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Abstract

The Web and digitized text sources contain
a wealth of information about named entities
such as politicians, actors, companies, or cul-
tural landmarks. Extracting this information
has enabled the automated construction of large
knowledge bases, containing hundred millions
of binary relationships or attribute values about
these named entities. However, in reality most
knowledge is transient, i.e. changes over time,
requiring a temporal dimension in fact extrac-
tion. In this paper we develop a methodology
that combines label propagation with constraint
reasoning for temporal fact extraction. Label
propagation aggressively gathers fact candi-
dates, and an Integer Linear Program is used
to clean out false hypotheses that violate tem-
poral constraints. Our method is able to im-
prove on recall while keeping up with preci-
sion, which we demonstrate by experiments
with biography-style Wikipedia pages and a
large corpus of news articles.

1 Introduction
In recent years, automated fact extraction from Web
contents has seen significant progress with the emer-
gence of freely available knowledge bases, such as
DBpedia (Auer et al., 2007), YAGO (Suchanek et
al., 2007), TextRunner (Etzioni et al., 2008), or
ReadTheWeb (Carlson et al., 2010a). These knowl-
edge bases are constantly growing and contain cur-
rently (by example of DBpedia) several million enti-
ties and half a billion facts about them. This wealth
of data allows to satisfy the information needs of
advanced Internet users by raising queries from key-
words to entities. This enables queries like “Who is
married to Prince Charles?” or “Who are the team-
mates of Lionel Messi at FC Barcelona?”.

However, factual knowledge is highly ephemeral:
Royals get married and divorced, politicians hold
positions only for a limited time and soccer players
transfer from one club to another. Consequently,
knowledge bases should be able to support more
sophisticated temporal queries at entity-level, such
as “Who have been the spouses of Prince Charles
before 2000?” or “Who are the teammates of Lionel
Messi at FC Barcelona in the season 2011/2012?”.
In order to achieve this goal, the next big step is to
distill temporal knowledge from the Web.

Extracting temporal facts is a complex and time-
consuming endeavor. There are “conservative” strate-
gies that aim at high precision, but they tend to suffer
from low recall. On the contrary, there are “aggres-
sive” approaches that target at high recall, but fre-
quently suffer from low precision. To this end, we
introduce a method that allows us to gain maximum
benefit from both “worlds” by “aggressively” gath-
ering fact candidates and subsequently “cleaning-up”
the incorrect ones. The salient properties of our ap-
proach and the novel contributions of this paper are
the following:
• A temporal fact extraction strategy that is able

to efficiently gather thousands of fact candidates
based on a handful of seed facts.
• An ILP solver incorporating constraints on tem-

poral relations among events (e.g., marriage of
a person must be non-overlapping in time).
• Experiments on real world news and Wikipedia

articles showing that we gain recall while keep-
ing up with precision.

2 Related Work
Recently, there have been several approaches that
aim at the extraction of temporal facts for the auto-
mated construction of large knowledge bases, but
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time-aware fact extraction is still in its infancy. An
approach toward fact extraction based on coupled
semi-supervised learning for information extraction
(IE) is NELL (Carlson et al., 2010b). However, it
does neither incorporate constraints nor temporal-
ity. TIE (Ling and Weld, 2010) binds time-points
of events described in sentences, but does not dis-
ambiguate entities or combine observations to facts.
A pattern-based approach for temporal fact extrac-
tion is PRAVDA (Wang et al., 2011), which utilizes
label propagation as a semi-supervised learning strat-
egy, but does not incorporate constraints. Similarly,
TOB is an approach of extracting temporal business-
related facts from free text, which requires deep pars-
ing and does not apply constraints as well (Zhang et
al., 2008). In contrast, CoTS (Talukdar et al., 2012)
introduces a constraint-based approach of coupled
semi-supervised learning for IE, however not focus-
ing on the extraction part. Building on TimeML
(Pustejovsky et al., 2003) several works (Verhagen et
al., 2005; Mani et al., 2006; Chambers and Jurafsky,
2008; Verhagen et al., 2009; Yoshikawa et al., 2009)
identify temporal relationships in free text, but don’t
focus on fact extraction.

3 Framework
Facts and Observations. We aim to extract factual
knowledge transient over time from free text. More
specifically, we assume time T = [0, Tmax ] to
be a finite sequence of time-points with yearly
granularity. Furthermore, a fact consists of a
relation with two typed arguments and a time-
interval defining its validity. For instance, we write
worksForClub(Beckham,RMadrid)@[2003, 2008)
to express that Beckham played for Real Madrid
from 2003 to 2007. Since sentences containing a
fact and its full time-interval are sparse, we consider
three kinds of textual observations for each relation,
namely begin, during, and end. “Beckham signed
for Real Madrid from Manchester United in 2003.”
includes both the begin observation of Beckham be-
ing with Real Madrid as well as the end observation
of working for Manchester. A positive seed fact is a
valid fact of a relation, while a negative seed fact is
incorrect (e.g., for relation worksForClub, a positive
seed fact is worksForClub(Beckham,RMadrid),
while worksForClub(Beckham,BMunich) is a
negative seed fact).

Framework. As depicted in Figure 1, our framework
is composed of four stages, where the first collects
candidate sentences, the second mines patterns from
the candidates sentences, the third extracts temporal
facts from the sentences utilizing the patterns and the
last removes noisy facts by enforcing constraints.
Preprocessing. We retrieve all sentences from the
corpus comprising at least two entities and a temporal
expression, where we use YAGO for entity recogni-
tion and disambiguation (cf. (Hoffart et al., 2011)).

Figure 1: System Overview

Pattern Analysis. A pattern is a n-gram based fea-
ture vector. It is generated by replacing entities
by their types, keeping only stemmed nouns, verbs
converted to present tense and the last preposition.
For example, considering “Beckham signed for Real
Madrid from Manchester United in 2003.” the cor-
responding pattern for the end occurrence is “sign
for CLUB from”. We quantify the strength of each
pattern by investigating how frequent the pattern oc-
curs with seed facts of a particular relation and how
infrequent it appears with negative seed facts.
Fact Candidate Gathering. Entity pairs that co-
occur with patterns whose strength is above a mini-
mum threshold become fact candidates and are fed
into the next stage of label propagation.

4 T-Fact Extraction
Building on (Wang et al., 2011) we utilize Label
Propagation (Talukdar and Crammer, 2009) to deter-
mine the relation and observation type expressed by
each pattern.
Graph. We create a graph G = (VF ∪̇VP , E) having
one vertex v ∈ VF for each fact candidate observed
in the text and one vertex v ∈ VP for each pattern.
Edges between VF and VP are introduced whenever a
fact candidate appeared with a pattern. Their weight
is derived from the co-occurrence frequency. Edges
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among VP nodes have weights derived from the n-
gram overlap of the patterns.
Labels. Moreover, we use one label for each observa-
tion type (begin, during, and end) of each relation and
a dummy label representing the unknown relation.
Objective Function. Let Y ∈ R|V|×|Labels|

+ de-
note the graph’s initial label assignment, and Ŷ ∈
R|V|×|Labels|

+ stand for the estimated labels of all ver-
tices, Sl encode the seed’s weights on its diagonal,
and R∗l contain zeroes except for the dummy label’s
column. Then, the objective function is:

L(Ŷ) =
∑

`

[
(Y∗` − Ŷ∗`)T S`(Y∗` − Ŷ∗`)

+µ1ŶT
∗`LŶ∗` + µ2‖Ŷ∗` −R∗`‖2

]
(1)

Here, the first term (Y∗` − Ŷ∗`)TS`(Y∗` − Ŷ∗`)
ensures that the estimated labels approximate the
initial labels. The labeling of neighboring vertices
is smoothed by µ1ŶT

∗`LŶ∗`, where L refers to the
Laplacian matrix. The last term is a L2 regularizer.

5 Cleaning of Fact Candidates
To prune noisy t-facts, we compute a consistent sub-
set of t-facts with respect to temporal constraints (e.g.
joining a sports club takes place before leaving a
sports club) by an Integer Linear Program (ILP).
Variables. We introduce a variable xr ∈ {0, 1} for
each t-fact candidate r ∈ R, where 1 means the can-
didate is valid. Two variables xf,b, xf,e ∈ [0, Tmax ]
denote begin (b) and end (e) of time-interval of a fact
f ∈ F . Note, that many t-fact candidates refer to the
same fact f , since they share their entity pairs.
Objective Function. The objective function intends
to maximize the number of valid raw t-facts, where
wr is a weight obtained from the previous stage:

max
∑
r∈R

wr · xr

Intra-Fact Constraints. xf,b and xf,e encode a
proper time-interval by adding the constraint:

∀f ∈ F xf,b < xf,e

Considering only a single relation, we assume the
setsRb,Rd, andRe to comprise its t-fact candidates
with respect to the begin, during, and end observa-
tions. Then, we introduce the constraints

∀l ∈ {b, e}, r ∈ Rl tl · xr ≤ xf,l (2)
∀l ∈ {b, e}, r ∈ Rl xf,l ≤ tl · xr + (1− xr)Tmax (3)

∀r ∈ Rd xf,b ≤ tb · xr + (1− xr)Tmax (4)
∀r ∈ Rd te · xr ≤ xf,e (5)

where f has the same entity pair as r and tb, te are
begin and end of r’s time-interval. Whenever xr is
set to 1 for begin or end t-fact candidates, Eq. (2)
and Eq. (3) set the value of xf,b or xf,e to tb or te,
respectively. For each during t-fact candidate with
xr = 1, Eq. (4) and Eq. (5) enforce xf,b ≤ tb and
te ≤ xf,e.
Inter-Fact Constraints. Since we can refer to a fact
f ’s time interval by xf,b and xf,e and the connectives
of Boolean Logic can be encoded in ILPs (Karp,
1972), we can use all temporal constraints expressible
by Allen’s Interval Algebra (Allen, 1983) to specify
inter-fact constraints. For example, we leverage this
by prohibiting marriages of a single person from
overlapping in time.
Previous Work. In comparison to (Talukdar et al.,
2012), our ILP encoding is time-scale invariant. That
is, for the same data, if the granularity of T is
changed from months to seconds, for example, the
size of the ILP is not affected. Furthermore, because
we allow all relations of Allen’s Interval Algebra, we
support a richer class of temporal constraints.

6 Experiments
Corpus. Experiments are conducted in the soccer
and the celebrity domain by considering the works-
ForClub and isMarriedTo relation, respectively. For
each person in the “FIFA 100 list” and “Forbes 100
list” we retrieve their Wikipedia article. In addition,
we obtained about 80,000 documents for the soccer
domain and 370,000 documents for the celebrity do-
main from BBC, The Telegraph, Times Online and
ESPN by querying Google’s News Archive Search1

in the time window from 1990-2011. All hyperpa-
rameters are tuned on a separate data-set.
Seeds. For each relation we manually select the 10
positive and negative fact candidates with highest
occurrence frequencies in the corpus as seeds.
Evaluation. We evaluate precision by randomly sam-
pling 50 (isMarriedTo) and 100 (worksForClub) facts
for each observation type and manually evaluating
them against the text documents. All experimental
data is available for download from our website2.

6.1 Pipeline vs. Joint Model
Setting. In this experiment we compare the perfor-
mance of the pipeline being stages 3 and 4 in Figure

1news.google.com/archivesearch
2www.mpi-inf.mpg.de/yago-naga/pravda/
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1 and a joint model in form of an ILP solving the
t-fact extraction and noise cleaning at the same time.
Hence, the joint model resembles (Roth and Yih,
2004) extended by Section 5’s temporal constraints.

R
el

at
io

n

Observation
Label Propagation ILP for T-Fact Extraction

Precision # Obs. Precision # Obs.

w
or

ks
Fo

rC
lu

b begin 80% 2537 81% 2426

W
ithoutN

oise
C

leaning

during 78% 2826 86% 1153

end 65% 440 50% 550

is
M

ar
ri

ed
To begin 52% 195 28% 232

during 76% 92 6% 466

end 62% 50 2% 551

w
or

ks
Fo

rC
lu

b begin 85% 2469 87% 2076

W
ith

N
oise

C
leaning

during 85% 2761 79% 1434

end 74% 403 72% 275

is
M

ar
ri

ed
To begin 64% 177 74% 67

during 79% 89 88% 61

end 70% 47 71% 28

Table 1: Pipeline vs. Joint Model

Results. Table 1 shows the results on the pipeline
model (lower-left), joint model (lower-right), label-
propagation w/o noise cleaning (upper-left), and ILP
for t-fact extraction w/o noise cleaning (upper-right).
Analysis. Regarding the upper part of Table 1 the
pattern-based extraction works very well for works-
ForClub, however it fails on isMarriedTo. The reason
is, that the types of worksForClub distinguish the
patterns well from other relations. In contrast, isMar-
riedTo’s patterns interfere with other person-person
relations making constraints a decisive asset. When
comparing the joint model and the pipeline model,
the former sacrifices recall in order to keep up with
the latter’s precision level. That is because the joint
model’s ILP decides with binary variables on which
patterns to accept. In contrast, label propagation ad-
dresses the inherent uncertainty by providing label
assignments with confidence numbers.

6.2 Increasing Recall
Setting. In a second experiment, we move the t-fact
extraction stage away from high precision towards
higher recall, where the successive noise cleaning
stage attempts to restore the precision level.
Results. The columns of Table 2 show results for
different values of µ1 of Eq. (1). From left to right,

we used µ1 = e−1, 0.6, 0.8 for worksForClub and
µ1 = e−2, e−1, 0.6 for isMarriedTo. The table’s up-
per part reports on the output of stage 3, whereas the
lower part covers the facts returned by noise cleaning.
Analysis. For the conservative setting label propa-
gation produces high precision facts with only few
inconsistencies, so the noise cleaning stage has no
effect, i.e. no pruning takes place. This is the set-
ting usual pattern-based approaches without cleaning
stage are working in. In contrast, for the standard set-
ting (coinciding with Table 1’s left column) stage 3
yields less precision, but higher recall. Since there are
more inconsistencies in this setup, the noise cleaning
stage accomplishes precision gains compensating for
the losses in the previous stage. In the relaxed setting
precision drops too low, so the noise cleaning stage is
unable to figure out the truly correct facts. In general,
the effects on worksForClub are weaker, since in this
relation the constraints are less influential.

Conservative Standard Relaxed

Prec. # Obs. Prec. # Obs. Prec. # Obs.

w
or

ks
Fo

rC
lu

b begin 83% 2443 80% 2537 80% 2608

W
ithoutN

oise
C

leaning

during 81% 2523 78% 2826 76% 2928

end 77% 377 65% 440 62% 501

is
M

ar
ri

ed
To begin 72% 112 52% 195 44% 269

during 90% 63 76% 92 52% 187

end 67% 37 62% 50 36% 116

w
or

ks
Fo

rC
lu

b begin 83% 2389 85% 2469 84% 2536

W
ith

N
oise

C
leaning

during 88% 2474 85% 2761 75% 2861

end 79% 349 72% 403 70% 463

is
M

ar
ri

ed
To begin 72% 111 64% 177 46% 239

during 90% 62 79% 89 54% 177

end 69% 36 68% 47 38% 110

Table 2: Increasing Recall.

7 Conclusion
In this paper we have developed a method that com-
bines label propagation with constraint reasoning
for temporal fact extraction. Our experiments have
shown that best results can be achieved by applying
“aggressive” label propagation with a subsequent ILP
for “clean-up”. By coupling both approaches we
achieve both high(er) precision and high(er) recall.
Thus, our method efficiently extracts high quality
temporal facts at large scale.

236



Acknowledgements

This work is supported by the 7th Framework IST
programme of the European Union through the fo-
cused research project (STREP) on Longitudinal An-
alytics of Web Archive data (LAWA) under contract
no. 258105.

References
James F. Allen. 1983. Maintaining knowledge about

temporal intervals. Commun. ACM, 26(11):832–843,
November.
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