maximum likelihood estimation (MLE) (Todini and

Pellegrini 1999).

c. Normalization of variables

Next we use the NQT in appendix B to map the

predictand and predictor variates X and X̂ with mar-

ginal distributions F and G into standard normal vari-

ates W and Z. Given that precipitation is intermittent,

we consider observations on dry days as censored,

whereby the censored data are supposed to belong to

the fictive negative precipitation range. This enables

one to associate probabilities with each single value in

the record. These are matched with standard normal

probabilities. After application of the inverse normal

CDF F21 a specific standard normal variate value is

associated with the cutoff value of observed or fore-

casted precipitation set at 0.5mmday21, which defines

the corresponding Gaussian censoring thresholds for

each series, given that the number of dry and wet days

in each series is different.

d. Missing data imputation

The NQT transformed censored series are combined

into a joint distribution, which is assumed a censored

MVND [see (6)] with density in (7). Of course this as-

sumption must be tested. Such testing will be performed

after the censored sample has been extended by impu-

tation using Gibbs sampling. Bayesian imputation leads

to a m 1 1-dimensional complete MVN sample, in-

cluding imputed values yc, by fully preserving the pa-

rameters structure m and S of the uncensored parent

sample. The Gibbs sampler is first tested on a synthetic

10-dimensional, perfectly MVN distributed sample that

is generated by random draws from the MVND with

known variance-covariance matrix S and zero mean m.

The complete synthetic sample is censored using the

thresholds vector c calculated from the observation and

forecast sample of the Swiss study site. By applying

Gibbs sampling as described in appendix C, the cen-

sored part yc of the sample is retrieved by imputation

from the remainder of the parent sample. The variance-

covariance matrix of the reconstructed sample (yc, yo)

was compared against m and S of the original parent

sample prior to censoring. Both parameters turned out

to be essentially equal, confirming the correct conver-

gence of the sampler through the imputation process.

Figure 2 shows a bivariate Gaussian synthetic sample,

which was drawn, censored and then reconstructed by

imputation. When working with a real-world sample

of observed and forecasted precipitation assumed as

censored, the parameters of the uncensored parent

sample are unknown and must be iteratively recovered

though estimates from the reconstructed sample. A

posterior verification by comparison, as in the synthetic

case, is in this case not possible.
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Next we proceed with testing the Gibbs sampler on

the 10 3 13 514 36-year daily dataset for the study

site, including 9 predictors and one series of obser-

vations. The standard-normal values of the zero-

precipitation thresholds are calculated and the Gibbs

sampler applied to impute the fictitious subthresh-

old data values. This process requires particular

attention due to the high covariance among pre-

dictor series (forecasted precipitation series from

adjacent weather model grid cells in Fig. 1), which

lead to poor mixing properties in the Gibbs sampling

(Raftery and Lewis 1992). Figure 3 shows the plot

of two variates out of a synthetic 10-variate normal

sample with very high uniform covariances sij 5
0.99. This case mimics the covariance structure be-

tween forecast series of adjacent predictor cells. The

sample was censored and successfully reconstructed

by imputation.

Poor mixing is known to cause oscillation of the

sampling during imputation, as visible from the trace

plots in Fig. 4. and eventually to lead to the divergence

of the iterative process. This difficulty can be overcome

by diagonalizing the variance-covariance matrix S

through principal component analysis (PCA).

PCA is a linear transformation and presupposes that

the sufficient statistics mean and variance fully describe

the sample distribution, a condition which is strictly

met by Gaussian data and, as in our case, is obtained

by normalizing precipitation data through NQT. We

evaluate eigenvectors and obtain a diagonal covari-

ance matrix with sii given by eigenvalues. Eigen values

represent the variance along principal components.

FIG. 2. Bayesian imputation for a synthetic bivariate normal sample, 103 draws. (top left) Original sample drawn

fromN2(m,S) withm5 0, s2
1 5s2

2 5 1:0, s12 5 0:8. (top right) Bivariate distribution truncated at c5 (20.5,20.75).

(bottom left) Truncated sample with the red part retrieved by imputation, and (bottom right) a zoom in on the

transition zone between parent and imputed sample.
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Principal components with larger associated variances

indicate high informative content, while those with

lower variances resemble noise. PCA allows ranking

predictors in terms of their informative contribution

and, as a consequence, reducing the dimensionality of

the problem, a property which becomes of significant

interest when working with ensemble forecasts.

An additional complication in this process is given

by the fact that by performing PCA, one needs to

consider the transformation by rotation of the entire

sampling sector while mapping the 10-dimensional

reference system into principal components. Figure 5

gives an example of this situation. We see a snapshot of

sampling (Kotecha and Djurić 1999) from a bivariate

truncated Gaussian distribution in the inner Gibbs

sampling cycle (appendix C). With reference to the

composite variate Y in the expression in (11), the se-

lected snapshot arises from sampling at a given time

step j, for which r 5 2 elements ycj,k indicate zero pre-

cipitation, while the remaining m 1 1 2 r ones are

nonzero. On a different time step one could have

r . 2 elements equal to zero and the remaining ones

nonzero, requiring to sample from an (r. 2)-dimensional

truncated region. The employment of PCA involves

the rotation of the sampling region, which leads to

sampling constrained by a system of linear inequal-

ities as explained by Li and Ghosh (2015). Last, but

not least, PCA reduces the need for large numbers of

burn-in steps of the Gibbs sampler, leading to consid-

erable computational gain. Thanks to PCA the burn-in

FIG. 3. Bayesian imputation for a highly correlated synthetic 10-variate normal sample, 103 draws. (top left)

Variate 1 vs 2 of the original sample drawn fromN10(m,S) withm5 0, sij5 0.99. (top right) Distribution truncated

at the Gaussian values estimated from the Swiss data sample. (bottom left) Truncated sample with the red part

retrieved by imputation, and (bottom right) a zoom in on the transition zone between parent and imputed sample.

High correlation leads to poor mixing in the Gibbs sampling.
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steps in our case could be reduced from several

thousands to few hundreds. After completing an

outer Gibbs sampling iteration, the PCA transforma-

tion is inverted to retrieve the nondiagonal covariance

matrix S.

e. Testing

Next we proceed to testing the validity of assumption

in (6). Choosing to model the dependence structure of

the joint normal sample (w, z) as MVN, is equivalent

to using a Gaussian copula that is constructed starting

from the corresponding Gaussian marginal distributions

F and G. The MVN dependence is one of several pos-

sible dependencies we could have chosen, and of course

is only an approximation of the true dependence struc-

ture of the joint sample, which we nevertheless as-

sume sufficiently close to MVND. Therefore a positive

outcome from stringent multivariate normality tests,

such as the Mardia test (Mardia 1970), is illusory in

our case, not so much because of the distance between

the Gaussian copula and the MVND, but the presence

of outliers, especially in the fringe region of the

MVND associated with high or low-end extreme events.

Nevertheless, other tests can be performed to investi-

gate sufficient closeness of the copula to a MVND.

So the sample tested positively for the pairwise linear

predictor versus predictor and predictand versus pre-

dictor dependence, as shown in the first row of Fig. 6

for an observation–predictor pair (left) and a predictor–

predictor pair (right). We also tested the dependence of

the residuals on the regressor using the Breusch–Pagan

test (Breusch and Pagan 1979), which led to the accep-

tance of the homoscedasticity hypothesis for the ma-

jority of cases (second row in Fig. 6).

A Shapiro–Wilks test for normality of the residuals

was performed, but led to rejection of some cases, de-

spite residuals were visually on the theoretical Gaussian

CDF curve. Especially the tails region of the pairwise

Q–Q plots showed divergence from the bisection line

(third row in Fig. 6).

Finally, we tested the Gibbs sampler on the 10-variate

synthetic sample, which was drawn from the genuine

MVND and, as to be expected, passed the Mardia test.

After censoring the sample and retrieving the censored

part by imputation, we performed another positive test

for multivariate normality of the complete joint sample,

FIG. 4. Effects of poor mixing on Gibbs sampling for one variate of a 10-variate synthetic Gaussian sample, sij 5
0.99, 103 draws. (top) (left) the oscillating trace (a Gaussian variate) of the Gibbs sampler without PCA, and (right)

the stabilization of the sampling due to PCA transformation, which diagonalizes the variance-covariance matrix

(sij 5 0.99; i 6¼ j). (bottom) Autocorrelation function (ACF) of successive draws. Without PCA (left) undesired

autocorrelation persists across the iterative sampling, while it decays after few iterations when adopting PCA.
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obtaining confirmation that the Gibbs sampler produces

perfectly multivariate Gaussian data.

4. Results

a. Processor execution

The 10 3 13 514 points study dataset, including 9

forecast and 1 observation series, is split into a 1 January

1979–31 December 2010 calibration and a 1 January

2011–31 December 2015 validation period. The pro-

cessor is set up for the first period and verified over the

second, whereby the conditional mean is compared

against observations. This corresponds to a practical

situation, in which a forecasting service uses a processor

for the 5-yr period 2011–15 after it has been calibrated

on 31 years of daily data and updated last on the

31 December 2010. The observed precipitation clima-

tology is Weibull distributed, as visible in Fig. 7. The

normalized subzero precipitation data, considered as

censored negative precipitation, are retrieved by impu-

tation for the calibration period. The sampling yields the

posterior variance-covariance matrix S and a zero mean

vector m, to be used for processing of the validation

period. First we apply (9) to compute conditional mean

and variance, which is constant in virtue of near-

homoscedasticity of the data. The Gaussian predictive

density is computed by means of (8) and successively

mapped back into the space of provenience. The

continuous Gaussian process must be transformed into a

discontinuous process of type (A1). To this end the di-

chotomous PoP process is drawn from the the Bernoulli

distribution, a special case of the binomial distribution,

while the precipitation depth process is drawn from the

inverse Weibull.

The results of the back-transformation for a selected

period are visualized in Fig. 8. Figure 8a depicts

Gaussian data, including daily observed precipitation,

the mean of the predictive distribution conditioned on a

nonuple of predictors, and the 50%–90% credible in-

tervals. The data below the Gaussian zero-precipitation

threshold value of 0.06 (horizontal dashed black line)

have been added by data augmentation. The green

PDFs are the predictive densities for six selected days.

Figure 8b compares the same data in the real space after

back transformation. The PoP is sampled from the

Bernoulli distribution by taking the area portion under

the Gaussian PDF below threshold as distribution pa-

rameter p 2 [0, 1]:

f (kjp)5pk(12 p)12k; k 2 f0, 1g. (28)

This area p represents the probability of binary pre-

cipitation occurrence/nonoccurrence, which is being

randomized through the sampling process. Out of a

r-sized sample of Bernoulli process realizations for

a given day, drawing returns q , r values of the event

occurrence indicator equal to 1. For those q events,

FIG. 5. Slice of the inner Gibbs sampling cycle for the 2D-case in which missing values are sampled from the

bivariate truncated normal distribution. The reference frame is rotated by PCA transformation with eigenvectors

on display. The red cloud is an ensemble of sampled fictitious negative precipitation values from which only one is

retained at each inner cycling step. Due to rotation of the reference frame, the straight boundaries of the gray

sampling region change accordingly. Thusly, instead of drawing from the (left) gray square region, one must draw

from the (right) gray triangle region, which requires linear inequality constraining.
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FIG. 6. Test results of multivariate normality for (left) an observations–predictor and (right) a predictor–

predictor pair for selected predictors. (top) Linear interdependence, (middle) the residuals against a selected

predictor, and (bottom) the Q–Q plot of the residuals. While linearity of the dependence and homoscedasticity of

the residuals are visible, there is a divergence of the residuals from the bisection line in the tails region.
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precipitation depth is drawn from the inverse Weibull

distribution, while for the remaining r 2 q events pre-

cipitation depth is set equal to zero. The predictive

mean precipitation depth (red line in Fig. 8b) is

calculated as the average of the total r-sized sample of

zero and non-zero-depth events.We note that the latter

differs from the Gaussian conditional mean and me-

dian (the red line connecting 50% quantile points in

Fig. 8a), both equal due to symmetry of the Gaussian

distribution. From the sampled predictive distribution

in the real space computation of credible intervals and

sample variance are straight forward.

b. Verification metrics

In Table 1 we compare performance indicators for the

uncertainty processor involving 9 predictors, one for

each cell in Fig. 1, and the same processor involving

only a single predictor at the central analysis cell. In this

way we demonstrate the added value of involving mul-

tiple predictors to account for the spatial uncertainty

of precipitation. As benchmark case for performance

comparisons we use Bayesian model averaging (BMA)

(Raftery et al. 2005).We applied BMA in the exact same

way as our proposed Bayesian approach, using the same

FIG. 8. (a) The observed precipitation, the conditional mean, and credible intervals for the Gaussian variables over a selected 4-month

period at the central analysis cell BIZ (Fig. 1). The dashed horizontal line indicates the Gaussian zero-precipitation threshold. (b) The

same data backtransformed into the original space. We note that the Gaussian PDFs morph into skewed gamma-type PDFs. The four

Gaussian PDFs in the middle have part of the curve below the Gaussian zero-precipitation threshold. The area portions below the

threshold are the PoP nonoccurrence used to parameterize the Bernoulli sampler for drawing the real-space PoP.

FIG. 7. Empirical and modeled climatic distribution of daily

precipitation observed at BIZ, 1979–2015. The lower abscissa and

left ordinate axis refer to the CDF, the other axes to the PDF. The

data follow a 3-parameter Weibull distribution with k the shape,

l the scale, and u the location parameter.
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NQT-normalized variates, which were extended into the

fictitious subzero precipitation range by imputation.

Then Gaussian univariate normal densities of precipi-

tation, conditional on individual forecasts for the 9

predictor cells are obtained by exploiting the properties

of bivariate normal distributions (Mardia et al. 1979),

and the conditional densities mixed by linear weighting:

L (g
1
, . . . g

n
jw, z

1
, . . . z
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i51
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log

"
�
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j51

m

g
j
5 1, (29)

where n is the number of temporal steps and m is the

number of predictors. The weights gi are calculated by

maximizing the log-likelihood function L trough ex-

pectation maximization (EM) or a Newton–Raphson

solver. BMA estimates mean and variance of the pre-

dictive density through weighted combination of mean

and variance of the constituent predictive densities,

once weights are known. As BMA application for a

single cell is not meaningful, we calculate the corre-

sponding performance indicators for the 9-cell case only.

Table 1 is split into two parts, an upper one with in-

dicators calculated in the Gaussian space and a lower

one with indicators in the real space. Vertically the table

compares results for the proposed method, BMA and

the raw unprocessed prediction at the central analysis

cell. For the proposed method the Pearson correlation

(CORR) between observations and conditional mean,

which is coincident with the covariance for standard

Gaussian variates, computes at 0.84 for 9 predictors,

indicating good agreement between Gaussian observa-

tions and the linear model. The value is slightly smaller

for the application with a single predictor. Next, we re-

port the coefficient of multiple correlation R2 (coeffi-

cient of determination), which can be interpreted as the

variance (VAR) of the observations estimated solely

from the regression model, and the variance of resid-

uals in (9) (variance unexplained), equal to 1 2 R2. The

values corroborate that the linear regression model in

(4) is able to explain 71% of the Gaussian variance,

while 29% remains random noise. We do not report

these values for the verification period, as the processor

continues to operate with the parameters (mwjz, Szz)

retrieved for the calibration period. It is possible to

compute these parameters retrospectively for the vali-

dation period, but this would require another round of

imputation to recover subzero observations and pre-

dictions, while the difference with respect to the cali-

bration period would be likely insignificant. The results

for BMA are very similar, but slightly worse. The BMA

variance averaged over the calibration and the valida-

tion period computes to 0.32, thus slightly larger than

the variance given by our approach. The signal-to-noise

ratio (SNR) is a decision-theoretic measure of the in-

formativeness of output (Krzysztofowicz 1992) and

is equal to 2.4 for the proposed method and 2.16 for

BMA due to the slightly higher variance. In the hypo-

thetical case of a totally uninformative forecast, which

would be completely uncorrelated with observations,

CORR(w, mwjz) ’ 0, all variance becomes unexplained

and SNR/ 0. To the contrary, if the processed forecast

is ‘‘perfect,’’ CORR(w, mwjz) 5 1, and consequently

SNR / ‘. This also means that in the case of a non-

informative forecasting model, which poorly correlates

with observations, Swz S
21
zz Szw / 0. The conditional

mean collapses onto the climatological mean and the

variance approaches that of retrospective observations,

TABLE 1. Performance indicators, 9 cells vs 1 cell, 1979–2010 [calibration (cal)] vs 2011–15 [validation (val)] for proposed approach, BMA,

and the raw unprocessed forecast at the central cell.

Method Proposed approach BMA Raw

Indicator Definition Cal Val Cal Val Cal Val

No. of cells 9 1 9 1 9 9 1 1

CORR(w, mwjz) Ef[w2E(w)][mwjz 2E(mwjz)]g 0.84 0.83 — — 0.83 — — —

VAR explained R2 5 12s2
wjz 5SwzS

21
zz Szw 0.71 0.69 — — 0.68 — — —

VAR unexplained 12R2 5s2
wjz 5 12SwzS

21
zz Szw 0.29 0.31 — — 0.32 — — —

SNR R2/(12R2) 2.40 2.19 — — 2.16 — — —

BIAS (1/n)�n
i51(xi 2mxjx̂i) 0.13 0.31 0.32 0.26 0.13 0.26 20.39 20.2

MAE (1/n)�n
i51jxi 2mxjx̂ij 2.26 2.34 2.24 2.32 2.35 2.33 2.44 2.37

RMSE (1/n)�n
i51(xi 2mxjx̂i)

2
h i1/2

4.45 4.50 4.55 4.57 4.50 4.57 4.72 4.7

CORR(x, mxjx̂) Ef[x2E(x)][mxjx̂ 2E(mxjx̂)]g 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.71

CRPS (1/n)�n
i51CRPS(Fi, xi) 1.54 1.60 1.55 1.59 1.6 1.58 — —
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precluding the production of a probabilistic forecast

which is less informative than climatology and yields

negative economic value. This internal coherence prop-

erty is an essential requirement for using forecasts in

rational decision making (Krzysztofowicz 1999).

The lower part of the table reports bias (BIAS), mean

absolute error (MAE), root-mean-square error (RMSE)

and correlation (CORR), metrics that are all estimated

in the real variable space. We note that one effect of the

Bayesian processor is bias removal, which is reduced

well below 0.5mmday21 in all cases.

Processor performance is distilled through reliability

diagrams (Wilks 1995; Bröcker and Smith 2007), which

visualize dicotomic occurrence/nonoccurrence fre-

quencies of an observation against the probability

of the corresponding forecast. First we preset pre-

cipitation thresholdsV5 [1, 10, 15] mmday21 against

which dicotomic occurrence/nonoccurrence is verified.

Given V, a forecast is considered reliable if actual

precipitation exceeding V occurs with an observed rel-

ative frequency consistent with the forecast value. If

oj are occurrence/non-non-occurrence frequencies of

daily observations and qi the corresponding allowable

probabilities of forecasts exceeding V, the reliability

diagram collapses the joint distribution p(oj, qj) by fac-

torization into the conditional distribution p(ojjqi)
(calibration distribution) and the forecast distribution

p(qi) (refinement distribution) (Murphy and Winkler

1987). The relative frequency of observations are plot-

ted against suitably binned forecast probability quan-

tiles. The forecast distribution is visualized as inset

frequency histogram on the same plot. Figure 9 shows

the reliability diagrams for validation (Fig. 9a) and cal-

ibration (Fig. 9b) periods for different values V. An

ideally calibrated processor producing perfect fore-

casts leads to a graph withmarkers lying on the bisection

line. Markers below the bisection indicate systematic

overforecasting and thus wet bias, while those above

FIG. 9. Reliability diagrams for (a) calibration and (b) verification, threshold values V5 [1, 10, 15] mmday21, 9 predictors. The insets

visualize relative frequencies of the forecast distribution p(qi). With increasing threshold V, calibration deteriorates visibly through

departure from the bisection in either direction. In the first panel in (b) the marker at 0% on the ordinate axis means that particular bin

contains only observation nonoccurrences. Because of rarefaction of observed frequencies in the high precipitation range for validation,

the number of bins has been reduced from 20 to 5. The vertical bars indicate consistency intervals. Observed relative frequencies are in

nearly all cases within the 5%–95% bounds and thus consistent with reliability.
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mean underforecasting and dry bias. A forecast that is

biased in either of the two directions is considered un-

reliable or miscalibrated.

The vertical credible interval bars in Fig. 9 are derived

as in Bröcker and Smith (2007) by computing variations

of the observed relative frequencies over a set of fore-

casts generated by bootstrap resampling with replace-

ment. The method computes variations of the observed

relative frequencies resulting from uncertainties in

terms of quantile bin mean probability and bin pop-

ulation. The result of such sampling produces a fre-

quency distribution in correspondence of each bin, from

which the 5%–95% credible interval is determined. The

bin size in Fig. 9b has been enlarged in the high pre-

cipitation range .10mmday21 to avoid meaningless

observed relative frequencies due to entirely full or

empty quantile bins.

The drawback of such condensed representation is

the inability to provide a full description of the forecast

quality. For a more fine-grained event-based forecast

performance investigation we evaluate the continuous

ranked probability score (CRPS) (Matheson and

Winkler 1976). The CRPS is the integral of the

Brier score over all possible threshold values y for a

continuous predictand, given a forecast realization.

Specifically, if F is the predictive CDF and x the

benchmark observation, the continuous ranked proba-

bility score is defined as follows:

CRPS(F, x)5

ðy5‘

y50

[F(j)2 1(j$ x)]2 dj , (30)

where 1(j $ x) denotes the Heaviside function with

value 0 when j , x and 1 otherwise. Equation (30)

represents an integral distance measure between the

predictive CDF and the Heaviside function. In our case

the cumulative distribution function F is not available in

closed form and must be evaluated from the predictive

density, which is given by an ensemble of discrete points

making up the frequency histograms in Fig. 8b. The

average CRPS over n discrete events is calculated as

follows:

CRPS5
1

n
�
n

i51

CRPS(F
i
, x

i
). (31)

For an intuitive understanding of the meaning of (31),

Hersbach (2000) demonstrated that in the particular

case of single deterministic forecast Fi 5F(xijx̂det, i) de-
generates into a step function and as a result CRPS

becomes the MAE, which has a clear interpretation. In

the probabilistic case the CRPS represents a general-

ization of the MAE (Gneiting et al. 2005). Figure 10

shows daily CRPS(Fi, xi) values for a selected period

of four consecutive months for the proposed method

and for BMA. The CRPS computes to 2.40 and 2.36,

respectively. Table 1 reports the CRPS for the calibra-

tion and the validation period given 1 and 9 predictors

for the proposed method and 9 predictors for BMA.

Values are very close. We also compared the CDFs

of the CRPS for the proposed method against BMA,

calibration and validation period. The CDFs are near-

coincident, making a display superfluous.

5. Discussion

Thus far we presented the methodology and applica-

tion of the proposed Bayesian uncertainty processor,

which is founded on the model conditional processor

(MCP) concept (Todini 2008). In principle there is nei-

ther theoretical nor procedural limitation to the number

of employable predictors thanks to working with normal

variables and a nonparametric structure. Additional

predictors can easily be included into the analysis.

The proposed Bayesian processor has been bench-

marked against BMA and the performance indicators in

FIG. 10. Daily CRPS values for the same selected 4-month period in Fig. 8, red for the

proposed method, blue for BMA. The CRPS for this period is 2.40 and 2.36, respectively, for

the two methods.
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Table 1 figure in the same range, with the BMA average

variance over the calibration and the validation period

slightly higher. Unlike Sloughter et al. (2007), who de-

rived heuristic conditional densities of precipitation

ad hoc as logistic regressions with a power transforma-

tion, we have first normalized variates by nonparametric

NQT, performed data augmentation and succes-

sively applied BMA to Gaussian data. Todini (2008)

and Biondi and Todini (2018) pursued a similar perfor-

mance contest of the two approaches, albeit in a differ-

ent context, confirming strong similarities between

BMA and the proposed Bayesian approach in terms

of predictive mean and a slightly higher variance for

BMA. We also note that BMA constitutes an approxi-

mation of predictive mean and variance, requiring

constrained optimization for determining the weights.

Moreover, BMA does not explicitly consider the co-

variance structure among predictors. Our proposed

method instead estimates predictive distributions on an

analytical basis by nonparametric mapping of empirical

distributions to the Gaussian space, while accounting

for the dependency structure among predictors. A cer-

tain level of approximation nevertheless remains due to

assuming aMVNdependency amongNQT-transformed

variates and estimating the covariance structure by

MCMC sampling.

Another topic of discussion is our choice of the spatial

set of predictors. These are given by grid-based pre-

cipitation forecasts in a 9-cell modeling window cen-

tered on an analysis cell. This choice is motivated by the

necessity to account for spatial uncertainty of precipi-

tation. The methodology does not limit the extension

of the analysis mask to larger windows as the one

chosen here. Moreover, the approach can be spatialized

by applying a sliding analysis mask over larger regions.

Such spatial use of the processor requires estimating

the covariance matrix Szz and the covariance vector

Swz on a cell-by-cell basis for the study region. Of

course these quantities need to be re-estimated peri-

odically as new observations and forecasts become

available. At an operational level such updating, which

necessitates Bayesian imputation, can be executed off-

line, without impacting online operations.

We also note that the processor has been calibrated

over a single dataset, without slicing it by seasons or

specific pluvial regimes. The MVND should correctly

account for extreme events and the multivariate normal

regression model thus fitted separately for a low-to-

intermediate and a high precipitation range. Such an

approach would improve the estimation of extreme

precipitation events, which tend to be underrepresented

in the current setup. Examples of calibrating the

processor by means of multivariate truncated normal

distributions to accommodate heteroscedasticity of the

data are given in Coccia and Todini (2011) and Reggiani

et al. (2016, 2019).

An aspect, which we believe deserves some further

consideration is the application of principal compo-

nent analysis (PCA) that was used to diagonalize

Szz and optimizing the MCMC sampling. In our

study data example the 10 3 10 dimensional variance-

covariance matrix reduces to the following ranked

eigenvalue vector:

diag(9:94, 0:3, 0:02, 5:83 1023, 1:03 1024, 1:0

3 1024, 0:0, . . .) (32)

indicating that the problem can be considerably down-

sized, as two principal components explain most of the

variance. While we recognize that in our study case the

problem is strongly reducible, there may be different

locations, for which a larger number of dimensions need

to be retained. Examples are locations, in which pre-

cipitation is linked to orographic effects or particular

predominant air currents. PCA, which must be per-

formed on strictly Gaussian variates, is a powerful ap-

proach to objectively identify the minimum number of

dimensions required for forecast postprocessing. Such

an approach becomes particularly appealing when

extending the processor to ensemble forecasting.

6. Summary and conclusions

The outlined methodology describes a precipitation

uncertainty processor able to handle multiple binary-

continuous predictors. The output of the processor is a

calibrated binary-continuous debiased probabilistic

forecast of precipitation at a single location. Precipita-

tion, an intermittent random process, is considered as

censored variate, turned into a continuous one by re-

covering unknown censored values by imputation. Pro-

cessing of the predictors and the observed values starts

with the transformation of nonparametric marginal

distributions into standard normal variates byNQT. The

normalization serves different purposes.

First, the joint distribution can be considered with

some approximation asMVND, equivalent to aGaussian

copula, which admits closed-form expressions for con-

ditional densities.

Second, the censored Gaussian precipitation values

and MVND parameters are retrieved by Bayesian im-

putation using a nested Gibbs sampler. The use of fully

Gaussian distributed data facilitates the monitoring of

imputation convergence and verification of results.

Third, Gaussianity of the data supports the appli-

cation of principal component analysis (PCA) to
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diagonalize the variance-covariance matrix and analyze

data redundancy.

Conditional predictive densities are computed for the

normal variables and successively back-transformed

into the space of origin. The processor has been cali-

brated and validated for a test site in Switzerland and

computes satisfying reliability plots as well as perfor-

mance indicators against BMA. The principal strengths

of the proposed method can be summarized as follows:

d The processor does not use ad hoc assumptions on

distribution models for precipitation depth, but works

straight with empirical CDFs that are subsequently

mapped to Gaussian by nonparametric transforma-

tions. This supports parameter parsimony and avoids

the need for parameter optimization.
d Being parameter-parsimonious, the processor is com-

putationally efficient and consequently apt for opera-

tional use.
d The processor is sufficiently generic to handlemultiple

predictors, encouraging its application for hydrome-

teorological applications involving similar intermit-

tent random processes, for example river flows.
d The processor is self-calibrating given it produces an

output (the predictive mean) with the same distribu-

tional properties as retrospective observations.
d Moreover, the processor guarantees coherence as it

cannot produce an output with inferior informative-

ness and thus negative economic value than the usage

of the climatic distribution.
d Standard forecast verification shows that the proces-

sor meets quality criteria, such as bias removal, and

yields comparable values against BMA in terms of

commonly used performance metrics.
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APPENDIX A

Precipitation Process Representation

Stochastically the precipitation process is described as

mixture of binary and continuous variates. If the variate

X describes precipitation depth accumulation with re-

alization x, (1 2 n) 5 P(X . 0) is the dichotomous

probability of precipitation (PoP), whileHo(x)5 P(X#

xjX . 0) is the probability of the continuous precipita-

tion depth accumulation process, such that Ho $ 0 if

x . 0 and Ho 5 0 if x 5 0, the combined probability

H(x) 5 P(X # xjX $ 0) of the mixed binary-

continuous process is (Kelly and Krzysztofowicz 2000):

H(x)5 n1 (12 n)H
o
(x) , (A1)

which assigns a probability mass of n to event X 5 0

and spreads the remaining mass (12 n) over the interval

(0, ‘). The continuous process is modeled with a suit-

able parametric cumulative distribution function (e.g.,

Weibull, Beta, or Gamma), while event occurrence can

be estimated as climatological relative frequency from

a sample of observations, or modeled as a stochastic

process, for instance a Markov chain (Katz 1977;

Woolhiser and Pegram 1979), a Poisson (Todorovic

and Yevjevich 1969; Gupta and Duckstein 1975), a

Neymann–Scott (Kavvas and Delleur 1981; Waymire

and Gupta 1981) or a Pólya urn process (Todini and Di

Bacco 1997).

If the precipitation is forecast by a single predictor,

the mixture includes dependence on the predictor vari-

ate X̂ (Herr and Krzysztofowicz 2005):

H(x, x̂)5 n̂
00
1 n̂

10
H

x
(xj0)1 n̂

01
H

x̂
(x̂j0)1 n̂

11
H

x,x̂
(x, x̂),

(A2)

with n̂11 5P(X. 0, X̂. 0), n̂01 5P(X5 0, X̂. 0), n̂10 5
P(X. 0, X̂5 0), and n̂00 5P(X5 0, X̂5 0) joint prob-

abilities subject to n̂00 5 12 n̂01 2 n̂10 2 n̂11. The predic-

tive density given by (1) and associated with (A2) is

h(xjx̂)5 n̂
11
h
x,x̂
(x, x̂)

n̂
01
h
x̂
(x̂j0)1 n̂

11
g
x̂
(x̂)

, (A3)

where hx,x̂(x, x̂) is the bivariate, hx̂(x̂j0) is the conditional
and gx̂(x̂) is the marginal density, and h(xj d) is a family

of truncated univariate conditional densities defined in

(0, ‘). In this paper we propose an alternative approach

of determining h(xj d), given a realization X̂5 x̂ and

generalizable for multiple predictors.

APPENDIX B

Normal Quantile Transform

Non-Gaussian random data, represented by variate

X with realization x and CDF F, can always be mapped

into a standard normal variate U with realization u
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through a normal quantile transformation (NQT). The

NQT is a strictly monotone nonparametric transforma-

tion T such that T(X) is standard normal with CDF F
and density f. Thus the following relationship holds:

F(u)5P[T(X)#u]5P[X#T21(u)]

5F[T21(u)]5F(x) . (B1)

By applying the NQT to a censored or a truncated

random variable X one obtains a censored or truncated

standard normal variate. Monotonicity of T ensures the

existence of an inverse T21 and thus a unique corre-

spondence with the original variates.

APPENDIX C

Posterior Gibbs Sampling

Posterior distributions in (24) constitute normal

conditional distributions, from which we can succes-

sively sample censored data and their mean and co-

variance parameters u5 (m, S). At each sampling step

we take the jth row vector y 5 [wj, zj1, . . . , zjm] of the

matrix Y 5 (yj,k) 5 (w, z) defined in (11). The length

of the y row subvector containing censored data, yc,

is r, while the observed part yo has length m 1 1 2 r

[i.e., y 5 (yo, yc)]. We start the ‘‘outer’’ MCMC se-

quence t for each of the n row vectors y (indices j are

omitted for notational simplicity) by initializing, given

standard normality, four submatrices of the row-wise

covariance matrices as identity matrices and the two

means with zero. The covariance matrix between yo

and yc is assumed zero at t 5 0 (i.e., the two vectors

are a priori uncorrelated):

S
yo ,yo

5 I, m
yo
5 0

S
(0)
yc,yc 5 I, m

(0)
yc 5 0

S
(0)
yo ,yc 5S

(0)
yc ,yo ’ 0 . (C1)

The conditional mean vector and covariance matrix

for yc,(t) is calculated by making use of the properties

of multivariate normal distributions (Mardia et al.

1979):

m
(t)
ycjyo 5m

(t)
yc 1S

(t)
yc,yoS

21(t)
yo ,yo (y

o 2m
yo
)T

S
(t)
ycjyo 5S(t)

yc,yc 2S(t)
yc,yoS

21(t)
yo ,yo S

(t)
yo ,yc .

(C2)

Now we sample y
c,(t)
i , i5 1, . . . , r from the MVND right

truncated at threshold value c (Li and Ghosh 2015):

y
c,(t)
i ;N(m

(t)
ycjyo ,S

(t)
ycjyo ,2‘, c); i5 1, . . . , r . (C3)

This ‘‘inner’’ sampling is performed by means of a nes-

ted Gibbs sampler, as recovery of the censored obser-

vations implies simulation from the corresponding

truncated multivariate normal distribution (Kotecha

and Djurić 1999) by conditioning on yoi , m
(t)
ycjyo , S

(t)
ycjyo .

Next, a prior estimate of S
(t)
yc,yc is drawn from the in-

verse Wishart distribution (Gelman et al. 2014). The

inverse Wishart distribution by definition always leads

to real-valued positive-definite matrices. The latter is

obtained by first estimating mean and sum of squares

about the mean from the data and then using the esti-

mate to draw the prior covariance matrix:

yc 5E(yc,(t))

S
yc,yc

5 (yc,(t)2yc)T(yc,(t)2yc)

S(t)
yc ,yc ; invWis(r2 1, S21

yc,yc).
(C4)

Last we draw the mean m
(t)
yc from the multivariate nor-

mal distribution:

m
(t)
yc ;N(yc,S

(t)
yc,yc) (C5)

and calculate S
(t)
yc ,yo from the sample. This operation is

performed for all rows j5 1, . . . , n of Y. Then we return

to (C2) and execute the subsequent sampling step.

For all rows the first 500 ‘‘outer’’ Gibbs sampling steps

are regarded as burn-in phase and are disregarded.

For the ‘‘inner’’ nested Gibbs sampler 100 burn-in steps

have been recognized as fully sufficient.
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