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Abstract  
 
Introduction: One outstanding challenge for machine learning in diagnostic biomedical imaging 
is algorithm interpretability. A key application is the identification of subtle epileptogenic focal 
cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualise on structural MRI 
but are often amenable to surgical resection. We aimed to develop an open-source, 
interpretable, surface-based machine-learning algorithm to automatically identify FCDs on 
heterogeneous structural MRI data from epilepsy surgery centres worldwide. 
 
Methods: The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and 
harmonised a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-
related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a 
neural network for FCD detection based on 33 surface-based features. The network was 
trained and cross-validated on 50% of the total cohort and tested on the remaining 50% 
as well as on 2 independent test sites. Multidimensional feature analysis and integrated 
gradient saliencies were used to interrogate network performance. 

Results: Our pipeline outputs individual patient reports, which identify the location of 
predicted lesions, alongside their imaging features and relative saliency to the classifier. 
Overall, after including a border-zone around lesions, the developed MELD FCD surface-
based algorithm had a sensitivity of 67% and a specificity of 54% on the withheld test 
cohort, and a sensitivity of 85% on a restricted subcohort of seizure free patients with 
FCD type IIB who had T1 and FLAIR MRI data.  

Conclusions: This multicentre, multinational study with open access protocols and code 
has developed a robust and interpretable machine-learning algorithm for automated 
detection of focal cortical dysplasias, giving physicians greater confidence in the 
identification of subtle MRI lesions. 

Keywords 

Focal cortical dysplasia, epilepsy, structural MRI, machine-learning 

Highlights 

● This large, multi-centre, multi-scanner neuroimaging cohort captures the 
heterogeneity of histopathological subtypes and imaging features of patients with 
FCD. 

● We developed a robust and interpretable surface-based algorithm which detects 
FCDs with a sensitivity of 67% and a specificity of 54%. 

● The algorithm generates individual patient reports that “open the AI black-box” 
highlighting predicted lesion locations, alongside the imaging features and their 
relative saliency to the classifier. 
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1. Introduction 
 
The application of machine learning algorithms for diagnostics in biomedical imaging forms a 
spectrum from automating high-throughput imaging analysis to assisting diagnosis in rarer, 
clinically-challenging pathologies. One barrier to clinical translation is the limited interpretability 
of these algorithms, leading to a common perception of them as impenetrable “black-boxes”. 
Identifying focal epileptogenic abnormalities on MRI is an outstanding clinical challenge in 
patients undergoing presurgical evaluation for drug-resistant focal epilepsy (DRFE). In DRFE, 
16-43% of individuals are “MRI-negative”, i.e. no relevant abnormality is visually identified on 
their MRI scans (Bien et al., 2009; Colombo et al., 2012; McGonigal et al., 2007). A leading 
cause of DRFE and the most common histopathology in operated “MRI-negative” cohorts is a 
malformation of cortical development, called focal cortical dysplasia (FCD) (Irene Wang et al., 
2013). As post-surgical seizure freedom is affected by whether the FCD can be identified on 
preoperative structural MRI (Bien et al., 2009; Téllez-Zenteno et al., 2010), there has been 
considerable effort placed in improving the detection of these lesions. However, machine 
learning approaches provide little insight into factors determining classification. In clinically 
ambiguous images, where the need for algorithms is greatest, such insight would enable 
physicians to determine whether features identified by the classifiers are likely to be lesional in 
origin. 
 
Radiologically FCDs are characterised by alterations in cortical thickness, blurring at the grey-
white matter boundary, folding abnormalities, and T2 or FLAIR signal intensity changes 
(Colombo et al., 2012). Approaches to improving the detection of FCDs have involved improved 
scanner protocols (Bernasconi et al., 2019) and field strengths (Bartolini et al., 2019; Wang et 
al., 2020) as well as automated volumetric (David et al., 2021; Gill et al., 2021, 2018; House et 
al., 2021; Huppertz et al., 2005) and surface-based (Adler et al., 2017; Ahmed et al., 2015; 
Hong et al., 2014; Jin et al., 2018) post-processing methods.  
 
Despite extensive retrospective work to improve FCD detection, few automated methods have 
been used prospectively in the presurgical evaluation of patients with epilepsy. Alongside lack of 
interpretability, there are many additional reasons for this. First, some of the frameworks have 
been developed at single epilepsy centres resulting in small sample sizes and homogeneous 
datasets, where all patients have been scanned on the same MRI scanner with the same 
protocol, which reduces the likelihood of robustness of the results and the ability of the method 
to generalise. Second, many of the frameworks are not openly available and therefore difficult to 
reproduce. Third, much of the research has been limited to “MRI-positive” patients or limited to 
histopathologically confirmed FCD type IIA or IIB patients and thus have unknown performance 
on many of the complex, challenging patients who present to epilepsy surgery centres. 
Although, there has been some important research replicating previous methods (Jin et al., 
2018; Wagstyl et al., 2020; Wang et al., 2015), there is a need to develop and validate an 
automated FCD detection tool on a large multi-centre cohort and make it available to the 
epilepsy community.  
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Here, as part of the MELD Project (Wagstyl et al., 2021), we aimed to collate a cohort of 
patients from multiple epilepsy surgery centres, across multiple MRI scanners including both 
1.5T and 3T field strengths; create protocols for de-centralised MRI post-processing; and 
develop an open-access, robust and interpretable surface-based classifier to detect FCD.  
 

2. Methods 
2.1 MELD project consortium 
The MELD project (https://meldproject.github.io/) involves 22 research centres across 5 
continents. Each centre received approval from their local institutional review board (IRB) or 
ethics committee (EC). IRB/EC waived the need for individual patient consent as this was a 
retrospective study using fully anonymised routinely available data only.  
 
2.2 Participants 
Patients were included if they were over age 3, had a 3D preoperative T1-weighted MRI brain 
scan (1.5T or 3T) and a radiological diagnosis of FCD or were MRI-negative with 
histopathological confirmation of FCD. Participants were excluded if they had previous surgery, 
large structural abnormalities in addition to the FCD or T1 scans with gadolinium-enhancement. 
Controls were included if they were over age 3, did not have epilepsy or another neurological 
condition and had a T1-weighted MRI brain scan (1.5T or 3T). Patients scanned for headache 
could be included as controls if they had no other neurological conditions and the MRI was 
normal. The patients and controls included were a retrospective convenience sample. Centres, 
patients and controls were given pseudo-anonymised ID codes. 
 
2.3 Methods overview 
Figure 1 is an overview of the MELD FCD processing pipeline, which is explained in more detail 
in the sections below.  
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Figure 1. MELD processing pipeline.  A) Local sites extract surface-based morphological features from 
structural T1 and FLAIR MRI, along with manually delineated lesion masks. These were coregistered to 
symmetric template surface and anonymised data matrices are shared with MELD team. B) Central 
preprocessing: MELD team carried out outlier detection and data harmonisation to minimise inter-scanner 
feature differences. C) Morphological features underwent intra-subject, interhemispheric and inter-subject 
normalisation. D) The full cohort was randomly subdivided 50:50 into training/validation cohorts and 
withheld test cohort. To avoid overfitting, all optimisation experiments were carried out on the train/val 
cohort prior to final testing on the test cohort and new site cohorts. E) Neural network classifier was 
trained to identify lesional vertices from MRI features. Vertex-wise predictions were collected into 
connected clusters. F) Classifier predictions mapped to cortical surfaces, lesional features and their 
relative saliency were plotted, lesional features across the cohort were analysed. 
 
2.4 Site-level data collection and post-processing 
Each site followed the protocols for site-level data collection and post-processing that are 
available at https://www.protocols.io/researchers/meld-project.  
 
2.4.1. Participant demographics 
The following data were collected for all patients: age at preoperative scan, sex, age of epilepsy 
onset, duration of epilepsy (time from age of epilepsy onset to age at preoperative scan), ever 
reported MRI-negative and histopathological diagnosis (ILAE three-tiered classification 
system),(Blümcke et al., 2011) seizure-freedom (Engel class I or other) and follow-up time in 
operated patients. 
 
Deidentified participant demographic information and lesion masks were shared with the MELD 
project coordinators for multi-centre analysis. No identifiable patient information was shared. 
 
2.4.2. MRI data collection and cortical surface reconstruction 
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3D T1-weighted and FLAIR (where available) MRI scans were collected at the 22 participating 
centres for all participants and cortical surfaces were reconstructed using FreeSurfer.(Fischl, 
2012) Detailed protocols for structural MRI post-processing were adapted from openly available 
ENIGMA-epilepsy protocols.(Whelan et al., 2018) 
 
2.4.3. FCD lesion masking 
FCD lesions were delineated on the T1-weighted MRI scans at each site according to our lesion 
masking protocol.(MELD Project, n.d.) For patients with a radiological diagnosis of FCD, a 
volumetric lesion mask was created using the preoperative T1 scan and 3D FLAIR (where 
available). For MRI-negative patients but with histopathological confirmation of FCD, the post-
operative scan was used to create the volumetric lesion mask. In both cases, masks were 
performed by a neuroradiologist, neurologist, or experienced epilepsy researcher at each site. 
Volumetric lesion masks were mapped to cortical reconstructions and small defects were filled 
in using five iterations of a dilation-erosion algorithm. Patients’ lesions were registered to 
fsaverage_sym.  
 
2.4.4. Morphological/intensity features 
The following measures were calculated in native space per vertex across the cortical surface in 
all participants: (a) cortical thickness, (b) contrast in T1 intensity above and below the grey-
white matter boundary (grey-white contrast) (c) mean curvature, (d) sulcal depth, and (e) 
intrinsic curvature. In participants with FLAIR data, FLAIR signal intensity was sampled at 25%, 
50%, and 75% of the cortical thickness (GM FLAIR 25%, 50%, 75%), as well as at the gray-
white matter boundary and 0.5 and 1 mm subcortically (WM FLAIR 0.5mm, 1mm). The following 
features were smoothed with a 10mm Gaussian kernel: cortical thickness, intensity at the gray-
white matter contrast, and FLAIR intensities at all cortical and subcortical depths, to increase 
the stability of per- vertex measures. Intrinsic curvature was smoothed with a 20mm Gaussian 
kernel to provide a measure of folding pattern abnormalities that is stable across adjacent gyri 
and sulci. All features were registered to bilaterally symmetrical template space, 
fsaverage_sym. Only anonymised participant demographic details and data matrices of 
anonymised features and lesion masks were shared with the central analysis site (UCL). 
 
2.5 Centralised quality control and post-processing 
 
2.5.1. Quality control and data harmonisation of surface-based data 
Automated quality control was performed on the surface-based features to identify subjects with 
extreme structural and intensity values across multiple features and cortical areas, likely caused 
by imaging artifacts such as signal biases or FreeSurfer segmentation errors. A feature was 
considered an outlier if, in more than 10 non-lesional regions (from the Desikan-Killiany atlas), it 
was greater or less than 2.7 times the standard deviation from the mean of all participants 
values. Participants were considered outliers if they had multiple extreme features, two if 
features from T1-weighted scans only and three if FLAIR MRI scans available. Participants 
identified as outliers were excluded from all subsequent analyses.  
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Structural and intensity features were harmonised across sites and scanners strength using 
ComBat(Fortin et al., 2018), controlling for age, sex and disease status (Figure 2). Independent 
test sites were harmonised to the main cohort (Figure 2). The harmonised dataset features are 
henceforth referred to as “ComBat” features. 
 
 
 

 
Figure 2. Multi-centre harmonisation of cortical thickness using ComBat. A) Pre- and post-combat 
cortical thickness of the whole cohort arranged per age bin and colored per site. Pre-combat site-
differences in cortical thickness are evident. Post-combat site-differences are minimised, but biological 
variability (e.g. age) remains - cortical thickness decreases with age. B) Cortical thickness of an 
independent test site (red) was harmonised with the whole cohort’s post-combat cortical thickness (grey) 
as a reference. This enables new sites to use the classifier on their MRI data. 

2.5.2. Three stage normalisation of features 
1. To account for interindividual differences, e.g. age-related changes, features were normalised 
using within- subject z-scoring.  

To account for intraindividual, regional variability in features, two further normalisation steps 
were carried out: interhemispheric asymmetry and intrasubject normalisation. 

2. Inter-hemispheric asymmetry maps of features were created subtracting right hemisphere 
vertex values from left hemisphere values and vice versa.  

3. The outputs from steps 1 and 2, were z-scored by distribution of features at each vertex from 
healthy controls to adjust for regional variability.  

The output of these normalisation steps is a set of intrasubject and intersubject normalised 
features (henceforth ‘normalised’ features) and a set of intrasubject, asymmetry and intersubject 
normalised featured (henceforth ‘asymmetry’ features). 
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2.5.3. Characterisation of FCD features on MRI 
Surface-based morphological features were calculated within the lesion masks of all patients. 
For controls, data were sampled from similarly-sized regions for comparison. T1-derived 
features, available in all subjects, underwent UMAP embedding (McInnes et al., 2018), a non-
linear dimensionality reduction where similar examples are plotted closer together. Lesions were 
clustered into groups according to their UMAP locations using a Gaussian mixture model. 

2.5.4. Border zones 
Lesion masks were drawn conservatively, to maximise the proportion of lesional vertices within 
the mask. There is inherent uncertainty in the precise borders of manually delineated lesion 
masks. Feature abnormalities extended approximately 40mm beyond the lesion (Figure 3). To 
account for this uncertainty, border zones were created around each lesion mask extending 20 
and 40mm across the cortical surface. Vertices between 0mm and 40mm from the lesion mask 
were excluded from training to reduce training on mislabelled data. Predicted lesion clusters 
within 20mm of the lesion masks classified as detected for the sensitivity+ metric (see network 
evaluation section). 

 

Figure 3. Extent of lesional abnormalities beyond the manual lesion masks. Normalised feature 
values plotted as a function of the geodesic distance from the manual lesion mask. Abnormal feature 
values extend up to 40mm (red dotted line) outside the manual lesion mask. From a distance of 40mm 
beyond the manual lesion mask, feature values look normal (red dotted line). To reduce data and label 
noise, during classifier training non-lesional samples are exclusively taken from beyond a 40mm border-
zone, while lesional samples are all taken from within the manual lesion masks. For more precise 
estimates of classifier performance, any predicted lesion cluster within the 20mm border-zone (green 
dotted line) is also reported in the results. 
 
2.6. Network Training, Testing and Interpretation 
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2.6.1. Cohort splitting 
An artificial neural network was trained on per-vertex post-processed MRI features [ComBat, 
Asymmetry, and Normalised], after border zones had been removed (33 total input features). 
The full cohort (excluding two independent test sites) of patients and controls were randomly 
assigned to either the train cohort (278 patients, 180 controls) or the test cohort (260 patients, 
193 controls) (Table 1). All experiments to determine the optimal data processing and network 
parameters were carried out through 10-fold cross validation on the train cohort. 
 
2.6.2. Network hyperparameters and training 
The neural network architecture had 2 hidden layers (40, 10) and 1 output node and used a 
dropout of 0.4 on the input layer for learning more robust representations. To adjust for the class 
imbalance between healthy and lesional examples, for each patient 2000 random lesional and 
non-lesional vertices were sampled per epoch. If a patient had less than 2000 lesional vertices, 
existing lesional vertices were randomly drawn multiple times. A focal loss (Lin et al., 2020) was 
used to concentrate network training on difficult examples. After training, the network predictions 
were thresholded using an optimal threshold determined based on the Dice (F1) score on the 
train cohort. For the full list of optimised parameters see Supplementary Table 1.  
 
On each of the 10 folds in the train cohort, a classifier was trained 5 times with different random 
initialisations. The resulting 50 models were combined into an ensemble model by averaging the 
individual models’ predictions, and evaluated on the test cohort. To calculate individual 
performance statistics for subjects in the train cohort, a second ensemble network was trained 
in a similar manner on the test cohort and evaluated on the train cohort. 
 
2.6.3. Evaluation metrics 
Per-vertex lesion predictions for each individual were grouped into spatially-connected clusters 
on the surface-mesh. Clusters smaller than 100 vertices (approximately 0.5cm2) were filtered 
out as noise. The following outcome measures were calculated:  

1) sensitivity, defined as the proportion of patients where a predicted lesion cluster 
overlapped the manual lesion mask;  

2) sensitivity+, defined as the proportion of patients where a predicted lesion cluster 
overlapped the manual lesion mask or the border zone;  

3) specificity, defined as the proportion of controls with zero clusters;  
4) average number of clusters per patient; 
5) average number of clusters per control. 

 
2.6.4. Network performance evaluation 
Three complementary methods to understand and interrogate classifier performance and 
behaviour were used.  
 
1. To determine how demographic and clinical factors influenced whether lesions were 
successfully detected by the classifier, two logistic regression models were used. The first 
included presurgically available variables: sex, scanner field strength, lesion hemisphere, FLAIR 
availability. The second included post-surgical variables (histopathological diagnosis and 
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seizure freedom) and was applied on the cohort of patients who had undergone surgery. 
Statistical significance was determined through repeating regression analysis on randomly 
permuted cohorts (1000 permutations). Correction for multiple comparisons used the Benjamini-
Hochberg procedure. 
 
2. To understand classifier predictions, MRI features from predicted clusters were transformed 
into the UMAP embedded space described above.  
 
3. To understand which specific features drove network predictions, integrated gradients 
saliency was computed (Sundararajan et al., 2017). This method computes which features are 
important to the network by looking at the integral (Riemann approximation) of the gradients 
computed from a baseline input (0 for each feature) to the actual feature values for each vertex. 
 
2.7. Code and data availability 
All data analysis was performed in Python. All protocols and code are available to download 
from protocols.io/researchers/meld-project and www.github.com/MELDProject/meld_classifier.  

 

3. Results 
3.1. Participant demographics 
After excluding patients with missing lesion labels (n=37) and outliers (n=14), a total of 571 FCD 
patients were included (Table 1). Each epilepsy surgery centre contributed 6 to 87 patients. 419 
patients underwent surgical intervention (73%) and histopathological diagnosis was available in 
384 patients (92% of operated patients). Post-surgical outcome data was available in 361 
patients (86% of operated patients); 68% were seizure free (Engel class 1) at last follow-up 
(median follow up = 2 years).  
 
 

	 Train	cohort	
Patients	(n=	278)	

Train	cohort	
Controls	(n=	180)	

Test	cohort	
Patients	(n=	260)	

Test	cohort	
Controls	(n=	193)	

Independent	site	1	
Patients	(n=	17)	

Independent	site	1	
Controls	(n=	18)	

Independent	site	2	
Patients	(n=	16)	

Age	at	preoperative	scan	
(median,IQR)	 20.0	,	(11.0	-	32.8)	 29.0	,	(19.0	-	37.9)	 18.0	,	(11.0	-	29.0)	 29.0	,	(19.5	-	39.2)	 7.3	,	(5.2	-	11.1)	 14.6	,	(10.5	-	16.1)	 6.1	,	(3.4	-	16.2)	

Sex	(f:m)	 150	:	127	 105	:	75	 125	:	135	 104	:	88	 7	:	10	 10	:	8	 6	:	10	
Age	of	epilepsy	onset	
(median,IQR)	 6.0	,	(2.5	-	12.0)	 	 6.0	,	(3.0	-	11.0)	 	 3.4	,	(0.8	-	5.8)	 	 2.0	,	(0.9	-	5.1)	
Duration	of	epilepsy	
(median,IQR)	 10.0	,	(4.3	-	18.4)	 	 10.2	,	(5.0	-	18.2)	 	 3.0	,	(0.5	-	7.2)	 	 2.4	,	(1.3	-	8.1)	

FLAIR	available	 132	/	278	(47.0%)	 28	/	180	(16.0%)	 110	/	260	(42.0%)	 28	/	193	(15.0%)	 17	/	17	(100.0%)	 18	/	18	(100.0%)	 16	/	16	(100.0%)	

Scanner	(1.5T:3T)	 41	:	237	 18	:	162	 56	:	204	 15	:	178	 0	:	17	 0	:	17	 0	:	16	

Surgery	 208	/	278	(75.0%)	 	 190	/	260	(73.0%)	 	 5	/	17	(29.0%)	 	 16	/	16	(100.0%)	

Histology	 193	/	208	(93.0%)	 	 171	/	190	(90.0%)	 	 4	/	5	(80.0%)	 	 16	/	16	(100.0%)	

Seizure	free	 123	/	183	(67.0%)	 	 106	/	157	(68.0%)	 	 3	/	5	(60.0%)	 	 14	/	16	(88.0%)	

Follow	up	time	 2.0	,	(1.0	-	3.0)	 	 2.0	,	(1.0	-	3.4)	 	 1.5	,	(1.1	-	1.7)	 	 2.9	,	(1.9	-	4.4)	
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Table 1. Demographics table. 
 
3.2. FCD lesion characterisation 
UMAP embedding of surface-based features from manual lesion masks and equivalent healthy 
cortex in the full cohort is shown in Figure 4A. Compared to healthy control cortex, many lesions 
exhibited a distinct set of MRI features. There was heterogeneity in the set of abnormal 
features, with three distinct groups emerging (Figure 4B). Group 1 was predominantly 
composed of FCD type IIA, IIB and unoperated lesions. These lesions were generally located at 
the bottom of a sulcus and characterised by increased intrinsic curvature, increased cortical 
thickness, decreased grey-white matter contrast and increased FLAIR in the white matter. 
Group 2 lesions were characterised by increased intrinsic curvature, decreased grey-white 
matter contrast and decreased intracortical FLAIR. Group 3 lesions, in which the lesional 
features overlapped with healthy cortex, were more heterogeneous and had less extreme 
feature values. 

 
Figure 4. Non-linear 2D UMAP embedding of lesional T1 features. A) Manual lesion masks of patients 
(black), compared to equivalent cortex on healthy controls (grey). Lesions differ from control cortex and 
exhibit different patterns of structural abnormality. B) Data-driven clustering of UMAP embedding reveals 
3 distinct groups of lesions. Colored-associated pie charts describe the proportion of each 
histopathological subtype present in each group. C) Patient lesions coloured by intra and inter-subject 
normalised features. Group 1 is predominantly FCD IIA & IIB, along with unoperated patients. It is 
characterised by increased intrinsic curvature, increased cortical thickness, decreased grey-white matter 
contrast, bottom of sulcus and increased FLAIR in the white matter. Group 2 is characterised by 
increased intrinsic curvature, decreased grey-white matter contrast and decreased intracortical FLAIR. It 
contains proportionally more FCD I and III lesions. Group 3 largely overlaps healthy control clusters. 
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Lesional features in this cluster are more heterogeneous and less extreme. 
 
3.3. Classifier performance 

 
Sensitivity+  

(percentage of 
patients detected) 

Sensitivity 
(percentage of 

patients detected) 

Number of clusters in 
patients           (median 

(IQR)) 

Specificity (percentage 
of controls with zero 

clusters) 

Number of clusters in 
controls    (Median 

(IQR)) 

Test cohort   67% (174/260) 59% (154/260) 2 (1.0-3.0) 54% (105/193) 0 (0.0-1.0) 

Full cohort   65% (350/538) 58% (314/538) 2 (1.0-3.0) 52% (194/373) 0 (0.0-1.0) 

Independent site 1  94% (16/17) 88% (15/17) 2 (2.0-4.0) 17% (3/18) 1 (1.0-2.0) 

Independent site 2  62% (10/16) 56% (9/16) 2 (2.0-3.25) NA NA 

 
Table 2. Classifier performance. Performance of the classifier on the test cohort, full cohort 
and the two independent sites. 
 
3.3.1. Detection in the test cohort 
For the 260 patients in the test cohort, the classifier predicted a median of 2 (interquartile range: 
1 - 3) clusters. These clusters overlapped with the manual lesion mask in 154 patients 
(sensitivity = 59%), and overlapped with the extended lesion mask (including border-zones) in 
174 patients (sensitivity+ = 67%). For the 193 controls in the test cohort, the classifier predicted 
a median of 0 (interquartile range: 0 - 1) clusters.  No cluster was predicted in 105/193 controls 
(54% specificity). Examples of individual predictions for detected and undetected lesions are 
presented in Figure 5. 

 
Figure 5. Neural network predictions. Classifier predictions for 6 patients are displayed. Patients 1-4 
are examples where the classifier has correctly identified the lesion. In patient 4 there is an additional 
cluster in the left insula. Patient 5 is an example where the classifier detects an area in the border-zone. 
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Patient 6 is an example of where the neural network has not identified the lesion. An additional cluster is 
detected in the right post central gyrus. Left column = lateral view, middle column = medial view, right 
column = zoomed in view around lesion mask. Black = lesion mask. Red = border-zone. Burgundy = 
classifier predicted clusters. 
 
3.3.2. Detection in the full cohort 
In the full cohort (538 patients, 373 controls), i.e including predictions from training the network 
on the test dataset and testing on the train dataset, results were similar to those on the test 
cohort only. Sensitivity was 58%, sensitivity+ was 65% and specificity was 52%. The classifier 
predicted a median of 2 clusters in patients and 0 clusters in controls. Out of the 178 patients 
who were “ever reported MRI-negative”, clusters overlapped with the extended lesion mask 
(including border-zones) in 112 patients (sensitivity+ = 62.9%). On a restricted cohort of patients 
with T1 and FLAIR data, who had histopathologically confirmed FCD type IIB and were seizure 
free, sensitivity was 85%. Classifier performance according to histopathology is presented in 
Table 3. 
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  % Detected Patients (n) 

Age group   

Adult 62.4 282 

Paediatric 68.0 256 

Ever reported MRI negative   

Visible 66.1 360 

MRI negative 62.9 178 

Seizure freedom   

Seizure free 69.9 229 

Not seizure free 58.6 111 

Scanner Sequence   

1.5T T1 Only 46.0 63 

 T1 & FLAIR 82.4 34 

3T T1 Only 63.9 233 

 T1 & FLAIR 69.2 208 

Histology   

FCD I 50.0 44 

FCD IIA 64.6 113 

FCD IIB 76.8 185 

FCD III 72.7 22 

Not available 55.7 174 

Restricted cohort   

T1 & FLAIR, FCD IIB, seizure free 85.0 40 

 
Table 3. Classifier performance grouped according to demographic factors. Detection rate 
per age group, MRI status, seizure freedom, scanner strengths, MRI modality, and histopathology. 
 
3.3.3. Detection on independent test sites 
When testing the classifier on the two independent sites, sensitivity was 88% for site 1 
(sensitivity+ 94%) and 56% for site 2 (sensitivity+ 62%). Specificity for site 1 was 17%, lower 
than expected compared to the full cohort. However, the sample size of controls for this site was 
only 18.  
 
3.4.  Evaluating network performance across the full cohort 
3.4.1 Demographic and clinical factors affecting network sensitivity 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2021. ; https://doi.org/10.1101/2021.12.13.21267721doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.13.21267721
http://creativecommons.org/licenses/by/4.0/


The first logistic regression model (Figure 6A), based on pre-surgical factors, showed that 
lesions were more likely to be detected in patients who were operated (β=0.43, p=0.04) and 
those that had FLAIR data available if they were scanned on a 1.5T MRI scanner (β=1.10, 
p=0.01). Lesions were less likely to be detected in patients scanned on 1.5T scanners (β=-0.60, 
p=0.02) and when located in the left hemisphere (β=-0.41, p=0.02) . However, these did not 
survive correction for the number of factors in the logistic regression model. There was no 
association with age, i.e. there was no significant difference in detection rates between 
paediatric and adult patients. Among post-surgical factors (Figure 6B), detection rates differed 
across histopathological subtypes, with 76.8% of FCD type IIB lesions detected, 64.6% of FCD 
type IIA, 72.7% in FCD type III and only 50.0% in FCD type I. FCD type I was significantly less 
likely to be detected (β=-0.53, p=0.01), and FCD 2B being more likely (β=0.57, p=0.02) than 
other histologies. Detection rates were non-significantly positively associated with post-surgical 
seizure freedom (β=0.51, p=0.04). Patients that are not seizure free may have more subtle 
lesions, which may contribute to both incomplete resections and the classifier not being able to 
detect them. Alternatively the lesions in patients that are not seizure free, may have been 
incorrectly masked.  

 
Figure 6. Logistic regression to determine factors associated with lesion detection. A) Presurgical 
factors and B) post-surgical factors associated with lesion detection. Bold colours indicate significance 
after correction for multiple comparisons. FCD IIB lesions were significantly more likely to be detected 
(bold red) and FCD I lesions were significantly less likely to be detected (bold blue).  
 
3.4.2. MRI features of predicted lesion clusters 
The MRI features within the manually defined lesion masks clustered into 3 distinct groups 
(Figure 7A). Groups 1 and 2, were associated with high detection rates (96.0% and 82.8% 
respectively), whereas group 3, which largely overlapped healthy cortex, had much lower rates 
of detection (56.3%). A lower percentage of operated patients in group 3 were seizure free 
(59.0% compared to 78% in groups 1 and 2).  Predicted lesion clusters superimposed on this 
UMAP embedding entirely overlapped groups 1 and 2 (Figure 7B) and no predicted lesion 
clusters were similar to group 3, which was indistinguishable from healthy cortex. For those 
manual lesion masks in group 3 that were correctly detected, the predicted lesion clusters 
exhibited features closer to those in groups 1 or 2 (Figure 7C). This indicates that while the 
manual lesion masks for lesions in group 3 did not capture areas of cortical surface that 
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exhibited characteristically abnormal MRI features, the neural network learned to identify an 
overlapping set of vertices that did exhibit abnormal feature characteristics.  

 
Figure 7. A) Data-driven clustering of UMAP embedding of lesional T1 features reveals 3 distinct groups 
of lesions. B) True positive and false positive clusters derived from the neural network superimposed on 
A. Feature values in true positive and false positive clusters are similar to either Group 1 or 2. Clusters 
are not similar to healthy cortex or group 3. C) Predicted clusters overlapping lesion masks from Group 3 
lesions are superimposed. The feature values in the predicted clusters are similar to Group 1 or 2, i.e. the 
network has identified vertices exhibiting characteristically abnormal MRI features in FCD.  
 
3.4.3. Characterising features salient to the network in segmenting FCD lesions 
In all patients, mean feature values and network saliencies were calculated for each feature 
within the predicted cluster. This enables the creation of a patient specific report containing the 
predicted lesion location, which features are abnormal within that predicted cluster and how 
much weight those features had in driving the classifier prediction, which we illustrate in Figure 
8 with 2 examples. Patient 1’s predicted lesion has decreased FLAIR in the grey matter, blurring 
at the gray-white matter boundary on T1, and moderately increased intrinsic curvature (Figure 
8B). From these features, the computed saliency scores indicate that the neural network 
considers the decreased grey matter FLAIR and grey-white contrast most important for its 
prediction of lesional vertices. Patient 2 is an example of an FCD type IIB lesion without FLAIR 
features (Figure 8). The predicted lesion has high intrinsic curvature, high cortical thickness and 
low grey-white matter boundary contrast.  These are also the three features with positive 
saliency scores, i.e. feature values driving the classifier’s “lesion” prediction. 
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Figure 8. Individual patient reports. Example classifier predictions with saliency scores for “patient 1” 
(an example with FLAIR data) and “patient 2” (without FLAIR data). A) Classifier predictions (dark red) 
and manual lesion mask (black line) visualised on brain surfaces (only lesional hemisphere is shown). 
Classifier predictions (dark red) visualised on T1 volume. B) Z-scored mean feature values within 
predicted lesions colored with Integrated Gradients saliency scores. Positive saliency scores indicate 
feature values driving the classifier’s “lesion” prediction. Negative scores indicate feature values that are 
inconsistent with the prediction. C) Lesional cortex highlighted on the patients’ MRI scans exhibit salient 
features automatically identified by the classifier. 
 
4. Discussion 
We present an interpretable, fully automated pipeline for surface-based detection of focal 
cortical dysplasias, which has been validated on a large withheld test cohort, incorporating data 
from 20 sites, and two independent sites. The sensitivity to detect lesions in the test cohort was 
67%, with sensitivities of 94% and 62% in the independent sites, 85% in the restricted cohort 
and 63% within patients who were ever reported “MRI-negative”. Logistic regression analyses 
indicated that FCD type IIB lesions had higher detection rates, whereas FCD type I lesions had 
lower detection rates. Multidimensional analysis of lesional cortex revealed groups of lesions 
characterised by different MRI features, histologies, post-surgical outcomes and detection rates. 
Individual patient reports provide a map of the predicted lesion locations alongside the 
quantified lesional features and how salient they were considered by the classifier. 
 
This study extends previous work on FCD detection in the largest MRI cohort of FCDs to date. 
Previous surface-based work has identified features that differentiate lesional cortex and 
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developed machine-learning frameworks for the incorporation of these features (Adler et al., 
2017; Hong et al., 2014; Jin et al., 2018; Mo et al., 2018; Wagstyl et al., 2020). However, being 
limited by small numbers of patients and data acquired from only one or two MRI scanners can 
lead to large error bars on estimates of sensitivity and specificity (Varoquaux, 2018) and limited 
generalisability due lack of diversity in training data. Progress is also being made on automated 
volumetric MRI methods (David et al., 2021; Gill et al., 2021; House et al., 2021), however 
datasets have tended to be restricted either to histopathologically confirmed FCD type II 
cohorts, or single sites. Through creating a large dataset including both paediatric and adult 
patients across multiple sites and MRI scanners as well as including all FCD histopathological 
subtypes, we aimed to address these limitations. Furthermore, we included lesions that were 
visible to neuroradiologists on MRI as well as those that had been reported “MRI-negative”. 
Lastly, our training dataset included lesions masked by different radiologists / researchers at 
different institutes. This heterogeneity in lesion masking reduced overfitting of the network to 
one individual neuroradiologist’s opinion. This large multisite, multiscanner cohort provided 
reliable and reproducible estimates of classifier performance that generalised well to two 
independent cohorts. In particular, it was able to detect 76.8% of FCD type IIB lesions. 
 
Our data-driven clustering of FCD lesions revealed three distinct groups of lesions. Group 1 had 
“classical” radiological features of FCD type II; increased cortical thickness, blurring of the grey-
white matter boundary, abnormal folding, FLAIR hyperintensity in the white matter and were 
often located at the bottom of sulci. They were associated with high detection rates by the 
neural network (96%) and had good seizure freedom rates (78%).  Group 2 had more subtle 
features; blurring of the grey-white matter boundary, FLAIR hypointensity in the grey matter and 
some folding changes. However, our classifier was still able to detect 82.8% of these lesions 
and the patients in this group who had been operated on still had good seizure freedom rates 
(78%). In contrast, lesions in group 3 were difficult to differentiate from healthy cortex, they did 
not demonstrate characteristic FCD “fingerprints” and only 59% of these patients were seizure 
free after surgery. For group 3 lesions that were detected by the classifier (56.3%), the classifier 
identified a subset of vertices that exhibited MRI features more consistent with groups 1 and 2 
(Figure 4C). This suggests that these lesions are more subtle or difficult to delineate or 
structurally heterogeneous (Lee et al., 2020) on MRI. 
 
One challenge in incorporating machine-learning algorithms in clinical practice is their 
perception as being “black-boxes”, with limited feedback on what data have informed a 
prediction. Saliency aims to interrogate which specific input features drive neural network 
predictions. Our individual patient reports provide information on which features are abnormal 
within the predicted clusters, accompanied by their impact on classifier prediction (Figure 8). A 
neuroradiologist or multidisciplinary team could use this tool to confirm their hypotheses in “MRI-
visible” lesions, to rereview the scans of “MRI-negative” patients or identify targets for more 
detailed investigations, such as sEEG (Wagstyl et al., 2020). They will obtain putative lesion 
locations identified by the classifier, equipped with an understanding of what features were 
considered suspicious and how they were abnormal, thus opening the “black-box”.  
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5. Limitations and future work 
Participating MELD sites manually masked FCD lesions and only surface-based data were 
shared with the project coordinators. While preserving a greater level of anonymity and 
facilitating data sharing, this preprocessing prevented assessment of inter-rater reliability of 
lesion masks and comparison of predicted lesions with patients’ volumetric MRIs. As with other 
FCD detection algorithms, false positives were common in both patients and controls. This 
neural network classifies individual vertices, future work using incorporating neighbourhood 
information and incorporation with volumetric approaches may help to reduce the false 
positives. Additionally, integrating electrophysiology might help to identify which structural 
abnormalities are epileptogenic. One challenge in all FCD detection work is deciding which 
patients are considered "MRI-negative". The measure “ever reported MRI-negative” will vary 
based on the level of neuroradiological expertise at the individual site as well as the MRI 
scanner and sequences acquired. However, it should provide a measure of the more 
challenging lesions to detect. Lastly, drug-resistant focal epilepsy is caused by multiple 
pathologies of which FCDs are a significant subset. Invaluable future studies would extend the 
inclusion criteria to a wider spectrum of focal epilepsies.  
 
6. Conclusions 
We demonstrate how through open-science practices and de-centralised MRI post-processing, 
one can create a dataset; and train and validate a machine-learning framework to assist in the 
diagnosis of a rare clinically-challenging pathology. The MELD FCD classifier is a fully 
automated, open-access surface-based tool that can be run on any patient with a suspicion of 
having an FCD who is over age three and has a 1.5T or 3T T1 scan, with or without FLAIR data. 
The classifier is available on GitHub as a user-friendly python package and can output a patient 
specific report detailing suspected structural abnormalities, which features are abnormal within 
these clusters and their impact on classifier prediction.  
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Supplementary Materials 
 

Input data selection 

Number of vertices 
per subject 

2000 lesional, 2000 non-lesional If there are less than 2000 lesional vertices, they are oversampled. Non-lesional vertices 
are drawn randomly from a pool of 10000 vertices each epoch 

Size of boundary 
zone 

40mm Vertices from the boundary zone are excluded from training 

Shuffle each epoch True  

Normalisation Per-feature mean and std  

Neural network architecture 

Layers Input (xx) - Dense (40) - Dense 
(10) - Output (2)  

 

Dropout 0.4 Applied after each layer 

Training 

Loss Focal loss, alpha=0.2, gamma=5  

Learning rate 0.00001  

Batch size 1024  

Epochs 100  

Patience 10 Training was stopped early, if loss did not improve after 10 Epochs 

Number of folds 10 Networks trained with 10-fold cross validation were ensembled to a final model 

Evaluation 

Optimal threshold 0.52 Computed on training set: 

Min area lesion 100 vertices Minimum number of connected vertices predicted as lesion to be considered a predicted 
lesional cluster 

 
Supplementary table. List of neural network parameters 
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