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In a repeated partnership game with imperfect monitoring, we distinguish
among the effects of (1) shortening the period over which actions are held
fixed, (2) increasing the frequency with which accumulated information is
reported, and (3) reducing the amount of discounting of payoffs between
successive periods. While reducing the amount of discounting generally
improves incentives for cooperation, the other two changes can have the
reverse effect. When the game is specified in the customary way with
information reported at the end of each period of fixed action, the net
effect of shortening the period length can be to destroy all incentives for
cooperation, reversing the usual conclusion associated with the Folk Theorem
for repeated games. Moreover, when interest rates are low, reducing the
frequency of information reporting can greatly enhance the efficiency of

equilibrium.
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1. Intreduction

In many economic settings the efficiency of explicit and implicit

contractual arrangements is limited by the presence of imperfect monitor-

ing: some agents cannot observe perfectly the actions of others. Often
the economic problem of interest involves the indefinite repetition of
some strategic situation such as a partnership problem (see, for example,
Fudenberg and Maskin {1986b], Radner [1986], and Radner, Myerson and
Maskin [1986]), an oligopoly (Green and Porter [1984], Porter [1983], and
Abreu, Pearce and Stacchetti [1986}) or a principal-agent problem
(Fudenberg, Holmstrom and Milgrom [1986], Fudenberg and Maskin [1986a;,
Holmstrom and Milgrom (1987}, Radner [1981, 1983], Rogerson [1985],
Rubinstein [197%9], and Spear and Srivastava [1987]). This paper uses
repeated partnership games with moral hazard to study a number of ques-
tions arising from interactions among information flows, interest rates
and the frequency with which choices are made and revised. The results
correct some natural misconceptions regarding the roles of action
frequency and informational delays in determining the limits of intertem-
poral cooperation. They also reveal the potency of a certain sort of
information suppression as a tool for enhancing the efficiency of repeated
partnerships.

Cooperation in supergames depends upon players’ responding aggres-
sively to Indications that not all participants are honoring the implicit
agreement. When imperfect information about the players’ actions arrives
periodically, improving the information always strictly expands the equi-
librium value set (Kanderi [1988}) and hence the possibilities for cooper-

ation. There is some presumption, then, that possibilities of cooperation



are also enhanced when signals related to players' behavior are observed
without delay, and when players can respond quickly to new information.
While this is exactly what happens under perfect monitoring, we show that
the presumption is entirely misleading for games with imperfect monitor-
ing. First, reducing the frequency with which actions are taken may allow
much greater efficiency in equilibrium. Further, in some cases all coop-
eration collapses when players are able to move very frequently. These
results have significant implications for the interpretation of limit
theorems as the discount factor § approaches 1. Letting & approach
unity is often understood as a study not of extraordinarily patient
people, but rather of players who can adjust their actions very quickly.
(Think for a moment about the easier case with perfect monitoring--all
players’' actioms are publicly observed. Allowing agents to act more fre-
quently creates a new supergame identical to the original one in all
respects except that, because the periods are shorter, future payoffs are
discounted (relative to current payoffs) less than before. Thus, asking
what happens when players can act very quickly is equivalent to asking
what happens when § approaches 1.) While this point of view seems to
provide a compelling motivation for limit theorems in 6 , it is inappro-
priate under imperfect monitoring for informational reasons: it implic-
itly assumes that as players become able to change their actions more
frequently, there is a corresponding increase in the rate of arrival of
signals in the economy. A more natural exercise would be one in which the
underlying informational structure of the game is held fixed, while play-
ers are allowed to react to new information more quickly. Section 2

presents a simple model that allows action frequency and the information



arrival process to be varied independently. Then, as noted above,
increasing action frequency is not the same as changing the interest rate
r and does not generally enhance the possibilities for cooperation.

The second part of the paper concerns the effects of delaying the
release of signals to the players. Although such delay would appear to
involve a deterioration in the flow of information, it often improves the
ﬁossibilities for cooperation, especially when § is not too low. Indeed,
when 6 is very close to 1, long delays in information release typically
achieve nearly perfect efficiency, in the first-best sense. This stands
in stark contrast to the asymptotic inefficiency results of Radner, Myer-
son and Maskin {1986] and Fudenberg and Maskin [1986b]. When there is
only infrequent release of accumulated signals (related to players’ behav-
ior) it is possible to use a "single punishment" to deter a multitude of
different potential deviations. We use the term "global deterrent" to
describe such a punishment. Section 3 explores these issues involving the
timing of the release of information in a simple model; the benefits of
temporary information suppression in more general games with patient play-
ers are established with a "folk theorem" in Section 4. Section 5

concludes.

2. Varving Action Frequency with Continuous Obseyvation
The Model and Some Basic Results

We wish to consider repeated partnership games with imperfect moni-
toring in a formulation which makes it possible to vary the length of time
for which players’ actions are held constant while keeping fixed the in-

formation arrival process. To avoid an arbitrary choice of fundamental



time unit, we adopt a specification in which signals arrive stochastically
in continuous time. This allows us in particular to analyze the behavior
of the model as the players’ reaction time goes to zero. The latter in
turn permits comparison with the usual asymptotic exercise of letting §
tend to 1, and has the additional advantage of being analytically tract-
able.

The model developed below is possibly the simplest one in which the

effects we wish to highlight appear in a natural and clear way.

The Stage Game G(t,r)

We consider a simultaneous, symmetric stage game which is a stochas-
tic, n-player version of a "prisoners' dilemma." Each player has avail-
able two actions, labelled ¢ for "cooperate" and d for "defect." For
example, ¢ might involve a high lavel of care or effort, and d could
represent "shirking." The imperfect monitoring takes the following form;:
publicly observed signals arise according to a simple Poisson process
whose arrival rate 1(5) is a function of the profile R = (xl, ey xn)
of actions chosen. The arrival rates when no one deviates, and when any
single player deviates, respectively, are denoted by X >0 and u > 0
The relative size of X ar' 4 depends upon the interpretation of the
signal, which could be a desirable event (in which case assume X > u )
such as the sale of a product or a research breakthrough, or a failure
(M < p) such as a defective product or an industrial accident. The stage
game is parametrized by its length t >0, and by r > 0 , the rate at
which payoffs are discounted. Player 1i's payoff in the stage game is
the expected value of his realized payoffs. The latter depend on his own

action LI which contributes an instantaneous, or "flow" payoff at rate



f(xi) , and on the realizations of the signal during the time interval.

The arrival of a signal causes a discrete loss (in the case of "bad news":

A< ug ) or gain which is denoted E(xi) . If k signals arrive at times
tj , j=1, ..., k, 0= tj s t , player i's realized payoff is
t —rs k =-rt,
E(x)(fge  ds) + 2(x,) Se I, where f : (c,d} »R and £ : (c,d} - R
j=1
are independent of 1 . Hence, expected payoffs for { in the stage

game, expressed as a flow, are:

u(x) = £(x) + v(0)4(x,)

To summarize, player 1i's (expected) payoff depends on his own action,
and also on the other players’ actions, to the extent that these influence
7(§) . The payoff structure resembles that of a prisoners’ dilemma
insofar as:
(1) {(d, ..., dy 1is a NRash equilibrium of the stage game. Further-
more, it yields players cheir individually rational payoff,
which we normalize to 0.
(2) A player’s expected flow payoff when all players cooperate is
strictly positive, and is denoted 1II .
(3} The increase or "gain" in a deviating player's expected flow
payoff when he alone defects from (¢, ..., ¢) is strictly
positive, and is denoted g .
No further restrictions on paycffs are needed, but because we investigate

symmetric equilibria in what follcws, a natural assumption is that for all

profiles x , I ui(g) <=z ui(c, ..., ¢} . The probability of k signal
i i
arrivals in the stage game of length t , given the arrival rate -~ , is

p(k]t,v) - e—Tt[(yt)k)/k!} , that is, the distribution of k 1is Poisson

Ln



with mean vt

The Repeated Game G (t,r)

For any t > 0 , consider an infinite horizon game in which the stage
game G(t,r) 1is repeated indefinitely. In order to allow for public ran-
domization following any history of play, we assume that at the beginning

of every stage h =1, 2, ..., an independent draw w, from the uniform

h
distribution on [0,1] is publicly observed. Player i can condition
his (s+l)th stage action on his own past actions (which remain unobserv-
able to others), on kh (the number of signal arrivals in stage h )l

for all h = s , and on @y for all h < s+1 . Thus a pure strategy o,

i
for player i in Gm(t,r) is a sequence of measurable functions
{ai(s)]:_l , where ai(l) : [6,1) » {c,d} and for s = 1 ,

ai(s+l) : [te,d) x N]S x [0,1]s+1 -+ {¢c,d} , and N denotes the set of
non-negative integers. A profile ¢ of pure strategies induces a distri-
bution of action profiles (and hence an expected flow payoff for each
player) in each stage. The flow payoffs are discounted continuocusly at

the rate r > 0 ; multiplying these discounted sums by r ylelds the

average payoffs corresponding to o . A profile o¢ is symmetric if for

all i and j and any s € N | ai(s) - aj(s) . For any symmetric pro-
file o , let v{o) denote the average payoff to each player, given

¢ . Here the parameters t and r that identify the supergame have been
suppressed.

We are interested in the maximal average payoff v(t,r) that can be

lNotice that players' strategies depend only on the number of signal
arrivals in stage h , and not on the arrival times. This entails no
loss of generality {given that we allow for public randomization) since
the number of signals is a sufficient statistic for the Poisson parameter.



achieved in any pure strategy symmetric "sequential eguilibrium“2 {here-
after, §.5.E.) of Gm(t,r) . Again suppressing t and r |, denote the
S.S.E. average value set by V = {v(o)|o is an S.§.E.} . The following

definitions are analogous to those introduced in Abreu, Pearce and

Stacchetti [1986], hereafter APS. Define g*(b;a) =~ ul(b, a, ..., a)
- ul(a, ..., a) . For any set WC R , a pair (a;w) € {c,d} x [coW]N
is admissible with respect to W 1if (ert - 1)g*(b;a)
< T [pkle, v(a, ..., a)) - p(k|t, ¥(b, a, ..., a))lw, for b e (c,dl
k -rt -rt
Let E(a;w) = (1 — e )ul(a. ..., a) +e Topk|lt, y(a, ..., a))w, and
k
B(W) = co[E(a;w)|(a;w) is admissible w.r.t. W) . The three results below.

whose proofs we omit, are straightforward adaptations of theorems in APS;

they simplify our analysis considerably.

{Rl) Self-generation: [W € B(W) and W bounded] = [W C V]
(R2) Factorization: V = B(V)

{(R3) Compactness and Convexity: V 1is compact and convex.

We now use the specific structure of the model to develop a result
{Proposition 1) that essentially gives algebraic expression to (Rl) and
(R2)., The presence of the ws’s allows for public randomizations over
the continuation paths to be followed; without loss of generality, then,

restriet attention to continuation payoffs with (average) wvalues v or O,

2'I'he definition of sequential equilibrium (Kreps and Wilson 1988) does
not cover the case encountered here of an infinity of information sets.
However, the belief system associated with a profile can be computed here
using Bayes’ Rule; we require that the profile and the associated beliefs
satisfy sequential rationality. We abuse notation by calling a profile
{rather than an assessment) a sequential equilibrium. The qualifier
"symmetric" simply indicates that the strategy profile is symmetric.

~l



the best and worst elements of V , respectively. Players are willing to
choose ¢ rather than d only if defecting increases the probability of
receiving a continuatlion value of O by an amount A sufficient to wipe
out the one-period gain [(1 - e_rt)/r]g from defecting. {(Recall that

g = g*¥(d;c) .} For an arbitrary "probability wedge" A > 0 , the linear
program below determines the subset of the one-stage signal space

{0,1] x N which, when used as the punishment region, most efficiently
creates the required wedge. The subset is described by the sequence

[ak} , Wwhere a is the probability of punishing when exactly k sig-

k

nals are observed.

LP: P(t,A) = min T akp(k|t,A)
lak} k

subject to I ak{p(k|t,p) - p(kit,x)] = A
k

and 0 =< ap =1, k=0, 1, 2,

Let m(t,A) = 4/P(t,A) . Notice that m(t,A) is a (transformed) likeli-
hood ratio, being the ratioc of the increased probability of triggering a
punishment when someone defects, to the probability when no one defects,
It measures the efficiency with which the punishment region distinguishes

statistically between cooperation and defection. It may be verified that:

(Ply if X » u there exists a(t) > 0 such that m(t,A) is well-defined
for all A € (0, a(t)) . As a function of A , m is continuous and

non-increasing.

Furthermore, on this interval if p > XA , the unique solution [ak(t,A)}

to LP is characterized by a cutoff wvalue k*{A) such that ak(t,A) =0



for all k < k*{(A) and ak(t,A) = 1 for all k > k*{A) . Conversely, if
A>u o, ak(t,A) = 1 for all k < k*{(A) and ak(t,A) =0 for all
k > k*(A)

Proposition 1 provides a clean characterization of v(t,r) , the

maximal S.S.E. payoff, and is basic to the analysis of this section.

Proposition 1. Consider the equations

g(ert - 1) = vA Incentive Equation (13
- _ s
v I mt.a) Value Equation {(2)

and define V*{t,r) = {v|v = 0 or JA >0 s.t. (v,A) satisfies (1) and

(2)} . Then v(t,r) = max V*(t,r)
Proof: Fix r > 0 . For simplicity we suppress the dependence of func-
tions on r in what follows. Consider +v(t) = max V(t) , which by (R3)

is well-defined. We first show that there exists v € V#(t) such that
v = v(t) . This is obviously true if wv(t) = 0 . Now suppose v(t) > 0
By (R2), V(t) = B(V(t)) . Hence there exists (a;w) admissible with

respect to V{t) such that

(1 - e ™+ e plkle, v, if a=-c

_ k
v(t) = (2"
e "L p(klc, v(d, ..., dw  if a=-d
k
Since w_€ co V(t) if a=d, V(&) = e T%5(t) , a contradiction.
Thus a = c . Let a € [0,1] be defined by ak-O + (1 - ak)G(t) = v

k k °

Admissibility of (a;w) now implies



rt

gle” = 1) < (Q-P)v(t) , (1)

where P = I akp(k|t,A) and Q =% akp(klt,p) . (1l') and (2') imply that
k k

V(t) €1 - —8— < - —5—0

E , (2")
(Q-P)/P m(t,5)

where & = Q-P , and by definition m(t,E) z (Q-P)/P . Substituting (2")

into (1'), we obtain

ge™t - 1) = |n - —8—1.7 (1")
m{t,A)
If this holds as an equality, v(t) € V*(t) , and we may set va=v(t)

If not, define

£(x) = [n - —g—]-("&-x) - ge"t - 1)

m(ﬁ, A-x)
Since m(t,+) 1is continuous in & , f 1is continuous. Alsc f(Q) > 0
and for some ¢ € (0,Aa) , f(A-¢) < 0 . Hence there exists x > 0 such
that f(x) = 0 . Then since m(t,+) 1is non-increasing,

V= H-*—'"E'—JZ\_I(t), and v € V*(t)
m(t, A-X)

To complete the proof we show that V*(t) € V(t) . Together with the
preceding argument this implies v(t) = max V*(t) . Let {v,8) satisfy

(1) and (2), and let {a, ) now be defined to solve LP for A

Kk , t . That

is, m(t,A) = (Q-P)/P where P and Q are as defined earlier. We argue

that {0,v) 1is a self-generating set and therefore, by (R1), v € V(t)

10
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Clearly O € B({O,v}) . Consider the pair (¢;w) where for each k

'

W = ak-O + (1 - ak)-v . Then
£
gle™" = 1) = (@-P)v . (3)
It remains only to show that E(c;w) = II - {g/m{(t,A)] . But this follows

rt

directly from E(c;w) =~ (1 - e ) + e—rt(l—P)v , (3), (2) and the

identity m(t,aA) = (Q-P)/P . Q.E.D.
The "likelihood ratio" m(t,r) associated with the best S.S.E. is
E(p,r) - max[m(t,A)|3v for which (v,A) satisfies (1) and (2)}

From Proposition 1 we then have the following equation which summarizes
the analysis thus far:

— - —_g_
v(t,r) I mt.1)

In words, cooperative behavior yields flow payoffs I , but also provides
the opportunity of gains from cheating, at the flow rate g . Deterring
the latter invelves losses proportional to g , and inversely proportion-
al to the efficiency of the best test available.

Proposition 1 can be extended to much more general moral hazard
models, by reformulating LP to include additicnal constraints, but that
will not concern us here. We proceed to study in turn the cases of "bad
news" and "good mnews," focussing in particular on the behavior of

v(t,r) in a neighborhood of t =0, and r = 0 respectively.
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Case A: "Bad News"

In this case the signal represents occurrences of a "failure" which
is more likely when someone defects than when all cooperate: u > A . The
key result here is that for a wide range of parameter values (including
some fixed r )} the function ;(t,r) has an interior maximum at t* >
This contradicts the common presumption that possibilities for collusicn
improve monotonically as players are able to act more quickly. Lemma 2
offers necessary and sufficient conditions for the possibility of cooper-
ation in a neighborhood of t = 0

By Proposition 1, v(t,r) and A = g(e'" — 1)/v(t,r) satisfy equa-
tions (1) and (2) above. Let '{Ek(t,r)) be the unigue solution of the LP
for A so defined. Hence Ek(t,r) is the probability of punishing the
occurrence of k signals (by playing (d, ., d) forever) in the best
S.S.E. of G (t,r) . Define my = (u=3)/A

Lemma 2 establishes that for t wvery small, it is possible to sus-
tain some cooperation if and only if [%[H - ﬁ](p—x)t] > gt . The right
side evidently approximates the (gross) gain from defecting for an inter-
val of length t ; the left side is the corresponding loss, the expres-
sion in square brackets representing the permanent loss of v (see Prop.

1) if a single signal arrives, and (u-A)t being the increased probabil-

ity of this event.

Lemma 2. If %(H - g/mo)(p—A) > g , there exists T > 0 such that

v(t,r) > 0 for all t e (0,T] , and 1lim v(t,r) and Llim El(t,r) are
t-+0 t-0

well defined. Conversely, if ;(H - g/mo)(p-x) < g , there exists t > (

such that v(t,r) =0 for all t & (0,T]

Proposition 4 below observes that for any t > 0 , perfect efficiency



is approximated when players are extremely patient. Comparing Propositiocns
3 and.a, one notices that letting players move quickly has completely dif-
ferent consequences from making them very patient. The latter leads to
asymptotic efficiency; the former decidedly does not. Notice also the
contrast between Proposition 4 and the asymptotic inefficiency results of
Radner, Myerson and Maskin {1986] and Fudenberg and Maskin [1986b]; in
‘their models, there are a finite number of possible observations in a
period, and hence the likelihood ratios of the tests they could use are
bounded above. In our Poisson stage game, however, there are rare mul-
tiple occurrences ( k very large) having arbitrarily large likelihood
ratios; this means that there is no limit to the efficiency of the implic-
it tests that can be used in equilibrium, provided that G(t,r)/r is

large enough.

Preoposition 3: For any r > 0 ,

_E g L _ B=)(ue
I n if r[H mO](p A > g
lim v(t,r) =
€0 0 otherwise.

Proposition 4: For any t > 0 , lim v(t,r) =1 .
bt

roof o and Propositjon 3: As in the earlier proef, for simplic-

ity we suppress the dependence of functions on r . Consider a sequence

{ak(t)} C R, and define Q =Z ak(t)p(k|t,p) , P =23X ak(t)p(klt,l) and
k

k
A =Q-P . We will say that {ak(t)} satisfies (*) if:

(a) (ak(t)] solves LP for (t,a)

(b) vml-g >0



() ge™ - 1) = va .

Note that (a) implies m(t,AY = A/P where A , P are as defined above.
Hence by Proposition 1. v(t) > 0 if and only if there exists {ak(t)}

satisfying (*). Substituting for v in requirement (¢} above yields

g(e™® < 1) =1 - gp .

Expanding and dividing by t , we have
E[r + £§£ + ... ] - H[aoit)(e—“t - e_kt) + al(t)(e_ptu - e_AtA)
. az(t)[e pt g;g —At Azt] . J
- g{aoit)e At al(t)e-AtA + azct)e"At A;L + ... } (4)

For t sufficiently small,

e_pt(ut)k+l gr#t(ut)k

+1 > =X k
e

>1, k=1, 2,

e Atk Coae)

Together with (4) this implies that there exists T’ > 0 such that for

any t=T' , {ak(t)} satisfies (*) if and only if
(a') an(t) =0, al(t) € (0,1) , a (t) =1, k=23,

(b’') as before, and

(e") al(t) satisfies:
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2 2 2
g[r + th + ] - n{al(t)(e “t,u -e At,\) + [e KT %—t e~rt A2t] 1
j
2
- g[al(t)e-AtA + e_At AEE + ... ] . (3

In what follows we assume t < T' , ao(t) =0 , ak(t) =1

k=2, 3, ..., and that al(c) is given by (5). These requirements
define {ak(t)} uniquely. Hence if v(t) > 0 , then Ek(t) - ak(t) and
Y(t) = I - %P . 1t is clear from (5) that a;(0) = lim a,(t) is well-

t-0
defined. Taking limits,

gr = (II{p—r) — 8*)“1(0)
Thus

ay(0) € (0.1) » 2[u - ga](p—k) > 5.

When the latter condition is satisfied,

lim|g = &= =T = —8—x > 1 - Otr) >
tig[ v (W2 JP=YRG

and there exists T € (0,T'] such that for gll t = (0,T) , lak(t)}
satisfies (*)}, or equivalently, v(t) > 0 . Moreover

v{0) = lim v(t) = (Il - g/mo) . Conversely, if %(H - g/mo)(p-x) <g,
there exists T > 0 such that for all t =< T , al(t) > 1 . Since this
violates (a’'), v(t) =0 for all t = T . Finally we deal with the case
al(O) = 1 , which corresponds to %(H - g/mo)(u-A) = g . Differentiating

{5), evaluating (right-hand) derivatives at t = 0 , and substituting

al(O) = 1 , we have
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2
i, 2 2 , L,2
g5~ = ajlu-3) - 3" = A7) - ajgh + 580"

which simplifies to
2 '
gr  + A[(Hmo - g)A + Hmop] - 2a1A(Hm0 - g)

As noted above, (II - g/mo) > 0 , therefore ai > 0 . Hence there exists

T >0 such that a (t) >1 for all t s T, and thus v(t) =0 . Q.E.D.

Proof of Proposition 4: Fix t >0 . Let

- rt_ - B
D(r) {A > 0lg(e 1) [n m(t’A)]A} c [0,1]

As noted earlier, m(t,«) 1is continuous in A . Hence D(r) is compact.

Also, there exists r >0 such th:t D(r) 1is non-empty for all

re (0,r) . Let r lie-in this range and define A(r) = min D{(r)
Clearly A(r) {is strictly increasing in r . By Proposition 1,

v(t,r) =11 - (g/m(t, £(r))] . Since m(t,-) 1is strictly decreasing in
A, ;(t,r) is strictly decreasing in r . Thus

lim (I - g/m(t,A(r))) > 0 , and hence A(r) - 0 as r -+ 0 . Finally
;;23 that lim m(t,A) = = Q.E.D.
4-+0
Let EI(O,I) - iig al(t,r) be the limiting probability of punishment
given the occurrence of a single signal in the first period of the best
5.5.E. From the proof of Lemma 2 and Proposition 3,
;l(O,r) = rg/[I{u—2) - Agi; . Hence El(O,r) tends to be "small" if there

is little discounting, the rate of arrival of signals is high, or the

gains from cheating are small. We next show that whenever v(0,r) > 0



(cooperation 1is possible near the limit) and El(O,r) < 1/2 , the right-

hand derivative dv(t,r)/8t at t =0 1is strictly positive. Consequent-

ly, for this parameter range, increasing speeds of reactiopn can inhibit

cooperation: there is some strictly positive t* at which profits in the

most collusive S.5.E. are maximized.

Propositi : Suppose that v(0,r) >0 . Then at t = 0 ,

avit,.r) ce = i
It >0 if al(O,r) < 7
YT Lo g5 a0t > L
at 17 27
Proof: As usual, we suppress dependence eon r . From Lemma 2 and its

proof it follows that there exists T > 0 such that fer t € (0,T] ,

v(t) > 0 and

2.2
_ c_xl(t)e—‘utpt + e_#t 'r—i'— + ... ‘l
m(t) = r 2‘2 -1,
- -At =At'ATt
al(t)e At + e L 21 + ... ]

where G(t) =1 - (g/ﬁ(t)) , and ;1(t) is defined by (5). Since El(t)
is differentiable at t = 0 , so is ﬁ(t) . Dividing the numerator and
denominator of the expression for m(t) by t and differentiating, we
obtain

.U'mo 1
- - al<0)[°‘1‘°) - 2]

dm
dt|,_o

Clearly qv and dm have the same signs, Q.E.D.
dt =0 dt =0
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Case B: "Good News"

The signals are now taken to represent successes; X > u . This case
differs from the "bad news" model in that cooperation cannot necessarily
be guaranteed simply by considering very patient players. Proposition 6
shows that a necessary condition for the emergence of cooperation, regard-
less of the rate of interest, is that the likelihood ratio corresponding
to the event "no successes" is sufficiently large. Punishing this event
affords the most efficient test possible. The associated likelihood ratio

is M(t) = (e PPty 1
Proposition 6: If M(t) < g/l , v(t,r) =0 for all r > 0

Proof: Since A > pu ,

e_#t e-pt t k k!
-\t ~At k » k=1,72,
e e {(at) /k!
Hence m(t,A) < M(t) for all A e [0, K(t)] . Therefore if I < g/M(t) ,

there exists no (v,A) > 0 which satisfies (1) and (2) of Proposition 1.

Q.E.D.

Proposition 7 provides a partial converse.

Proposition 7: If M(t) > g/ , lim ;(t,r) =1 - [g/M(t)]
-0

Proof: It is clear from LP that m(t,A) = M(t) for O < A < e PC _ e
Also there exists r > 0 such that
ge™t - 1) = (@ - [gME) (e = &%) for all r e (0,F] . Thus for

r<Y, r=1-[gMt)] and A = g(e" " — 1)/(I — [g/M(t)]) > 0 satisfy

(1) and (2) of Proposition 1, and hence v(t,r) =2 1 - (g/M(t)) . Since



m{t,A) = M(t) for all A >0, I - [g/M{t)] 1is alsc an upper bound on

G(t,r) , and we are done. Q.E.D.

We see that if pavameter values are not too unfavorable, the limit
results for this case as r approaches 0 conform to one’s expectations
given the analysis in Radner, Myerson and Maskin [1986] and Fudenberg and
Maskin [1986b]. The contrast with the limit as t tends to 0, however,

is even more vivid than in the "bad news" case: repardless of parameter

values, if players can move extremely quickly, there is no possibility of

cooperation:

Proposition 8: There exists T > 0 such that v(t,r) = 0 for all t < T

and all r > 0

Proof: Clearly there exists T > 0 such that M(t) = g/ for all

t < T . The result now follows from Lemma 5. Q.E.D.

3. Monitoring Delays wijt ixed Fregquency of Actions

This section explores the rather potent effects of delaying the re-
lease of signals while action frequency is held constant. No longer need-
ing to subdivide time arbitrarily finely, we now revert to the standard
model in which there is a fundamental unit of time, called a period, dur-
ing which actions cannot be changed. As before, each player in this
symmetric model has available in any period s two actions, ¢ or d .
The payoff-relevant random variable BS (corresponding to the Peoisson
variable in Section 2) now takes on only twe values: 1 ("success") or 0O

n

("failure"). Players' actions X, = (x:, Cee xs) in period s affect

the probabilities p(ﬂslz_cs) , 6‘S = 0, 1 . Player 1i's payoff ul(}fs)
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in period s 1is the expected value of a realized rewar& that depends on
xi directly and on 05 . The payoff structure is analogous to that of a
prisoners’ dilemma, and conditions (1) to (3) of Section 2 are retained,

I and g now representing expected payoffs per perjod rather than flow
rates of payoffs in continuocus time. Let X € (0,1) and u € (0,1) be
the probabilities of failure when all players cooperate and, respectively,
when a single player deviates from cooperation. We assume u > )

A stage game of length t , where t is a positive integer, is com-
prised of t of the period games just described, but with the following
information structure: players remaln ignorant of signal realizations
within the stage game until the end of the tth period, when they are in-.
formed of the realizations within the stage (and hence their own realized
payoffs for the stage). Thus, in a particular period, player i‘'s action
is a function of his own past actions and realizations of Gh for all
past periods h excluding those in the current stage. It is convenient
to convexify the S.5.E. value set of the supergame Gw(t,S) with stage
game of length t , by including at the beginning of each stage a public-
ly observed random drawing from the uniform distribution on (0,1} , on
which all subsequent choices by players can be conditioned.

Some additional notation 1s needed for a formal definition of the
supergame strategies. For positive integers s and t , let #n(s,t)

and p(s,t) be defined by:

s = n(s,t}) + p(s,t) , where n(s,t) is a non-negative

integral multiple of t and p(s,t) < t

In other words, p(s,t) = s mod t . Also, define the integer of (s,t)



by I(s,t) = n(s,t)/t . Then in period s+l of Gm(t,é) , player 1 has
observed s past actions of his own, #(s,t) realizations of the payoff-
relevant signal, and I(s,t) + 1 realizations of the public randomizing
device. A supergame strategy oy for player i 1is a sequence

{ai(s)}:_l where ai(l) : [0,1] » (e,d) , and for s =1, 2,

I(s+l,t)+1 _

o, (s+1) ¢ te,d1® x (0,175 %) x o1 (e, a)

Employing the same argument as that given in APS, we may without loss of
generality restrict attention to strategies for each player i that are

not functions of actions taken by 1 before the current stage:

I(s+1,t)+1 N

o (s+1) 1 (e, 5% % (0,7 10,1 (c,d]

Period t payoffs accrue at the end of period t , and are discounted tc
the beginning of period 1. We denote by V(t,§) the set of S.5.E. (aver-
age) values in Gm(t,ﬁ)

A stream of action profiles, one for each period of a stage, is de-

noted (§k);-l , and 4§ = (Bl, cee ﬂt) €08 = {0,1}t is a possible vector
of signal realizations in a stage. The probability of § , given that

. t .
play in a stage is (Ek)k-l , 1is

t

x p(f,[%)

i) -

That is, the signals are identically, independently distributed across

periods of a stage. For a, b € lc,d}t and e the unit vector with n

. t t
coordinates, let A(6|b,a) = q(ﬁ](ak-en)k_l) - q(ﬁl(bk, ak'en-l)k=l)



This is the amount by which the probability of 4 falls when a single

player defects from a by playing b = (bl‘ cees bt) , while all others
continue to play a . As before, for x, y € {¢,d} ,

g*¥(y;x) = ul(y, X, ..., X) - ul(x. ..., x) denotes a player's one-period
gain from switching from x to y , when all others are playing x .

We now state the appropriate definition of admissibility for this

model, which will allow us to invoke (R1l), (R2) and (R3) of Section 2 for

Gm(t,S) , reading V(t,§) for V .
ies . t le| .
Definition: For any set W C R , a pair (a;w) € (¢,d})  x (coW) is
admissible with respect to W if for all b e {c,d]t ,
ok 5 .t
T gr(by; a) <76 I A(8|b,a)w(s)
k=1 feo
-5 5 ox t t
Also, let E(a;w) = = Z s u(ace) +§ I q(GI(ak-en)k-l)w(B)
k=1 fee

and B(W) = colE(a;w)|(a;w) is admissible w.r.t. W}

W is self-generating if W is bounded and W ¢ B(W)
The arguments in APS can be adapted to the current model to establish
(R1), (R2) and (R3) (see Se-ztion 2). Because V(t,§) 1is compact,
v(t,§) = max V(t,§) is well-defined,

Let m = (u-A)/) and recall that g = g*(d,c) and that

ul(c, ..v, ¢) =II . We assume that JI > g/m . Lemma 9 provides an upper

bound on 5.S.E. payoffs in Gm(t,é)
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Lemma 9: Suppose v(t,8) > 0 . Then

S(e.6) <1 - [————iL—————]E for all & € (0,1)
tlm
& + + &

Proof: By (R2), W = {0, v(t,8)) is a self-generating set. Let (a;w)

be admissible with respect to W , and E(a;w) = G(t,&) . Let a, sat-
isfy (1 - ag); = w(#) , where for convenience we write v = v{(t,§)

Since v > 0 there is a smallest integer £ =< t such that a,=¢ . De -
note by q(8) the probability of # when in all periods k =1, ..., t© .

all players use a . Then
v = Eaw s 067+ L+ sHER L sty

where P » X aaq(ﬁ) . This implies
=]

fe
nst + .+ 65 -SG5+ ... +85 2 i%g §°P% . (6)
%q(ﬂ) if 4,=0
Let gq*(4) =
(%fﬁ}q(ﬂ) I 6, =1,

q*(f#) 1s the probability of 4 when in all periods k , a is used by

k

all players, with the exception that a single player deviates to d in

period £ . Let Q = I aaq*(ﬂ) . By the definition of admissibility,
feo

2 t §
§°g <& ? A(a|b,a>w(a)I:E , where b, =d and b =a , k=2 . The

above may be manipulated to yield



24

6% s 65@p)v T (7
It is easy to check that
Q=P _ u=d _
il Y m . (8)

Combine (6)-(8) to obtain:

H(6£ oo+ TG ..+ Y > st & . that is
S+ ...+ =t v+ st)[n - [ § ]Eﬂ
t*|m
§+ ... + 8
where t* = t-f+1 . Since
£ t
J o* = § T and 8+ + i =1,
§ + + & 5§ + .+ 6 5 + + 6
the proof is complete. Q.E.D.

Proposition 10 states that for sufficiently high § , the bound on
S.S5.E. payoffs established in Lemma 9 is actually achieved by v(t,6§)
The corollaries and discussion that follow the proposition underline the

significance of the result.

Propositio Q: For all t € N there exists §(t) e (0,1) such that

tim

v(t,§) = I -
§+ ... + 46

]5 for all & = §(t)
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Proof: Let §(t) € (0,1) solve

—_ b
g(1-6) = m(Aé)t[H - g]

&+ ... + st "

Note that the right hand side increases strictly monotonically to
mAt[H - % EJ as 6 - 1 . The latter is strictly positive by the assump-

tion that I - (g/m) > 0 ; §{(t) 1is therefore well-defined. Let

5-q- |—b5—o1" tE. (o
5+ ...+ 68"
We will show that for 6 = §{(t) , W = {O,;} is a self-generating set,

and hence, by (Rl), v € V(t,8) . As usual, 0 € B({0,v)) . Let

g = (0, ..., 0) . To obtain v , consider (a;w) such that a, = c .
k=1, ..., t, and w(d) =v for all 4 » § . Let w(g) be defined
by:
g8 = 75 w0 G - w) (10)
For 6§ = §(t) , w(d) = 0 . Hence (a;w) 1is admissible with respect to
t
W if for all K¢ {1, ..., t), = 6kg(b v &) = 5 225" 5 A(8]b,a)w(d) ,
k 1~§
k=1 §
where
d if kekK
bk ) a otherwise
X .
This reduces to
6% = WO o0t E - ey (1)

keK



2€

£
where £ = |K| . Clearly g ¥ < gz sk Also, since 4 > X , and
keK k=1
§ € (0,1) , (10) implies
-1 t-k k. t=k k=1 t-(k-1
gs% = (u-n)p IR o Rtk o el e ey
§ .t ,—
where L = T:ES (v — w(d)) . Hence
£ z =1
B e B Sl PO N S
k=1 k=1 h=0

Thus (10) implies (ll), and (a;w) 1is admissible with respect to W .

Finally,

EGaiw) = (s + ...+ 6988 w655 - sRA5E - wie)

By (10), &A%V - w(8)) = £(1-5) . Hence

E(a;w) = v = (L - §°) - g(l—éj - (1 - §5F ., where we use

(1-8)/(1L = 6) = 6/¢6 + ... + 6°) . It follows from (9) that the right
hand side equals 0. Hence E{a;w) = v, and (0,v} is a self-generating
set. By Lemma 9 we are done. Q.E.D.

It seems plausible, on first considering the problem, that informa-
tional delays would make collusion more difficult to sustain, because
deviating is more attractive. For example, if t = 10 , a player can
cheat in period 1 and not face any negative consequence (in expected
terms) until period 11. Moreover, he can now cheat not once, but ten
times in a favorable enviromment: others' actions are independent of his

own in the first 10 periods. Admittedly one could do a "joint test," at

the end of period 10, of the hypothesis that the players cooperated in all



periods. But they still must be deterred, as in the "no delay" case, from
cheating in any single period; what point could there be in confounding 10
different incentive problems, when there is no statistical interdependence
to exploit? An immediate implication of Proposition 10 is that there are
advantages to delay: when § exceeds §(t) , maximal S5.S5.E. payeffs in

Gm(t,é) strictly exceed those in Gm(k,a) for any k = 1,..., t=-1

Proposition 11: For any fixed 6 = §{t)

v(t,8) > v(k,6) for all k = 1, ., t=1

To understand the benefit from delay, consider the problem of design-
ing a "pseudo-equilibrium" in which it is necessary only to deter cheating
in the first period of each stage (all other potential deviations may be
ignored). Proposition 1 can be adapted to show that the best pseudo-
equilibrium payoff is I — {(1-§)/(1 - Et)};(g/m) . But this is exactly
what Proposition 10 establishes the true equilibrium payoff v(t,§) to

be. Thus, with monitoring dela it is "as if" one needed to deter only

the first potential defection. In fact, this is how the optimal scheme

constructed in proof works. The implicit future reward offered at the end
of t periods is always G(t,S) , unless there were failures in all ¢
periods, The punishment in the latter case must certainly be severe
enough to deter a player from cheating in period 1, and is an efficient
way of providing that deterrent. But the punishment treats the various
periods symmetrically, so cheating in period 2, for example, is equally
dangerous, whereas the gain is realized one period later than that from a

period 1 cheat. So having deterred the first deviation, one has strictly

deterred all other single deviations. Multiple deviations are even less
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attractive: if k > 1 and a player has cheated k-1 times, cheating a
kth time increases the probability of t failures more than does a
single deviation.

A second corcllary to Proposition 10 notes that if players are suffi-

ciently patient, choosing t 1large admits equilibria with payoffs approx-

imately the first-best.

Proposition 12: For all £ > 0 there exist 65 € (0,1) and T such

that

V(T,§) =1 — ¢ for all § = 5,

We shall contrast this below with the well-known asymptotic ineffi-
ciency results for repeated partnership games. Before doing so we remark
that it is erroneocus to explain the Corollary above by saying that when
one "saves up" signals over many perlods, the test eventually performed
involves a very high likelihood ratio, and hence is very efficienf. This
would be appropriate if the players’' only options were to cheat in all
periods, or mot at all. On the contrary, single deviations must be dis-
couraged, and the associated likelihood ratio is not extremely high. The
efficiency is explained instead by a feature of the "global deterrent"
used: punishing the single event "failure in all periods" is effective in
deterring every possible pattern of cheating, but "costs" no more than
deterring a single deviation in period 1.

Setting t =1 in Lemma 9 gives a final corollary which asserts that

regardless of § , without temporary suppression of signals the effi-

ciency loss caused by imperfect monitoring is at least g/m .
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Corollary: For all § € (0,1) ,
iy _ &
v(l,6) =1 o

This recalls the asymptotic inefficiency results of Radner, Myerson
and Maskin [1986] and Fudenberg and Maskin (1986b], which apply to models
such as that of this section, but with t = 1 . This point can be summar-
ized by saying that if there is an upper bound on the likelihood ratios of
potential "punishment regions” in the signal space of the period game, and
if carrying out a punishment has an efficiency cost,3 then there is an in-
escapable efficiency wedge which neither repetition nor patience serves to
remove, We were surprised to find that this source of inefficiency could
be avoided simply by impeding the flow of information. While it is plaus-
ible that in practice, delaying the release of information may be less
costly than improving the gquality of the signal, for example, how easily
this can be accomplished will depend on the institutional details of a

particular partnership.

4., A Folk Theorem for Information Delays

The benefits of delaying the release of information, and the phenome-

non of global deterrents, are not features special to the example studied
in Section 3. The arguments used there can be generalized In a straight-

forward manner. We emphasize this by proving a "folk theorem" which

3Important work by Radner and Williams {1987], Matsushima [1987] and
Fudenberg and Levine [1988] indicates that inefficiencies from imperfect
monitoring need not be substantial if the players affect the signal dif-
ferently from one another.
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extends Proposition 12 to general symmetric games. As the ideas are simi-
lar te those already encountered, we proceed rapidly, leaving details to
the reader.

We stick as far as possible to the notation of the previous section,
redefining terms only when their natural extensions are ambiguous. The
period game is still symmetric, differing from that of Section 3 in that

players now choose from an arbitrary finite action set A = {al, RN aH}

L

. . < .. . 1
and signal realizations lie in some finite set ({47, ..., #°) . Denote by

p%l - p(BEI(ah, aJ-en_l)) the probability of the signal 82 arising when

]

. : . h
n-~1 players use action a- and a single player uses action a . Let

Jo_ b
Pho = (Php» -0 Pg

We assume that:

(1) The period game has at least one symmetric Nash equilibrium. The
expected payoff of the worst of these is normalized to zero.

(2) Forall j =1, ..., H, p§. # colpl |1 = 3

Condition (2) is a statistical distinguishability assumption. It requires

that the probability distribution over signals when all players play

]

action a’ 1is distinguishable from the probability distribution asscciat-
ed with any single-player mixed strategy deviation from this symmetric
profile. When Condition (2) fails, there is some mixed strategy deviation
that can never be detected by any statistical test; if such a deviation is
profitable, it cannot be deterred. The condition is in the spirit of,
though weaker than, the "full-rank condition"” of Fudenberg and Maskin [4].
The definition of a stage game of length t , and in particular, the
information structure assumed, are as in the previous section. Let

Uk = co[ul(ah-en)|h =1, ..., HY n R++ . We show that any u € U* may be

approximated arbitrarily closely as a payoff of the repeated stage game by



taking the stage game to be long enough, and the discount factor close

enough to one, This result generalizes Proposition 12.

Proposition 13: For all ue U* and ¢ > 0 there exist T e N and

§ = (0,1 such that for all 6 = § ,
v 2 u—e for some v & V(T,§)

Proof: Assume for the moment that u = u(aJ-en) for some aJ € A .

Since by assumption pé. & co[pg_[i i), pg. can be separated by a
hyperplane: there exists ﬂJ € RL such that ﬁj-pg' < ﬁj-pi. for all
i » j . Furthermore since pﬂ. € AL_l , the L-1 dimensional simplex,
for all h , we may w.l.o.g. take ﬁj € AL_l . Let Pj - ﬁj-pg_ and
Qi - ﬂJ-pi . Let 1i(j) € arg max g*(ai, aJ) + (Qi - P‘])/PJ , and

1(3) R . i 5
zj - g(a J ; aJ) + (Qi(j) - PJ)/P . We prove the result by showing that
for all t € N for which v = (u— [6/(6 + ... + Gt)]zj) >0 , there

exists §I(t) such that v € V(t,§) for all & = §3(t) . Let £3(t)

solve
t-1
103, 3yy o <%¢nd _ ply el -
sgx(a s aly) = 65y, - PHD g v
We argue that for § 2 Qj(t) , W= {0,v) 1is a self-generating set. As
usual, it suffices to show that v € B({0,v}) . Let e € [0,1] =solve:
1) Iy - steq] 3y pdy T
sg(a” 7, al)) =87y - BPH@) g ve . (12)
(We have implicitly assumed zj > 0 ., The case zj = 0 is trivial.) Let
B(ﬁk) be the index of the signal in peried k . Consider (a; wJ) ,
. . t .
where 3 = a’ , k=1, ..., £ and wJ(al,..., Ht) = v(l — e % ﬁJ )]

k=1 *00y)

31



It will be convenient to think of wI () as the expected payoff of the

t
lottery which yields 0 with probability e X ﬁz(a ) and v otherwise.
k-1 k
First observe that:
LD. ¢

F(a;w) = u(d + ... + 65) [1 - e(pd) ]v : (13)

where we have substituted:
t j t L ; t
e I X ﬂ e x I ﬁ p = e(P’) |,
pep 1l L0OTIR) T ST T T

the probability of obtaining a zero payoff at the end of the stage, given

w  and given that players play al in every period. From (12) and the

definition of =z, , 6te(P3)tv - (1—6)zj . Hence (13) may be rewritten

J
=t t
E(a;w) = v=u(l -6} - (1—6)zj - (1 =-8)v .
The definition of v implies that the right hand side is zero. Hence

E(a;w) = v .,

To establish that (a;w) 1is admissible, we therefore need to show:

t
s 5kg*(bk; ak) =< i%g FR> A(g‘b.a)wj(ﬁ)
k=1 ¢

for all b e AY . Let i

K be defined by bk =-a k . The above inequal-

ity reduces to:
t i

. t
) 5kg*(a k; al) < % x Qi - X Pj 1 Ve - (14)
k=1 k=1 "k kel

32
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Since Qi -3 PJ » (12) and the definition of 1i(j) imply

le k-1 t-k
s¥gr(a ©; ad) s 6% -P%[xqi](ﬂ) £ ve .
k s=1 s -
Hence
t L t rk t~-k  t k-1 t=(k~1)
k=1 kmlts=1 “s k=1's5=1 g 1-§

which implies (14), as required. This completes the argument for the case
J

u - u(ajoen) . Now suppose u = Z rju(ajoen) where
-]

J=- J i
(rl, ceey rJ) € A 1 . Now we simply use the admissible pair (a; wJ)
where a - aj , k=1, ..., t, with probability rJ and we obtain

v eZ rj u(aj) - & t 2 -y - ) zr.z

s+ ... +6° 3 s+ ...+6° 173

Q.E.D.
5. Conclusion

Extrapolation from repeated games with perfect monitoring might lead
one to expect that in repeated partnerships with moral hazard, collusive
possibilities deteriorate when players can change their actions less fre-
quently, or when information is temporarily suppressed. The partnership
models explored in this paper allow the period length (over which actions
are constant) and the time for which signals are suppressed to be varied
independently; the results reveal that the analogy to the perfect monitoring
case is treacherous.

Two effects must be considered in studying how increases in period

length or the interval of information suppression affect the ability of
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partners to sustain cooperative behavior. The first effect — and the only
important one for games with perfect monitoring — is that increases in
either of these variables cause punishments to be delayed, and therefore (in
a world with discounting) less likely to deter deviations from the equili-
brium. This effect favors quick observation and short periods of action.
The second effect is that multiplying the period length or the duration of
information suppression reduces the set of strategies — and in particular
the set of deviation strategies — available to a player. This effect may
favor delayed observation and long periods of action. In our formulation,
long periods of action make it easier to distinguish statistically between
random outcomes arising from desired cooperative behavior and the systematic
deviations associated with cheating. Depending on the balance of the two
effects, this improved information may allow a punishment region with a
higher likelihood ratio to be used, which decreases the amount of waste in
equilibrium.

Lengthening the duration of signal suppression also reduces inefficien-
cies from imperfect monitoring (if the players are fairly patient), but not
by changing the likelihood raties of the punishment region. What we showed
in Section 3 was that if the players are sufficiently patient, one o¢f the
efficient ways of deterring a deviation during the first action periocd in an
information interval is also sufficient to deter any pattern of cheating in
that interval. As the information interval grows longer, more deterrence is
achieved for the one low price. Even in rather general symmetric partner-
ship games, such "global deterrents" allow the first-best payoffs to be

approximated when the discount factor is near unity.
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