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 Abstract- “Source ID Mix” spoofing emerged as a new type of 
cyber-attack on Distribution Synchrophasors (DS) where 
adversaries have the capability to swap the source information of 
DS without changing the measurement values. Accurate detection 
of such a highly-deceptive attack is a challenging task especially 
when the spoofing attack happens on short fragments of DS 
recorded within a relatively small geographical scale. This letter 
proposes an effective approach to detect this cyber-attack by 
realizing the multifractal characteristics of DS measurements. 
First, the multifractal cross-correlation of DS measured at 
multiple intra-state locations is revealed. Then the derived 
correlation is integrated with weighted two-dimensional 
multifractal surface interpolation to reconstruct quasi high-
resolution signals. Finally, informative location-specific 
signatures are extracted from the high-resolution DS and they 
are integrated with advanced machine learning techniques for 
source authentication. Experiments using the real-life DS are 
performed to verify the proposed method. 

Index Terms- Source ID Mix, distribution network, cyber-
physical security, OT security, Phasor Measurement Unit (PMU). 

I.  INTRODUCTION 
ith the high accuracy and resolution measurements of 
Phasor Measurement Units (PMUs), DS provide system 

operators with an unprecedented way to achieve real-time 
monitoring and control of power systems. However, due to the 
lack of a perfect data authentication mechanism of PMU 
communication protocol-IEEE C37.118, the data security of DS 
is always vulnerable to cyber spoofing attacks [1]. Even IEC 
61850-90-5 recommends the communication security of the 
PMU protocol, sophisticated data attacks can still be initiated by 
potential adversaries. “Source ID Mix” represents a new type of 
sophisticated data spoofing attack of DS which may threaten 
critical DS-based monitoring and control, such as inter-area 
low-frequency oscillation damping control and 
electromechanical disturbance location estimation [2]. 
Therefore, reliable detection of this attack provides substantial 
benefits to system operators for ensuring the data integrity and 
security of many DS-based applications in smart grids.    

To address the cybersecurity challenges raised by 
sophisticated data spoofing attack, several cybersecurity defense 
methods have been developed. Depending on the robustness of 
methods, these approaches can be divided into two major 
streams, i.e. model-based approaches and model-free 
approaches [1]. Model-based approaches usually first establish 
state equations of the power network and then examine the 

 
 

residual vectors or state variables to identify if any abnormal 
changes occur in the DS measurements. However, the need for 
system structures and parameters for building the state 
equations limits its generality and adaptability in detecting 
spoofing attacks on DS. To overcome the above limitations, 
model-free methods detect the spoofing attack by extracting 
informative location-specific signatures embedded in the DS 
and integrating the extracted signatures with machine learning 
techniques, such as Support Vector Machine (SVM)[3], 
Artificial Neural Networks (ANN) [4], Random Forest 
Classification (RFC) [5] and deep learning algorithms (such as 
Deep Forest - DF [2] and Convolutional Neural Network -CNN 
[6-7]. However, how to accurately extract the above signatures 
and achieve reliable detection is still challenging. 

By nature, the variation of DS has the characteristics of duality 
in both spatial and temporal domains, i.e. relevance and 
randomness. Therefore, the identification accuracy of the source 
locations mainly depends on how much the spatio-temporal 
signatures of the DS from each local environment differentiate 
from each other. For DS collected from wide-area locations (e.g. 
inter-country, interconnection or inter-state), most methods can 
achieve reasonably high identification accuracy (above 90%). For 
DS measured from dense locations (i.e. grid within the same state 
or even within the same city), the identification accuracy is 
normally less than 90% as variations of the measured DS from 
these locations exhibit high similarity. Although the identification 
accuracy can be further improved to above 90%, DS with a high 
reporting rate and longer time interval (e.g. 120Hz reporting rate 
and 10 minutes length [5]) are required to realize the spatio-
temporal signatures which may not be feasible for protecting real-
time DS-based applications (for example, low-frequency 
disturbance mode identification and localization usually relies on 
20 seconds data). Therefore, the main contribution of this letter is 
to achieve reliable source authentication of short DS fragments 
from near range (i.e. intra-state) locations without upgrading the 
hardware of the PMU device. The findings of this paper have the 
potential to address the cybersecurity challenges raised by the 
“Source ID Mix” spoofing attack. 

II.  PROPOSED CYBERSECURITY DEFENSE FRAMEWORK 
By examining the multifractality of DS recorded at the 

individual location, the authors found frequency variations over 
a large geographical scale (i.e. Eastern Interconnection in the 
US) possess multifractal structures from which distinctive 
spatio-temporal signatures can be extracted as a fingerprint for 
DS source authentication [2]. Inspired by this finding, the 
proposed model-free cybersecurity defense framework (shown 
in Fig. 1) contains three major steps: (1) Analogous Multifractal 
Height Cross-Correlation Analysis (AMFHXA) is performed on 
the DS to quantify the long-term cross-correlation of DS from 
different locations within a distribution network. (2) Weighted 
Multifractal Surface Interpolation (WMFSI) is developed to 
reconstruct quasi high-resolution DS by using the derived cross-
correlation. (3) Informative spatial and temporal signatures are 
extracted from the interpolated DS and they are further 
integrated with RFC for identifying DS source locations.  
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Extract frequency variations through a high 
pass filter in Ref [2]

DS measurements from intra-
state locations

Construct cumulative frequency deviation 
sequence as Eq (2)

Calculate cross-increment of two cumulative 
frequency deviation sequence as Eq (3)

Calculate 2nd order height-height covariance 
as Eq (4)

Generate quasi high-resolution variations 
through weighted summation using absolute 
values of AMFHXA coefficients as weights

Extract spatio-temporal signatures using 
method in Ref [10]

Determine AMFHXA coefficient as Eq (5)

Multifractal surface interpolation using 
frequency variations of each pair of candidate 

and target locations 

RFC training using spatio-temporal signatures 
of 80% of frequency fragments

RFC identifies source information of the 
remaining 20% of frequency fragments

Recognized DS source information 
Source identification by RFCWMFSIAMFHXA of frequency variations

Input: 

Output:

 
Fig. 1 Proposed cybersecurity defense framework. 

A.  Model of “Source ID Mix” Spoofing Attacks  
Considering a DS measurement matrix as (1) 
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where ,i ju  denotes the DS measurement from i-th PMU at 
time instance j. N is the total length of DS measurements and 
m is the number of PMUs. 

For DS data from k-th (1≤k≤m) PMU Uk, the “Source ID 
Mix” attack happens on Uk when Uk is replaced by DS data 
from i-th (1≤i≤m, i≠k) PMU during the same time interval. 
B.  AMFHXA of Frequency Variations 

AMFHXA provides a novel criterion to examine the long-
term cross-correlation between pairwise signals [8]. Different 
from the traditional Pearson Correlation Coefficient (PCC) 
which evaluates the correlation at a single scale and thus may 
not be able to detect the “Source ID Mix” data spoofing (since 
the spoofed data are still within an acceptable range creating 
minor changes in the correlation coefficients), AMFHXA 
quantifies the cross-correlation of pairwise time-series data at 
different temporal scales. For frequency measurements from 
multiple locations, a high pass filter is first applied to remove 
the general frequency trend and only preserve the frequency 
variations [2]. Considering frequency variations { }tU  and 
 tV recorded at two locations, 1,2,t N= , N is the sample 
number of frequency variations. The first step of AMFHXA is 
to construct a cumulative frequency deviation sequence as (2). 
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where U  and V  are average values of frequency variations. 
Then the cross-increment of these two cumulative frequency 

deviation sequence with time delay L is defined as (3). 
 ( ) ( ) ( ) ( ) ( ) ( )LU t V t U t U t L V t V t L = − + • − +         (3) 

Subsequently, the q-th order height-height covariance of 
these two frequency variations is calculated as (4). 
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The order q examines the varying degrees of frequency 
variations with small and large magnitude. Normally, the order 
q less than one magnifies the contribution of variations with 
small magnitude while the order q above two concentrates on 

the contribution of variations with large magnitude. In this 
paper, the 2nd order statistics of fluctuations is adopted which 
quantifies the cross-correlation of fluctuations with all 
magnitudes. Based on (4), the AMFHXA coefficient ( )q L is 
calculated as (5), which provides an effective measure to 
quantify the cross-correlation between two frequency variations 
at different fluctuation orders and time delay.  
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C.  Weighted Multifractal Surface Interpolation (WMFSI) 
Once the AMFHXA coefficient is determined, WMFSI is 

developed to reconstruct quasi high-resolution frequency 
variations of each measurement location by maintaining the 
self-affined and time-invariant structures of the original signal. 
For WMFSI, frequency variations of a specific location are 
selected as the target location while frequency variations of 
the rest locations are used as candidate locations. Then, the 2nd 
order AMFHXA coefficients between each of the candidate 
location and target location are calculated. For each pair of 
candidate and target location, the original frequency variations 
of the target location are interpolated through two-dimensional 
multifractal surface interpolation [9] after k iterations which 
boosts the reporting rate k2 times higher than the original 
signal. Then the weighted summation of the interpolated 
frequency variations by each pair of candidate and target 
location with the corresponding absolute values of AMFHXA 
coefficients 2  as weights is computed. Finally, the above 
weighted summation is further divided by the summation of 
weights to generate the quasi high-resolution frequency 
variation of the target location. In this way, if the frequency 
variations between the candidate location and target location 
are highly correlated ( 2 1 =  ), a large weight is assigned to 
the interpolated frequency variations by using this candidate 
location. In contrast, if the candidate location and target 
location is uncorrelated ( 2 0 = ), the interpolated frequency 
variations by using this candidate location are excluded in the 
final interpolation results. 
D.  Spatio-Temporal Signature Extraction and Source 
Authentication 

After constructing the quasi high-resolution frequency 
variations at each location, distinctive spatio-temporal 
signatures are extracted using the method proposed in [10]. 
This method extracts the informative features by examining 
the statistical characteristics, non-stationarity and nonlinearity 
nature and recurrence characteristics of frequency variations. 
The extracted spatio-temporal signatures are further used as 
input features for RFC to recognize the source information of 
DS measurements.  

III.   CASE STUDY AND RESULTS DISCUSSION 
A.  Experiment Database Construction and Setup 

In this paper, DS from seven locations within a distribution 
network (denoted as P1 to P7 in Fig. 2) over three months are 
collected. The distance among most measurement locations is 
within 40km, which are considered as dense locations 
compared with existing studies where most PMUs are 
deployed more than 100km far away. For each location, 1000 
fragments with 20 seconds length are randomly selected to 
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construct an experimental dataset. This exactly simulates the 
“Source ID Mix” spoofing attack on short DS fragments at 
dense locations. The original reporting rate of DS is 50 data 
points per second. The experiment dataset is further grouped 
into a training and testing dataset by using 80% and 20% of 
the samples. The identification rate of the testing samples (the 
percentage of corrected classified testing samples) is selected 
as the performance evaluation criterion
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Fig. 2 (a) Locations of frequency signals collected from Queensland network 
and (b) cross-correlation coefficients between P1 and other six locations. 

Fig. 2(b) shows an example of cross-correlation coefficients 
calculated by AMFHXA and PCC using P1 as the target 
location. It is clear that the coefficients calculated by AMFHXA 
gradually decrease when the candidate locations move far away 
from P1. Compared with AMFHXA, the conventional PCC 
fails to describe such a correlation as the coefficients at some 
locations significantly diverge from the main trend. In addition, 
most coefficients calculated by PCC are lower than 0.5 which 
indicate less correlation among these locations.    
B.  Results of WMFSI 

To demonstrate the performance of the proposed WMFSI 
approach, Fig. 3 shows an example of two-seconds measured 
and the interpolated frequency variations using the conventional 
one-dimension multifractal interpolation (CMFI) [11] and the 
proposed WMFSI method. The original frequency variations 
with 50Hz reporting rate are first downsampled to 10 Hz. Then 
it is interpolated back to 50Hz resolution to make a comparison 
with the original frequency variations. The interpolation is also 
performed by using the spline method for comparison purposes. 
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Fig. 3 Interpolation of frequency variations using (a) conventional multifractal 
interpolation and (b) proposed WMFSI method. 

From Fig. 3 it is observed that the WMFSI shows good 
performance in reconstructing the frequency variations, where 
most large variations of the frequency signal can be recovered. 
In contrast, the spline interpolation can only capture the 
general trend of the frequency over the whole period and 
smooth the frequency variations. From Fig. 3(a) and Fig. 3(b) 
it is found that compared with the conventional multifractal 
interpolation, the signal processed by the proposed WMFSI 
shows a higher agreement with the actual measurements. This 
is because the conventional multifractal interpolation only 
realizes the multifractal structures using the historical 
frequency variations of the target location while the proposed 

method incorporates more information from the neighbouring 
locations which are highly correlated with the target location. 
For the source identification experiment presented in this 
paper, 1250Hz is selected as the reporting rate of the 
frequency variations after WMFSI by considering the 
computational complexity and identification rate. 
C.  Performance Evaluation 

In this section, the performance of the proposed 
cybersecurity defense method is compared with other five 
recently reported algorithms in identifying the source 
information of DS recorded at seven locations. It is clear that 
the proposed method outperforms existing methods with an 
overall identification rate of 93%. Such a high identification 
rate is mainly because the WMFSI has the capability to further 
increase the sampling rate of original DS data so that the 
distinctive spatial-temporal signatures at the high-frequency 
band can be further realised by the machine learning algorithm 
for accurate source authentication. 

TABLE I 
COMPARISON OF IDENTIFICATION RATE WITH FIVE OTHER ALGORITHMS 

Model Discrete wavelet 
transform -ANN 

Time-frequency 
mapping-DF 

Time-frequency 
mapping-RFC 

Accuracy  54% 81% 80% 

Model 
Ensemble empirical 

mode decomposition -
ANN 

Continuous 
wavelet 

transform-CNN 
Proposed 

Accuracy  85% 88% 93% 

D.  Impact of WMFSI Resolution of DS on Identification Rate 
The resolution of the frequency variations reconstructed by 

the proposed WMFSI method has significant impacts on the 
source identification rate. If the resolution is low, the spatio-
temporal signatures may not be fully realized thus making the 
RFC confuse the source locations of testing samples. 
However, if the resolution is too high, some values of the 
extracted spatio-temporal signatures are averaged out which 
also reduces the identification rate of RFC. By observing the 
dependency between the resolution and the identification rate 
in TABLE II, it is clear that 1250Hz reporting rate is an 
optimal value for 20-seconds frequency fragments which 
attains the highest identification rate of 93%. 

TABLE II 
IDENTIFICATION RATE WITH DIFFERENT WMFSI RESOLUTION 

DS Resolution (Hz) 200 450 800 1250 1800 
Identification rate (%) 83 85 89 93 89 

E.  Discussion on the Practicability of DS Cybersecurity 
Defense Framework 

The proposed method can be implemented as a practical 
DS cybersecurity defense strategy by the following three steps: 

(1) DS database construction and spatial-temporal signature 
extraction: Sufficient amount of historical normal DS data are 
recorded to build the DS database. Each DS segment is 
processed by the proposed AMFHXA and WMFSI which is 
then used to extract distinctive spatial-temporal signatures. 

(2) Offline training: The extracted spatial-temporal 
signatures are used to train the RFC algorithm which builds a 
mathematical model that describes the correlation between the 
signatures and the corresponding source locations. Since the 
spatial-temporal signatures are usually stable over months, the 
training of RFC does not have to be performed frequently.  

(3) Online DS authentication: Once the new DS data is 
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received by the data server, the well-trained model makes 
prompt classification (less than 10 milliseconds per sample) 
on the source location of the new DS data of interest and an 
early warning is raised if any data exception is identified.  

IV.  CONCLUSION 
To mitigate the risk of critical DS-based applications 

induced by the sophisticated “Source ID Mix” spoofing attack, 
this letter proposes a cybersecurity defense framework, which 
combines AMFHXA, WMFSI, spatio-temporal signature 
extraction and RFC. The multifractal cross-correlation of DS 
at multiple intra-state locations was explored which can 
facilitate RFC in realizing unique spatio-temporal signatures 
of the DS measurements and identifying the corresponding 
source information. The comparison with some commonly 
used cybersecurity defense methods reveals that the proposed 
method has a stronger capability to detect cyber spoofing 
attacks by using short fragments. It is expected that the 
explored multifractality of DS can facilitate in improving the 
detection rate of other sophisticated spoofing attacks (e.g. time 
mirroring spoofing, time dilation spoofing, et al) on DS and 
defending the cybersecurity of smart grids. 
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