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Abstract
The idea to exploit label dependencies for better prediction is at the core of methods for 
multi-label classification (MLC), and performance improvements are normally explained 
in this way. Surprisingly, however, there is no established methodology that allows to ana-
lyze the dependence-awareness of MLC algorithms. With that goal in mind, we introduce a 
class of loss functions that are able to capture the important aspect of label dependence. To 
this end, we leverage the mathematical framework of non-additive measures and integrals. 
Roughly speaking, a non-additive measure allows for modeling the importance of correct 
predictions of label subsets (instead of single labels), and thereby their impact on the over-
all evaluation, in a flexible way. The well-known Hamming and subset 0/1 losses are rather 
extreme special cases of this function class, which give full importance to single label sets 
or the entire label set, respectively. We present concrete instantiations of this class, which 
appear to be especially appealing from a modeling perspective. The assessment of multi-
label classifiers in terms of these losses is illustrated in an empirical study, clearly showing 
their aptness at capturing label dependencies. Finally, while not being the main goal of this 
study, we also show some preliminary results on the minimization of this parametrized 
family of losses.

Keywords Multi-label classification · Loss function · Non-additive measures · Analysis · 
Label dependence

1 Introduction

The setting of multi-label classification (MLC), which generalizes standard multi-class 
classification by relaxing the assumption of mutual exclusiveness of classes, has received 
a lot of attention in the recent machine learning literature—we refer to Tsoumakas et al. 
(2010) and Zhang and Zhou (2014) for survey articles on this topic. The motivation for 
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MLC originated in the field of text categorization (Hayes and Weinstein 1990; Lewis 1992; 
Apté et  al. 1994), but nowadays multi-label methods are used in applications as diverse 
as music categorization (Trohidis et al. 2011), semantic scene classification (Boutell et al. 
2004), protein function classification (Diplaris et  al. 2005), natural language processing 
(Wu et al. 2019), and remote sensing (Yessou et al. 2020).

Formally, the task of a multi-label classifier is to assign a subset of a given set of candi-
date labels to any query instance. A straightforward approach for learning such a predictor 
is via a reduction to binary classification, i.e., by training one binary classifier per label 
and combining the predictions of these classifiers into an overall multi-label prediction. 
This approach, known as binary relevance (BR) learning, is often criticized for ignoring 
possible label dependencies, because each label is predicted independently of all other 
labels. Indeed, the idea of exploiting statistical dependencies between the labels in order 
to improve predictive performance on the level of the entire label set is a major theme in 
research on multi-label classification, and many MLC methods proposed in the literature 
are motivated by this idea.

Of course, the usefulness of such methods very much depends on whether or not such 
dependencies are indeed present in the data. Besides, it turns out that the underlying loss 
function used to evaluate predictions plays an important role (Dembczynski et al. 2012). 
Since a subset of predicted labels can be compared with a ground-truth subset in many 
ways, various loss functions have been proposed in the literature. Two simple but com-
monly used examples are the Hamming and the subset 0/1 loss. While the former assesses 
the quality of predictions in terms of the percentage of incorrectly predicted labels, the 
latter merely checks whether the entire label subset is predicted correctly or not. As will 
be explained in more detail later on, capturing label dependencies is crucial for performing 
well in terms of the subset 0/1 loss, but—at least in theory—not necessary in the case of 
the Hamming loss, which evaluates each label prediction independently of all others.

Despite their widespread use and interesting theoretical properties, both Hamming and 
subset 0/1 can be criticized for various reasons, especially for being rather extreme (Demb-
czynski et al. 2010). The Hamming loss is often close to 0, simply because the label car-
dinality (average percentage of relevant labels per example) is very small in typical MLC 
data sets. Thus, even the default classifier that predicts all labels as irrelevant will usually 
perform well according to Hamming loss, and is indeed often difficult to beat. Even if an 
improvement is possible, the performance differences are typically small, and therefore dif-
ficult to test for statistical significance. On the other side, the subset 0/1 loss is typically 
quite high and may appear overly stringent, especially in the case of many labels. Moreo-
ver, since a mistake on a single label incurs the same penalty as erring on all predicted 
labels, it does not discriminate well between “almost correct” and completely wrong pre-
dictions. For these reasons, the evaluation of MLC algorithms in terms of Hamming loss or 
subset 0/1 loss is arguable and often of little practical relevance.

In this paper, we introduce a new class of MLC loss functions that are able to capture 
the important aspect of label dependence in a sophisticated and controllable manner. In 
a sense, these losses “interpolate” between Hamming and subset 0/1 loss. Although they 
could play the role of the target loss to be optimized by the learner, or could be used as a 
surrogate loss facilitating the optimization of another target loss (as will also be seen in 
Sect. 6), their main purpose (at least from our perspective) is different: we consider them 
as a tool for analyzing MLC algorithms, helping to gain insight into their learning behavior 
and their (alleged) “dependence-awareness”.

The construction of our loss functions is based on the mathematical framework of non-
additive measures and integrals (Sect. 3). Roughly speaking, the overall loss is obtained 
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by integrating over the errors on individual labels. This integration is done with respect 
to a non-additive measure, which allows for controlling the dependence-awareness of the 
loss, i.e., for modeling the importance of correct predictions of label subsets. In Sect. 4, we 
present concrete instantiations of this type of loss functions, which allow for controlling 
dependence-awareness by means of a single parameter. The assessment of the dependence-
awareness of multi-label classifiers in terms of these losses is illustrated in an empirical 
study (Sect. 5). Finally, in Sect. 6, we also show first results that illustrate the effects on 
minimizing this family of losses for different parametrizations.

2  Multi‑label classification

Let X  denote an instance space, and let L = {�1,… , �K} be a finite set of class labels. We 
assume that an instance x ∈ X  is (probabilistically) associated with a subset of labels in 
L , often called the set of relevant labels, while the complement is considered as irrelevant 
for x . We identify the subset with a binary vector y = (y1,… , yK) ∈ Y = {0, 1}K , in which 
yk = 1 indicates relevance of �k.

We assume observations to be realizations of random variables generated independently 
and identically (i.i.d.) according to a probability measure P on X × Y (with density/mass 
function p ), i.e., an observation y = (y1,… , yK) is the realization of a corresponding ran-
dom vector � = (Y1,… , YK) . We denote by p(� | x) the conditional distribution of � given 
� = x , and by pi(Yi | x) the corresponding marginal distribution of the ith label Yi , i.e.,

for b ∈ {0, 1} . Given training data in the form of a finite set of observations

drawn independently from P(�,�) , the goal in MLC is to learn a predictive model that 
generalizes well beyond these observations, i.e., which yields predictions that minimize the 
expected risk with respect to a specific loss function.

2.1  Predictive models in MLC

A multi-label classifier h is a mapping X ⟶ Y that assigns a (predicted) label subset to 
each instance x ∈ X  . Thus, the output of a classifier h is a vector

In the following, predictions of this kind will also be denoted as ŷ = (ŷ1,… , ŷK).

2.2  MLC loss functions

In the literature, various MLC loss functions have been proposed (Wu and Zhou 2017). 
Commonly used are the Hamming loss �H and the subset 0/1 loss �S , which both general-
ize the standard 0/1 loss for multi-class classification:

(1)pi(b | x) =
∑

y∈Y∶yi=b

p(y | x)

(2)D = {(xn, yn)}
N
n=1

⊂ X × Y,

(3)h(x) = (h1(x),… , hK(x)) ∈ {0, 1}K .
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where [[⋅]] is the indicator function, i.e., [[A]] = 1 if the predicate A is true and = 0 otherwise. 
Besides, other performance metrics are often reported in experimental studies, for example 
the F-measure.

2.3  Label dependence

Predictions of an MLC classifier can often be regarded as an approximation of the con-
ditional probability p(Y = ŷ | x) , i.e., the probability that ŷ is the true label for the given 
instance x . The idea to improve such predictions by capturing dependencies between 
Y1,… , YK is a driving force in research on MLC. In this regard, a distinction between 
unconditional and conditional independence of labels can be made (Dembczynski et  al. 
2012). In the first case, the joint distribution p(�) in the label space factorizes into the 
product of the marginals p(Yk) , i.e.,

whereas in the latter case, the factorization

holds conditioned on x , for every instance x . In other words, unconditional dependence 
is a kind of global dependence, whereas conditional dependence is a dependence locally 
restricted to a single point in the instance space.

2.4  Decomposable loss functions

It turns out that there is a close connection between label dependence and the decompos-
ability of loss functions: a decomposable loss can be expressed in the form

with suitable binary loss functions �(k) ∶ {0, 1}2 ⟶ ℝ for each label yk , whereas a non-
decomposable loss does not permit such a representation. It can be shown that knowl-
edge about the marginals pk(Yk | x) is sufficient for producing loss minimizing predictions 
ŷ = h(x) in the decomposable case but not in the case of a non-decomposable loss (Demb-
czynski et al. 2012). Instead, if a loss is non-decomposable, higher-order probabilities are 
needed, and in the extreme case even the entire distribution p(� | x) (as in the case of the 
subset 0/1 loss). On an algorithmic level, this means that MLC with a decomposable loss 
can be tackled by binary relevance (BR) learning (i.e., learning one binary classifier for 
each label individually), whereas non-decomposable losses call for more sophisticated 
learning methods that take label dependencies into account.

(4)�H(y, ŷ) =
1

K

K∑
k=1

[[yk ≠ ŷk]],

(5)�S(y, ŷ) = [[y ≠ ŷ]],

p(�) = p(Y1) ×⋯ × p(YK) ,

p(� | x) = p(Y1 | x) ×⋯ × p(YK | x)

(6)�(y, ŷ) =

K∑
k=1

�
(k)(yk, ŷk)
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3  Multi‑label loss functions based on non‑additive measures

The Hamming and the subset 0/1 loss are often considered as prototypical examples of 
losses which, respectively, do and do not impel the learner to take label dependencies into 
account: Hamming is label-wise decomposable and can principally be optimized by learn-
ing algorithms like BR. The subset 0/1 loss, on the other side, is not label-wise decompos-
able. Therefore, this loss is often used to quantify the learner’s ability or propensity to 
capture label dependencies. For example, consider the following (conditional) ground-truth 
distribution p(⋅ | x) on the label space Y = {0, 1}3 : 

y (0, 0, 0) (1, 1, 1) (0, 1, 1) (1, 0, 1) (1, 1, 0)

p(y | x) 1∕4 3∕16 3∕16 3∕16 3∕16

For each of the three labels, the individual probability of relevance ( 9∕16 ) is higher 
than the probability of irrelevance, and indeed, in the case of Hamming, ŷ = (1, 1, 1) is 
the Bayes-optimal prediction (minimizing the loss in expectation). For the subset 0/1 loss, 
however, the Bayes-optimal prediction is ŷ = (0, 0, 0) . In general, the Bayes-optimal pre-
diction is given by the marginal mode of the distribution p(⋅ | x) in the case of Hamming 
and by the joint mode in the case of subset 0/1.

Both Hamming and subset 0/1 can be criticized for being rather extreme: the Hamming 
loss is often very low, because it does not take any dependencies into account, and the 
distribution between relevant and irrelevant instances for each label is quite unbalanced. 
Therefore, even a classifier that only predicts the absence of all labels may have a low 
Hamming loss. Conversely, the subset 0/1 loss is normally quite high, since an entirely cor-
rect prediction becomes very unlikely with increasing K. It is an “all or nothing” measure, 
for which a mistake on a single label is as bad as a mistake on many labels, and which does 
not reward correct predictions on larger subsets of the labels.

In the following, we introduce a new class of loss functions for MLC, which allows for a 
more gradual assessment of an algorithm’s ability to model label dependencies. These loss 
functions are able to assess a learner’s dependence-awareness, i.e., its aptness at captur-
ing label dependencies, in a more flexible way. To this end, we leverage the mathematical 
framework of non-additive measures and integrals, the essentials of which are recalled in 
Sects.  3.2 and 3.3. Roughly speaking, a non-additive measure is used for modeling the 
importance of correct predictions of label subsets (instead of single labels), and thereby 
their impact on the overall evaluation (cf.  Sect.  3.4). Hamming and subset 0/1 will be 
recovered as special (“boundary”) cases of our family.

3.1  General idea

For didactic reasons, let us anticipate the basic construction principle of our family of 
loss functions, which will be introduced step by step, alongside with several other (aux-
iliary) functions. To this end, let us assume that an MLC classifier produces predictions 
in the form of scores si ∈ [0, 1] for the individual labels �i—this covers binary predictions 
si ∈ {0, 1} as a special case, though most methods produce real-valued scores in a first 
step, for example probability estimates, which are then turned into binary relevance predic-
tions in the end (e.g., via thresholding).
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Given a score si indicating the predicted relevance of the label �i and the ground truth 
yi ∈ {0, 1} , it is natural to consider the difference |si − yi| between these two as a measure 
of incorrectness of the prediction, or, vice versa, 1 − |si − yi| as a measure of correctness. 
Considering these degrees of correctness of predictions on individual labels as evaluation 
criteria ci , a loss ��(y, s) will be defined as a suitably weighted aggregation (namely as an 
integral) of the correctness degrees

Thus, f (ci) ∈ [0, 1] can be seen as the degree to which the criterion ci , being cor-
rect on the ith label, is fulfilled. Allowing for predictions in terms of a score vector 
s = (s1,… , sK) ∈ [0, 1]K is more general than a binary prediction ŷ = (ŷ1,… , ŷK) ∈ {0, 1}k , 
but obviously comprises the latter as a special case. Moreover, such kind of “soft” predic-
tions are produced by many MLC algorithms. The loss will then be specified in terms of an 
integral of the “correctness function” f given by (7), i.e., as an aggregated (in-)correctness

To this end, two main ingredients, the measure � for weighting and the integral for aggre-
gation, are needed:

– A measure � assigns a weight �(A) to every subset A, in our case to a subset of labels, 
which can be interpreted as the importance of that subset. Formally, a measure � is a 
mapping from subsets to the unit interval, which can be equivalently represented by its 
Moebius transform m� [see (10) below].

– The aggregation in (8) is accomplished with the so-called (discrete) Choquet integral 
C� , which is a weighted aggregation of the values of a function (here f) with respect to 
the underlying measure �.

The Choquet integral has already been used as a mathematical tool in machine learning, for 
example in multi-class classification (Tehrani et al. 2012a) and preference learning (Teh-
rani et al. 2012b), but also in the context of MLC (Tehrani and Ahrens 2017). In all these 
cases, however, it has been used as a model for representing the predictor, for example a 
classifier h, that is, as a function to aggregate the input features x . We are not aware of any 
work on leveraging non-additive measures and integrals for defining MLC loss functions, 
i.e., for applying it as an aggregation function on the predictions (rather than the features). 
In the following, we discuss the components on the right-hand side of (8) in more detail, 
for the specific case of MLC.

3.2  Non‑additive measures

Let C = {c1,… , cK} be a finite set of (desirable) “criteria” and � ∶ 2C ⟶ [0, 1] a measure 
on this set. For each A ⊆ C , we interpret �(A) as the weight or the importance of the subset 
of criteria A. In the context of MLC, we can think of a criterion ci as the correctness of the 
prediction on the ith label �i . Thus, �({c1}) is the importance of predicting the first label 
correctly, and �({c1, c2}) is the importance of jointly predicting the first and the second 
label correctly.

(7)f (ci) = 1 − |si − yi| ∈ [0, 1] ,

(8)��(y, s) = 1 − ∫ f d � ,
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A standard assumption on a measure � , which is at the core of probability theory, is addi-
tivity: �(A ∪ B) = �(A) + �(B) for all A,B ⊆ C such that A ∩ B = � . Unfortunately, addi-
tive measures cannot model any kind of “interaction”: extending a set of elements A by a set 
of elements B always increases the weight �(A) by the weight �(B) , regardless of A and B. 
For example, we cannot express that predicting �1 and �2 correctly, i.e., both together, has a 
higher value than the sum of getting both of them individually right, simply because additivity 
implies �({�1, �2}) = �({�1}) + �({�2}).

Non-additive measures, also called capacities or fuzzy measures, are simply normalized 
and monotone, but not necessarily additive (Sugeno 1974):

Thus, a set of criteria B is always at least as important as any of its subsets. Yet, the way in 
which �(B) differs from �(A) is not immediately determined by �(B ⧵ A).

A useful representation of non-additive measures is in terms of the Moebius transform:

for all B ⊆ C , where the Moebius transform m� of the measure � is defined as follows:

3.3  The Choquet integral

Suppose that f ∶ C ⟶ ℝ+ is a non-negative function that assigns a value to each criterion 
ci . As already said, in the case of MLC, we can think of f (ci) as the correctness of a prediction 
on the label �i . An important question, then, is how to aggregate the evaluations of individ-
ual criteria, i.e., the values f (ci) , into an overall evaluation, in which the criteria are properly 
weighted according to the measure � . Mathematically, this overall evaluation can be consid-
ered as an integral C�(f ) of the function f with respect to the (possibly non-additive) measure 
� . Indeed, if � is an additive measure, the standard integral just corresponds to the weighted 
mean

which is a natural aggregation operator in this case. For example, in the context of MLC, 
the Hamming loss is a special case of (12), with f (ci) ∈ {0, 1} depending on whether the 
prediction on �i is right or wrong, and uniform weights wi = 1∕K.

The question of how to generalize (12) and define the integral of a function with respect 
to a non-additive measure is answered by the Choquet integral (Choquet 1954), which, in the 
discrete case, is formally defined as follows:

(9)
𝜇(�) = 0,𝜇(C) = 1, and

𝜇(A) ≤ 𝜇(B) for all A ⊆ B ⊆ C .

(10)𝜇(B) =
∑
A⊆B

m𝜇(A)

(11)m𝜇(A) =
∑
B⊆A

(−1)|A|−|B|𝜇(B) .

(12)C�(f ) =

K∑
i=1

wi ⋅ f (ci) =

K∑
i=1

�({ci}) ⋅ f (ci) ,

C�(f ) =

K∑
i=1

(
f (c(i)) − f (c(i−1))

)
⋅ �(A(i)) ,
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where (⋅) is a permutation of [K] such that 0 ≤ f (c(1)) ≤ f (c(2)) ≤ … ≤ f (c(K)) (and 
f (c(0)) = 0 by definition), and A(i) = {c(i),… , c(K)} . It can also be shown that, in terms of 
the Moebius transform of � , the Choquet integral can also be expressed as follows (see e.g. 
Klement et al. 2002):

3.4  MLC losses based on non‑additive measures

In the context of MLC, non-additive measures and generalized integrals can be used to 
define flexible loss functions: Each criterion ci corresponds to the (correct) prediction on 
a label �i , and �(A) quantifies the importance to be correct on the subset of labels A as 
a whole. Moreover, the function to be integrated is the correctness function (7). Thus, 
ui = f (ci) = 1 − |si − yi| is the degree of correctness on the label �i , where si ∈ [0, 1] is the 
score predicted for label �i and yi ∈ {0, 1} the corresponding ground truth: ui = 1 for a per-
fectly correct prediction and ui = 0 for a wrong prediction.

Now, given the ui as values on the criteria ci (the higher the better), the idea is to aggre-
gate these values with the Choquet integral (based on the measure � ) into an overall degree 
of correctness, and to define a loss as the complement ( 1 − (⋅) ) of this degree of correct-
ness. Formally, this leads to the following loss function, wherein the permutation (⋅) is such 
that 0 ≤ u(1) ≤ u(2) ≤ … ≤ u(K) , and A(i) = {c(i),… , c(K)}:

Note that, given random access to the measure � , this loss can be computed in time 
O(K logK).

4  Concrete instantiations of the framework

In the following, we show that important existing MLC losses can be recovered as special 
cases of (14). Moreover, we introduce two parametrized families of loss functions based on 
so-called counting measures.

4.1  Special cases

The Hamming loss and the subset 0/1 loss, which are commonly used measures that repre-
sent the extreme ends of dependence-awareness, can be obtained as special cases of (14):

– The Hamming loss results from the additive measure �(A) = |A|∕K , for which the sum 
in (14) takes the form 

and hence 

(13)C𝜇(f ) =
∑
T⊆C

m𝜇(T) ×min
i∈T

f (ci) .

(14)𝓁�(y, s) = 1 −

K∑
i=1

(
u(i) − u(i−1)

)
⋅ �

(
A(i)

)
.

K
−1(Ku(1) + (K − 1)(u(2) − u(1)) +… + 1(u(K) − u(K−1))) = K

−1
∑

i
u(i) = K

−1
∑

i
u
i
,
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 Strictly speaking, allowing for real-valued scores si ∈ [0, 1] , we obtain a generalization 
of the Hamming loss.

– The subset 0/1 loss results from 

 for which the sum (14) takes the form 
K∑
i=1

�
u(i) − u(i−1)

�
= u(1) = mini ui , and hence 

 which, in case s ∉ {0, 1}K , is again a generalization.
Another interesting special case is the covering error introduced by Amit et al. (2007), 
which is defined as the sum of subset 0/1 losses on a family of predefined label subsets, 
called a covering. The connection to this loss can nicely be seen based on the represen-
tation (13) of the Choquet integral in terms of the Moebius transform. Here, the min

-terms correspond to subset 0/1 losses on subsets T. In contrast to the covering error, 
where these losses are weighted equally, they are weighted by the values of the Moebius 
function in our case.

4.2  Counting measures

The two measures above are examples of so-called counting measures, which only 
depend on the cardinality of A. In other words, � is a counting measure if it can be 
expressed as �(A) = v(|A|∕K) for a suitable function v ∶ [0, 1] ⟶ [0, 1] , which means 
that the measure of a set only depends on its cardinality but not on the elements of the 
set. For example, �({c1, c2}) = v(2∕K) = �({c3, c4}) . This kind of symmetry property 
is certainly meaningful in MLC, where the different labels are normally considered as 
equally important – or, stated differently, the performance metric is normally invariant 
under permutation of the labels. Here, v(k/K) can be interpreted as the importance of 
a correct prediction on a subset of k labels, which means that the loss function (14) is 
completely specified by the values

Obviously, compared to the general case, this is an enormous reduction from an exponen-
tial to a linear number of degrees of freedom that need to be specified.

Formally, for an increasing function v ∶ [0, 1] ⟶ [0, 1] such that v(0) = 0 and 
v(1) = 1 , we obtain an OWA (ordered weighted averaging (Yager and Filev 1999; Yager 
and Kacprzyk 2012)) aggregation of the degrees of correctness ui , namely

with

��(y, s) = 1 −
1

K

K∑
i=1

ui =
1

K

K∑
i=1

|si − yi| .

𝜇(A) =

{
1 if A = C

0 if A ⊊ C
,

��(y, s) = 1 − min
1≤i≤K ui = max

1≤i≤K |yi − si| ,

0 = v(0), v(1∕K),… , v(1) = 1 .

(15)
K∑
i=1

wi ⋅ u(i)
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In other words, we obtain an OWA loss function

with w1 +…+ wK = 1 . Again, Hamming is obtained for the special case v ∶ x ↦ x and 
subset 0/1 for v such that

Let us highlight that, in spite of a somewhat involved derivation (based on non-additive 
measures and integrals) and the flexibility our class of loss functions in general, the form 
(16) we end up with in the case counting measures is both intuitively appealing and easy 
to compute. In principle, it is nothing than a weighted average of the errors on individual 
labels, with the important difference that the weights wi now pertain, not to the ith label, 
but to the ith order statistic of the error, i.e., the ith largest error. Let us illustrate this with 
a simple example, in which the ground-truth labeling is y = (0, 1, 1, 0, 0, 0) and the pre-
diction s = (0.2, 0.3, 0.9, 0.1, 0.4, 0.3) . Here, the errors on the individual labels are given, 
respectively, by 0.2, 0.7, 0.1, 0.1, 0.4, 0.3. Sorting these from lowest to highest yields the 
increasing sequence 0.1, 0.1, 0.2, 0.3, 0.4, 0.7. Different weight vectors w will then empha-
size different values in this sequence and hence yield different losses, for example: 

Error 0.1 0.1 0.2 0.3 0.4 0.7 ��(y, s)

Weight 1∕6 1∕6 1∕6 1∕6 1∕6 1∕6 0.30
Weight 0 0 0 0 0 1 0.70
Weight 0 1∕15 2∕15 3∕15 4∕15 5∕15 0.43

The first case with uniform weights corresponds to Hamming loss and yields a simple 
averaging of the errors. In the second case, the full weight is given to the largest error, 
which corresponds to the subset 0/1 loss. The third case is in-between these two extremes.

Let us also note that the computation is further simplified in the case of binary predic-
tions, i.e., where the scores si and hence also the individual errors are either 0 or 1. In this 
case, the loss merely depends on the total number of errors k, and is given by

i.e., by the sum of the k largest weights.

4.3  Parametrized families

In the following, we present two families of loss functions (16), which allow for modeling 
the dependence-awareness in terms of a single parameter.

– Polynomial loss: First, one could think of using a convex function of the form 

wi = v
(
K − i + 1

K

)
− v

(
K − i

K

)
.

(16)𝓁�(y, s) =

K∑
i=1

wi ⋅ |y(i) − s(i)|

v(x) =

{
1 if x = 1

0 otherwise
.

��(y, s) =

K∑
i=K−k+1

wi ,
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 for � ≥ 1 . The larger � , the more important it becomes to predict larger subsets cor-
rectly, and subset 0/1 is recovered for the limit case � → ∞ . In other words, � can be 
used to smoothly interpolate between Hamming and subset 0/1.

– Binomial loss: To motivate a second family, suppose we are only interested in getting 
k-subsets of labels right, whereas a correct prediction on a subset of size < k should not 
be rewarded. This could be reflected by a Moebius function 

 In this case, we obtain 

 Again, the Hamming and subset 0/1 loss can be recovered by setting, respectively, 
k = 1 and k = K , while interpolations are obtained in-between.

In principle, non-symmetric measures could of course be used in MLC as well, for exam-
ple to express that different labels or different label subsets are of different importance. Yet, 
as already said, symmetry appears to be a natural property. Moreover, as it significantly 
reduces the number of degrees of freedom, this property facilitates the specification of a 
measure-based loss function (14).

Nevertheless interesting would be a weighting of label subsets in proportion to the num-
ber of relevant labels they contain. More concretely, starting from a “base measure” � , the 
Moebius mass m�(A) could be adjusted depending on the number of relevant labels in A—
increased if A contains many and reduced if it contains only few relevant labels. Thereby, 
more emphasis could be put on correct predictions for relevant labels. The resulting loss 
function would then depend on the ground truth y . We leave this generalization for future 
work.

4.4  Examples

We end this section with a few examples illustrating the different roles that generalized 
losses may play, namely, the role of an analytic tool (first example), as a target loss (second 
example), and as a surrogate loss (third example). As a family of losses, we consider the 
binomial loss parametrized by k, i.e., the loss defined by (16) with v given by (18).

As a first simple example consider a 3-label problem, where (for a given instance x ) 
the labels are either all relevant ( y = (1, 1, 1) ) or all irrelevant ( y = (0, 0, 0) ). Suppose that 
learner A trains a binary predictor for each label individually and achieves an accuracy of 
0.8 on each of the three problems. Learner B, on the other side, is trained using the label 
powerset approach (Tsoumakas et al. 2010) and only predicts (1, 1, 1) or (0, 0, 0), provid-
ing the right answer with probability 0.5. Obviously, learner B is more dependence-aware 
than A. Yet, assuming B’s predictions are independent, both have a subset 0/1 loss around 

(17)v ∶ x ↦ x�

m(A) =

⎧
⎪⎨⎪⎩

1∕

�
K

k

�
if �A� = k

0 otherwise

(18)v

(
j

K

)
=

(
j

k

)

(
K

k

) .
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0.5, and A even a bit less. This example clearly shows that, to compare learners in terms of 
their dependence-awareness, it is not enough to look at a single loss measure: a learner may 
perform quite well in terms of subset 0/1 because it succeeds at capturing dependencies, 
but also because it performs strong on each label individually (while ignoring any depend-
encies). As an aside, the example also suggests that capturing dependencies does not auto-
matically imply improvements, also because it normally complicates the learning task (see 
also our third example below).

More insight is gained by looking at several losses simultaneously. For learner B, the 
subset 0/1 loss coincides with its Hamming loss and also with the binomial loss for k = 2 , 
simply because learner B is either completely right or completely wrong on all labels. That 
is, learner B is very stable over the entire spectrum of losses. Looking at the performance 
of learner A in terms of the binomial loss, we get 0.2 for k = 1 (Hamming) and 0.32 for 
k = 2 . Thus, increasing k from 1 to 3, we obtain different performance profiles (sequence 
of loss values) for the two learners:

Comparing these profiles provides much more information and clearly shows that learner 
A, albeit better in absolute performance, is less dependence-aware than B: its performance 
is more affected when increasing the dependence-awareness of the loss, and it loses per-
formance relative to B. As shown by this example, what is really informative is to look at 
how a loss changes, both in absolute terms but also relative to the loss of another learner, 
when varying the dependence-awareness. This is why we consider parametrized families 
like those introduced above to be so useful. We shall elaborate on this way of using gener-
alized losses in the experiments in Sect. 5.

The second example is simply meant to show that changing the target (loss) may also 
change the (Bayes-)optimal prediction. In principle, this is of course nothing new, and 
we have already seen an example where the loss minimizer for Hamming is the complete 
opposite of the minimizer for subset 0/1. Yet, we would like to show that, by varying the 
dependence-awareness, corresponding effects can also be achieved “in-between”. To this 
end, consider the distribution on labelings y (given an instance x ) shown in Table 1. One 
can verify (e.g., through simple enumeration) that the Bayes-optimal predictions for the 
binomial loss with different parameters k are given as follows: 

k = 1 1 0 0 1 0
k = 2 0 0 1 1 1
k = 3 0 0 1 1 1
k = 4 1 1 0 0 0
k = 5 1 0 1 1 0

As can be seen, by changing the parameter of the loss, the optimal prediction may 
change quite drastically. For example, the prediction of three of the five labels changes 
when going from k = 1 to k = 2 , and even all five labels change when passing from k = 3 
to k = 4.

The previous example has shown that varying the degree of label-awareness may serve 
as an incentive for the learner to produce different predictions. For this reason, we argue 
that a generalized loss may also be useful as a surrogate loss. Imagine, for example, that 
we are interested in minimizing subset 0/1 loss (as a target) in a problem with 5 labels. 

A ∶(0.2, 0.32, 0.488)

B ∶(0.5, 0.5, 0.5)
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Moreover, suppose the problem is such that we manage to train a predictor that is cor-
rect with probability 0.9 on individual labels, for example using binary relevance learning 
and hence Hamming as a surrogate loss. When training with the label powerset method on 
label-quintuples (i.e., solving a classification problem with 32 classes), a correctness of at 
most 0.4 can be achieved. Now, the subset 0/1 loss is ≈ 0.4 in the first case (assuming inde-
pendence of the predictions) and 0.6 in the third case, showing that binary relevance learn-
ing might be better than label powerset, despite the dependence-awareness of the target 
loss. The case would be different, of course, with a correctness of only 0.8 instead of 0.9 
on the binary problems. Thus, whether it is better to incentivize the learner to perform well 
on single labels or on the entire set of 5 labels strongly depends on how manageable these 
tasks are. In the first case, the learner ends up with simpler tasks but will tend to ignore 

Table 1  Hypothetical probability 
distribution over labels y

1
,… , y

5
 

for a given instance x

y
1

y
2

y
3

y
4

y
5

p(y | x)
0 0 0 0 0 0.046
0 0 0 0 1 0.003
0 0 0 1 0 0.034
0 0 0 1 1 0.048
0 0 1 0 0 0.025
0 0 1 0 1 0.052
0 0 1 1 0 0.036
0 0 1 1 1 0.050
0 1 0 0 0 0.022
0 1 0 0 1 0.011
0 1 0 1 0 0.006
0 1 0 1 1 0.059
0 1 1 0 0 0.041
0 1 1 0 1 0.023
0 1 1 1 0 0.013
0 1 1 1 1 0.012
y
1

y
2

y
3

y
4

y
5

p(y | x)
1 0 0 0 0 0.044
1 0 0 0 1 0.023
1 0 0 1 0 0.018
1 0 0 1 1 0.011
1 0 1 0 0 0.003
1 0 1 0 1 0.022
1 0 1 1 0 0.062
1 0 1 1 1 0.054
1 1 0 0 0 0.056
1 1 0 0 1 0.059
1 1 0 1 0 0.040
1 1 0 1 1 0.022
1 1 1 0 0 0.029
1 1 1 0 1 0.013
1 1 1 1 0 0.038
1 1 1 1 1 0.025
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label-dependencies. These dependencies are accounted for in the second case, but this may 
not be helpful if it makes the problem unduely difficult to solve. Quite plausibly, the opti-
mal compromise is somewhere in-between these two extremes, so that training the learner 
with a properly parametrized generalized loss (as a surrogate) might be the best way to go. 
Using such a loss, it is possible to incentivize the learner to produce correct predictions on 
label subsets of different size, so that a good balance between dependence-awareness and 
manageability of the problem might be achieved. We shall elaborate on the use of general-
ized losses as surrogates (and targets) for learning in Sect. 6.

5  An analysis of the dependence‑awareness of MLC algorithms

In this section, we showcase how the proposed class of multi-label loss functions can be 
applied as an analysis tool for capturing the “dependence-awareness” of different multi-
label classifiers, i.e., for assessing a learner’s ability or propensity to capture label depend-
ence.1 Actually, the study should mainly be conceived as an evaluation of our new loss 
functions and less as an evaluation of the methods. In fact, for the methods we analyze, we 
already have quite a good idea of their dependence-awareness. What we are interested in is 
whether this is also reflected by the loss, i.e., whether the loss is coherent with our expecta-
tions. In other words, the study is mainly intended as a proof of concept, showing that the 
loss functions behave as they are supposed to do.

5.1  Experimental setup

For the experimental study, we used nine benchmark datasets originating from a variety of 
different domains.2 Table 2 provides an overview of the considered datasets together with 

Table 2  Overview of datasets with statistics of their main properties

Label-to-Instance Unique Label
Dataset #Instances #Labels Ratio Combinations Cardinality

Birds 645 19 0.0295 133 1.01
Emotions 593 6 0.0101 27 1.87
Enron-f 1702 53 0.0311 753 3.38
Flags 194 12 0.0619 103 4.12
Genbase 662 27 0.0408 32 1.25
Llog-f 1460 75 0.0514 304 1.18
Medical 978 45 0.0460 94 1.25
Scene 2407 6 0.0025 15 1.07
Yeast 2417 14 0.0058 198 4.24

1 The code of the experiments presented in this and the next section is provided at https:// github. com/ 
KIuML/ Depen dence Aware MLCLo ss. An implementation of Boomer is available at https:// github. com/ 
mrapp- ke/ Boomer.
2 The datasets are available at http:// mulan. sf. net/ datas ets- mlc. html and https:// waika to. github. io/ meka/ 
datas ets/.

https://github.com/KIuML/DependenceAwareMLCLoss
https://github.com/KIuML/DependenceAwareMLCLoss
https://github.com/mrapp-ke/Boomer
https://github.com/mrapp-ke/Boomer
http://mulan.sf.net/datasets-mlc.html
https://waikato.github.io/meka/datasets/
https://waikato.github.io/meka/datasets/
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their statistical properties. This includes the number of instances, the number of labels, the 
ratio of number of labels to number of instances, the absolute number of unique label com-
binations, and the average number of relevant labels per instance, also referred to as label 
cardinality.

We use paired 10-fold cross-validations to obtain out-of-sample predictions in the form 
of label relevance scores. Although we restrict our analysis to binary predictions si ∈ {0, 1} 
in order to isolate from the ability of the classifiers to shape their scores, our methodology 
is in principle also suitable for comparing algorithms that output soft predictions si ∈ [0, 1] 
and independent of the thresholding technique used.

5.2  Algorithms

In order to analyze their differences w.r.t. dependence-awareness, we experiment with sev-
eral publicly available multi-label algorithms:

– Binary relevance (BR) is a reduction to binary classification, which learns one binary 
classifier for each label independently of the others (Boutell et al. 2004; Zhang et al. 
2018). Despite its simplicity, BR has proven to be highly competitive in comparison to 
state-of-the-art multi-label learners in recent studies, especially regarding measures that 
are not dependence-aware (cf., e.g., Rivolli et al. 2020; Wever et al. 2020, 2018).

– Classifier chains (CC) take label dependencies into account, by imposing an order on 
the label set and using the predictions for the previous labels as additional feature infor-
mation for the next label predictor (Read et al. 2009, 2021).

– Label powerset (LP) is a reduction to multi-class classification (Tsoumakas et al. 2010). 
It converts each possible label subset into a separate (meta-)class and then solves a 
standard classification problem. Thereby, it takes label dependence into account, though 
at the expense of treating similar label sets as independent classes.

– Random k-labelsets (RAkEL) randomly selects several label subsets of a given size 
k, learns a (LP) multi-label classifier for each subset, and combines their predictions 
(Tsoumakas and Vlahavas 2007). This may be viewed as a generalization of binary rel-
evance (K classifiers with k = 1 ) and label powerset (1 classifier with k = K ). Obvi-
ously, the larger k, the more dependence-aware this method should be.

– Predictive clustering trees (PCT) build up a multi-objective decision tree by using 
example variance and multi-label prediction quality for guiding the tree construction 
(Kocev et al. 2007). Full label vectors are predicted at the leafs, hence PCT allows a 
certain control over the dependence-awareness by setting the leaf and ensemble sizes.

– BOOMER is a rule-based multi-label boosting algorithm recently proposed by Rapp 
et al. (2020), which can be parametrized to optimize either Hamming or subset 0/1 loss, 
denoted in the experiments as BOOMER-1 and BOOMER-K respectively.

BR and LP are particularly interesting for our analysis, because they are known to fol-
low opposite goals w.r.t. loss minimization and to be diametrical in their treatment of label 
dependencies, which we expect to be reflected by the proposed dependence-aware losses. 
RAkEL, CC, and PCT can be positioned in-between LP and BR with respect to their 
dependence-awareness, although their exact objectives are less obvious. Indeed, RAkEL 
and PCT allow for a certain control over the dependence-awareness by appropriate selec-
tion of parameters.
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For all algorithms we used the implementations of MEKA,3 except PCTs, for which we 
used the original implementation CLUS4 with a self-written to Mulan,5 and BOOMER, 
which is available from Github.6 Due to their favorable runtime, we used decision trees 
as single-label base learners in all MEKA methods. All hyper-parameters are set to their 
default values, except for RAkEL, which is evaluated for different values k and the num-
ber of ensemble members m, and PCT, which is used with single trees (PCT) and bagged 
ensembles of 10 trees (EPCT).

5.3  Results

We evaluate the performance of the considered multi-label algorithms in terms of the poly-
nomial instantiation (17) of our loss function, as well as the binomial instantiation (18). 
We denote the former by �poly and the latter by �bin . While the (discrete) parameter k of �bin 
takes values in {1,… ,K} , we vary the (continuous) parameter of the polynomial loss, � , 
between 1 and 1000. In both cases, the lowest parameter value 1 corresponds to the Ham-
ming loss and the highest values to the subset 0/1 loss (in the case of �poly , strictly speak-
ing, only for � → ∞ ), whereas intermediate values interpolate between these two extremes.

We start the analysis with a comparison of the evaluated algorithms for the scene 
dataset (Fig. 1). The graphs plot the value of the parameter k respectively � on the x-axis 
against the loss of the method on the y-axis. Naturally, the curves are increasing, because 
with an increasing dependence-awareness, the losses are becoming more demanding and 
more difficult to minimize.

On closer examination, we can observe some algorithms to work better than other 
methods for a small k or � , while the order may change as the parameter values increase 
and the losses demand more dependence-awareness. For example, we can see that BR 
performs favorably to LP for small k or � , but LP catches up with increasing parameter 

1 2 3 4 5 6
0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.5

0.6

k

lo
ss

 (
� b

in
)

100 101 102 103
0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.5

0.6

α

lo
ss

 (
� p

o
l)

BR CC EPCT LP PCT RAkEL-2 RAkEL-3 RAkEL-4 RAkEL-5 Boomer-1Boomer-K

Fig. 1  Comparison of multi-label algorithms on the dataset scene w.r.t. parametrized instantiations of the 
binomial loss (left) and the polynomial loss (right)

3 http:// waika to. github. io/ meka/.
4 https:// dtai. cs. kuleu ven. be/ clus/.
5 https:// mulan. sourc eforge. net/.
6 https:// github. com/ mrapp- ke/ Boomer.

http://waikato.github.io/meka/
https://dtai.cs.kuleuven.be/clus/
https://mulan.sourceforge.net/
https://github.com/mrapp-ke/Boomer
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values until it finally outperforms BR, which is the expected behavior because LP cap-
tures label dependencies while BR does not. In general, the dependence-awareness of a 
learner is reflected by the slope of the performance curve (the flatter the better): With 
increasing k or � , the loss is getting more strict, because label dependencies are get-
ting more important (as already stated, this is why the curves are monotone increas-
ing). Moreover, the more a learner is affected by the increased strictness of the loss, 
the steeper the slope. While the parameter of �bin has a simpler interpretation, as k cor-
responds to the number of labels that for which a jointly correct prediction is required, 
� allows for a more fine-grained analysis of dependence-awareness. However, with both 
families, we can observe intersections between the loss curves of the algorithms, explic-
itly showing when the order of the methods changes.
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Fig. 2  Pair-wise comparison of selected multi-label algorithms (BR, CC, LP, PCT, EPCT, RAkEL, 
BOOMER) for the binomial loss with k−1∕K−1 on the x-axis and the ratio between one method’s loss and the 
loss of another method on the y-axis
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The visualizations chosen in Figs.  2 and 3 allow for a more focused comparison 
between two methods over several datasets. The graphs shown (one per dataset) are pro-
duced by plotting the parameter of the loss (on the x-axis) against the ratio of losses l2∕l1 
of two learners (on the y-axis). Again, we vary the values of the parameters ( 1 ≤ k ≤ K , 
since K differs from dataset to dataset rescaled to the range between 0 and 1 for better 
visualization) for �bin and ( 1 ≤ � ≤ 1000 ) for �poly . To interpret these plots, let us high-
light the following properties:

– A point on the graph above the horizontal y = 1 indicates better performance of the 
first method l1 . A point below the horizontal indicates that the second method l2 per-
forms better. Thus, specifically interesting are the crossings of the graph with the 
horizontal.
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Fig. 3  Pair-wise comparison of selected multi-label algorithms (BR, CC, LP, PCT, EPCT, RAkEL, 
BOOMER) for the polynomial loss with � on the x-axis and the ratio between one method’s loss and the 
loss of another method on the y-axis
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– Also interesting is the derivative of the graph: A monotone decreasing (increas-
ing) shape indicates better dependence-awareness of the first (second) method, as it 
improves relative to the second (first) method with an increasing demand of depend-
ence-awareness. A parallel trajectory, in contrast, indicates a similar behaviour regard-
ing the dependence-awareness.

Obviously, the graphs do not only depend on the methods being compared but also on the 
dataset. This is natural, because the performance of a method (and hence the performance 
ratio) differs from dataset to dataset, just like the label dependence. Thus, while depend-
ence-awareness might be an advantage for one dataset, it could be a disadvantage for 
another one; for example, in the complete absence of dependencies, BR will be very effec-
tive, whereas LP will make the learning task unnecessarily difficult. This is why increas-
ing and decreasing graphs can sometimes be observed simultaneously in Figs. 2 and 3. In 
general, however, there is a relatively clear trend, and the experimental results confirm our 
expectations: With an increasing dependence-awareness of the loss (increasing k respec-
tively � ), simple methods such as BR tend to perform worse than dependence-aware meth-
ods like LP, which is also shown by the late crossing of the horizontal by the graphs. The 
advantage for intermediate and high levels of dependence-awareness is diminished if we 
compare to CC, a method which is less extreme than LP in its attempt to correctly predict 
the entire label combination. This can also be observed in the direct comparison between 
CC and BR, where CC improves over BR with increasing k.

Taking these algorithms as a basis allows us to better understand the behaviour of meth-
ods for which the objectives are unknown or unclear. For instance, we can observe that the 
used parametrization of PCT is clearly more in line with BR regarding the dependence-
awareness than with LP, where all trajectories show a clear curvature.

The RAkEL algorithm allows one to control its dependence-awareness with its hyper-
parameter k. In fact, this hyper-parameter is very related to the subset size k of the binomial 
loss. This is also reflected by the ratio between the losses for RAkEL k = 5 and k = 2 , 
which decreases with increasing subset sizes to match.

Also shown in Fig. 2 are comparisons for BOOMER, more specifically for extreme vari-
ants of this learner optimized for k = 1 and k = K , respectively. A first observation confirms 
the expected strong performance of BOOMER, especially the dependence-aware variant 
BOOMER-K (all points are below the horizontal y = 1 ). BOOMER-K is even surprisingly 
strong for lower k, and this advantage further increases with an increasing dependence-
awareness of the loss. This can be seen from the fact that the lines move further away from 
the horizontal as the dependence-awareness increases. The comparison with LP suggests 
that, although LP is inferior in absolute terms, its dependence-awareness is even more pro-
nounced, despite the fact that both approaches target the same loss. The reason might be 
that BOOMER uses a (smooth) surrogate of the subset 0/1 loss (to make it differentiable), 
which presumably also puts weight on label subsets of lower cardinality.

6  A case study in loss minimization

In the previous section, we used our new loss functions to analyze well-known MLC algo-
rithms with respect to their dependence-awareness. Yet, as already mentioned in the intro-
duction, the losses could in principle also be used for other purposes. In a second experi-
mental study, we focus on their possible role as target and/or surrogate loss.
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As a learning algorithm, we use a simple nearest-neighbor (NN) approach, mainly for 
two reasons. First, in contrast to all other MLC algorithms we are aware of, NN can be 
adapted to minimizing a generalized loss in a quite straight-forward way.7 Second, com-
pared to more sophisticated methods, the minimization of the loss is arguably more explicit 
in NN and less superimposed by other effects.

More specifically, we instantiate NN to minimize the representation of our loss func-
tion (14) in terms of the Moebius transform and leave the parameter k of �bin as a hyper-
parameter to be configured. To make a prediction on an instance x , we first retrieve the 
label sets y(i) ∈ Y , 1 ≤ i ≤ c of the c nearest neighbors according to the L1-distance. Then, 
we enumerate all label sets in Y = {0, 1}K and predict the label set ŷ∗ minimizing the loss 
with respect to the label sets y(i) of the nearest neighbors:

Since the number of elements in Y grows exponentially in the number of labels K, com-
plete enumeration quickly becomes computationally infeasible. Fortunately, some pruning 
of the search space is possible: if all neighbors agree on a label yk , then this label can 
(provably) be fixed and removed from search. The probability of this consensus rule to 
apply is especially high for the prevalent negative labels, but of course decreases with an 
increasing size of the neighborhood—in our experiments, we set the number of neighbors 
c = 9 , for which the consensus rule still yields a considerable reduction.

We evaluated our NN classifier on the datasets birds, emotions, flags, scene, and 
yeast for all possible parameters k for both the target loss function and the internal (sur-
rogate) loss function used for making predictions. The results of these experiments are 
summarized in Fig. 4 in terms of heatmaps. In each of the rows, the heatmaps visualize 
the absolute difference between the loss of any parametrization of the NN classifier and 
the minimum observed loss. For the purpose of a better and more fine-granular interpreta-
tion of these results, the absolute differences are clipped at 0.02, as some differences may 
become relatively large and distort the overall image. From left to right the NN classifier 
moves from optimizing Hamming to optimizing for subset 0/1 loss. In turn, a column rep-
resents a fixed parametrization of the NN approach and the loss changes top down from 
Hamming to subset 0/1 loss.

A general observation is that the best hyper-parameter k of the NN approach, i.e., the 
best parameter k for the surrogate loss locally minimized by NN, monotonically increases 
with the k of the target loss. That is, the more dependence-aware the target loss, the more 
dependence-aware the surrogate loss should be, which is quite plausible. This is especially 
true in the extreme case where the target is subset 0/1. In this case, optimizing for Ham-
ming yields one of the worst two solutions in any of the datasets. That said, the best surro-
gate loss is not necessarily identical to the target loss. More specifically, the best parameter 
value k for the surrogate does not increase linearly in the parameter k of the target loss but 
rather saturates early (although the former also slightly exceeds the latter in a few cases, for 
example on the emotions, scene, and flags data, which nevertheless remain an exception). 
This may have several reasons, including those already explained in Sect. 4.4. In particu-
lar, note that the loss minimizer does not necessarily change with an increasing k, i.e., the 

(19)ŷ∗ ∈ argmin
ŷ∈Y

c∑
i=1

�bin(y
(i), ŷ)

7 In principle, BOOMER can also be tailored to any (differentiable) loss function, but the minimization 
over all possible label subsets poses a non-trivial combinatorial problem.
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minimizer for k < K could (and often will) be the same as for k = K . Moreover, learning 
tends to become more difficult with increasing dependence-awareness. In the case of NN, 
the training information contained in the neighborhood of a query becomes less redundant 
when increasing k, and there is a high chance to lose uniqueness. For example, for k = K , 

Fig. 4  In each row of a heatmap we consider a target loss function parametrized with a specific k. In each 
column, in turn we configure our nearest neighbor approach with a different value for its hyper-parameter 
k, which is used internally to choose a label set for prediction. In each row we plot the absolute different 
between any configuration and the best one regarding the respective parametrization of the target loss. A 
darker red thus means a performs closer to the best configuration. For simpler interpretation, the deltas are 
clipped at a maximum difference of 0.02
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the risk minimizer is the mode of the empirical distribution on the labelings, which is often 
not unique because each label combination occurs at most once.

In any case, our results suggest that the generalized MLC losses might indeed be inter-
esting candidates for surrogate losses to be optimized by a learner at training time. For 
example, in the case of the datasets birds and flags, optimizing for subset 0/1 loss on the 
training data turns out to be the worst configuration of all, even when subset 0/1 is the tar-
get loss. However, the hyper-parameter k (or, more generally, the best level of dependence-
awareness) for the learner seems to depend on the data and needs to be tuned to the dataset 
at hand.

7  Conclusion and future work

We consider a multi-label loss function as “dependence-aware” if it puts emphasis on get-
ting larger label combinations right in their entirety, instead of “merely” making correct 
predictions on individual labels. In this paper, we introduced a flexible class of loss func-
tions that allows for modeling dependence-awareness by means of non-additive measures. 
More specifically, we define a loss function in terms of a Choquet integral of label-wise 
correctness with respect to such a measure. We also proposed two instantiations of our 
family, in which dependence-awareness can be controlled by a single parameter, thereby 
“interpolating” between Hamming and subset 0/1 loss.

A first experimental study has shown the potential of our loss functions as a tool for 
analyzing the dependence-awareness of different MLC methods, i.e., their ability to capture 
label dependence. Moreover, as suggested by a second study, the losses are also interesting 
candidates for surrogate losses used for training an MLC classifier, even when the actual 
target is a different loss. In this regard, a natural next step is to develop new algorithms that 
are specifically tailored to our family of losses and can be customized for minimizing spe-
cific instantiations thereof. The boosting-based multi-label learner BOOMER (Rapp et al. 
2020), which we also used in our experiments, is a generic method of that kind. However, 
as it proceeds from the Moebius representation of the loss, it is not very efficient. It would 
therefore be interesting to design learners that directly proceed from the integral represen-
tation (14). The main problem of this representation, namely that it involves a permutation 
of the predicted scores, could be overcome by recent work on differentiable approximations 
of the sorting operator (Blondel et al. 2020).

Apart from algorithmic issues, one may also think of interesting extensions of the loss 
itself, and further instantiations thereof. For example, the two instantiations we presented 
are both symmetric, i.e., the importance of a label subset solely depends on its size but not 
on the labels themselves. From a practical point of view, one may argue that some labels 
are more important than others, or that subsets including relevant labels are more impor-
tant than subsets of only irrelevant labels (and recall is more important than precision). 
This could be taken into account by a suitable design of the non-additive measure, e.g., by 
specifying the weight of a subset as a function of the number of relevant labels included.
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