1	Title:
2	Clinical characteristics and high resolution retinal imaging of retinitis pigmentosa
3	caused by <i>RP1</i> gene variants
4	Running title: Clinical and AO findings in RP1-ARRP
5	Authors: Shinji Ueno ¹ , Yoshito Koyanagi ^{1,2} , Taro Kominami ¹ , Yasuki Ito ¹ , Kawano Kenichi ¹ ,
$6 \\ 7$	Koji M Nishiguchi ³ , Carlo Rivolta ^{4,5,6} , Toru Nakazawa ³ , Koh-Hei Sonoda ² and Hiroko Terasaki ¹
8	Institutions:
9	¹ Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
10	² Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka,
11	Japan
12	³ Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
13	⁴ Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
14	⁵ University of Basel, Basel, Switzerland
$15 \\ 16 \\ 17$	⁶ Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
17 18	*Correspondence: Shinii Ueno, M.D., Ph.D., Department of Ophthalmology, Nagova University
19	Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
20	Tel: +81-52-744-2277, Fax: +81-52-744-2278
21	E-mail: <u>ueno@med.nagoya-u.ac.jp</u>
22	Word count; (abstract) 241 (main text) 3316
23	Total number of references; 26
24	Total number of figures; 8 figures
25	Total number of table; 1

27 Abstract

28**Purpose**: To report the clinical course and high resolution images with autosomal recessive retinitis 29pigmentosa (RP) associated with a variant of the <u>RP1</u> gene (c.4052 4053ins328/p.Tyr1352Alafs*9; 30 m1). This variant has been found to be a high frequency founder variant in Japanese RP patients. 31Study Design: Retrospective case series 32Methods: Nine patients from 5 unrelated Japanese families were studied. Five patients had the m1 33 variant homozygously, and 4 patients had the m1 variant compound heterozygously with another frameshift variant, (c.4196delG/p.Cys1399Leufs*5). Ophthalmic examinations including adaptive 3435optics (AO) fundus imaging were performed periodically. 36 Results: The fundus photographs, fundus autofluorescence (FAF) images, and optical coherence 37tomographic (OCT) images indicated severe retinal degeneration involving the macula even at a 38young age (20s) in all the patients. The areas of surviving photoreceptor in the central macula were 39 seen as hyper-autofluorescent regions in the FAF images and preserved outer retinal structure in the 40 OCT images, and they were identifiable in the AO fundus images in 8 eyes. The borders of the 41surviving photoreceptor areas were surrounded by hyporeflective clumps, presumably containing 42melanin, and the size of these areas decreased progressively during the 4-year follow-up period. The 43disappearance of the surviving photoreceptor areas was associated with complete blindness. 44 Conclusion: Patients with RP associated with the m1 variant have a progressive and severe retinal

 $\mathbf{2}$

- 45 degeneration that begins at an early age. Monitoring the surviving photoreceptor areas by AO fundus
- 46 imaging can provide a more precise pathological progress of the retinal degeneration.

48 Keywords: Autosomal recessive retinitis pigmentosa; *RP1*; Adaptive optics images; Fundus

49 autofluorescence

53 Introduction

54	Retinitis pigmentosa (RP) represents a heterogeneous group of retinal disorders that is characterized
55	by a progressive degeneration of both the rod and cone photoreceptors bilaterally. The RP1 gene was
56	the first gene identified to cause autosomal dominant RP (adRP) [1, 2], and it was later found to also
57	cause autosomal recessive RP (arRP) [3-6]. Recently, RP1 was reported to be associated with
58	autosomal recessive macular dystrophy and autosomal recessive cone-rod dystrophy [7, 8]. RP1
59	encodes a multimodular protein of 2156 amino acids, and it is a member of the doublecortin family.
60	RP1 is present in the ciliary axoneme of both rods and cones [9]. Mutations in RP1 is associated
61	with a decrease in the best-corrected visual acuity (BCVA) which is due to a ciliopathic phenotype
62	caused by an abnormal stacking of the outer segment discs of rods and cones [10].
63	To date, at least 170 mutations have been reported in RP1, and most of these mutations cluster
64	within its last exon, exon 4, cumulatively accounting for approximately for 5.5% of all adRP and
65	up to 4.5% of all autosomal arRP cases [5, 11].
66	Our earlier study by whole-genome sequence screening of Japanese patients identified a new,
67	unusual mutation consisting of an insertion of a mobile Alu element in exon 4 of the RP1 gene
68	(c.4052_4053ins328/p.Tyr1352Alafs*9; m1) [12]. This m1 insertion variant causes a disruption of
69	the reading frame by introducing 328 additional nucleotides and a premature termination codon in
70	the canonical RP1 coding sequence. Additional targeted screening for the m1 variant in 330

71	Japanese patients identified 15 other Japanese individuals who carried this variant [12]. These
72	findings indicated that m1 is a relatively frequent cause of retinal degeneration in the Japanese RP
73	patients. However, precise phenotypic analyses were not performed in these earlier studies. Thus,
74	the purpose of this study was to determine the pattern of progression of the retinal degeneration in
75	arRP patients with the m1 variant of the RP1 gene using adaptive optics (AO) fundus imaging.
76	
77	Methods
78	This was an observational case series conducted at Nagoya University Hospital. The study protocol
79	adhered to the tenets of the Declaration of Helsinki and was approved by the Institutional Review
80	Board of Nagoya University (approval number: 2010-1067). A written informed consent was
81	obtained from all participants. We studied 9 patients from 5 unrelated families in whom the m1
82	mutation had been identified.
83	
84	Genetic analyses. In all families, genomic DNA was extracted from peripheral lymphocytes
85	according to standard procedures. The genetic data of patients NA0039, NA1039, NA0070, NA0201,
86	NA1201, and NA0209 were obtained earlier by whole genome sequencing and direct sequencing
87	[12].The m1 and another frameshift variant (c.4196delG/p.Cys1399Leufs*5, m2) in patients
88	NA1048 and NA1201 and some of the unaffected family members were analyzed in this study. A

00	•	C	•
XY .	nair	ot.	nrime
00	Dan	UI.	DITIN

pair of primers was designed to screen for the presence of the m1 and m2 variants in exon 4 of the

90 RP1 gene; forward: 5'- AGGCTTGTTTCCTAGGAGAGGT-3', reverse: 5'-

- 91TTCTGCTTCTTTTCACTTAGGC-3'. The presence of m1 variant was confirmed from the
- 92 differences in the size of the polymerase chain reaction (PCR) product by electrophoresis. The PCR
- 93 products were purified and both strands of the gene were sequenced with an automated sequencer
- 94(Fasmaq, Atsugi, Kanagawa, Japan).
- 95

96

97acuity measurements, Goldmann perimetry, conventional fundus photographs, and spectral-domain optical coherence tomography (SD-OCT, Spectralis; Heidelberg Engineering, Heidelberg, Germany). 98

Clinical Evaluations. Clinical data were obtained from the medical records. All patients had visual

99 Fundus autofluorescence (FAF) imaging was performed with an ultra-widefield imaging device

100 (Optos P200Tx; Optos, Dunfermline, UK) in 8 patients.

101Fundus images with microscopic resolution were obtained using the flood-illuminated AO retinal

- 102camera (rtx1, Imagine Eyes, Orsay, France). This system was used in an earlier investigations to
- 103 obtain images of individual cone photoreceptors [13-16]. Montage images were constructed within
- 1046° of the fovea using the i2k Retina software (DualAlign LLC, Clifton Park, NY, USA). The
- 105densities of the cone photoreceptors in NA0209 and one normal control eye were automatically
- 106 calculated using a software (AO detect v0.1, Imagine Eyes, France) and subsequently corrected

107	manually as described[13, 15, 16]. The area of analysis was 80×80 pixels or approximately 65
108	$\mu m \ x \ 65 \ \mu m$ at 1° and 3° from the fovea on the nasal side and 3° from the fovea on the temporal
109	side. To measure the size of surviving photoreceptor area, the processed images were analyzed with
110	the ImageJ software (version 1.48; the National Institutes of Health, Bethesda, MD, USA). The
111	axial length (AL) was obtained by the IOL Master (Carl Zeiss Meditec, Dublin, CA), and the AL
112	was used to adjust for the different degrees of magnification caused by differences in the AL.
113	The decimal BCVA was converted to the logarithm of the minimum angle of resolution (logMAR)
114	units for the statistical analyses. Counting fingers (CF), hand motion (HM), light perception (LP),
115	and no light perception, were designated as 1.85, 2.30, 2.80, and 2.90 logMAR units, respectively.
116	
117	Results
118	Nine affected patients from 5 families with a clinical diagnosis of RP and harboring m1 variants
119	were studied. Five patients from 3 families had the m1 variant homozygously and 4 patients from 2
120	families had the m1 variant compound heterozygously with another frameshift variant
121	(c.4196delG/p.Cys1399Leufs*5, m2). The pedigrees of the 5 families are presented in Figure 1. All
122	five families were originally from Japan, and any mixture with other ethnicities was not reported.
123	Autosomal recessive family history was reported in 4 families and sporadic case was reported in one

124	family	(Family	(#3)	. The	parents	of the	patients	were not	affected	even	though t	hey	have the	m1	or
-----	--------	---------	------	-------	---------	--------	----------	----------	----------	------	----------	-----	----------	----	----

125 <u>m2 variant heterozygously.</u>

126	The demographics of the clinical	characteristics are p	resented in Table. 7	The mean age was $17.9 \pm$
				6

- 127 6.2 years with a range of 8 to 27 years at the initial examination and that was 30.4 ± 6.5 years with
- 128 a range of 19 to 39 years at the last examination. The mean and median observation period was
- 129 12.2 years and 13 years respectively. The initial symptom of all patients was night blindness and 8
- 130 patients experienced it from their childhood, while one patient (NA0209) first noted the night
- 131 blindness at age 15 years.
- 132 Visual acuity.
- 133 Even at the initial visit, the BCVA was worse than 1.0 (decimal visual acuity) in 8 of the patients.
- 134 BCVA was worse than 0.3 in the better eye in 5 patients at the last examination. The visual fields
- 135 were severely constricted even at a young age, and most of the patients had paracentral scotomata
- 136 with peripheral constriction or a central island. Electroretinograms (ERGs) were barely
- 137 recordable in 2 patients and non-recordable in the remaining 6 patients (ERG data of NA1039 was
- 138 unavailable.). These findings indicated panretinal degeneration in all of the patients.
- 139 The course of the decrease in the BCVA of each patient is shown in Figure 2. Due to the early
- 140 involvement of the macula, the BCVA had decreased to worse than 0.1 (decimal), which is 1.0
- 141 logMAR units, in at least one eye by the thirties. The BCVA tended to decrease gradually after

142 initial visit. Then the BCVA deteriorated to worse than 0.1 (decimal) within a relatively short time

143 in patients NA0039, NA0201, NA1209, and NA1201 (Fig. 2).

144

145 Fundus images.

- 146 Fundus photographs were obtained from all 9 patients (Fig. 3), and ultra-widefield FAF images
- 147 were obtained from 8 patients (Fig. 4). All patients except NA0209 had severe degeneration
- 148 accompanied by bone-spicule pigmentation around the arcade vessels and macular degeneration.
- 149 FAF showed patchy and coalescent hypo-autofluorescent areas at the posterior pole which
- 150 indicated atrophy of the retinal pigment epithelium (RPE). Fine hypo-autofluorescent patchy areas
- 151 were present in the peripheral retina in all cases except NA0209. The fundus and FAF of case
- 152 NA0209 appeared to be a much milder phenotype compared to those of the other patients; fundus
- 153 showed minimum macular abnormalities, FAF showed hyperreflectivity in macular area, and small
- 154 patchy hypo-autofluorescense at the fovea (Figure 5).

155 OCT images of all the cases are shown in Figure 6. The OCT images showed abnormalities in the

- 156 outer retina, e.g., disrupted ellipsoid zone (EZ) and thinning of the outer nuclear layer. The EZ was
- totally absent in all cases, except case NA0209, and several fine hyperreflective structures, like
- tubulations, were found on the RPE in most of the eyes as shown by yellow arrows in Figure 6.

Progression of retinal degeneration in case NA0209.

161	The clinical manifestations of case NA0209 were much milder than those of the other patients; the
162	patient had no bone-spicule pigmentation, fewer hypo-autofluorescent patchy areas, and relatively
163	preserved BCVA. The changes of the FAF and OCT images of case NA0209 during a 5-year
164	follow-up period are shown in Figure 5. FAF showed an increase in the number of fine
165	hypo-autofluorescent patchy spots around the arcade vessels and the fovea. Similar features were
166	found in the eyes of his sister (case NA1209 in Fig. 4). In addition, OCT showed a severe reduction
167	of retinal thickness with the central retinal thickness reduced from 163 μ m to 131 μ m. These results
168	indicated a progressive retinal degeneration both in the macular and peripheral retina. The AO
169	fundus images at 21-years-of-age showed cone mosaics although they were sparsely distributed
170	compared to those of normal control eyes (Fig. 5B). The cone densities at the 1° and 3° from the
171	fovea on the nasal side were 11231/mm ² and 7718/mm ² respectively, and that at 3° on the temporal
172	side was 8984/mm ² . As reference, the of cone densities in a normal control eye at 1° and 3° from the
173	fovea on the nasal side and 3° on the temporal side were $31042/mm^2$, $23283/mm^2$, and $24333/mm^2$,
174	respectively.
175	

176 Analyses of AO fundus images of surviving photoreceptor areas.

177	We obtained the AO fundus images of 8 patients except case NA1039. The images of one case
178	(NA0048) were difficult to analyze because the quality was poor due to unsteady fixation. In general,
179	AO fundus imaging has been used to detect and count the number of photoreceptors in eyes with
180	hereditary retinal disorders. However, cone mosaics were detected in the AO images only in the eyes
181	of case NA0209 (Fig. 5). Therefore, we focused on other retinal structures in the AO images.
182	The changes of AO images of the right eye of case NA0201 during a 4-year follow-up period are
183	shown in Figure 7. Isolated, small, and deeply-colored areas were detected in the fundus
184	photographs corresponding to the areas of the hyper-autofluorescence in the FAF images of the
185	central macula. The remaining hyperreflective structures on the RPE in OCT images corresponded
186	to the hyper-autofluorescent areas in the FAF images. The AO fundus images precisely identified
187	the areas of hyper-autofluorescence in the FAF images, which presumably represented island-like
188	residual photoreceptor areas and named "photoreceptor islands". In contrast to their surrounding
189	surfaces, the areas were homogenous even though the cone mosaics were invisible. The edges of
190	the islands were partially covered by hyporeflective clumps (HRCs). HRCs were observed not only
191	at the border of the islands but also around the photoreceptor islands. Higher magnified images
192	showed that the small HRCs participated in the formation of the larger HRCs (Fig. 7 top right). The
193	size of photoreceptor island appeared smaller and less homogenous after 4 years which made their
194	borders unclear. The mean area of the residual photoreceptor island measured in AO fundus images

195	was reduced from 6.0 x $10^5 \ \mu m^2$ in 2013 to 4.3 x $10^5 \ \mu m^2$ in 2015, and to 2.9 x $10^5 \ \mu m^2$ in 2017.
196	The BCVA decreased from 0.13 (decimal) in 2013 to 0.06 in 2015, and 0.02 in 2017. The
197	corresponding areas of the OCT images showed a decrease in retinal thickness due to a reduction of
198	the thickness of the outer nuclear layer (ONL, Fig. 7).
199	Similar AO findings were found in other 7 eyes; the right eye (Rt) and left eye (Lt) of NA1048,
200	NA0201Lt, NA1201Lt, NA0039Lt, NA0070Rt, and NA1209Lt. However, the quality of the AO
201	images of NA201Lt (BCVA; 0.1) and 1209Lt (BCVA; 0.02) were poor, and the borders of the
202	photoreceptor islands were too indistinct to analyze. In 5 eyes (NA0039Rt, NA1201Rt, NA0070Lt,
203	NA1209Rt, and NA1209 <u>Rt</u> eyes) the photoreceptor islands could not be detected in the FAF or in
204	the AO images presumably due to a complete loss of the residual photoreceptor areas. The BCVA in
205	these eyes was close to total blindness and ranged from <u>LP</u> to 0.05 (decimal). <u>In addition to the AO</u>
206	image of NA0201Rt, those of NA1201Lt, NA0039Lt, and NA0070Rt eyes were followed for about
207	four years, and the baseline images are shown in Figure 8. The OCT images showed that the fine
208	structures appeared like outer retinal tubulations on the RPE in the corresponding areas. The course
209	of the reduction in the size of the photoreceptor islands measured in AO fundus images and BCVA
210	in NA0039Lt, NA0201Rt, NA1201Lt, and <u>NA0070Rt</u> are shown in Figure <u>8</u> B. During the 4 year of
211	follow-up period, the size of the photoreceptor island in case NA1201Lt was reduced from 8.2 x
212	$10^5 \mu\text{m}^2$ to 4.8 x $10^5 \mu\text{m}^2$, however the BCVA was maintained at 0.5 (decimal). On the other hand,

213	the size of photoreceptor islands in the other 3 eyes (NA0039Lt, NA0201Rt, and NA0070Rt)
214	decreased to less than 3.0 x $10^5 \mu\text{m}^2$ with a reduction of the BCVA to <0.1(decimal). The AO
215	images of NA1048Rt and Lt were obtained only once and the sizes were 12.1 x $10^5\mu\text{m}^2$ and 25.1 x
216	$10^5 \mu\text{m}^2$ respectively (images not shown) with relatively preserved BCVA (0.5 in both eyes).
217	
218	Discussions
219	Several <i>RP1</i> variants have been reported to cause adRP or arRP in Japanese patients [6, 7, 17-19].
220	The m1 variant had not been identified as a causative variant of arRP in a large Japanese RP cohort
221	study using targeted resequencing [18,19], although the m1 variant was present in 4.5% of RP
222	patients in our recent study [12]. The reason for this discrepancy might be that the m1 variant was
223	missed by targeted resequencing because the insertion of 328 nucleotides was too large to be
224	detected. Indeed, the m1 variant was first detected by Whole-Genome Sequence screening [12], and
225	our earlier targeted resequencing could not detect the m1 variant in case NA0201 although the m2
226	variant was detected [19]. This indicated that the m1 variant might be the cause of patients whose
227	causative genes had not been identified by targeted resequencing, especially in early onset and
228	severe RP cases with macular involvement.
229	Patients with the m1/m1 and m1/m2 variants appeared to have no significant differences in the
230	course of retinal degeneration; both genotypes shared phenotypic characteristics including severe

231	retinal degeneration with early macular involvement. In addition, clinical courses of our patients
232	resemble that of ARRP caused by other frameshift variants in RP1. Thus we speculate the disease
233	mechanism of m1 and m2 is the complete loss of function due to nonsense-mediated mRNA decay.
234	The early BCVA loss was caused by macular degeneration at a younger age which can be explained
235	by the expression of the protein encoded by <i>RP1</i> in the ciliary axoneme of both rods and cones [9,
236	10].
237	Our results indicated that all of our patients, except case NA0209, had an early onset of impaired
238	vision that occurred during the first decade of life. This was followed by a severe decrease of the
239	BCVA in the second and third decade which has been reported as a phenotype of arRP caused by
240	RP1 variants [4, 6, 7, 11, 20]. Only case NA0209 had a relatively late onset retinal degeneration
241	compared to the other patients including his sibling. However, even in this patient, OCT showed a
242	progressive reduction of the retinal thickness and FAF showed a similar retinal degeneration pattern
243	as his sister. In addition, fundus AO images indicated that the cone density was reduced to one-third
244	of that of a normal control at 21-years-of-age. Therefore, his clinical findings might show the early
245	phase of severe retinal degeneration. The reason for the differences of the progression between the
246	two siblings was not determined but some other genetic factors rather than environmental factors
247	might be responsible for this because these siblings had been raised in a similar environment.

248	The FAF images are produced by retinoid byproducts of the visual cycle that accumulate in the
249	RPE [21], and they are assumed to be related to the remaining functional retina in eyes with
250	inherited retinal diseases [22, 23]. In the late stages of choroideremia, some patients have areas of
251	residual hyper-autofluorescence, called scalloped regions, surrounded by hypo-autofluorescent
252	areas [22, 23]. These hyper-autofluorescent areas are reported to be correlated with the areas of
253	surviving photoreceptors determined from multiple slices through the EZ in the OCT images [22,
254	23]. The size of these residual autofluorescent areas shrinks every year[24], and they have been
255	used to monitor the effectiveness of gene therapy in these types of patients [25]. Similar
256	autofluorescent areas were found in some eyes in our cohort. The high resolution AO fundus
257	images have allowed researchers to detect the subtle changes of the macular structures during the
258	course of retinal degeneration. Therefore, for the evaluation of the photoreceptor structure in
259	"scalloped regions" of choroideremia, our AO image analysis might be useful.
260	Our results showed that the course of reduction of the BCVA was composed of three phases. Most
261	patients had a reduction in the BCVA soon after the initial visit due to an involvement of the
262	macular area. This might be caused by the reduction of cone mosaics as observed in the AO images
263	of case NA209. However, the BCVA was relatively well preserved until the mid-20s, and then the
264	BCVA decreased in a relatively quickly (Fig. 2). The AO image analyses suggested that the
265	preserved photoreceptor islands were responsible for the maintained BCVA of >0.1(decimal). The

266	disruption of the photoreceptor islands appeared to lead to a further decrease in BCVA to nearly
267	complete blindness. Indeed, the FAF and AO images did not detect any photoreceptor islands in
268	near blind eyes such as the NA0039Rt, NA1201Rt, and NA1209Rt and Lt.
269	The relationships between the AO images and pathological changes of the retina have not been
270	accurately determined mainly because of the limited number of studies of the high-resolution AO
271	images. HRCs were found at the edge of photoreceptor islands but their origins are uncertain.
272	Because melanin is the ocular pigment with the highest absorption in flood illumination near
273	infrared AO imaging, it is possible that the HRCs are composed of melanin molecules and/or their
274	derivatives. Some of the round HRCs observed in vivo in the degenerating retina with geographic
275	atrophy were shown to be of similar in size and shape to ectopic RPE cells reported by histology
276	[26]. If this is true, the detached RPE cells might migrate to the edge of the photoreceptor islands
277	because the appearance and size of the HRCs in our study (Fig. 7) are identical to those in the
278	previous report [26]. It is known that following the death of all photoreceptors, the RPE cells
279	detach from Bruch's membrane and migrate to perivascular sites in the inner retina producing the
280	bone spicule pigments [27]. It is possible that a similar migration of RPE is related to the loss of
281	photoreceptor islands.
282	Our retrospective study has several limitations. The AO fundus images were analyzed from only 7
283	eyes because of difficulties in recording high quality images from eyes with poor fixation. In

284	addition, statistical analyses could not be performed due to the low number of images and different
285	times of obtaining the images. In addition, not only the size but also the quality of photoreceptor
286	island images would affect the BCVA because the BCVA of NA1201Lt was maintained at 0.5 in
287	spite of a decrease in the size of photoreceptor islands. Future investigations of the size and quality
288	of the photoreceptor islands using microperimetry might provide additional information that will
289	help in making a prognosis of RP patients.
290	Another limitation is "photoreceptor island" is not a common feature of the RP. Usually in the
291	advanced stage of RP, AO images can detect only mottled structures with unknown origin and
292	"photoreceptor island" were found in a small portion of the eyes with RP. Thus our AO image
293	analysis can be applied for the limited number of RP patients.
294	In conclusion, we have analyzed the phenotypic characteristics of arRP eyes carrying the m1
295	variant. These patients had severe retinal degeneration with early macular involvement as reported
296	in arRP eyes caused by other <u>RP1</u> variants [4, 6, 7, 11, 20]. In the course of macular degeneration
297	in our cohort, the AO images showed not only the reduction of the cone intensity in one patient but
298	also showed the process of the reduction of the residual photoreceptor areas at the end stage of RP.
299	These changes indicated that total blindness appeared to be related to the loss of the photoreceptor
300	islands. Monitoring the fine retinal structures and the cone mosaics by AO fundus imaging could

- 301 provide further prognostic implications and can be used for the evaluation of new therapeutic
- 302 applications.
- 303
- 304

305 Acknowledgements

- 306 The authors thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute for the
- 307 discussions and editing the final version of the manuscript. This work was supported in part by the
- 308 Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 19K09928 to S.U
- 309 and Takayanagi Retina Research Award to S.U.

311 References

312	1.	Pierce EA, Quinn T, Meehan T, McGee TL, Berson EL, Dryja TP. Mutations in a gene
313	encoding	a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat
314	Genet 19	999;22:248-54.
315	2.	Sullivan LS, Heckenlively JR, Bowne SJ, Zuo J, Hide WA, Gal A et al. Mutations in a
316	novel ret	ina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 1999;22:255-9.
317	3.	Khaliq S, Abid A, Ismail M, Hameed A, Mohyuddin A, Lall P et al. Novel association of
318	RP1 gene	e mutations with autosomal recessive retinitis pigmentosa. J Med Genet 2005;42:436-8.
319	4.	Riazuddin SA, Zulfiqar F, Zhang QJ, Sergeev YV, Qazi ZA, Husnain T, Caruso R et al.
320	Autosom	al recessive retinitis pigmentosa is associated with mutations in RP1 in three
321	consangu	uineous Pakistani families. Invest Ophthalmol Vis Sci 2005;46:2264-70.
322	5.	Avila-Fernandez A, Corton M, Nishiguchi KM, Munoz-Sanz N, Benavides-Mori B,
323	Blanco-k	Kelly F et al. Identification of an RP1 prevalent founder mutation and related phenotype in
324	Spanish j	patients with early-onset autosomal recessive retinitis. <i>Ophthalmology</i> 2012;119:2616-21.
325	6.	Kurata K, Hosono K, Hotta Y. Clinical and genetic findings of a Japanese patient with
326	RP1-rela	ted autosomal recessive retinitis pigmentosa. Doc Ophthalmol 2018;137:47-56.

327	7.	Verbakel SK, van Huet RAC, den Hollander AI, Geerlings MJ, Kersten E, Klevering BJ et
328	al. Macula	ar dystrophy and cone-rod dystrophy caused by mutations in the RP1 gene: Extending the
329	RP1 disea	se spectrum. Invest Ophthalmol Vis Sci 2019;60:1192-203.
330	8.	Riera M, Abad-Morales V, Navarro R, Ruiz-Nogales S, Mendez-Vendrell P, Corcostegui B
331	et al. Expa	anding the retinal phenotype of RP1: from retinitis pigmentosa to a novel and singular
332	macular d	ystrophy. Br J Ophthalmol 2019. doi:10.1136/bjophthalmol-2018-313672
333	9.	Liu Q, Zhou J, Daiger SP, Farber DB, Heckenlively JR, Smith JE et al. Identification and
334	subcellula	r localization of the RP1 protein in human and mouse photoreceptors. Invest Ophthalmol
335	Vis Sci 200	02;43:22-32.
336	10.	Liu Q, Lyubarsky A, Skalet JH, Pugh EN, Pierce EA et al. RP1 is required for the correct
337	stacking o	f outer segment discs. Invest Ophthalmol Vis Sci 2003;44:4171-83.
338	11.	El Shamieh S, Boulanger-Scemama E, Lancelot M-E, Antonio A, Demontant V, Condroyer
339	C et al. Ta	rgeted next generation sequencing identifies novel mutations in RP1 as a relatively
340	common c	ause of autosomal recessive rod-cone dystrophy. BioMed Res Int 2015.
341	doi:10.115	55/2015/485624
342	12.	Nikopoulos K, Cisarova K, Quinodoz M, Koskiniemi-Kuendig H, Miyake N, Farinelli P et

- al. A frequent variant in the Japanese population determines quasi-Mendelian inheritance of rare
- 344 retinal ciliopathy. *Nat Commun* 2019;10:2884. doi: 10.1038/s41467-019-10746-4.

- 345 13. Nakanishi A, Ueno S, Kawano K, Ito Y, Kominami T, Yasuda S et al. Pathologic changes
- 346 of cone photoreceptors in eyes with occult macular dystrophy. Invest Ophthalmol Vis Sci
- 347 2015;56:7243-9.
- 348 14. Ueno S, Kawano K, Ito Y, Ra E, Nakanishi A, Nagaya M et al. Near-infrared reflectance
- imaging in eyes with acute zonal occult outer retinopathy. *Retina* 2015;35:1521-30.
- 15. Ueno S, Nakanishi A, Kominami T, Ito Y, Hayashi T, Yoshitake K et al. In vivo imaging of
- a cone mosaic in a patient with achromatopsia associated with a GNAT2 variant. Jpn J Ophtalmol
- 352 2017;61:92-8.
- 353 16. Ueno S, Nakanishi A, Sayo A, Kominami T, Ito Y, Hayashi T et al. Differences in ocular
- findings in two siblings: one with complete and other with incomplete achromatopsia. Doc
- 355 *Ophthalmol* 2017;134:141-47.
- 356 17. Kawamura M, Wada Y, Noda Y, Itabashi T, Ogawa SI, Sato H et al. Novel 2336-2337
- delCT mutation in RP1 gene in a Japanese family with autosomal dominant retinitis pigmentosa. Am
- 358 J Ophthalmol 2004;137:1137-39.
- 359 18. Oishi M, Oishi A, Gotoh N, Ogino K, Higasa K, Iida K et al. Comprehensive molecular
- 360 diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by
- action sequencing. Invest Ophthalmol Vis Sci 2014;55:7369-75.

- 362 19. Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S et al.
- 363 Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J Med Genet 2019; 56:
- 364 662**-**70.
- 365 20. Chen LJ, Lai TYY, Tam POS, Chiang SWY, Zhang X, Lam S et al. Compound
- 366 heterozygosity of two novel truncation mutations in RP1 causing autosomal recessive retinitis
- 367 pigmentosa. Invest Ophthalmol Vis Sci. 2010;51:2236-42.
- 368 21. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF. Fundus autofluorescence imaging:
- 369 review and perspectives. *Retina* 2008;28:385-409.
- 370 22. Aleman TS, Han G, Serrano LW, Fuerst NM, Charlson ES, Pearson DJ et al. Natural
- 371 history of the central structural abnormalities in choroideremia: A prospective cross-sectional study.
- 372 *Ophthalmology* 2017;124:359-73.
- 23. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L et al.
- Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial.
- 375 Lancet 2014;383:1129-37.
- 376 24. Jolly JK, Edwards TL, Moules J, Groppe M, Downes SM, MacLaren RE. A qualitative and
- 377 quantitative assessment of fundus autofluorescence patterns in patients with choroideremia. Invest
- 378 *Ophthalmol Vis Sci* 2016;57:4498-503.

- 379 25. Xue K, Jolly JK, Barnard AR, Rudenko A, Salvetti AP, Patricio MI et al. Beneficial effects
- 380 on vision in patients undergoing retinal gene therapy for choroideremia. *Nat Med* 2018;24:1507-12.
- 381 26. Gocho K, Sarda V, Falah S, Sahel JA, Sennlaub F, Benchaboune M et al. Adaptive optics
- imaging of geographic atrophy. *Invest Ophthalmol Vis Sci* 2013;54:3673-80.
- 383 27. Milam AH, Li ZY, Fariss RN. Histopathology of the human retina in retinitis pigmentosa.
- 384 *Prog Retin Eye Res* 1998;17:175-205.
- 385

	idngs	LE	Photoreceptor island	NA	Low quality	Photoreceptor island	No photorecepotor island	Photoreceptor island	Photoreceptor island	Cone mosaic	Photoreceptor island	
	AO fin	RE	No photorecepotor island	NA	Low quality	Photoreceptor island	Photoreceptor island	Photoreceptor island	No photorecepotor island	Cone mosaic	No photorecepotor island	
	c alleles	Allele 2	m1	m1	m1	m1	m1	m2	m2	m2	m2	le;
. Demographic data of 9 Japanese ARRP patients with 4052_4053ins328 /p.Tyr1352Alafs*9 in <i>RP1</i>	Pathogeni	Allele 1	т 1	a1	m1	m1	a 1	Ē	в Т	Ē	Ē	A=not availab
	BCVA (Decimal) at final visit	Ц	0.01	0.4	0.2	0.5	0.2	0.1	0.5	0.6	0.02	nı; M≕male; N 399Leufs*5
		RE	LP	0.6	0.04	0.5	0.05	M H	MH	0.8	MH	ight perceptic 3delG/p.Cys1
	Age at	tinial visit	34	33	19	22	39	32	36	26	30	left eye; LP=∣ n); m2−c.419(
	Electroretinogram	1	ND	NA	ΟN	ΟN	Severely reduced	ND	DN	Reduced	QN	M=hand motion; LE= Alafs*9 (Alu insertio
	Visual field at	initial visit	Central island	Central island	Paracentral scotoma, peripheral constriction	Paracentral scotoma, peripheral constriction	Paracentral scotoma, peripheral constriction	Central island	Paracentral scotoma, peripheral constriction	Paracentral scotoma	Paracentral scotoma, peripheral constriction	icuity; F=female; HN 63ins328∕p.Tyr1352/
	acimal) visit	E	0.8	0.6	0.7	0.9	0.5	0.5	0.8	-	0.7	ected visual a 1=c.4052_405
	BCVA (D at initia	문	0.8	0.6	9.0	6.0	0.4	9.0	0.8	-	0.4	∕A= best corr =right eye; m
	Age at	Initial visit	21	27	12	14	25	15	8	20	19	nentosa BCV o.≕number; RE
Tabl	Age at	onset	9	9	5	5	Q	Q	9	15	9	e retinitis pign letectable; Nc
	Sex		ш	Σ	ш	Σ	ш	Σ	Ŀ	Σ	Ŀ	omal recessiv ND=not c
	Patient No		NA0039	NA1039	NA0048	NA1048	NA0070	NA0201	NA1201	NA0209	NA1209	ARRP=autoso
	Family No		-	-	2	2	с	4	4	വ	ъ	

387 Figure Legends

388 Figure 1. Pedigree charts of 9 autosomal recessive retinitis pigmentosa cases carrying the m1

- 389 variant (c.4052 4053ins328/p.Tyr1352Alafs*9) in the *RP1* gene.
- 390 The m2 variant (c.4196delG/p.Cys1399Leufs*5) was found in 2 families. There was no reported
- 391 consanguinity in any of these pedigrees. Probands are shown by the arrows.
- 392
- 393 Figure 2. Graph showing the course of the best-corrected visual acuity over time in all eyes
- 394 **from our cohort.**
- 395 <u>Snellen visual acuity was converted to the logarithm of the minimum angle of resolution</u>
- 396 (logMAR). R; right L; left
- 397
- **Figure 3.** Fundus color photographs of the right eye of the 9 patients from 5 families (1-5)
- with autosomal recessive retinitis pigmentosa caused by a variant of the *RP1* gene;
- 400 c.4052_4053ins328/p.Tyr1352Alafs*9 (m1).
- 401 The age of the patients at which the photograph was taken is shown. All the patients except NA0209
- 402 had severe panretinal degeneration including macula. Y.O. ; year old .

404 Figure 4. Fundus autofluorescence (FAF) images of the right eye of 8 patients from 5 families

405 (1-5).

406 The age of the patients at which the photograph was taken is shown. All patients except NA0209 had

407 patchy and coalescent hypo-autofluorescent areas including macula. Y.O.; year old .

408

- 409 Figure 5. Multimodal images in case NA0209.
- 410 a. Changes of retinal images during the follow-up period. Fundus autofluorescence (FAF, upper)

411 shows fine hypo-autofluorescent patchy spots around the arcade vessels and at the fovea appeared

- 412 during 5 years. The OCT images show a marked reduction of the retinal thickness in 5 years. Arrows
- 413 indicate the residual EZ at 20-years-of-age which disappeared in 5 years. The scale bar is 200 μm.
- b. Adaptive optics (AO) fundus images of case NA0209 at 21-years-of-age. A montage image is
- shown on the left. Magnified images of the white square (at 3 degrees from the central fovea on the
- temporal side and 1 and 3 degrees on the nasal side; shown as T3, N1and N3 respectively) in the
- 417 montage image are shown. For comparison the AO images of a normal control at 3 degrees from
- 418 the central fovea on the temporal side is shown (N3 Normal). The scale bar is 20 μm in the
- 419 magnified AO images as well.

421	Figure 6. Optical coherence tomographic (OCT) images of the right eye of the 9 patients from 5
422	families (1-5). The OCT images shows thinning of the retina and abnormalities in the outer retina in
423	all cases. Several fine hyperreflective structures can be seen on the RPE shown by the yellow
424	arrows.
425	
426	Figure 7. Progressive reduction of surviving photoreceptor areas (photoreceptor islands) in the
427	right eye of case NA0201.
428	Fundus photograph (top left) shows a deep colored area in the central macula which was detected as
429	a hyper autofluorescence area in fundus autofluorescence (FAF, top middle) images. The white
430	squares in the color fundus photograph and FAF area corresponds to fundus AO images below.
431	Successive AO images were recorded on June 2013, January 2015, and January 2017. The OCT
432	images obtained on the same days are shown on the right of each AO fundus image, and the scanned
433	area is shown by the dotted arrows in the AO fundus images. Illustrative images of the photoreceptor
434	islands are shown at the bottom left of each AO image. The size of photoreceptor islands decreases
435	progressively. The magnified image of the white square in the AO fundus image on June 2013 is
436	shown at the top right. The edge of the photoreceptor island is partially covered by hyporeflective
437	clumps (HRCs). Small HRCs participate to form the large clumps. HRCs surrounding the

438 photoreceptor island are shown in arrows and HRCs seen around the photoreceptor island are shown
439 in arrow heads.

440

441	Figure 8. Findings of NA1201 left, NA0039 left, and NA0070 right eyes
442	a. Multimodal images of photoreceptor islands. The color fundus photograph (top left) and fundus
443	autofluorescence (FAF; top right), AO fundus image, and OCT image of each eye are shown. The
444	area surrounded by the white line in the color fundus and FAF images correspond to the montage of
445	the AO fundus images (middle). The first recorded AO fundus images of each patient (baseline of
446	analysis) and OCT images (below) on the same day are shown. The scanned areas for the OCT
447	images are shown by the yellow dotted arrows in the AO fundus images. The fundus and FAF
448	images obtained on the closest day to the AO images are shown. Illustrations of the photoreceptor
449	islands are shown at the upper left of each AO fundus image. Hyper autofluorescence areas in the
450	central macula detected in FAF are clearly visible in the AO fundus images.
451	b. Reduction in the size of the photoreceptor islands in four eyes (three eyes from A and 1 eye from
452	Figure 4). The size of the photoreceptor island gradually decrease. The visual acuity (decimal) at
453	each time point is also shown.
454	

455

Graph showing the course of the best-corrected visual acuity over time in all eyes from our cohort. Snellen visual acuity was converted to the logarithm of the minimum angle of resolution (LogMAR). R; right L; left

NA1039 33Y.O.

NA1048 18Y.O.

NA0039 29Y.O.

NA0048 19Y.O.

NA0070 25Y.O.

NA1209 26Y.O.

NA0201 26Y.O.

NA0209 20Y.O.

5

1

2

3

ALIZOIL NA0039L NA0070 R NA0070 R NA0070 R NA0070 R NA0070 R

