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Abstract— A growing sense of unfairness permeates our 
quasi-digital society. Despite drivers supporting and motivating 
ethical practice in the digital technology ecosystem, there are 
compounding barriers to fairness that, at every level, impact 
technology innovation, delivery and access. Amongst these are 
barriers and omissions at the earliest stages of technology 
intentionality and design; systemic inadequacies in sensing 
systems that deteriorate performance for individuals based on 
ethnicity, age and physicality; system design, co-requisite and 
interface decisions that limit access; biases and inequities in 
datasets and algorithms; and limiting factors in system function 
and security. Additionally, there are concerns about unethical 
and illegal practices amongst digital technology providers: for 
example, in planned obsolescence and anti-competitive 
behaviors, failings in data practices and security, and in 
responses to problematic use and behaviors. It is critical that 
these failings are identified and addressed to better evolve a 
fairer future digital technology ecosystem. This paper 
contributes a perspective on technological stewardship and 
innovation; it identifies the compounding nature of barriers to 
fairness in the current digital technology ecosystem, and 
contrasts these with the non-compounding fairness drivers that, 
in general, establish minimum requirements. 
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I. INTRODUCTION

Our lives increasingly rely on rapidly changing digital 
technologies but, at every level of technology evolution and 
delivery, there are barriers and failings that compound to limit 

the technological equity experienced by substantial 
populations of individuals. Yet the disadvantages and impacts 
of digital exclusion in future digital living are considerable, 
and particularly so when we imagine the expansive nature of 
future technologies that encompass not only digital devices 
but also digital assistants, bots and robots; virtual, augmented, 
and mixed realities; smart homes, smart energy and smart 
transport; wearables and the wider Internet of Things (IoT); 
and the interfaces connecting individuals and communities, 
and data and services.  

The importance of ethical practice in society, business and 
professional life is manifested by the many drivers that 
encourage and enforce fair and appropriate conduct as, for 
example, illustrated in Figure 1 by the drivers acting in support 
of fair technology. Like many drivers of positive behavior, 
these drivers are rooted in reactive initiatives that have 
responded to historical failings by establishing minimum 
requirements and minimum standards. The challenge now, in 
part, is to achieve responses that, can keep apace with the rapid 
nature of technological change and, ideally, prevent the 
permeation of unfair technologies and practices. A further 
challenge is the inherent insufficiency of ‘minimum 
requirements drivers’ to compensate for layers of multi-
component barriers that, in essence, act as monotonic 
decreasing functions to fairness. In the next sections we 
consider facets of technological fairness before returning to 
the mismatch between drivers and barriers.
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II. FAIRNESS

In this section, starting with contextual fairness, we consider 
some of the key facets of fairness that underpin our 
consideration of compounding technological barriers. 

A. Contextual Fairness

Notions of fairness are complex and nuanced, and framed
by societal and cultural norms. What is considered as fair, just 
or equitable, therefore, depends on the context and on the 
dimensions of moral or ethical frameworks, whether they be 
teleological (goal-based) or deontological (duty-based) as, for 
example, ideals aligned with Rawls’ theorization of justice as 
fairness [1], where social primary goods are equally 
distributed unless an unequal distribution is to the advantage 
of the least favored. But how can we translate and orientate 
different interpretations of fairness into digital living and the 
diverse stakeholders, including both users and non-users, 
affected by the digital technology ecosystem? How can we 
avoid the omissions, implicit assumptions and unconscious 
biases that create barriers according to age, ethnicity, gender, 
ability or physicality that have consequences for technology 
to be used equally by all members of society? 

B. Technological Fairness and Fairness Metrics

Computing and communicating innovations have, for
many years, relied on technological ‘fairness metrics’ to 
resolve resource allocation problems [2]-[4]. For example, 
backoff algorithms and traffic prioritization schema to resolve 
the challenges of fair and appropriate bandwidth and resource 
sharing to enable local area networking and the Internet 
communications infrastructure. Such fairness metrics now 
pervade digital technology devices and infrastructure, in the 
algorithms and protocols of computing and communicating 
devices, in the widespread use of throttling and load-
balancing, and in the systemic prioritizations of traffic, 
services and resources. But these low-level, quantitative 
fairness metrics need to be complemented by higher-level 
assessments of technological fairness that are both subjective 
and collective, such as those found in systems of interactional 
justice [5]. 

C. Transparency

Transparency is fundamentally linked to fairness and
important where there may be concerns about inclusion, 
accuracy, privacy or trust. In research, transparency is 
essential for repeatability, and it is increasingly important as 
researchers intensify use of primary and secondary human 
data, and share, collate and reuse datasets [6] that ultimately 
feed machine learning algorithms that themselves can inform 
decisions of consequence [7]. Of course, transparency is also 
important across the spectrum of safety-critical systems from 
implantable medical devices [8] to self-driving cars [9].  

Where a lack of transparency combines with misplaced 
trust in complex systems, there can be disastrous 
consequences as, demonstrated by the Boeing MAX 737 
airplane design and software failings that resulted in passenger 
airline crashes in 2018 and 2019 [10], [11]. But calamitous 
technology consequences are not limited to safety-critical 
scenarios as, for example, demonstrated by the fundamentally 
flawed UK Post Office accounting software [12] that resulted 
in “the UK's most widespread miscarriage of justice” [13], 
[14].  

There is also recognition of a need for more transparency 
in IoT systems. For example, there is evidence from smart 

home technology research that users are frustrated by the 
inconsistency and lack of transparency about their IoT 
systems [15]. Though, of course, there is a difficult balance 
between enabling transparency about data transactions and 
device status, and information overload. At the same time, 
transparency is challenging because of the complicated nature 
of digital systems whose software encompasses apps, device 
firmware and operating systems (as well as firmware 
embedded in sensing modules) and the cloud services of data 
controllers and processors. 

D. Interaction in Socio-technical Systems

The enablement of interaction can go beyond
transparency, but it is possible to identify at least four layers 
of interaction in relation to the management of resources in 
socio-technical systems [16]: 

• delegated – humans out of the loop: operation is
performed by ‘smart’ automation, which is performed
without (or with limited) user intervention, typically
being the domain of cyber-physical or multi-
agent systems;

• programmable – humans on the loop:
operational parameters are specified by 
users, ‘smart’ automation resolves the constraints, and 
presents plans to users, for example route finding and 
load balancing in intelligent transportation systems;  

• interactive – humans in the loop: automation indicates
active intervention is required by humans, e.g.,
overload prevention by SmartMeters in an islanded
community energy system initiating collective action
(but the users choose what to turn off);

• attentive – humans are the loop: a human participant
may occupy multiple different stakeholder
roles, especially as an inhabitant of a SmartCity, being
called upon to participate in local decisions through
citizen assemblies, for example.

III. COMPOUNDING BARRIERS TO FAIRNESS

The compounding barriers to fairness in the digital 
technology ecosystem are illustrated in Figure 2. This multi-
level (A-H) process-oriented model evolved in part from use 
case examples (and ‘non-use’ case examples) of unmet needs, 
failings, and discriminatory and exclusionary practice. For 
example, use cases considering why all drivers and route-
planners don’t benefit from real-time traffic data, why all 
children don’t have computers, and why so few elders use and 
benefit from wearable health trackers?  

A. Technology Intentionality and Design

Barriers to fairness that include purposeful exploitation
and digital dependence [17] are significant at the earliest 
stages of the digital technology ecosystem where the 
intentionality and design of technologies evolve. Omissions at 
this level also introduce barriers to fairness. For example, the 
pervasive lack of Equality, Diversity and Inclusion (EDI) 
across technology research, design, development and 
financing [18] as well as in participant test cohorts [19] that 
can fundamentally limit the intentionality, conception and 
early steer of technology designs and visions and the 
perceived users and stakeholders. 



Fig. 2. Compounding Fairness Barriers in the Technology Ecosystem

B. User Perceptions and Acceptance
Where technologies are designed for inclusive use, there

are user perceptions around ease-of-use and usefulness that 
are well established as limiting factors for technology
adoption and acceptance [20]. These perceptions may stem 
directly from component factors such as experience or lack of 
experience, or be influenced by social or cultural factors.

C. Sensors and Performance
IoT systems and other technologies that rely on sensed

data can lack accuracy and can exclude individuals based on 
ethnicity, age and physicality. For example, wearable health 
trackers count steps less accurately for slow walkers, and 
optical heart rate sensing performance deteriorates for 
individuals who are older, have higher BMIs or darker skin 
tones [21], [22]. But despite inaccuracies [23], [24], 
inclusivity failings [25] and a lack of evaluation reporting in 
the academic literature [26], the devices do achieve positive 
and worthwhile health outcomes and insights for many users. 
However, it is concerning that these benefits, together with the 
ability to acquire real-world sense data, have incentivized
applications beyond individual well-being into healthcare, 
research practice, health insurance [27] and corporate 
wellness [28]. But sensor-related fairness failings are not 
limited to wearable fitness trackers. Individuals with darker 
skin tones may experience larger errors when using 
inappropriately calibrated pulse oximeters and may be unable 
to obtain soap or water from taps and dispensers fitted with 
reflective infrared proximity sensors [29], similarly older 
individuals may not be able to make use of fingerprint sensors 
[30].

D. System Physicality
The physicality and inflexibility of digital systems can

present many barriers to accessible use. For example, 
wearable device screens and many smartphone and mobile 
device screens are too small for many elders. Additionally, 

wearables like other IoT systems are often tethered to 
smartphones and not accessible via larger desktop screens.

E. Co-requisites, Services and Contracts
Technology dependencies and co-requisites present

additional barriers to technology access and adoption. Beyond 
the immediate technology cost there can be additional
subscription costs or co-requisite services and contracts, e.g., 
a capable smartphone and contract or broadband connectivity
Similarly, smartwatches and activity monitors, IoT devices, 
and smart energy meters often rely on accompanying 
smartphone apps for their user interfaces.

F. User Interface Design
Beyond the physical constraints of system interfaces such

as screen size, there are myriad implicit shallow and deep 
design factors that influence technology access, usability and 
adoption. For example, reliance on gesture or interface 
familiarity [31]. Unfortunately, although usability issues are 
often recognized and addressed by manufacturers or 
providers, accessibility and inclusivity are frequently 
neglected until relatively late in the design process [32].

G. Algorithms and Biases
Algorithmic bias in digital technologies can lead to

inequitable outcomes for individuals and demographic cohorts 
and, result in disadvantage or harm [33], [34].  Algorithmic 
bias is usually attributed to the inappropriateness or 
unrepresentative nature of artificial intelligence (AI) training 
datasets that replicate past and present societal biases [35].
Whilst greater transparency regarding the technology itself is 
seen as a potential solution to lack of trust it can, 
paradoxically, further reduce user trust and confidence in the 
systems [36]. 

One of the most striking implications of living in a digital 
society is that while data is constantly generated about we
individuals from sensors, cameras, wearable devices and
social networks, the same data is used to trigger decisions for
us, with potentially far-reaching consequences [37]. For 
example, information about spending habits is used to predict 
solvency, and may directly influence future access to credit. 
The introduction of algorithmic models for credit scoring, 
ideally free from the arbitrary judgement of human operators, 
has often been promoted as the triumph of fairness and 
objectivity. However, such models have raised concerns, for 
example, in terms of potential racial bias [38], and it has been 
shown that businesses founded by disadvantaged minorities 
have much lower average business credit scores. Similarly, 
widely used commercial systems for automatic face 
recognition are prone to discrimination based on race and 
gender [39]. These findings are doubly worrying because 
machine learning models carry an aura of objectivity that may 
render the decisions taken as a consequence of their outcome 
difficult to challenge, especially for the layperson. On the 
other hand, when bias becomes apparent, users may lose their 
trust in the autonomous systems and reject them altogether, 
losing also all the potential benefits [40]. Indeed, a lack of 
public trust in the fairness of algorithmic and data-driven 
systems has increased following a number of prominent 
examples of systems that have been discriminatory [41]. This 
lack of trust is compounded by fears that key decision-makers 
may default to the use of algorithms, (automation bias). Such 
fears have some foundation, for example users can indeed 
default to algorithmic advice over peer-advice (unless any 
inaccurate advice is clearly labelled as algorithmic) [42]. 
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H: Functionality and Security



H. Functionality and Security

There is a tacit assumption and, in some quarters,
misplaced trust that the functionality and security of devices 
monotonically improves over time with each new model, 
iteration or software update. Some updates and version 
changes, particularly those making significant changes to 
operating systems, popular apps or device behaviors, can 
provoke strong user responses as, for example, evidenced by 
Microsoft’s Windows 8 [43] and Apple’s iPhone 
‘Batterygate’ [44]. But, more often, updates make bug fixes 
and iterative adjustments to algorithms, interfaces and features 
[45] and have little immediate, if any, observable effects, and
there is a tacit assumption amongst users that these iterations
generally evolve systems over time into better-performing,
more functional, secure and efficient versions of their previous
selves. This may often be the case, but it is not necessarily
true, as for example demonstrated by the ‘Dieselgate’
automotive emissions scandal [46].

IV. DISCUSSION AND CONCLUSIONS

A. Fairness Drivers and Barriers Mismatch

A key observation when contrasting fair technology
drivers with fair technology barriers is that the drivers do not 
compound to increase fairness in the same way that the 
barriers compound to limit fairness. Drivers generally 
necessitate compliance with minimum standards and there is, 
on balance, a lack of incentives for technology enterprises 
(and stakeholders) to further enhance fairness. This mismatch 
between compounding monotonically decreasing fairness 
barriers and ‘minimum requirement drivers’ means that 
unfairness will be programmed into the digital ecosystem 
unless drivers with the capacity to monotonically increase 
fairness can be effected. 

B. Future Challenges

There are clearly open challenges and a need for further
research and empirical evidence but, in terms of progress, 
there is evidence of positive development in terms of the 
evolution of standards, tools and assurance solutions being 
developed to mitigate against algorithmic bias. At the same 
time there is a need to implement meaningful ‘human-in-the 
loop’ protocols to ensure algorithmic and digital technologies 
augment human decision-making, minimize unfair outcomes 
and build trust in the wider operation of such systems. Such 
solutions are complex and require utilizing skills from the 
Human-Computer Interaction (HCI) and User Experience 
(UX) fields plus wider multi-disciplinary inputs including 
cognitive science, anthropology, moral philosophy, social 
sciences and law, to establish a human-centered AI approach 
[47]. In this way we envision a new inter-disciplinary field of 
‘Human-AI interaction’, that encompasses Human-Computer 
Interaction and the engineering equivalent of Human-Machine 
Interaction (HMI) and specifically brings, with the intention 
not only to inform design frameworks for widespread 
adoption and interaction with smart technology, but also legal 
frameworks as well. 
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