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Córdoba, Spain
jrromero@uco.es

Abstract—Test generation is a costly but necessary testing
activity to increase the quality of software projects. Automated
testing tools based on evolutionary computation principles con-
stitute an appealing modern approach to support testing tasks.
However, these tools still find difficulties to detect certain types
of plausible faults in real-world projects. Besides, recent studies
have shown that, in general, automatically-generated tests do
not resemble those manually written and, consequently, testers
are reluctant to adopt them. We observe two key issues, namely
the opacity of the process and the lack of cooperation with
the tester, currently hampering the acceptance of automated
results. Based on these findings, we explore in this paper how
the interaction between current tools and expert testers would
help address the test case generation problem. More specifically,
we identify a number of interaction opportunities related to the
object-oriented test case design driven to boost their readability
and detection power. Using EvoSuite as base implementation, we
present a proof of concept focused on the possibility to integrate
readability assessment of the most promising test suites into a
genetic algorithm.

Index Terms—software testing, interactive search-based soft-
ware engineering, test generation, mutation testing

I. INTRODUCTION

Testing is a critical phase in the development of software
projects to improve their quality. This phase however is known
to be costly, taking up a great percentage of total project
resources [1]. With the increasing complexity of current soft-
ware developments in the industry, manual testing becomes
unapproachable or simply leads to poorly-designed test suites.
To face this problem, a large body of research has sought to
replace manual steps with automated and efficient techniques
that guide the generation of effective test suites [2]. As a result,
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many proposals have appeared in the field of automated test
generation, with an emphasis on the application of evolution-
ary approaches, especially for test data generation [3].

Unlike test data generation, test case and test suite genera-
tion imply the design of test scenarios. In the case of object-
oriented software, a test scenario for a class consists of a
sequence of method calls, followed by an evaluation of the
results (i.e. outputs and state of objects) [4]. Apart from sup-
plying data that is sensitive enough to reveal deviations from
the expected functionality, object-oriented test case generation
brings some other challenges, such as setting a convenient
state for the objects, sequencing invocations in an appropriate
order or adding proper assertions that often involve examining
different variables of the program. A remarkable contribution
in the last decade is EvoSuite [5], a tool based on evolutionary
computation that generates test cases, independently or as part
of whole test suites1, able to detect different types of faults
seeded with mutation testing, a well-known technique to assess
and improve the quality of test suites.

Recent papers have evaluated the current state of test genera-
tion tools [6], [7] including EvoSuite and Randoop [8]. Despite
the great advances, these studies reveal some limitations in the
application of these automated tools that prevent most practi-
tioners from embracing them in their daily practice [9], [10].
Among others, two relevant obstacles that remain unresolved
are the fault-detection effectiveness [7] and the skepticism of
testers regarding the readability of the resulting tests [11].
These findings suggest that neither completely manual nor
fully automated test generation is the best option. In this sense,
our idea is to combine automatic and manual testing, i.e. the
efficiency of search-techniques and the know-how of human
testers, to address these issues.

Some authors have already pointed to the benefits of in-

1From now on in this paper, we use the term test generation to refer to test
case or test suite generation indistinctly.978-1-7281-8393-0/21/$31.00 ©2021 IEEE



corporating human knowledge into the test generation process
via interactive optimization [10], [12]. Interactive approaches
encourage the active participation of engineers, and have been
successfully applied in several areas of search-based software
engineering (SBSE) [13]. Focusing on search-based software
testing (SBST), Marculescu et al. proposed an interactive ap-
proach to allow domain-specialists to take part in the test data
generation process [14], [15]. Evaluated in the context of an
industrial collaboration, their system represents a satisfactory
example of the possibilities that interactivity brings to SBST.

Inspired by these works, this paper seeks to make more
visible the role that interactivity could play as part of search-
based test generation. First, we analyze those characteristics
of object-oriented testing that make it difficult to be fully
automated. Then, we study how interactive optimization could
solve some of the identified challenges. Our hypothesis is that,
by putting the tester “in the loop”, an SBST tool would be
able to take advantage of their skills and knowledge of the
system under test (SUT) to design meaningful tests. Such a
tester-centered interactivity could augment current capabilities
of test generation, enabling them to find out reasons behind
fault detection deadlocks and make tests more readable. Lastly,
we present a proof-of-concept in which some of the inter-
active options are implemented in EvoSuite with the aim of
incorporating readability assessments of the most promising
test suites. We incorporate readability assessment at scheduled
interaction moments to favor those those test suites which
are more aligned with the tester’s preferences, and we show
an execution of the resulting interactive process. We expect
that the proposed interaction opportunities will contribute to
overcome current tool limitations while increasing the tester
acceptance on automated results, issues that become especially
relevant in industrial settings.

The paper is structured as follows. Section II introduces
concepts surrounding SBST and interactive SBSE. Related
work is collected in Section III. Section IV discusses current
limitations and identifies the requisites that guide our proposal.
The interactive opportunities for test generation are described
in Section V. Section VI presents the proof of concept. Finally,
Section VII outlines conclusions and future work.

II. BACKGROUND

A. Search-based software testing

Automated test generation can be defined as the process
in which an automatic entity is applied to generate new
test cases for testing the adequacy of existing software [16].
However, since exhaustive testing is normally impractical,
cost-effective solutions are required to address this problem
and reach fault-revealing test cases. In the context of object-
oriented systems, SBST has revealed as a powerful approach
to perform this activity at the class level. Test generation can
be expressed as a search problem, where candidate solutions
represent the sequences of method calls and their parameters.
The search strategy is guided by means of a fitness function,
based on satisfying testing goals and usually expressed as an
aggregation of coverage functions. The search-based EvoSuite

tool exemplifies its success in evolving existing test suites into
new ones with a higher fault-detection capability [5].

Among other approaches, EvoSuite applies a genetic al-
gorithm (GA) to evolve a population of test cases or whole
test suites (individuals) for Java classes, mainly represented
as a sequence of method and constructor calls with values for
their parameters. Thanks to selection and variation operators
(mutation and crossover), these individuals are iteratively mod-
ified in subsequent generations to approach an optimization
target expressed in the fitness function: maximize one or more
testing criteria [17]. Among other testing criteria, EvoSuite
can apply a mutant-driven approach, that is, the GA is guided
towards the detection of the largest possible number of seeded
artificial faults based on common programming mistakes
(called mutants). Secondary objectives can also be defined
to consider some other additional goals, such as decreasing
the size of the test suite. These secondary objectives are only
activated to break ties when comparing candidate solutions.
The test generation process is completed with the inclusion
of assertions based on mutation analysis (when the outputs
of the mutant and the original program differ, we say that the
mutant is detected or killed), and with the minimization of the
test sequences to improve their readability in general.

B. Interactivity in SBSE

Interactive SBSE (iSBSE) has been formalized as an emer-
gent subarea within SBSE in a literature review [13], which
collects the interaction mechanisms and applications proposed
so far. iSBSE promotes the active participation of software
engineers by providing intermediate results for their inspec-
tion. Their feedback is later integrated into either the problem
formulation or the search process so that the algorithm pro-
gressively adapts the search to the human’s preferences [18].
Interactivity is expected to alleviate some of the limitations
of SBSE techniques [19], such as problem oversimplification,
the inability of fitness functions to capture subjective criteria,
or the lack of trust on automated results [18]. Nevertheless,
iSBSE also poses new challenges like dealing with the inherent
fatigue or the information overload [18], [19]. Several decision
factors influence the design of iSBSE proposals, which should
be properly adapted to the domain [13]:

1) Type of interactive algorithm, which mostly depends on
the goal(s) pursued with the interaction. Non-exclusive
categories here are interactive reoptimization, aimed
at refining the problem definition during the search;
human-based evaluation, in which the human takes part
in the solution assessment; preference-based interactiv-
ity, focused on the progressive incorporation of human
preferences; and human-guided search, allowing the
human to directly select or modify solutions.

2) Type of feedback, which determines the available user
actions, usually solution evaluation, selection, compari-
son or modification. For evaluation, the human can be
asked to assign a fitness value, adjust weights for the
objectives, rank solutions, provide a score by choosing
from preset values or reward/penalize characteristics.



3) Interaction schedule, which encompasses the moment
and frequency of interaction, and the selection of solu-
tions to be shown, including the number of solutions,
the criteria to choose them from the population and the
level of solution detail (complete or partial).

4) Information integration, which requires deciding about
how long the feedback influences the search, e.g. during
some generations or the whole process, and whether it
can be reverted or modified in next interactions.

III. RELATED WORK

Important research efforts have been devoted to design
SBST methods for finding faults in object-oriented code [16].
Nevertheless, several authors have pointed out that SBST algo-
rithms still present some limitations, specially when it comes
to detect bugs in real-world software systems [10], [17], [20].
Rojas et al. focused on the problem of using code coverage to
guide evolutionary algorithms [10]. In their opinion, the fact
that test assertions are not usually included in the optimization
process might be a cause of low performance, and therefore
other objectives are needed to produce effective tests. Recently,
these authors carried out an experiment to evidence that state-
of-the-art tools indeed fail to find real faults [21]. A similar
study concludes that relying on coverage criteria only, even if
multiple measures are combined, is insufficient to detect some
real faults with EvoSuite [17]. Finding appropriate fitness
functions is essential not only to improve fault detection rates,
but also to achieve human-competitive results. For instance,
Gay [22] proposes defining SUT-specific functions based on
the system context to better simulate how humans develop test
cases. Other authors agree that additional testing design factors
beyond structural coverage should be considered in the context
of industrial safety-critical control software [20], an scenario
where manual testing has shown better detection capabilities
for certain types of faults.

Other empirical experiments comparing manual tests and
those automatically generated have been carried out with
the aim of evaluating the acceptance of SBST results. In
this sense, the time needed to understand the intention of
non-manual test cases is usually greater due to the lack of
comments and descriptive names in the code [11]. This study
also points out that developers are skeptical of failures reported
by automated tests, and perceive them as less helpful than
those manually written for maintenance tasks. The cost-benefit
associated to checking SBST results has been analyzed in an
industrial context too [20]. However, improving the readability
of test cases still represents an open challenge because of its
subjective nature [10]. In an attempt to measure readability,
Daka et al. trained a regression model to infer desirable
code properties, such as identifier length or the use of code
constructs (loops, branches, assertions, etc), from a collection
of human-rated test cases. Their readability prediction model
was used in a postprocessing step to produce more readable
tests cases while keeping their original coverage [23], and also
as an additional objective in a multi-objective approach [24].
A controlled experiment revealed that more readable tests help

testers make decisions faster, though the selection of variable
names still need improvements to become more flexible.

Different authors have mentioned the potential of interactive
approaches to address other software testing tasks, such as
providing test oracles [10]. Marculescu et al. were the first
to explore interactive evolutionary computation for software
testing activities [25]. They emphasized the importance of
expert knowledge and SUT context to guide the search.
Since their interaction is focused on solution evaluation, they
proposed choosing a small number among the best solutions
to avoid fatigue. Their following works delve further into the
idea of “user as fitness function” for black-box testing in the
context of an industrial embedded software. More specifically,
the domain specialist is asked to periodically re-assign weights
to the 11 objectives of a differential evolution algorithm for test
data generation [14]. A visualization module allows inspecting
both the current and previous generation, with the possibility
of accessing individual solutions on demand. The interviews
with the participants suggest that the interactive search was
effective in exploring new areas of the search space, i.e. finding
test inputs not usually conceived by humans. Their last work
presents a new version of the iSBST tool with fault detection
capabilities [15].

IV. PROBLEM ANALYSIS

A. Limitations

As shown in Section III, different studies have assessed the
effectiveness and acceptance of test generation tools in the
past. In the experiments by Almasi et al., where both EvoSuite
and Randoop were applied to find known faults in a real
financial application [7], the tools struggled to find hard faults
(i.e. those that require special test inputs) and challenging
faults (i.e. those that additionally require satisfying complex
conditions and constructing complex objects). As an example
of a hard fault shown in [7], consider the faulty code excerpt in
Listing 1, where the property “inv min” (line 8) is an invalid
key in the properties file. To detect this fault, the test case
requires two specific strings (enumerated values “POSITIVE”
and “LOW”) to satisfy the two conditions that surround the
fault (lines 3 and 5). In the aforementioned study, EvoSuite and
Randoop were able to generate test cases to detect respectively
48% and 12% of these hard faults, and none of those judged
as challenging. In contrast, it would be straightforward for any
programmer to provide the strings to satisfy both conditions,
thereby quickly reaching the faulty statement.

More importantly, most participants of the study were
concerned about the readability of the automatically-generated
tests, and even said that they preferred the test data and
meaningful assertions used in the manually-written tests [7].
Interestingly, the participants said that, even though the gener-
ated assertions were not validating useful data, they could be
easily transformed to become more appropriate. The findings
in this study are in line with the conclusions drawn from the
controlled experiment by Shamshiri el al. [11]. This study
evidenced both that testers find automatically generated tests
less readable because they do not resemble realistic scenarios



in general, and that they are more confident about their actions
in the presence of manually-generated tests.
1 . . .
2 L i s t<Double> l i s t = new A r r a y L i s t<Double > ( ) ;
3 i f ( param3 . e q u a l s I g n o r e C a s e ( Enum1.POSITIVE . g e t V a l u e ( ) ) ) {
4 f o r ( i n t i =1 ; i<=param1 *12 ; i ++) {
5 i f ( param4 . e q u a l s I g n o r e C a s e ( Enum2.LOW . g e t V a l u e ( ) ) ) {
6 / / F a u l t y s t a t e m e n t
7 l i s t . add ( i , Math . pow ( ( 1 + Double . va lueOf (
8 P r o p e r t y R e a d e r . g e t P r o p e r t y ( ”inv min” ) ) ) ,
9 ( Double . va lueOf ( 1 ) / Double . va lueOf ( 1 2 ) ) ) − 1 ) ;

10 }
11 }
12 }
13 . . .

Listing 1. Example of a hard fault identified by Almasi et al. [7]

In summary, we have detected two major limitations in cur-
rent search-based test generation tools that should be tackled:
• Detection power: Tools are not able to detect most of the

hard-to-detect faults, i.e. those that require special test
inputs or satisfying complex conditions.

• Readability: Software engineers cannot easily understand
the purpose of the generated tests, e.g. how they map to
the software functionalities.

B. Requirements

Given the limitations described in Section IV-A, we identify
three requirements to be incorporated into the solution:

Requirement 1: Test generation is a white-box activity,
which targets the internal structure of the system under
test. White-box testing requires a broad knowledge of
the source code of the classes under test.

We consider a tester-centered approach, since only a tester
possesses the necessary technical knowledge of the design and
implementation of the program. In this sense, testers should be
able to provide their skills and assess the generated solutions
to reach meaningful test cases.

Requirement 2: Testers should be able to successfully
incorporate their knowledge and preferences to the test
generation process.

Interactivity can allow testers to contribute to the automated
generation of tests and to guide the evolutionary search to-
wards better test suites. In addition, interactivity should allow
adapting the process to the testing practices of the company
and to the particular system design by means of a general-
purpose test generation tool.

Requirement 3: Search-based test generation tools
should be able to cope with two major limitations of
current tools: detection power and readability.

An evolutionary and interactive approach that offers diverse
interaction opportunities can help deal with both detection
power and readability. To improve the former limitation, the
interaction mechanism should be oriented to meet a test

criterion (e.g. some actions could help the search to reach hard-
to-cover areas of code). Also, to improve readability, other
interaction opportunities should be focused on assessing and
increasing the acceptance of the generated tests (e.g. actions
to enhance the readability could be related to the test sequence
of method calls or the strings used in those invocations).

V. PUTTING THE HUMAN IN-THE-LOOP FOR TEST
GENERATION

Interactive optimization has to be adapted for the test gen-
eration problem in order to face the aforementioned require-
ments. Therefore, we explore and determine the most suitable
interactive options to improve detection power and readability.
Based on the general components that guide the design of
iSBSE proposals (see Section II-B) and relevant studies on
interactive SBST, we propose specific options to introduce
interactivity in search-based test generation. In particular, we
focus on mutation testing, since it is a well-established testing
technique that has been successfully applied to object-oriented
programs. In addition, mutation testing has been used to drive
search-based approaches [5]. Notice that most of these ideas
are easily generalized to satisfy further test coverage criteria.

As aforementioned, SBST tools like EvoSuite can work
with candidates at the level of test cases (only one coverage
goal is considered at a time) or whole test suites (all
coverage goals are optimized together). In what follows,
we generally use the term “candidate” to indicate that an
option is applicable to both approaches. This is possible
because, if necessary, individual test cases could be selected
from the whole test suites before an interaction takes
place (e.g. showing those test cases that are closer to reach
a particular mutant according to their individual fitness value).

a) Type of algorithm: Combining human-based evalua-
tion and human-guided search seems to comply with the two
purposes stated in the previous section. The former focuses on
the subjective assessment of the tests, so it is more related to
readability. The latter looks for benefiting from tester’s coding
abilities in order to cover hard faults. At this point, we should
clarify that it is not expected that the tester will provide a
complete and definitive solution, but to contribute in those
aspects that remain challenging for the search algorithm.

b) Type of feedback: All user actions enumerated in
Section II-B are applicable to the test generation process.
For each one, Table I provides a list of specific options and
whether they would improve detection power (D), readability
(R) or both. Focusing on evaluation, the tester could assign
a score to candidates with respect to detection capability
or readability. Other options are rewarding/penalizing certain
statements observed in the code, and specifying trade-offs if
multiple objectives are pursued. Apart from evaluation, di-
rectly manipulating candidates would serve to order statements
or edit parameters with the aim of providing values that could
reveal a particular mutation. The comparison and selection
of candidates can be used to discern between tests perceived
as similar by the algorithm. All these actions do not only



TABLE I
TYPE OF FEEDBACK DURING INTERACTION FOR THE TEST GENERATION PROBLEM

ID Types of feedback D R

1

Category Candidate evaluation

Goals
- Give opinion on how close the candidate is to detect a non-detected mutant.
- Rate the extent to which the candidate looks “human-written”.
- Reward/penalize certain sequences of method calls in new candidates in the next generations.

Options

1.1 Assessment: Assign a score for detection capability to candidates. 3
1.2 Assessment: Assign a score for readability to candidates. 3
1.3 Reward/penalization: Indicate a sequence of lines to reward and/or penalize. 3 3
1.4 Weights: Set trade-offs among testing criteria by re-weighting objectives. 3

2

Category Candidate modification

Goals - Incorporate technical knowledge to detect challenging faults.
- Incorporate practical knowledge to generate meaningful candidates.

Options

2.1 Modification: Edit arguments of method calls. 3 3
2.2 Modification: Add a complex object or data structure. 3
2.3 Modification: Indicate methods that should be combined in the candidate. 3 3
2.4 Modification: Include a complex assertion. 3

3
Category Candidate selection
Goals Choose among different candidates.

Options 3.1 Comparison: Choose preferred candidates among those that detect the same mutant. 3
3.2 Comparison: Choose preferred candidates based on readability. 3

TABLE II
INTERACTION SCHEDULING OPTIONS FOR THE TEST GENERATION PROBLEM

ID Interaction scheduling D R

4

Category Adjustment of interactive time and frequency of interaction

Goals - Interact when the search has stalled after several generations trying to detect the fault.
- Interact to give opinion about the readability of candidates.

Options

4.1 Adaptive: The algorithm decides to ask for feedback after n trials. 3
4.2 Adaptive: Interaction starts once a minimum coverage has been reached. 3
4.3 Adaptive: The algorithm pauses after each mutation is detected. 3
4.4 Fixed: Interaction is scheduled at regular intervals. 3 3
4.5 On demand: The user stops the search at his/her discretion. 3

5

Category Selection of solutions

Goals - Show best candidates found so far.
- Show several candidates that detect the same fault.

Options
5.1 Best: One or top n candidates according to their fitness. 3 3
5.2 All: All candidates that detect the same target mutant. 3
5.3 Specific: Other criteria, e.g. number of detected mutants. 3 3

6

Category Level of solution detail
Goal Make the tester aware of the context required to inspect candidates appropriately.

Options 6.1 Complete: Show the whole candidate. 3
6.2 Contextualized: Test case together with the lines affected by the mutation. 3

allow the tester to help the algorithm cope with hard-to-detect
mutants, but also adapt the code to his/her programming style.

c) Interaction schedule: If the tester has to intervene too
frequently, this may cause fatigue. In the case of mutation
testing, it would be unfeasible for the tester to review all
possible mutants, as well as to discriminate equivalent ones,
i.e. those mutants that do not change the functional behavior
of the program. Table II summarizes the proposed methods for
the adjustment of the interaction time and the frequency, the
selection strategy and the level of detail. Firstly, the frequency
can be either fixed (the system stops at regular intervals of time
or iterations) or adaptive. For the latter option, the frequency
might be determined by the algorithm based on some internal
measures (e.g. generations without improvement) or depending
on fault-detection milestones (e.g. every time a mutant is
killed). Also, the start of the interactions could also be adjusted
based on the coverage achieved by the search to avoid too

early revisions. Another option is to let the tester make the
decision according to the observed search progress. Secondly,
an appropriate selection mechanism is required to show the
tester a sample of representative tests. A common mechanism
is to select the best individuals found so far [13]. However,
we suggest that more specific criteria could be beneficial too,
such as showing all the individuals that detect the same mutant,
or those that detect a higher number of mutants besides the
target mutant. Finally, apart from showing the candidates to
review, they could also be accompanied with a particular
mutation. The possibility to include such a context had not
been considered in previous iSBSE studies [13], in which
candidate solutions were either totally or partially visualized.

d) Information integration: Table III lists the available
options concerning information integration. Notice that each
type of feedback (see Table I) will influence on different steps
of the algorithm. Subjective evaluation has to be reflected



TABLE III
INFORMATION INTEGRATION STRATEGIES FOR THE TEST GENERATION PROBLEM

ID Information integration D R

7

Category Information lifetime

Goals - Decide for how long the tester’s opinion influences the search.
- Establish the possible scope of each type of feedback.

Options

7.1 Mutation-based: Detection and readability scores belong to a mutation-test case pair. 3 3
7.2 Mutation-based: Code modifications are only valid for a mutation-test case pair. 3
7.3 Short-term: Modified or preferred code lines are considered in other candidates. 3
7.4 Short-term: Readability scores are kept during the search and reused in other candidates. 3
7.5 Long-term: Tester’s preferences are saved for future executions. 3 3

8

Category Information validity
Goal - Determine whether the tester’s decisions can be modified along the search.

Options 8.1 Permanent: The tester’s feedback remains unaltered in the next iterations. 3 3
8.2 Flexible: Scores and code modifications (parameters, asserts and method sequences) can be revisited. 3 3

somehow in the primary (fitness function) or secondary ob-
jectives, whereas modifications have a direct impact on the
genotype of candidates. Sometimes, both actions have a similar
lifetime, referred as mutation-based, since the feedback will be
usually referred to a particular solution and a mutant. On other
occasions, the opinions can be applicable to other candidates
with a similar structure, thus propagating tester’s judgment
throughout the search in a short-term fashion. Furthermore,
it would be interesting to derive rules capturing his/her pro-
gramming preferences to be considered in future executions
(long-term). Focusing on information validity, the simplest
option consists in maintaining the tester’s decisions along the
whole search process. Implementing a mechanism tracking
previous changes would be a more flexible alternative. Due
to the particularities of mutation testing, decisions made for a
pair solution-mutant might result in other mutants being killed
or near to be detected. The algorithm is expected to use this
information to plan which solutions will be shown next, so
that the tester keeps focused on similar test cases.

VI. A PROOF OF CONCEPT

Section V presented a general model for interactive test
generation, which has to be particularized depending on the
goals pursued (detection, readability or both). To show how
these concepts can be put into practice, we address a specific
scenario focused on the subjective assessment of test suite
readability. In this proof of concept, the tester will be asked
to evaluate the readability of the most promising candidates
(i.e. those with the highest coverage). The GA for test suite
generation in EvoSuite is used as the base implementation,
making some modifications and adding some parameters (see
Section VI-A). Next, we describe a step-by-step execution of
the interactive process. For the interested reader, a website2

is publicly available, including additional technical details,
screenshots and the generated solutions.

A. Including interactive options in EvoSuite

In this section, we describe the interaction options selected
for each of the categories explained in Section V, as well as
how they have been implemented in EvoSuite. As we are going

2https://www.uco.es/SEBASENet/CEC2021

to focus on readability assessment, human-based evaluation is
the type of algorithm considered in this proof of concept. Next,
we focus on the type of feedback, the interaction schedule and
the information integration.

1) Type of feedback: We choose the subjective assessment
of readability through scores as the type of feedback to be
provided (option 1.2 in Table I). A new secondary objective
is defined in EvoSuite so that candidates with high readability
score according to the tester’s perception are promoted without
negatively impacting coverage. In our example, the rating scale
is pre-established with a range 0-10. Readability scores will
be then used to compare candidate test suites with the same
fitness (aggregation of coverage criteria) in order to break ties
during one of the following steps:
• Sorting: When a new generation has been produced, the

population is sorted by the fitness value. The candidates
at the top positions will have a higher probability to be
selected for reproduction. In our example, the readability
score serves to decide the relative ordering between
candidates with equal fitness.

• Replacement: When offspring solutions are generated,
their fitness values are compared with those of their
parents. If the best descendant is less valuable than its
best parent, offspring are discarded; otherwise, they are
included in the next generation. In our example, a tie
between the best child and its best parent can be solved
by the tester giving an opinion about their readability.

We include a parameter (When_to_revise) in the GA
implementation to set the step when an interaction will hap-
pen (sorting, replacement or both). Notice that, apart from
candidate evaluation, the use of readability scores to break
ties indirectly implies that option 3.2 in Table I is supported
too.

2) Interaction schedule: Here we detail the decisions made
regarding the adjustment of interaction time, the frequency of
interaction, the selection of solutions and the level of solution
detail (see Table II).

Firstly, we opt for an adaptive interaction process where
the algorithm shows candidates after a minimum coverage
has been reached (option 4.2 in Table II), a condition
monitored during the evolution. More specifically, we de-



fine a new parameter (Revise_after_percentage_of-
_coverage) to specify the percentage of all the goals that
the best candidate found so far has to cover before enabling
the new secondary objective. After the first interaction, the
next ones are scheduled at a fixed frequency (option 4.4 in
Table II). Similarly, a new parameter (Revise_frequency)
is defined to configure the number of generations that have to
elapse between interactions.

The selection of solutions depends on the step in which
interaction happens. If the tester takes part in the sorting
procedure, only a small subset of solutions should be se-
lected to avoid information overload. Consequently, in our
implementation, we limit the evaluation to the best candi-
dates (option 5.1 in Table II), i.e. test suites tied with the
highest fitness in the population. Recall that the candidates
placed in the top positions will have more impact on the
creation of the next generation; therefore, this decision helps
to make the most of the information requested to the tester.
As for interaction during replacement, the tester only has
to revise the best child and the best parent —a kind of
specific criterion (option 5.3 in Table II). Two parameters are
included in the GA to add more control to the selection of
candidates. On the one hand, we allow setting the maximum
number of times the user is willing to interact during the
search, either for sorting (Max_times_sort) or replacement
(Max_times_replace). On the other hand, we allow lim-
iting the maximum number of candidates from the population
to review in one interaction (Percentage_to_revise).
This parameter is only considered when the number of tied
candidates surpasses this percentage. In that case, the selection
is made at random.

Focusing on the level of solution detail, complete test
suites are saved into files for tester’s inspection (option 6.1
in Table II). However, it should be noted that the internal
representation of the test suites in EvoSuite is different from
their final appearance. To avoid large sequences of statements,
a minimization process is carried out after the search to remove
irrelevant statements. In this line, the selected candidates are
minimized before being presented to the tester. Therefore,
he/she will see the test suite as it would appear at the end
of the search. If two test suites are equal after applying the
minimization, they are grouped to avoid showing repeated
information. Notice that minimization is a costly procedure,
so we apply it once candidates have been selected instead of
running it for all individuals with the best fitness.

3) Information integration: We adopt a short-term lifetime
for readability scores in our implementation (option 7.4 in
Table III). With this option, the provided scores will remain
during the whole search and can be transferred to other
test suites sharing the same minimized version. To support
this, an archive of previously evaluated test suites —in its
minimized form— is created. As for the information validity,
a flexible mechanism (option 8.2 in Table III) is implemented
to allow the tester to change previous assessments if desired.
A new parameter (Revisit_candidates) is defined to
specify whether already valued candidates will be shown in

case they appear in the search again. When this parameter is
enabled, the tester is informed about the previous evaluation
and can change it. Otherwise, candidates are excluded from
visualization and receive the value stored in the archive.

B. Step-by-step illustrative execution

We execute EvoSuite with the newly incorporated
interactive features under the Eclipse IDE in order
to generate a test suite for the class ATM (from
the EvoSuite’s tutorial) with a budget of 50 genera-
tions. We set the interaction-related properties as fol-
lows: When_to_revise: sorting; Max_times_sort: 3;
Percentage_to_revise: 10%, i.e. 3 out of 30 candi-
dates (the population size); Revise_after_percentage-
_of_coverage: 88%; Revise_frequency: 10 genera-
tions; and Revisit_candidates: false. The rest of Evo-
Suite parameters are left with their default values.

The following milestones can be remarked in the execution:
1. Start of the search until secondary objective activation:

The search starts with the new secondary objective disabled.
Hopefully, the fitness of the candidates –i.e. their coverage
of goals– will be increased overall with each new generation.
When the coverage of the best candidate is greater or equal to
Revise_after_percentage_of_coverage, the sec-
ondary objective is enabled. In our example, this happens at
the 15th generation:

2. Selection of candidates: In our example, 26 out of 50
candidates present the same best fitness. However, according to
Percentage_to_revise, only 3 of them can be selected
for revision. These three candidates are then chosen at random:

3. Minimization: The selected candidates are minimized.
In our example, two of the three candidates present exactly
the same minimization. Therefore, they are grouped together
and only two test suites are shown to the tester:

4. Interaction with the tester for readability assessment:
At this point, EvoSuite is prepared for an interaction. The
two minimized versions are saved to external files and the
execution is paused to wait for the tester’s feedback. In our
example, the second minimized test suite receives a better
score (8) than the first one (6).



5. Information integration and sorting: The readability
scores are transferred to their respective candidate test suites,
including those in the same minimization group. These can-
didates are re-ordered in the population going from highest
to lowest readability score. In our example, the test suite with
id=119 has the best score (readabilityValue=8), and, therefore,
is placed at the first position:

6. Rest of the search: The secondary objective is dis-
abled after that, and it will not be enabled again un-
til Revise_frequency generations have passed. In our
case, the following interactions are scheduled at iterations
25, 35 and so on. Whenever the search has not exhausted
Max_times_sort, it will activate the secondary objective
at those iterations, repeating steps 2-5 if it is necessary to break
new ties. In our case, one additional interaction was requested
before the end of the search. The test suite with the highest
readability score is the one returned as the optimal solution
with a final coverage of 95% of the goals.

VII. CONCLUSION

This paper explores how interactive optimization can be
applied to take the most of both manual and search-based
testing. Our proposal consists of letting testers have a direct
influence on the test case design by providing new information
to guide the search. As a result, readability becomes an
explicit goal, while enhancing the capability of tools to detect
challenging faults. The analysis of the different alternatives on
how interactivity can be incorporated will serve to guide future
developments. As a first approximation, we have implemented
several interaction options in the well-known EvoSuite tool to
support subjective readability assessment.

In the future, we plan to further analyze the viability of this
proposal, as well as other implementations oriented to hard-
fault detection, by means of empirical studies. We believe in-
volving industry software testers could lead to revealing more
faults while reducing the size of test suites. We hypothesize
that this approach could also be applied at other testing levels,
such as GUI or integration testing.
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