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Metamodeling and metaquerying in OWL 2 QL

Maurizio Lenzerini, Lorenzo Lepore, Antonella Poggi

Abstract

OWL 2 QL is a standard profile of the OWL 2 ontology language, specifically tailored
to Ontology-Based Data Management. Inspired by recent work on higher-order
Description Logics, in this paper we present a new semantics for OWL 2 QL ontolo-
gies, called Metamodeling Semantics (MS), and show that, in contrast to the
official Direct Semantics (DS) for OWL 2, it allows exploiting the metamodeling
capabilities natively offered by the OWL 2 punning. We then extend unions of
conjunctive queries with both metavariables, and the possibility of using TBox
atoms, with the purpose of expressing meaningful metalevel queries. We first
show that under MS both satisfiability checking and answering queries including
only ABox atoms, have the same complexity as under DS. Second, we investi-
gate the problem of answering general metaqueries, and single out a new source
of complexity coming from the combined presence of a specific type of incom-
pleteness in the ontology, and of TBox axioms among the query atoms. Then
we focus on a specific class of ontologies, called TBox-complete, where there
is no incompleteness in the TBox axioms, and show that general metaquery
answering in this case has again the same complexity as under DS. Finally,
we move to general ontologies and show that answering general metaqueries is
coNP-complete with respect to ontology complexity, Πp

2-complete with respect
to combined complexity, and remains AC0 with respect to ABox complexity.

1. Introduction

Representing knowlegde in terms of an ontology expressed in a Description
Logic [1], and then querying such representation to extract useful information
about the modeled domain, has received a great deal of attention in recent
years [2]. In particular, many research works have concentrated on designing
optimal ontology languages with respect to the trade-off between expressive
power and computational complexity of reasoning tasks, such as computing the
answers to queries. Here, we focus on the OWL 2 QL ontology language, which
is the most popular ontology language in Ontology-Based Data Management
(OBDM) [3]. OBDM is a paradigm where ontologies are used both for querying
the data of a pre-existing information system, and for carrying out data gov-
ernance tasks, such as data profiling, or data quality assessment. The OWL 2 QL
language [4], that is based on the Description Logic (DL) DL-LiteR [5], guaran-
tees that the main reasoning tasks are tractable with respect to the size of the
data, that is typically huge in real world applications.
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Although the quest for tractability of algorithms for query answering and
other reasoning tasks is extremely important for OBDM, there are other issues
that are equally important, and have not yet been explored in depth. The one
that we deal with in this paper is metamodeling and metaquerying [6]. Meta-
modeling is a form of higher-order modeling allowing for the definition of meta-
classes and metaproperties in the ontology, where a metaclass is a class whose
instances can be in turn classes, and a metaproperty is a property (or relation)
whose instances are properties holding between classes, rather than individuals.
Since metaclasses can be themselves instances of other metaclasses, multi-level
modeling is another term used for metamodeling [7]. Metaquerying refers to the
possibility of going beyond first order-logic in specifying queries. In particular, a
metaquery not only can mention both metaclasses and metaproperties, but may
also contain variables that can be bound to classes and properties, contrarily to
the usual queries studied in OBDM, where variables only denote individuals in
the domain.

While metamodeling has been studied in several fields, including Software
Engineering, e.g., for conceptual modeling [8], for model-driven development
[9] and for engineering design optimization [10], Relational Databases [11], and
Artificial Intelligence (AI), e.g., for simulation modeling [12] and for knowledge
representation [13], both metamodeling and metaquerying have not been inves-
tigated in detail in the context of ontology representation and reasoning, neither
from the semantical nor from the computational point of view.

In this paper, we begin to fill this gap by investigating metamodeling and
metaquerying in OWL 2 QL. Notice that OWL 2, and therefore OWL 2 QL, natively
provides syntactic support for metamodeling through the so-called OWL 2 pun-
ning1. Indeed, punning allows one to use the same name to denote ontology
elements of different categories, such as a class and an individual, or a class
and a property. However, we argue that the official semantics of OWL 2, the so-
called Direct Semantics (DS) treats punning in a way that is not adequate for
metamodeling and metaquerying. The reason is simply that proper metamod-
eling requires that the same element plays the role of both individual and class
(or, class and property), while, coherently with the standard DL literature, DS
relies on the notion of interpretation of the standard First-Order Logic (FOL)
semantics and, thus, it treats punning by sanctioning that an individual and a
class with the same name are different elements.

The following example illustrates how proper metamodeling can be useful in
modeling a domain, how it can be captured in OWL 2 QL, and why query answering
under DS can be quite unsatisfactory2.

Example 1. Consider the domain of human resource management, within an
aeronautical organization. Each employee in the organization has a salary, and is
classified according to several types, i.e., “Engineer”, “Pilot”, “Secretary”, which
are naturally modeled as subclasses of the class Employee. Each employee type

1http://www.w3.org/TR/owl2-new-features/#F12:_Punning
2This example is inspired by an example in [8], exhibiting the need for the so-called multi-

level modeling.
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is associated with a standard salary, and is in turn classified into two categories:
“Technical Employee Type”, and “Administrative Employee Type”. So, for
example, “John” is an engineer who earns 200.000 euros, which is exactly the
standard salary associated with the employee type “Engineer”. Also, “Engineer”
and “Pilot” are technical employee types, as opposed to “Secretary”, which is
an example of administrative employee type.

To model this domain, one needs to deal with entities at different classi-
fication levels, such as individual employees (“John”), employee types (“En-
gineer”, “Pilot”, “Secretary”), and types of employee types (“Technical Em-
ployee Type”, “Administrative Employee Type”). In particular, one needs to
assert that “John” is an instance of the class “Engineer” and that the pair
(“John”,“200.000”) is an instance of the property “has salary”. Moreover, one
needs to predicate on metaclasses, such as “Technical Employee Type”, e.g., by
asserting that “Engineer” is one of its istances, as well as on metaproperties, e.g.,
by asserting that the pair (“Engineer”,“200.000”) is an instance of the property
“has standard salary”. While this can be easily expressed in OWL 2 QL by exploit-
ing punning, the fact that DS treats as distinct elements different occurrences
of the same entity at different classification levels prevents from extracting in-
teresting information from the knowledge base. Indeed, suppose that one wants
to know which employees have a salary that coincides with the standard salary
associated with their employee types. The obvious query expression would be
as follows:
q(x)← Employee(x) ∧ has salary(x, y) ∧ z(x) ∧ has standard salary(z, y).

Note that while this query would not be allowed in the standard DL litera-
ture because of the presence of variables in predicate positions, it is allowed in
SPARQL. However, since in DS an individual and a class with the same name are
different elements, under such semantics the occurrence of z in class position
in the third atom is completely unrelated to the occurrence of z in individual
position in the fourth atom, and therefore no element can be simultaneously
bound to both occurrences. It is exactly for this reason that, under the DS
entailment regime for dealing with SPARQL queries, the above query is not even
legal. This implies that, both under DS and under the DS entailment regime
of SPARQL, we miss the information that “John” is an engineer earning the
amount of the standard salary for the type “Engineer”.

The main goal of this paper is to overcome the above mentioned drawback,
presenting an approach where both metamodeling and metaquerying can be
profitably used in ontology specification and in computing the answers to queries
posed to ontologies.
Contributions. This work builds upon the preliminary works [14] and [15]3,
and extends them by providing a systematic study of metamodeling and meta-

3In fact, in [14] and [15], we used the name Higher Order Semantics (HOS) to denote
what we call here Metamodeling Semantics. We prefer the latter because, even though the
proposed semantic structure has a second-order flavor, its expressive power does not exceed
first-order.
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querying in OWL 2 QL, along with algorithms and proofs. Specifically, we present
a new semantics for OWL 2 QL, called Metamodeling Semantics, that effectively
exploits the metamodeling capabilities offered by OWL 2, and address fundamen-
tal problems of OWL 2 QL interpreted under such semantics, analogous to those
addressed for the seminal study of DL-LiteR [5], namely:

• classical DL reasoning tasks, such as satisfiability, and class and property
subsumption;

• metaquery answering, with the main goal of singling out possibile sources
of complexity within metaqueries and ontologies that lead to intractability.

We fully characterize the complexity of query answering, and identify signifi-
cant classes of metaqueries and ontologies, likely to be of interest in practice, for
which metaquery answering is tractable. In particular, we focus on metaqueries,
simply called queries from now on, that have the form of unions of conjunctive
queries that may contain variables in class and/or property position, which cor-
respond to unions of SPARQL Basic Graph Patterns. From a technical point of
view, our investigation shows that the notion of canonical model and homo-
morphism, which are crucial for the study of query answering in DL-LiteR, can
be extended for the study of metaquerying in OWL 2 QL under the metamodeling
semantics as well.

More precisely, the main contributions of this work can be summarized as
follows.

• We present the Metamodeling Semantics (MS) for OWL 2 and unions of
conjunctive queries over ontologies interpreted under MS. Although our
semantics is defined for the whole OWL 2 language, we formulate it in terms
of OWL 2 QL, which is the subject of our investigation on the complexity of
answering queries carried out in the subsequent sections. The main goal
of MS is to provide a clean model-theoretic semantics for queries with
unrestricted use of variables and metavariables, i.e., in which atoms may
contain variables in class and/or property position.

• We show that for OWL 2 QL ontologies, satisfiability under MS and DS are
equivalent, in the sense that any ontology is satisfiable under MS if and
only if it is satisfiable under DS. The same holds for entailment of standard
first-order unions of conjunctive queries, i.e., unions of conjunctive queries
consisting only of ABox atoms with no metavariables. In other words, as
far as OWL 2 QL is concerned, MS is a conservative extension of DS: the
difference between the two semantics shows up only in answering queries
that go beyond standard first-order unions of conjunctive queries.

• We show that entailment of instance queries, i.e., unions of conjunctive
queries including only ABox atoms, possibly with metavariables, over
OWL 2 QL ontologies under MS is different from entailment under DS, in
the sense that queries that are not legal under DS are perfectly legal un-
der MS, and are assigned a semantics that is coherent with the intuitive
meaning of metamodeling. In particular, we show that the metavariables
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appearing in the query can be treated by means of metagrounding, which
is a technique based on the substitution of metavariables with the classes,
object properties and data properties appearing in the ontology. Based on
this property, we show that entailment of instance queries under MS has
exactly the same complexity as entailment of standard first-order unions
of conjunctive queries under DS, i.e., it is in AC0 w.r.t. ABox complexity,
in PTime w.r.t. ontology complexity, and NP-complete w.r.t. combined
complexity.

• As for general queries, i.e., possibly containing both metavariables and
TBox atoms, over OWL 2 QL ontologies under MS, we are able to single out
a specific source of complexity making the reasoning task more complex
with respect to instance queries. Such source of complexity is related to
the presence of a form of incompleteness in the TBox axioms of the ontol-
ogy. To prove the increase in complexity, we provide the following lower
complexity bounds for conjunctive queries: coNP-completeness w.r.t. on-
tology complexity, and Πp

2-completeness w.r.t. combined complexity. We
point out that both these results sharpen the intractability results in [13],
which are based on the presence of union.

• We show that, in the special case of TBox-complete ontologies, i.e., in
the case of ontologies that do not exhibit the above-mentioned form of
incompleteness, the complexity of entailment of general queries under MS
is the same as in the case of entailment of instance queries. This confirms
that TBox incompleteness is indeed a distinguished source of complexity
for answering general queries.

• Finally, we address the complexity upper bounds for entailment of general
queries over unrestricted ontologies under MS, by presenting an algorithm
matching the established lower bounds, i.e., that is in AC0 w.r.t. ABox
complexity, in coNP w.r.t. ontology complexity and in Πp

2 w.r.t. combined
complexity. As far as we know, this is the first decidability result for
general metaqueries posed to ontologies expressed in (fragments of) OWL 2.
Indeed, the decidability results reported in [13] hold only for a specific
classes of queries, called guarded. We also point out that our result on
ABox complexity is the first tractability results of answering metaqueries,
since in [13], answering (guarded) general metaqueries is shown to be
NP-complete in ABox-complexity, too (see the discussion in the related
work section below). The complexity results for entailment of queries are
summarized in Table 1.

Related work. While the study of knowledge representation languages with
higher-order or multi-level modeling capabilities is far from being new, the inter-
est in such issue in the context of OWL, the W3C standard ontology language,
is recent. We focus on such a line of research here, which is the relevant one
for our investigation, and concentrate our attention on research works address-
ing the computational properties of reasoning tasks in metamodeling extensions
of OWL 2 DL, or fragments therein. We remind the reader that OWL 2 DL is the
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Ontology Complexity Instance queries General queries

TBox-complete
ABox AC0 AC0

Ontology PTime PTime
Combined NP-complete NP-complete

General
ABox AC0 AC0

Ontology PTime coNP-complete
Combined NP-complete Πp

2-complete

Table 1: Computational complexity of query entailment under MS

logic-based decidable restriction of OWL 2, and corresponds to a very expressive
Description Logic.

Following a line of reasoning similar to that of [16], higher-order languages
can be classified depending on whether they admit a higher-order syntax, which
informally means that they allow for the use of variables in predicate position,
and/or for the use of predicates in individual positions, or they have a higher-
order semantics, which means that variables may range over sets constructed out
of the domains of individuals. Works such as [17, 18] aim at defining languages
that have both a higher-order syntax and semantics, and study the problem of
checking satisfiability of an ontology expressed in such languages. Other works
focus on languages having a higher-order syntax and a first-order semantics.
In particular, [19] shows that OWL 2 DL, when enriched with the metamodeling
features of OWL 2, such as the ability of stating (i) axioms where the same
entity plays simultaneously the role of class, individual and/or property, and (ii)
axioms over the reserved vocabulary (e.g., rdf:type and owl:someValuesFrom),
is undecidable.

To achieve decidability, [20] studies the logic obtained by extending the DL
underpinning OWL 2, only with the ability of stating axioms over the rdf:type
reserved predicate. In particular, it shows that such a logic is decidable, and
studies the complexity of satisfiability and subsumption for it. With the same
goal in mind, on the other hand, [19] proposes a new semantics for OWL 2 DL, en-
riched with the metamodeling features of OWL 2, which is inspired by HiLog [16].
In such semantics, intuitively, every object o in an interpretation domain is not
only seen as an individual, but also as a class, a property and an attribute, by
exploiting total functions which associate to every object appropriate sets of
objects, pairs of objects, and pairs of objects and values, respectively.

Note, however, that all the works within this line of research investigate the
satisfiability problem and (some of them) the subsumption problem, but not the
query answering problem. The only exception is [13], where the authors study
query answering over ontologies expressed in any DL extended with higher-order
syntax, and interpreted under a semantics that is based on an interpretation
structure again inspired by HiLog. In particular, they focus on so-called guarded
metaqueries, i.e. queries for which every variable occurring in a TBox atom (in
particular, in an “IS-A” atom), also occurs in a concept or role position of
an ABox atom, and show that answering guarded metaqueries with union is
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coNP-hard w.r.t. ABox complexity and Πp
2-hard w.r.t. combined complexity.

Note that the fact that metaquery answering is intractable in ABox complexity
under the semantics of [13], while it is tractable under the MS proposed here,
can be explained by the difference in the semantics, and, specifically, by the
fact that under the semantics of [13], every individual occurring in the ABox
simultaneously plays the role of class and property, and therefore induces a form
of “reasoning by cases”. Under MS, on the contrary, only entities playing the
role of classes and/or properties may induce such form of reasoning, which is in
fact at the origin of the intractability in ontology complexity. Note also, that our
results sharpen the lower-bounds of metaquery answering shown in [13] w.r.t.
both ontology and combined complexity, because we show that they already
hold for conjunctive metaqueries, i.e. metaqueries without union.

We cannot conclude the discussion on the related work without mentioning
works on the problem of answering SPARQL queries over OWL 2. Such papers
are relevant since SPARQL natively allows expressing metaqueries. In particular,
[21, 22, 23, 24] consider SPARQL under the Direct Semantics Entailment Regime,
while [25, 26, 27, 28] propose to modify the semantics of SPARQL to drop its
“active domain restriction”. Similarly to our approach, this amount to enable
metaqueries where pure existential variables occur and consequently reconcile
SPARQL solution mappings with the usual notion of certain answers. However,
all such works, in fact, concentrate on OWL 2 DL, i.e., the restriction of OWL 2 not
comprising any higher-order feature. In other words, they study metaquerying
over ontologies that do not contain metamodeling structures.

All the above observations show that, with the only exception of [13], no
work has investigated semantical and computational properties of metaquerying
over ontologies that both are expressed in OWL 2 or its variants, and comprise
metamodeling constructs.
Plan of the paper. The paper is organized as follows. In Section 2, we
review the main aspects of the syntax of OWL 2 QL ontologies and metaqueries,
we introduce our new semantics for both metamodeling and metaquerying, and
we investigate the relationship between such semantics and the standard one
based on DS. In Section 3, we introduce the chase procedure for our logic, that
forms the basis for the main decidability and complexity results illustrated in
the paper. In Section 4 we deal with entailment of instance queries in OWL 2 QL
ontologies under MS. In Section 5 we study the complexity lower bounds of
checking entailment of general queries under MS. In Section 6 we concentrate
on the complexity upper bounds, and present algorithms both for the case of
TBox complete ontologies, and for unrestricted ontologies. Section 7 concludes
the paper by discussing future research directions of our work.

2. OWL 2 QL and queries under MS

The goal of this section is to present the Metamodeling Semantics for OWL 2 QL
ontologies, to define a new entailment regime for queries over OWL 2 QL ontologies
based on MS, and to investigate the relationship between the standard Direct
Semantics (DS) and MS. To achieve our goal, we start by recalling the basics of
the OWL 2 QL syntax.
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2.1. The OWL 2 QL syntax
In a nutshell, an ontology is a set of axioms used to express knowledge about

a set of elements that are relevant for the domain of interest. According to the
OWL 2 jargon, ontology elements are classified into “literals” and “entities”.

Literals are ontology elements corresponding to values belonging to
datatypes. The set of OWL 2 QL literals is denoted LQL and is characterized by
the OWL 2 QL datatype map DMQL, defined as the restriction to OWL 2 QL of the
standard OWL 2 datatype map. In particular, DMQL is defined as

DMQL = (∆v, D, NLS , ·DT , ·LS)

where

• ∆v, called the value domain, is the set of all values that can be represented
in OWL 2 QL;

• D is the set of datatypes of OWL 2 QL (which comprises rdfs:Literal);

• NLS is the function that assigns to each t ∈ (D \ {rdfs:Literal}) the
lexical space of t, i.e. the set of the lexical forms used in OWL 2 ontologies
to refer to data values of type t; note that rdfs:Literal has not any
lexical form;

• ·DT is the function that assigns to each t ∈ D the so-called value space,
i.e. the set of data values represented by t in all OWL 2 ontologies; note, in
particular, that rdfs:Literal DT = ∆v;

• ·LS is the function that specifies, for each literal (l, t) ∈ LQL, which is the
data value in tDT denoted by such literal.

Thus, each literal l in LQL denotes the same value lLS in every ontology, and
has the form of a pair (s, t), where s is the lexical form of the literal, and t is
a datatype in (D \{rdfs:Literal}), such that s belongs to the lexical space of
t. In other words, each literal makes explicit both the name and the dataype of
the value it denotes.

It is worth noting that the computational properties of reasoning in OWL 2 QL
are guaranteed by the following property of D: for any set {t1, t2, . . . , tn}, with
ti ∈ D, i = 1, . . . , n, the intersection of the value spaces of the datatypes in the
set, is either empty or infinite.

Entities are ontology elements corresponding to individuals, classes, object
properties, data properties and datatypes in the domain of interest. Entities
are denoted by expressions, built on the basis of the symbols of a vocabulary.
Following the same line of the standard OWL 2 QL specification, we next introduce
the notion of vocabulary and expression in such language. A vocabulary V is
constituted by the tuple

V = (Ve, Vc, Vp, Vd, D, Vi, LQL)

where

8



• Ve is the union of Vc, Vp, Vd, and Vi, and its elements are called atomic
expressions,

• Vc (resp., Vp, Vd, Vi) is a non-empty set of Internationalized Resource Iden-
tifiers (IRIs) identifying classes (resp., object properties, data properties,
datatypes, and individuals),

• D and LQL are defined according to DMQL, and

• (i) Vc (resp., Vp, and Vd) includes the special symbols >c and ⊥c (resp.,
>p and ⊥p, and >d and ⊥d), (ii) LQL is disjoint from all other components
of V , and (iii) Vc (Vp) is disjoint from D (resp., Vd).

It is worth noting that, based on the definition of V , an atomic expression
may denote an element simultaneously playing different roles within an ontology,
such as, for example, the role of an individual and of a class. This feature is
known as OWL 2 punning, and will be discussed in more details at the end of this
subsection. Note also that item (iii) above prevents an expression to denote
both a class and a datatype, or both an object property and a data property.
Given a vocabulary V we next define the set of well-formed expressions over V .
To this aim, let us define the following:

• Expp(V ) = Vp ∪ {e− | e ∈ Vp} is the set of object property expressions;

• Basc(V ) = Vc ∪ {∃e | e ∈ Expp(V )} ∪ {δ(e1).e2 | e1 ∈ Vd, e2 ∈ D} is the
set of basic class expressions;

• Expc(V ) = Basc(V )∪ {∃e1.e2 | e1 ∈ Expp(V ), e2 ∈ Vc} is the set of class
expressions;

• the set of data property expressions coincides with Vd;

• Expt(V ) = D ∪ {ρ(d) | d ∈ Vd} is the set of datatype expressions;

• the set of individual expressions coincides with Vi.

Then, the set Exp(V ) of well-formed expressions over V is the set

Exp(V ) = Expc(V ) ∪ Expp(V ) ∪ Vd ∪ Expt(V ) ∪ Vi.

Based on the previous definitions, an OWL 2 QL ontology (simply ontology in
the following) over a vocabulary V is a finite set of logical axioms of the form
listed in Table 2, where we adopt the following naming scheme (possibly includ-
ing subscripts): (i) a, r, d, t, and i denote, respectively, an atomic class, an
atomic object property, a data property, a datatype, and an individual expres-
sion; (ii) b denotes a basic class expression; (iii) c and p denote, respectively, a
class and an object property expression; (iv) and, finally, l denotes a literal.

9



Positive TBox axioms Negative TBox axioms
b vc c (class inclusion) b1 vc ¬ b2 (class disjointness)
p1 vp p2 (object property inclusion) p1 vp ¬ p2 (object property disjointness)
d1 vd d2 (data property inclusion) d1 vd ¬ d2 (data property disjointness)
ρ(d) vt t (value domain inclusion)
Ref(p) (reflexive object property) Irr(p) (irreflexive object property)
ABox axioms
a(i) (class membership)
r(i1, i2) (object property membership)
d(i, l) (data property membership)

Table 2: OWL 2 QL axioms

As the table shows, axioms are partitioned into (i) TBox axioms, in turn
partitioned into negative and positive, and (ii) ABox axioms. Note that, in this
paper, we omit to deal with OWL 2 QL axioms that can be expressed by appropri-
ate combinations of the axioms specified in Table 2, such as axioms expressing
object property (a)simmetry, class (object or data property) equivalence, or
disjointness of more than two classes (object or data properties). Similarly,
we do not consider axioms allowing for the definition of new datatypes, since
the restrictions on the use of datatypes in OWL 2 QL are such that they do not
add expressive power to the language. Also, we do not consider axioms of the
form DifferentIndividuals, because they correspond to inequalities, whose
unrestricted use in conjunctive queries leads to insurmountable computational
obstacles of query answering, already for DL-LiteR, i.e., the logic underpinning
OWL 2 QL, interpreted under the standard first-order semantics [29]. Finally, in
what follows we assume that all symbols a, r and d appearing in the ABox
axioms a(i), r(i1, i2) and d(i, l) of an ontology O, also appear in the TBox of O.
Note that this assumption does not hamper generality, because it can always
be satisfied by introducing axioms of the forms a vc >c, r vp >p or d vd >d
into the TBox without changing the semantics of the ontology.

Another notion that will be useful in the next sections is the one of signature
of an ontology. Coherently with the DL literature (e.g., [1]) the signature of an
ontology O, denoted Σ(O), is the tuple

(Σc(O),Σp(O),Σd(O),Σt(O),Σi(O),ΣLit(O))

where Σc(O), Σp(O), Σd(O), Σt(O), Σi(O), ΣLit(O) are respectively the sub-
set of the elements of Vc, Vp, Vd, D, Vi, and LQL that occur in O. Also, we let
Exp(Σ(O)) (Expc(Σ(O)), Expp(Σ(O)), and Expt(Σ(O))) denote the set of ex-
pressions (class expressions, object expressions and datatype expressions) that
can be built over Σ(O). We observe that Exp(Σ(O)) is clearly finite and, even
though it is built over the elements occurring in O, it may contain expressions
that do not occur in O.

Let us now come back to OWL 2 punning. As already mentioned, “punning” is
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the term used to denote the capability of OWL 2 atomic expressions to designate
elements that simultaneously play different roles in an ontology. This means
that an entity can occur in different position types, or simply positions, within
the ontology axioms. More precisely, an entity is said to appear in: (i) class
position, if it appears in any position in a class inclusion or disjointness axiom,
or as a predicate in a class membership axiom; (ii) object property position,
if it appears in any position in a object property inclusion, object property
disjointness, irreflexivity, or reflexivity axiom, or as a predicate in an object
property membership axiom; (iii) data property position, if it appears in any
position in a data property inclusion or disjointness axiom, or as a predicate in
a data property membership axiom; (iv) datatype position, if it appears in the
right hand side of a value domain inclusion axiom, or as second element of a
literal lt = (l, d) appearing as literal in a data property membership axiom; (v)
individual position, if it appears in a position different from the ones mentioned
in the above items.

The following example illustrates how the features of OWL 2 QL, in particu-
lar punning, can be exploited to capture relevant meta-level properties of the
domain discussed in Example 1.

Example 2. It is easy to verify that the domain described in Example 1. can
be captured by the ontology in Fig. 1. For example, axioms (1) to (3) state that
Engineer, Pilot, and Secretary are subclasses of Employee, and therefore they
are concepts referring to types of employment. Axioms (4) and (5) state that
Secretary is disjoint with both Engineer and Pilot. Note that the expression
Engineer occurs both in class position (in axioms (1), (4), and (14)) and in indi-
vidual position (in axioms (11) and (16)), which means that besides predicating
on individuals, e.g., by stating that John is an engineer, the ontology states that
engineer is a technical employee type (axiom (11)).

2.2. The Metamodeling Semantics

The Metamodeling Semantics (MS) is based on the notion of MS-
interpretation, that we now define. In what follows, P(S) denotes the power set
of the set S.

If O is an ontology over the vocabulary V , an MS-interpretation for O is a
tuple I = 〈∆o,∆v, ·I , ·C , ·P , ·D, ·T , ·I〉 where:

• ∆o, the object domain, is a non-empty set disjoint from the value domain
∆v defined by the datatype map DMQL;
• ·C : ∆o → P(∆o) is a partial function;
• ·P : ∆o → P(∆o ×∆o) is a partial function;
• ·D : ∆o → P(∆o ×∆v) is a partial function;
• ·T : ∆o → P(∆v) is a partial function;
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Engineer vc Employee (1)
Pilot vc Employee (2)

Secretary vc Employee (3)
Engineer vc ¬Secretary (4)

Pilot vc ¬Secretary (5)
TechnicalEmployeeType vc EmployeeType (6)

AdministrativeEmployeeType vc EmployeeType (7)
TechnicalEmployeeType vc ¬AdministrativeEmployeeType (8)

Employee vc ∃has salary (9)
EmployeeType vc ∃has standard salary (10)

TechnicalEmployeeType(Engineer) (11)
TechnicalEmployeeType(Pilot) (12)

AdministrativeEmployeeType(Secretary) (13)
Engineer(John) (14)

has salary(John, (”200.000”, xsd:integer)) (15)
has standard salary(Engineer, (”200.000”, xsd:integer)) (16)

Figure 1: Multi-level OWL 2 QL ontology

• ·I : ∆o → {true, false} is a total function such that for each o ∈ ∆o, if
·C , ·P , ·D, ·T are all undefined for o, or o is in the range of ·C , or o appears
in a pair in the range of ·P or as first component of a pair in the range of
·D, then oI = true.
• ·I is a function that maps every expression in Exp(V ) into an object in

∆o, and every literal in LQL into a value in ∆v.
• the conditions specified in Table 3.A are satisfied.

In the following, we denote by W the tuple 〈∆o,∆v, ·I , ·C , ·P , ·D, ·T 〉 consti-
tuted by the first seven components of an MS-interpretation, and therefore we
often write I as the pair 〈W, ·I〉. Also, we callW the interpretation structure of
I, ·I the interpretation function of I, and ∆o∪∆v the domain of I. This is done
both for notational convenience, and for emphasizing the two main roles of an
MS-interpretation, namely specifying a structured world (represented by W),
and mapping the symbols of the vocabulary to such world (function ·I). Here is
a list of observations pointing out the characteristics of the various components
of I.

• Each element in the world represented by W is in ∆ = ∆o ∪ ∆v, and
therefore is either an object or a value.

• ·I is the boolean function specifying whether an object o is an individual
object (if oI is true), or not (if oI is false) in the world represented by W.
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Table 3.A: conditions on I

if i ∈ Vi, then (iI)I = true;
if c ∈ Expc(V ), then ·C is defined for cI , and ·T is undefined for cI ;
if p ∈ Expp(V ), then ·P is defined for pI , and ·D is undefined for pI ;
if d ∈ Vd, then ·D is defined for dI , and ·P is undefined for dI ;
if t ∈ Expt(V ), then ·T is defined for tI , and ·C is undefined for tI ;
if t ∈ D, then (tI)T = tDT ;
if l = (s, t) ∈ LQL, then lI = (s, t)LS ;
((>c)I)C = {o | o ∈ ∆o, oI = true};
((⊥c)I)C = ∅;
((∃p)I)C = {o1 | ∃〈o1, o2〉 ∈ (pI)P };
((∃p.c)I)C = {o1 | ∃〈o1, o2〉 ∈ (pI)P , o2 ∈ (cI)C};
((δ(d).t)I)C = {o | ∃〈o, v〉 ∈ (dI)D, v ∈ (tI)T };
((>p)I)P = {o | o ∈ ∆o, oI = true} × {o | o ∈ ∆o, oI = true};
((⊥p)I)P = ∅;
((p−)I)P = ((pI)P )−1;
((>d)I)D = {o | o ∈ ∆o, oI = true} ×∆v;
((⊥d)I)D = ∅;
((ρ(d))I)T = {v | ∃〈o, v〉 ∈ (dI)D}.

Table 3.B: satisfaction of axioms by I

I |= b vc c if ·C is defined for both bI and cI , and (bI)C ⊆ (cI)C ;
I |= p1 vp p2 if ·P is defined for both pI1 and pI2 , and (pI1 )P ⊆ (pI2 )P ;
I |= d1 vd d2 if ·D is defined for both dI1 and dI2 , and (dI1 )D ⊆ (dI2 )D;
I |= ρ(d) vt t if ·T is defined for both ρ(d)I and tI , and (ρ(d)I)T ⊆ (tI)T ;
I |= Ref(p) if ·P is defined for pI , and ∀o ∈ ∆o : 〈o, o〉 ∈ (pI)P ;
I |= b1 vc ¬ b2 if ·C is defined for both bI1 and bI2 , and (bI1 )C ∩ (bI2 )C = ∅;
I |= p1 vp ¬ p2 if ·P is defined for both pI1 and pI2 , and (pI1 )P ∩ (pI2 )P = ∅;
I |= d1 vd ¬ d2 if ·D is defined for both dI1 and dI2 , and (dI1 )D ∩ (dI2 )D = ∅;
I |= Irr(p) if ·P is defined for pI , and ∀o ∈ ∆o : 〈o, o〉 /∈ (pI)P ;
I |= a(i) if (iI)I = true, ·C is defined for aI , and iI ∈ (aI)C ;
I |= r(i1, i2) if ·P is defined for rI , (iI1 )I = (iI2 )I = true, and 〈iI1 iI2 〉 ∈ (rI)P ;
I |= d(i, l) if ·D is defined for dI , (iI)I = true, and 〈iI , lI〉 ∈ (dI)D.

Table 3: Conditions on I and satisfaction of axioms

• ·C is the function that, given a domain object o, either assigns to o a set
of objects forming its extension as a class (in this case, o is called class),
or is undefined for o, the latter case reflecting that o is not a class in the
world represented by W.

• ·P is the function that, given a domain object o, either assigns to o a
binary relation (a set of object pairs) constituting its extension as an
object property (in this case, o is called object property), or is undefined
for o, the latter case reflecting that o is not an object property in the world
represented by W.

• ·D and ·T are defined similarly, but for data properties and datatypes,
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Figure 2: Example of interpretation structure

respectively.

Taking into account the above comments and compared to the usual notion
of Description Logic interpretation, the interpretation structure W appears in
place of the classical interpretation domain ∆. So, while the world in a classical
interpretation is constituted by a flat domain, inW the objects are polimorphic,
in the sense that each of them can simultaneuosly be an individual object (this
is the case where function ·I is true), a class (this is the case where the partial
function ·C is defined), an object property (·P is defined), a data property (·D
is defined), and a value type (·T is defined). On the other hand, as usual in
logic, the interpretation function ·I states how to assign a meaning to every
syntactic element (expressions in Exp(V )) into an object in the interpretation
domain ∆o ∪ ∆v. Fig. 2 shows an example of interpretation structure, where
blank and full bullets denote object domains o such that oI is false and true,
respectively, triangles denote data values, and labeled arrows denote, for each
object, its assignment through the functions ·C ,·P , ·D, and ·T , if defined. In
particular, in the interpretation structure in Fig. 2, o1 is a class, and is neither an
individual object, nor an object property, nor a data property, nor a datatype.
On the other hand, o2 is both an individual and an object property whose set
of instances contain the pair of individual objects (o3, o4), while it is neither a
class, nor a data property, nor a datatype; o5 is both a class, and an object
property, and, as a class, has o2, o6, o7 and o8 among its instances.

As usual, to define the semantics of logical axioms, we refer to the notion
of satisfaction of an axiom with respect to an MS-interpretation I. The rules
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defining such notion are specified in Table 3.B. An MS-interpretation satisfying
all the axioms of an ontology O is called a model, in particular an MS-model of
O, and we denote by ModMS(O) the set of MS-models of O.

Note that the definition of MS-interpretation is valid for the whole OWL 2
and, actually, for every Description Logic. The only aspect that is specific to
OWL 2 QL, which is the logic of interest in this paper, is the set of conditions
reported in Table 3. If one wants to specialize MS to another language, it is
sufficient to appropriately change Table 3 so as to take into account the form of
expressions and the form of axioms in such language.

Let us come back to metamodeling in OWL 2, and in particular in OWL 2 QL.
The following example illustrates how an ontology exploiting punning is inter-
preted under MS.

Example 3. Consider the ontology of Fig. 1, and observe that Engineer occurs
both in class position (axiom (1) and axiom (14)), and in individual position
(axiom (11)); so Engineer belongs both to Vc and Vi. Now, let I be an MS-
models of the ontology, and let o be an object of ∆o such that EngineerI = o.
Hence, by definition of MS-model, we will have oI=true, and, by virtue of axiom
(14), ·C is defined for o, and oC will contain the object o′ such that o′ =JohnI .

2.3. Queries under MS

In this section we present the language we use to query ontologies interpreted
under MS. We focus on the class of union of boolean conjunctive queries, but
all the results presented in the paper can be easily extended to the case of non-
boolean queries as well. Conjunctive queries are based on the notion of query
atom, that in turn is based on the notion of query term.

Given an ontology O over a vocabulary V and a set of variables V disjoint
from V , a query term (or simply term) is an expression contained in the set
Exp(V ∪ V), i.e., a query term may involve a variable as atomic expression. A
query atom (or simply atom) has the same form of an axiom, with the difference
that query terms (and therefore variables) may occur in it. A boolean conjunctive
query is an expression of the form

q ← Conj(~y)

where Conj(~y), called body of q and denoted by body(q), is a conjunction of
atoms built over a tuple of terms ~y. A union of boolean conjunctive queries (or
simply a query) is an expression of the form

Q←
⋃

1≤i≤n
Conji(~yi)
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where Conji(~yi) is a conjunction of atoms built over tuples of terms ~yi for
i = 1, . . . , n.

Since query atoms have the form of logical axioms, we also call them ABox
(query) atoms or TBox (query) atoms in the obvious way. A conjunctive query
whose body contains only ABox atoms is called instance conjunctive query. An
instance query is a union of instance conjunctive queries. A query that is not an
instance query will be called simply query, or general query, when we want to
emphasize the difference with instance queries. We call metavariable of a query
a variable that occurs in class position, object property position, dataproperty
position or datatype position in the query, and we say that an atom is ground
(resp. metaground) if no variable (resp. metavariable) occurs in it. A query is
ground (resp. metaground) if all its atoms are ground (resp. metaground).

Example 4. Consider the ontology O of Fig. 1, and suppose one wants to check
the following conditions:

1. Is there an amount representing the standard salary earnt by a pilot?

2. Is there an employee earning the standard salary of his/her type of em-
ployment?

3. Is there a technician who belongs to a class disjoint from pilot, and earns
the standard salary of his/her type of employment?

Such conditions can be expressed by the following queries:

• q1 ← has standard salary(Pilot, y)

• q2 ← Employee(x) ∧ has salary(x, y) ∧ z(x) ∧ has standard salary(z, y)

• q3 ← Employee(x)∧ z(x)∧ TechnicalEmployeeType(z)∧ z vc ¬ Pilot∧
has salary(x, y) ∧ has standard salary(z, y)

Note that q1 is a metaground instance query, q2 is an instance query, and q3 is
a general query. Note also that q2 is the boolean version of the query discussed
in the introduction.

As for the semantics of Q under MS, we rely on the usual definition of
the meaning of disjunction, conjunction, and existential quantification in logic,
and we do not delve into the formal details. We simply observe that, given a
boolean union of conjunctive queries Q expressed over the ontology O, and an
interpretation I = 〈W, ·I〉 of O, Q is true in I if there is a conjunctive query q
in Q that is true in I, where the truth value of q in I is established by checking if
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there exists a variable assignment that associates to each variable in q an object
or a value in the domain ∆o ∪∆v of I such that the resulting atoms in body(q)
are all true in I. Now, given an ontology O and a query Q, we say that Q is
entailed by O under the MS entailment regime (or, simply, under MS), written
O |=MS Q, if Q is true in every MS-model of O.

Example 5. Consider the ontology O and the query q2 of Example 4. Clearly,
q2 is entailed by O under MS. Indeed, for every MS-model I of O, we can assign
to the variable x the object JohnI , to y the value (”200.000”, xsd:integer)I ,
and to z the object EngineerI , and conclude that all atoms in body(q2) are true
in I under such assignment.

Actually, in our technical development, we use a characterization of query
entailment based on the notion of query homomorphism, which is an extension
of the well-known notion of homomorphism studied in [30]. Specifically, let O be
an ontology defined over the vocabulary V , let q be a conjunctive query over O,
and let I = 〈W, ·I〉 be an MS-model of O, with W = 〈∆o,∆v, ·I , ·C , ·P , ·D, ·T 〉.
A query homomorphism from q to I is a function f from the terms of q to the
domain ∆o ∪∆v of I such that

• for every e ∈ Exp(V ) ∪ LQL, f(e) = eI ,

• for all terms e1, e2, e3 (in what follows, when we write f(ei)C , f(ei)P ,
f(ei)D, and f(ei)T , for i = 1, 2, 3, we implicitly mean that C , P , D, and
T , is respectively defined for f(ei)):

– if e1 ∈ Exp(V ) occurs in individual position in body(q), then f(e1)I =
true;

– if e1(e2) ∈ body(q), then f(e2) ∈ f(e1)C ;
– if e1(e2, e3) ∈ body(q) and P is defined for f(e1) (implying that D is

not defined for f(e1)), then (f(e2), f(e3)) ∈ (f(e1))P ;
– if e1(e2, e3) ∈ body(q) and D is defined for f(e1) (implying that P is

not defined for f(e1)), then (f(e2), f(e3)) ∈ f(e1)D;
– if e1 vc e2 ∈ body(q), then f(e1)C ⊆ f(e2)C ;
– if e1 vp e2 ∈ body(q), then f(e1)P ⊆ f(e2)P ;
– if e1 vd e2 ∈ body(q), then f(e1)D ⊆ f(e2)D;
– if e1 vt e2 ∈ body(q), then f(e1)T ⊆ f(e2)T ;
– if e1 vc ¬ e2 ∈ body(q), then f(e1)C ∩ f(e2)C = ∅;
– if e1 vp ¬ e2 ∈ body(q), then f(e1)P ∩ f(e2)P = ∅;
– if e1 vd ¬ e2 ∈ body(q), then f(e1)D ∩ f(e2)D = ∅;
– if Ref(e1) ∈ body(q), then for every e2 ∈ ∆o, (e2, e2) ∈ f(e1)P ;
– if Irr(e1) ∈ body(q), then for every e2 ∈ ∆o, (e2, e2) /∈ f(e1)P .
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Furthermore, if Q is a union of boolean conjunctive queries, then any query
homomorphism from a disjunct of Q to I is said to be a query homomorphism
from Q to I.

Example 6. We showed in Example 5 that q2 is entailed by O under
MS. We now show that there is a query homomorphism from q2 to ev-
ery MS-model of O. Let I = 〈W, ·I〉 be an MS-model of O, such that
EmployeeI = o1, EngineerI = o2, has salaryI = o3, has standard salaryI =
o4, TechnicalEmployeeTypeI = o5, PilotI = o6, JohnI = o7, and
(”200.000”, xsd:integer)I = v, where oi ∈ ∆o, for i = 1, . . . , 7, and v ∈ ∆v.
Also, let f be a function from the terms of q2 to I, such that f(Employee) = o1,
f(x) = o7, f(has salary) = o3, f((”200.000”, xsd:integer)) = v, f(z) = o2, and
f(has standard salary) = o4. It is easy to see that f is a query homomorphism
from q2 to I, and that one such query homomorphism exists from q2 to every
MS-model of O.

Based on the notion of query homomophism, it is immediate to see that,
analogously to what happens for conjunctive queries under the first-order se-
mantics, query entailment under MS can be characterized in terms of query
homomorphisms. This is formalized in the following proposition.

Proposition 7. A union of boolean conjunctive queries Q is entailed by an
OWL 2 QL ontology O under MS if and only if there is a query homomorphism
from Q to I for every I ∈ModMS(O).

2.4. Relationships between MS and DS

In this subsection, we investigate the relationships between MS and DS. We
remind the reader that the DS of OWL 2 relies on the notion of interpretation of
the standard First-Order Logic (FOL) semantics4. Specifically, given a vocabu-
lary V = (Ve, Vc, Vp, Vd, D, Vi, LQL), an interpretation I of O over V under DS is
a 8-tuple 〈∆o,∆v, ·CL, ·OP , ·DP , ·DT , ·IN , ·LT 〉 where the interpretation domain
for I consists of two disjoint sets ∆o and ∆v, and the other components of the
tuple constitute the classical interpretation function for I. Such an interpreta-
tion I is a DS-model of O if I satisfies every axiom of O under DS, and the set
of DS-models of O is denoted by ModDS(O).

Example 8. Consider the ontology of Fig. 1. As already noticed in Example 3,
Engineer occurs in class position in axiom (1) and in individual position in
axiom (11). Let M = 〈∆o,∆v, ·CL, ·OP , ·DP , ·DT , ·IN , ·LT 〉 be a DS-model of
O for V . By definition, EngineerCL is a subset of ∆o, while EngineerIN is an

4We refer here to the definition of interpretation under DS, provided at the W3C Rec-
ommendation “OWL 2 Web Ontology Language Direct Semantics (Second Edition)”, (cf.
https://www.w3.org/TR/owl2-direct-semantics/).
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object in ∆o. It follows that the two occurrences of Engineer in axioms (1) and
(11) are seen by DS as referring to completely unrelated ontology elements.

As for queries, under DS, legal queries are obtained by restricting the general
queries defined above to those satisfying the so-called typing constraint.5, i.e.,
the condition that prevents the same variable from occurring in positions of
different types6 We further illustrate this point by the following example.

Example 9. Consider the ontology O of Fig. 1 and the queries q2, and q3 of
Example 4. It is easy to see that q2 and q3 are all entailed by O under MS.
On the contrary, q2 and q3 are not legal under DS, since the variable x occurs
simultaneously in individual and class position. Note in particular that, even if
the typing constraint was ignored, q2 and q3 would not be entailed by O under
DS because, as discussed in Example 8, different types of occurrences of the
expression Engineer are interpreted under DS as if they were different ontology
elements, and hence no element of the ontology exists that can be bound to the
variable x in such a way to make the query true.

We are now able to establish the following strong relationship between the
MS-models and the DS-models of an OWL 2 QL ontology.

Proposition 10. For every OWL 2 QL ontology O there is a function from
ModMS(O) to ModDS(O) that is total and surjective.

Proof. Let O be an ontology over the vocabulary V = (Ve, Vc, Vp, Vd, D, Vi, LQL),
and consider the function γ from ModMS(O) to ModDS(O) defined
as follows. For an MS-model I = 〈W, ·I〉 of O, with W =
〈∆o,∆v, ·I , ·C , ·P , ·D, ·T 〉, we obtain the interpretation of O under DS γ(I) =
〈∆o′,∆v ′, ·CL, ·OP , ·DP , ·DT , ·IN , ·LT 〉 from I by setting ∆v ′ = ∆v and ∆o′ =
{eI | e ∈ Ve, (eI)I = true}, by setting for each a ∈ Vc, aCL = (aI)C ; for
each r ∈ Vp, rOP = (rI)P ; for each d ∈ Vd, dDP = (dI)D; for each t ∈ D,
tDT = (tI)T ; for each i ∈ Vi, iIN = (iI); for each l ∈ LQL, lLT = lI . It is easy to
see that γ is total, and γ(I) is indeed a DS-model of O.

Let us now show that γ is a surjective. Consider a DS-model M =
〈∆o,∆v, ·CL, ·OP , ·DP , ·DT , ·IN , ·LT 〉 of O. We next show that there exists
at least an MS-model I = 〈W, ·I〉 of O such that γ(I) = M. Let W =
〈∆o′,∆v ′, ·I , ·C , ·P , ·D, ·T 〉, where ∆v ′ = ∆v and for every l ∈ LQL, lI = lLT . As

5http://www.w3.org/TR/sparql11-entailment/#VarTyping
6Observe that, while DS is the semantics adopted by current off-the-shelf OWL 2 QL reasoners,

such as Mastro [31] or Ontop [32], it deviates from the DS entailment regime that is used for
interpreting SPARQL queries over OWL 2 QL ontologies, in particular because the DS entailment
regime handles existential quantifiers and union differently from First-Order Logic.
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for ∆o′, we set it initially equal to ∆o and progressively extend it as follows.
For each entity e of the ontology, if e ∈ Vi, we set eI = eIN and (eI)I = true.
Otherwise, we extend ∆o′ with a new object o and set eI = o and oI = false.
Moreover, if e ∈ Vc, we set (eI)C = eCL, otherwise (eI)C is undefined. Similarly,
if e ∈ Vp, (eI)P = eOP , otherwise (eI)OP is undefined; if e ∈ Vd, (eI)D = eDP ,
otherwise (eI)DP is undefined; if e ∈ D, (eI)T = eDT , otherwise (eI)T is unde-
fined. It is easy to see that I is indeed an MS-model of O such that γ(I) =M.

Based on the proposition above, we can also characterize the relationships
between query entailment under MS and DS.

Proposition 11. Let O be an OWL 2 QL ontology, let α be an OWL 2 QL axiom,
let Q be a union of boolean conjunctive metaground instance queries, and let q
be a boolean conjunctive metaground query. Then,

1. O is satisfiable under MS if and only if it is satisfiable under DS.

2. O |=MS α if and only if O |=DS α.

3. O |=MS Q if and only if O |=DS Q.

4. O |=MS q if and only if O |=DS int(q) and O |=DS ext(q), where ext(q)
and int(q) denote the conjunctions of ABox and TBox atoms of q, respec-
tively.

The above proposition shows that MS is a conservative extension of DS,
and that we can rely on current off-the-shelf OWL 2 QL reasoners, for checking
both satisfiability, logical implication, query entailment of metaground instance
queries, and query entailment of metaground conjunctive queries.

2.5. Computational problems

In this paper, we focus on the computational complexity of two fundamen-
tal problems, namely satisfiability and query entailment. The former checks
whether an ontology is satisfiable under MS, whereas the latter checks whether
a query is entailed by an ontology under MS.

The formal definition of the two problems is as follows.

• Satisfiability: given as input an ontology O = 〈T ,A〉, is there at least one
MS-model for O, i.e., is ModMS(O) 6= ∅?
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• Query entailment: given as input an ontology O = 〈T ,A〉 and a query Q,
is Q entailed by O under MS, i.e., O |=MS Q?

As for the computational complexity, we will measure it under different
assumptions about which components of the input are fixed:

• ABox complexity: T and Q are fixed,

• ontology complexity: Q is fixed,

• combined complexity: no component of the input is fixed.

As easy corollaries of the propositions illustrated in the previous subsection,
we directly derive the following complexity results.
Corollary 12. For an OWL 2 QL ontology, checking satisfiability under MS can be
done in AC0 w.r.t. ABox complexity, and in PTime w.r.t. ontology complexity.
Corollary 13. If O is an OWL 2 QL ontology and Q is a union of boolean con-
junctive metaground instance queries, then checking whether O |=MS Q can be
done in AC0 w.r.t. ABox complexity, in PTime w.r.t. ontology complexity, and
is NP-complete w.r.t. combined complexity.

In the next sections, we implicitly refer to an OWL 2 QL ontology O = 〈T ,A〉
over vocabulary V and with signature Σ. Also, to simplify the notation, we use
Σc, Σp, Σd, Σt, Σi, and ΣLit to refer to the components of Σ and Exp, Expc,
Expp, and Expt to refer to the expressions that can be built over Σ. Also,
without loss of generality, we assume that there are no two distinct literals l, l′
in ΣLit such that lLS = l′LS . Clearly, by means of suitable substitutions, we can
always reduce any ontology to an equivalent one that satisfies this condition.

Finally, when we talk about an “interpretation” I = 〈W, ·I〉, we implicitly
mean an “MS-interpretation”, with W = 〈∆o,∆v, ·I , ·C , ·P , ·D, ·T 〉, when we
talk about “model”, we implicitly mean “MS-model”, and when we use “|=”, we
implicitly mean “|=MS”.

3. The notion of canonical pseudo-model

In order to obtain complexity results for the computational problems in-
troduced in the previous section, in this section we present a structure, called
canonical pseudo-model, which enjoys the properties of representing all the mod-
els of the associated ontology. To this aim, we start by defining a chase procedure
in our setting, and then we show how to exploit it for building the canonical
pseudo-model of the ontology.
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3.1. Chase procedure for OWL 2 QL under MS

The basic idea of the chase for our logic is similar to that of the chase for
DL-LiteR [5]: given O, we build a (possibly infinite) set of axioms, starting from
an initial structure Chase0(O), and then repeatedly computing Chasej+1(O)
from Chasej(O) by applying suitable rules, for as long as they are applicable. In
the process, we make use of two infinite ordered alphabets So and Sv of variables,
both disjoint from Exp and ΣLit, for introducing new unknown individuals and
new literals, when needed.

In the following, we use a naming scheme similar to that of the previous
section, i.e., we use c, p, d, t, i, and l, possibly with subscripts, to denote classes
in Expc, object properties in Expp, data properties in Σd, datatypes in Expt,
individuals in Σi, and literals in ΣLit, respectively. Moreover, we use s and w to
denote variables in So and variables in Sv, respectively. Finally, we use ij (resp.,
lj), possibly with subscripts, to denote individuals (resp., values) or variables
occurring in Chasej(O), and thus belonging either to Σi (resp., ΣLit) or to Sjo
(resp., Sjv), while we use sj+1 (resp., wj+1) to denote variables in Sj+1

o (resp.,
Sj+1
v ) that do not occur in Chasej(O).

It is worth noting that during the construction of the chase, we may introduce
axioms that go beyond the syntax of OWL 2 QL, in particular having one of the
following forms:

1. t(w), where t ∈ Σt, and w ∈ Sv,

2. ∃p.c(i),

3. ∃p−.c(i),

4. δ(d).c(i),

5. p−(i1, i2).

Intuitively, we need such types of axiom in order both to trace the datatypes
for the variables in Sv, and to treat complex class expressions correctly.

We are now ready to illustrate the procedure for building Chase(O), that is
structured in two phases.

In the first phase, we initially set Chase0(O) = O, and then we extend
Chase0(O) by executing the following steps.

1. We add the following sets of obviously valid axioms:
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{>c(i) | i ∈ Σi}, {>p(i1, i2) | i1, i2 ∈ Σi}, {>d(i, l) | i ∈ Σi, l ∈ ΣLit}.

This step ensures that >c, >p, and >d are treated in Chase(O) coherently
with their semantics.

2. We add the following sets of axioms:

(a) { c(αc), >c(αc) | c ∈ Expc, O ∪ {c vc ¬c} is unsatisfiable, αc ∈ S0
o },

(b) { p(β1
p , β

2
p), >c(β1

p), >c(β2
p) | p ∈ Expp, O ∪ {p vp ¬p} is unsatisfiable,

β1
p , β

2
p ∈ S0

o },
(c) {d(γd, wd), >c(γd), rdfs:Literal(wd) | d ∈ Σd, γd ∈ S0

o , wd ∈ S0
v

O ∪ {d vd ¬d} is unsatisfiable }.

In other words, for every class expression c that can be built on the elements
occurring in O and is non-empty in every model of O, we add axioms stating
that a new unknown individual αc, specific for c, belongs to c, so that αc is
the witness both of the non-emptyness of c, and of all non-subsumption re-
lationships holding between c and the other classes. We proceed analogously
for object property and data property expressions. The importance of this
step will be discussed at the end of this section.

In the second phase, starting from the structure Chase0(O) built in the
first phase, we carry out a sequence of steps, where in each step we compute
Chasej+1(O) from Chasej(O) by applying suitable rules, called chase rules.
We do so following a deterministic strategy that is fair, i.e., is such that if at
some point a rule is applicable then it will be eventually applied. Note that at
each step j ≥ 0, Chasej(O) is a structure over Exp ∪ Sjo and ΣLit ∪ Sjv , where
Sjo ⊆ So and Sjv ⊆ Sv.

We now turn our attention to the chase rules we use to compute
Chasej+1(O) from Chasej(O), for each j ≥ 0. The complete list of rules is
specified in Table 4. For each rule, the first column specifies the rule num-
ber, the second column specifies the conditions under which it is applicable on
Chasej(O), and the third column specifies the axioms to be added to Chasej(O)
to compute Chasej+1(O). Consider for example Rule 1. It specifies that if
c1(ij) and c1 vc c2 are in Chasej(O), and c2(ij) is not in Chasej(O), then
Chasej+1(O) is obtained by extending Chasej(O) with the assertion c2(ij).
Note, in particular, that if c2 has the form ∃p.c, then Chasej+1(O) is obtained
by adding the assertion ∃p.c(ij), that is of one of the new types of axioms that
we allow in Chase(O).

Finally, we define Chase(O) as
⋃
j∈N Chase

j(O). Note that Chase(O) is a
possibly infinite set of axioms whose syntax is the usual OWL 2 QL syntax, except
for the possible presence of variables in individual and literal positions, as well
as axioms of the form specified at the beginning of this subsection.
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Number Applicability conditions Axioms to be added

1 c1(ij1), c1 vc c2 ∈ Chasej(O) {c2(ij1)}
c2(ij1) /∈ Chasej(O)

2 p1(ij1, i
j
2), p1 vp p2 ∈ Chasej(O) {p2(ij1, i

j
2)}

p2(ij1, i
j
2) /∈ Chasej(O)

3 d1(ij1, lj), d1 vd d2 ∈ Chasej(O) {d2(ij1, lj)}
d2(ij1, lj) /∈ Chasej(O)

4 d(ij , lj), ρ(d) vt t ∈ Chasej(O) {t(lj)}
t(lj) /∈ Chasej(O)
Ref(p) ∈ Chasej(O), and there

5 exists ij ∈ Σi ∪ Sjo such that {p(ij , ij)}
p(ij , ij) /∈ Chasej(O)
∃p.c(ij1) ∈ Chasej(O), and no ij2

6 exists such that c(ij2) ∈ Chasej(O) {c(sj+1), p(ij1, sj+1)}
and p(ij1, i

j
2) ∈ Chasej(O)

7 p(ij1, i
j
2), c(ij2) ∈ Chasej(O) {∃p.c(ij1)}

∃p.c(ij1) /∈ Chasej(O)
δ(d).t(ij) ∈ Chasej(O), and no lj

8 exists such that t(lj) ∈ Chasej(O) {t(wj+1), d(ij , wj+1)}
and d(ij , lj) ∈ Chasej(O)

9 d(ij , lj), t(lj) ∈ Chasej(O) {δ(d).t(ij)}
δ(d).t(ij) /∈ Chasej(O)

10 p−(ij1, i
j
2) ∈ Chasej(O) {p(ij2, i

j
1)}

p(ij2, i
j
1) /∈ Chasej(O)

11 p(ij1, i
j
2) ∈ Chasej(O) {p−(ij2, i

j
1)}

p−(ij2, i
j
1) /∈ Chasej(O)

Table 4: Chase rules for OWL 2 QL ontologies

3.2. The canonical pseudo-model

We now show how, based on Chase(O), we can build a semantic structure,
called canonical pseudo-model, that enjoys specific properties useful for query
entailment under MS.

Definition 14. The canonical pseudo-model Can(O) for O (under MS) is de-
fined as 〈W̄, ·Ī〉, where:

• W̄ = 〈∆̄o, ∆̄v, ·Ī , ·C̄ , ·P̄ , ·D̄, ·T̄ 〉 has the form of an interpretation structure
for O under MS, and is defined as follows:

– ∆̄o = Exp ∪ So;
– ∆̄v = ∆v ∪ Sv;
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– for every e ∈ ∆̄o, if e occurs in individual position in Chase(O), then
eĪ = true; otherwise, eĪ = false;

– for every e ∈ ∆̄o, if e /∈ Expc, then ·C̄ is undefined for e, otherwise
eC̄ is defined for e, and is such that eC̄ = {i | e(i) ∈ Chase(O)};

– for every e ∈ ∆̄o, if e /∈ Expp, then ·P̄ is undefined for e, other-
wise eP̄ is defined for e, and is such that eP̄ = {(i1, i2) | e(i1, i2) ∈
Chase(O)};

– for every e ∈ ∆̄o, if e /∈ Σd, then ·D̄ is undefined for e, otherwise
eD̄ is defined for e, and is such that eD̄ = {(i, v) | v ∈ Sv, e(i, v) ∈
Chase(O)} ∪ {(i, lLS) | e(i, l) ∈ Chase(O), l ∈ ΣLit};

– for every e ∈ ∆̄o, if e /∈ Σt, then ·T̄ is undefined for e, otherwise
eT̄ is defined for e and is such that if e ∈ D, then eT̄ = eDT ∪
{s | e(s) ∈ Chase(O), s ∈ Sv}, otherwise e has the form ρ(d) and
eT̄ = {v|(o, v) ∈ dD̄}.

• ·Ī has the form of an interpretation function of O under MS, and is defined
as follows:

– for every e ∈ Exp, eĪ = e, and for every s ∈ So, sĪ = s;
– for every l ∈ ΣLit, lĪ = lLS , and for every s ∈ Sv, sĪ = s.

We end this section with a list of observations on the properties of Can(O).

• Can(O) is called “pseudo-model” (and not “model”) because it does not
strictly conform to the definition of interpretation of O under MS. Indeed,
it deviates from such definition for two reasons: (1) tT̄ may not coincide
with tDT , because it may include variables in Sv. (2) ⊥C̄c , ⊥P̄p , or ⊥D̄d may
not coincide with the empty set (note that, in all these cases, O would
be unsatisfiable). However, it is not difficult to see that, besides these
properties, Can(O) enjoys all other properties for being an interpretation
of O.

• By the same arguments used in [5], it can be verified that Can(O) satisfies
all axioms of O, and it does so in a sort of minimal way. Indeed, we
call it “canonical” just because, as we will show later, as far as instance
relationships are concerned, it represents all the models of O). Also, for
every c ∈ Expc that is non-empty in every model of O (i.e., for which
O∪{c vc ¬c} is unsatisfiable), αc is an instance in Can(O) of exactly the
class expressions subsuming c in O and therefore, as we will see in Section
6, it is used to falsify all the subclass relationships that are not logically
implied by O. A similar property holds for object and data property
expressions. In particular, for every p ∈ Expp that is non-empty, (β1

p , β
2
p)

is an instance of exactly the object property expressions subsuming p in O
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and (β1
p , β

1
p) is an instance of p if and only if p is reflexive. It follows that

Can(O) is representative of all models of O with respect to all positive
axioms: those that hold in Can(O) are exactly those that are logically
implied by O.

• For every variable s in So, if s occurs in Chase(O), then it occurs in
individual position. Hence, by definition of Can(O), sĪ = true, i.e., s
is an individual in Can(O). On the other hand, the functions ·C̄ , ·P̄ ,
·D̄, and ·T̄ are all undefined for s. This fact reflects the intuition that
Can(O) represents the minimal knowledge satisfying O: indeed, since
s is one of the objects introduced in Can(O) by the chase, considering
it as a class, an object property or a data property would represent an
arbitrary assumption, that is not valid in all models. This confirms the
importance of allowing the above functions to be partial in MS, contrarily
to many semantics defined for languages supporting metamodeling, such
as, for example, those used in [19, 13]. Indeed, as a consequence of the
fact that under these semantics the above functions are total, for every
newly introduced unknown individual s in the chase, we would have two
possibilities in building in Can(O): (i) either we would sanction that the
set of instances associated to s seen as a class is empty, in which case s
would represent a subset of every class in the ontology, or (ii) we would
make the extension of s containing at least one instance. Both cases would
make Can(O) not general enough to represent all models of the ontology.

• Finally, for every element e in ∆̄o, if the function ·C̄ (resp., ·P̄ , ·D̄, ·T̄ ) is
defined for e, then e is in Expc (resp., Expp, Σd, Expt).

4. Entailment of instance queries

In this section we deal with entailment of instance queries in OWL 2 QL under
MS. In particular, we first show that the canonical pseudo-model Can(O) of
an ontology O under MS represents the set of all models of O with respect to
instance queries, and then we present an algorithm based on such property.

In order to exploit the role of Can(O) with respect to instance queries, we
start by defining the notion of instance-based homomorphism from Can(O) to
an interpretation I of O.

Definition 15. Let I = 〈W, ·I〉 be an interpretation of O. An instance-based
homomorphism from Can(O) to I is a function Ψ from ∆̄o to ∆o and from ∆̄v

to ∆v such that:

• Ψ(e) = eI for every e ∈ Exp,
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• Ψ(v) = v for every v ∈ ∆v, and

• Ψ preserves in W the following instance-based properties of Can(O):

1. for every e1, e2 ∈ ∆̄o such that e2 ∈ eC̄1 , Ψ(e2) ∈ Ψ(e1)C ;
2. for every e1, e2, e3 ∈ ∆̄o such that 〈e2, e3〉 ∈ eP̄1 , 〈Ψ(e2),Ψ(e3)〉 ∈

Ψ(e1)P ;
3. for every e1, e2 ∈ ∆̄o and every v ∈ ∆̄v such that 〈e2, v〉 ∈ eD̄1 ,
〈Ψ(e2),Ψ(v)〉 ∈ Ψ(e1)D;

4. for every e ∈ ∆̄o and every v ∈ ∆̄v such that v ∈ eT̄ , Ψ(v) ∈ Ψ(e)T .

The following proposition shows that Can(O) enjoys a notable property,
namely it has an instance-based homomorphism to every model of O, which
essentially means that what Can(O) sanctions about the objects and the val-
ues in the ontology is true in every model of the ontology. The proof of the
proposition uses the notion of k-portion of Can(O) that we now introduce.
Just as the canonical pseudo-model Can(O) of O is based on Chase(O) =⋃
j∈N Chase

j(O), the k-portion of Can(O), denoted Cank(O), is based on
Chasek(O) =

⋃
j≤0≤k Chase

j(O), in the sense that its definition is simply
derived from definition 14 by substituting Chase(O) with Chasek(O), thus
obtaining W̄k = 〈∆̄o

k, ∆̄v
k, ·Īk , ·C̄k , ·P̄k , ·D̄k , ·T̄k〉, ∆̄o

k = Exp ∪ (
⋃

0≤i≤k Sio), and
∆̄v
k = ∆v ∪ (

⋃
0≤i≤k Siv), where Sio ∪ Siv is the set of variables introduced when

computing Chasei(O).

Proposition 16. For every I ∈ ModMS(O), there exists an instance-based
homomorphism from Can(O) to I.

Proof. Let I = 〈W, ·I〉 ∈ModMS(O) be a model of O. We define a function Ψ
from ∆̄o to ∆o and from ∆̄v to ∆v, and we show that Ψ is an instance-based
homomorphism from Can(O) to I. Specifically, we define Ψ by induction on
k, where k is the number of rule applications which leads to Chasek(O), by
setting Ψk as a function on ∆̄o

k ∪ ∆̄v
k, and letting Ψ =

⋃
j∈N Ψj . Simultaneously,

we show, by induction on k, that Ψk is an instance-based homomorphism from
Cank(O) to I.

Base step. Let k = 0. First of all, we set Ψ0(e) = eI for every e ∈ Exp, and
Ψ0(v) = v, for every v ∈ ∆v. As for every element that is not in Exp∪∆v, and
therefore is in S0

o ∪ S0
v , we observe that it appears exactly once in Chase0(O).

Based on this observation, for every s1, s2 ∈ S0
o and for every w ∈ S0

v , we set
Ψ0 as follows:
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• if s1 = αc, then Ψ0(s1) = o, where o is any object in (cI)C . Note that at
least one such object exists in ∆o, since by construction O ∪ {c vc ¬c} is
unsatisfiable;

• if s1 = β1
p and s2 = β2

p , then Ψ0(s1) = o1, and Ψ0(s2) = o2, where o1, o2
is any pair of objects such that 〈o1, o2〉 ∈ (pI)P . Note that such pair must
exist, since by construction O ∪ {p vp ¬p} is unsatisfiable;

• if s1 = γd and w = wd, then Ψ(s1) = o and Ψ0(w) = v, where o, v is any
pair such that 〈o, v〉 ∈ (dI)D. Note that such pair must exist since by
construction O ∪ {d vd ¬d} is unsatisfiable;

It remains to prove that Ψ0 is an instance-based homomorphism from
Can0(O) to I, by showing that it satisfies all properties of Definition 15. We
next prove that it satisfies Property (1) and refer to Appendix A for Properties
(2), (3), and (4).

Let e1, e2 be two objects in ∆̄o
0 such that e2 ∈ eC̄0

1 . We want to show
that Ψ0(e2) ∈ Ψ0(e1)C . Since e2 ∈ eC̄0

1 , by construction of W̄ , we have
e1(e2) ∈ Chase0(O), where e1 is a class expression belonging to Expc. Thus,
by definition, Ψ0(e1) = eI1 . Also, by construction of Chase0(O), e1(e2) either
belongs to O or it was added in one of the steps 1, 2(a), 2(b), 2(c), or 3 of its
construction.

• Suppose that e1(e2) ∈ O. Then, e2 ∈ Σi and therefore e2 ∈ Exp, and
hence Ψ0(e2) = eI2 . But then, since I is a model of O, eI2 ∈ (eI1 )C and
therefore Ψ0(e2) ∈ Ψ0(e1)C .

• Suppose that e1(e2) was added in step 1. Then e1 = >c and e2 ∈ Σi. It
follows that Ψ0(e2) = eI2 . Also, since I is a model of O, (>Ic )C = {o | oI =
true} and (eI2 )I = true (because e2 ∈ Σi). Therefore, Ψ0(e2) ∈ Ψ0(e1)C .

• Suppose that e1(e2) was added in step 2(a). Then, e2 = αc, where c ∈
Expc, O ∪ {c vc ¬c} is unsatisfiable, αc ∈ S0

o , and either e1 = c or
e1 = >c. In both cases, by definition of Ψ0, Ψ0(e2) = o where o ∈ (cI)C
and oI = true. Hence, in both cases, Ψ0(e2) ∈ Ψ0(e1)C .

• Suppose that e1(e2) was added in step 2(b). Then, e1 = >c and either
e2 = β1

p or e2 = β2
p , where p ∈ Expp, O ∪ {p vc ¬p} is unsatisfiable, and

β1
p , β

2
p ∈ S0

o . Suppose that e2 = β1
p (resp., e2 = β2

p), then by definition of
Ψ0, Ψ0(e2) = o1 where 〈o1, o2〉 ∈ (pI)P (resp. 〈o2, o1〉 ∈ (pI)P ), for some
o2 ∈ ∆o, and oI1 = true. Hence, Ψ0(e2) ∈ Ψ0(e1)C .

• By following the same line of reasoning of the previous case, we can prove
that if e1(e2) was added in step 2(c) or step 3, then Ψ0(e2) ∈ Ψ0(e1)C .
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Inductive step. Let k be the number of rule applications which leads
to Chasek(O) and suppose that Ψk is an instance-based homomorphism from
Cank(O) to I. Then, suppose that a new chase rule is applied to get
Chasek+1(O). We define Ψk+1 = Ψk ∪ Ψ′, where Ψ′ is the part of Ψk+1 tak-
ing care of the new variables possibly introduced in Sk+1

o ∪ Sk+1
v . We have to

prove that Ψk+1 is an instance-based homomorphism from Cank+1(O) to I.
Since this proof is rather “classical” and very similar to the one used in [5] for
DL-Lite ontologies, in the following, we do not consider all possible rule appli-
cations (which one can find in the complete proof in Appendix A), but rather
illustrate two example cases of rule applications, such that the first one does
not introduce any new variable and the second one does.

Suppose that the rule applied by the (k + 1)-th rule application is (1). In
particular, suppose that c1(i1) ∈ Chasek(O), c1 vc c2 ∈ Chasek(O), and c2(i1)
/∈ Chasek(O). Then, by applying rule (1), c2(i1) is introduced in Chasek+1(O),
and hence the only difference between Cank and Cank+1 is that i1 /∈ cC̄k

2 ,
whereas i1 ∈ cC̄k+1

2 . Let us now consider Ψk+1. Since no new variable is intro-
duced, Ψk+1 = Ψk. Hence, on one hand, since c1(i1) ∈ Chasek(O) and since,
by inductive hypothesis, Ψk+1 is an instance-based homomorphism from Cank
to I, Ψk+1(i1) ∈ (Ψk+1(c1))C . On the other hand, since I is a model of O, we
know that I |= c1 vc c2, implying that Ψk+1(i1) ∈ (Ψk+1(c2))C , and, hence,
that Ψk+1 is an instance-based homomorphism from Cank+1 to I.

Suppose that the rule applied by the (k + 1)-th rule application is (6). In
particular, suppose that ∃p.c(i1) ∈ Chasek(O), and that no i exists such that
c(i) ∈ Chasek(O) and p(i1, i) ∈ Chasek(O). Then, by applying rule (6), c(s)
and p(i1, s) are introduced in Chasek+1(O), where s is a new object variable
introduced in Chasek+1(O) such that Sk+1

o = Sko ∪ {s} and Sk+1
v = Skv . Let

us now consider Ψk+1. We define it by extending Ψk, choosing an appropriate
object for Ψk+1(s), and we have to prove that all the instance-based properties
of Ψk+1 are preserved from Cank+1 to I. Since ∃p.c(i1) ∈ Chasek(O), we
know that i1 ∈ (∃p.c)C̄k and, by inductive hypothesis, Ψk(i1) ∈ (Ψk(∃p.c))C .
Moreover, since I is a model of O, there exists at least one object o in ∆o such
that:

〈Ψk(i1), o〉 ∈ (pI)P and o ∈ (cI)C (∗).

Choose one such o, and set Ψk+1(s) = o. Since c(s) ∈ Chasek+1(O), we
have s ∈ cC̄k+1 , and since p(i1, s) ∈ Chasek+1(O), we have 〈i1, s〉 ∈ pP̄k+1 . But
then, from Ψk+1(s) = o, Ψk+1(c) = cI , Ψk+1(p) = pI , and (∗), it immediately
follows Ψk+1(s) ∈ (Ψk+1(c))C and 〈Ψk+1(i1),Ψk+1(s)〉 ∈ (Ψk+1(p))P , which is
enough to prove that Ψk+1 is an instance-based homomorphism from Cank+1
to I.

Based on the above proposition, we next show that the canonical pseudo-
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model Can(O) is representative of all the models of O under MS with respect
to instance queries.

Proposition 17. If O is satisfiable, and Q is an instance query over O, then
O |= Q if and only if there exists a query homomorphism from Q to Can(O).

Proof. If-part. Suppose that there exists a query homomorphism f from Q =
q1 ∪ . . . ∪ qn to Can(O). This means that there exists a disjunct qi of Q, for
i ∈ {1, . . . , n}, that is an instance query such that f is a query homomorphism
from qi to Can(O). By Proposition 16, we know that for every model I of O,
there exists an instance-based homomorphism Ψ from Can(O) to I. Therefore,
if we compose the functions f and Ψ, we obtain a query homomorphism from
qi to I, which implies that O |= Q.

Only-if-part. Suppose that there is no query homomorphism from Q =
q1 ∪ . . . ∪ qn to Can(O). We show how to derive from Can(O) an MS-model of
O where Q is false. Since O is satisfiable, the only reason why Can(O) is not
directly an MS-model of O is because ∆̄v is equal to ∆v ∪Sv, instead of simply
∆v, and values in the extension of data properties may belong to Sv rather than
∆v. We now define an interpretation Ic from Can(O) as follows. First, observe
that for every w ∈ Sv appearing in Chase(O), a set of axioms of the form t(w),
with t ∈ D, appears also in Chase(O). Therefore, for every w ∈ Sv, we can
define the set Dw = {t | w ∈ tT̄ }, and then the assignment ηv : Sv → ∆v such
that for every w ∈ Sv:

• ηv(w) ∈
⋂
t∈Dw

tDT ,

• ηv(w) /∈ {lLS | l ∈ ΣLit}, and

• ∀w′ ∈ Sv, w′ 6= w, ηv(w′) 6= ηv(w).

Note that, as we already recalled in Section 2, the OWL 2 QL datatype map is
defined in such a way that the intersection of the value spaces of any set of
admitted datatypes is either empty or infinite. Hence,

⋂
t∈Dw

tDT is infinite,
which ensures that such a ηv always exists. Now, let the interpretation Ic be
obtained from Can(O) by substituting every w ∈ Sv with ηv(w). It is easy to
see that Ic is an MS-model of O. Now, suppose that Q is true in Ic. This
implies that there is a conjunct qi such that there is a query homomorphism
f from qi to Ic, for i ∈ {1, . . . , n}. Let f ′ be the function obtained from f by
setting f ′(v) = w, for every v such that there exists w in Sv such that ηv(w) = v.
It is immediate to verify that f ′ is a query homomorphism from qi to Can(O),
thus contradicting the hypothesis that there is no query homomorphism from
Q to Can(O). So, we conclude that Q is false in Ic, and therefore O 6|= Q.
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We are now ready to present our technique for checking entailment of in-
stance queries. The technique, called query entailment through metagrounding,
is essentially the one proposed in [15] for DL-Lite, and relies on the notion of
instantiation of a conjunctive query, that we recall as follows. Given a con-
junctive query q, an n-tuple ~x = (x1, x2, . . . , xn) of variables of q, an n-tuple
~a = (a1, a2, . . . , an) of expressions in Exp, and a substitution µ : ~x ← ~a, we
denote by µ(q) the query, called µ-instantiation (or simply instantiation) of q,
resulting from the following steps:

1. we apply the substitution µ to q, thus replacing each xi in ~x with ai in ~a, for
i ∈ {1, . . . , n}, and obtaining the query q′;

2. we replace the atoms in q′ that are not legal for OWL 2 QL with equivalent
legal atoms involving new variables; for example, an atom of the form ∃p.c(i)
in the query is replaced with the conjunction of the atoms p(i, z) and c(z),
where z is a new variable.

Definition 18. Let q be a conjunctive query over O. A metagrounding of q
with respect to O is a µ-instantiation of q, for some µ : ~x ← ~a, such that
~x = (x1, x2, . . . , xn) are all the metavariables occurring in q, and for every
i ∈ {1, . . . , n}, if xi occurs in class (resp. object property, data property, or
datatype) position in q, then ai is any expression in Expc (resp. Expp, Σd, or
Expt).

Note that, by the above definition, if a variable xi occurs in more than one
type of position in q, then the expression substituted for xi must be taken from
the intersection of more than one set of expressions. For example if xi occurs
both in class and object property position in q, then the expression substituting
xi are taken from the set Expc ∩ Expp.

If q is a conjunctive query, then we denote by MG(q,O) the metaground
query that is the union of all metagroundings of q with respect to O. If Q is
a union of conjunctive queries, then we denote by MG(Q,O) the metaground
query that is the union of all metagroundings of every disjunct in Q with respect
to O.

The following proposition shows that, based on the notion of metagrounding,
we can reduce the problem of checking the existence of a query homomorphism
from an instance query to Can(O) to the problem of checking the existence of
a query homomorphism from a metaground instance query to Can(O).

Proposition 19. If Q is an instance query over O, then there exists a query
homomorphism from Q to Can(O) if and only if there exists a query homomor-
phism from MG(Q,O) to Can(O).

31



Proof. Let MG(Q,O) = q1 ∪ . . . ∪ qm, where every qi, for i ∈ {1, . . . ,m}, is a
conjunctive metaground instance query.

If-part. Suppose that there exists a query homomorphism f from MG(Q,O)
to Can(O). Then, f is a query homomorphism from a disjunct qj of MG(Q,O)
to Can(O), for some j ∈ {1, . . . ,m}. By definition of metagrounding of
an union of conjunctive queries, there exists a disjunct q′ of Q such that
qj ∈ MG(q′,O). Let {x1, . . . , xn} be the metavariables of q′, and µ be the
substitution µ : (x1, . . . , xn) ← (a1, . . . , an) such that µ(q′) = qj . If we define
f ′ as the extension of f such that f ′(xi) = ai, for i ∈ {1, . . . , n}, we obtain
a query homomorphism from q′ to Can(O), which, by definition, is a query
homomorphism from Q to Can(O).

Only-if-part. Suppose that there exists a query homomorphism f from Q to
Can(O). Then, by definition, f is a query homomorphism from a disjunct q′ ofQ
to Can(O). Let {x1, . . . , xn} be the metavariables of q′. If xi, for i ∈ {1, . . . , n},
occurs in class (resp., object property, data property, or datatype) position in
q′, then by definition of query homomorphism, the function ·C̄ (resp., ·P̄ , ·D̄,
or ·T̄ ) must be defined for f(xi). Then, by construction of Can(O), we have
that f(xi) must be in Expc (resp., Expp, Σd, Expt). Let µ be the substitution
µ : (x1, . . . , xn) ← (f(x1), . . . , f(xn)). Clearly µ(q′) is a metagrounding of q′
w.r.t. O. Then there exists a disjunct qj of MG(Q,O), for j ∈ {1, . . . ,m},
such that qj = µ(q′). Therefore, if we define f ′ as the restriction of f to
the variables occurring only in individual or value position in q′, we obtain a
query homomorphism from qj to Can(O), and, by definition, from MG(Q,O)
to Can(O).

We stress the importance of keeping undefined the partial functions ·C̄ , ·P̄ ,
·D̄, and ·T̄ for variables in So. Indeed, this is the property that we have exploited
in the proof in order to conclude that if the function ·C̄ (resp., ·P̄ , ·D̄, or ·T̄ )
is defined for f(xi), then, by construction of Can(O), we have that f(xi) is in
Expc (resp., Expp, Σd, Expt).

By combining Proposition 17 and Proposition 19, we obtain the following
theorem.

Theorem 20. If Q is an instance query over O, then O |= Q if and only if
O |= MG(Q,O).

Observe that each atom in a metagrounding of a general query Q is either a
ground TBox atom, or an ABox atom without metavariables. Thus, in partic-
ular, if Q is an instance query, a metagrounding of Q is a metaground instance
query. Based on this observation, the above theorem, combined with propo-
sition 11, directly provides us with an algorithm for checking instance queries
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entailment over OWL 2 QL ontologies under MS, that exploits current off-the-shelf
OWL 2 QL reasoners. The algorithm simply nondeterministically guesses a meta-
grounding Q′ of Q, and then checks whether O |=DS Q′ by resorting to an
existing OWL 2 QL reasoner. Based on the fact that all the symbols used to com-
pute Expc, Expp, Σd, and Expt in order to form the metagrounding Q′ are in
the TBox (see the definition of OWL 2 QL ontology in Section 2.1), it is easy to
see that this leads to the following complexity results.

Theorem 21. Entailment of instance queries is in AC0 w.r.t. ABox complexity,
PTime w.r.t. ontology complexity, and NP-complete w.r.t. combined complexity.

In other words, in OWL 2 QL, entailment of instance queries has exactly the
same complexity as entailment of standard first-order unions of conjunctive
queries under DS.

5. Entailment of general queries: lower bounds

We start the section by addressing entailment of general queries under MS.
While, as shown in the previous section, entailment of instance queries in
OWL 2 QL can be checked by resorting to the metagrounding technique, we argue
that entailment of general queries is more intricate. To illustrate why, we start
by presenting an example, and then we investigate the complexity lower-bounds
of the problem.

Example 22. Let O be the ontology formed by the TBox axioms
{A vc ¬C, A vc ¬∃R, A vc ¬∃R−}, and the ABox axioms
{B(F ), C(F ), R(F, F ), R(C,A), R(B,C)}, and let q be the following general
query:

q ← B(y) ∧ z(y) ∧ A vc ¬x ∧ R(x, z)

Note that O is clearly satisfiable, and that the only metavariables occurring
in q are x and z. One can easily verify that there exists no substitution µ :
(x, z) ← (c1, c2) such that c1, c2 ∈ Expc, and O |= µ(q). Thus, if we rely
only on metagrounding for checking query entailment, we conclude that q is not
entailed by O. However, let us partition the set of models of O into the two sets
M1 and M2, where M1 is the set of models in which A and B are interpreted
as non-disjoint classes, and M2 is the set of models in which A and B are
interpreted as disjoint classes, and let us consider the following substitutions:

µ1 : (x, z)← (C,A)
µ2 : (x, z)← (B,C)

Since entities A, B, and C are all in Expc, µ1(q) and µ2(q) are two metaground-
ings of q w.r.t. O. Clearly, µ1(q) is true in every model in M1, while µ2(q) is
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not. On the other hand, µ2(q) is true in every model in M2, while µ1(q) is not.
Therefore, for every model of O, there exists a substitution of variables that
makes q true, which implies that O |= q.

The example suggests that, in the presence of TBox atoms in the query,
checking query entailment may require to reason by cases. We next illustrate
two complexity lower bounds confirming that, in general, reasoning by cases is
indeed unavoidable.

We start by proving that query entailment under MS is coNP-hard w.r.t.
ontology complexity, based on a reduction from the complement of query en-
tailment to the well-known NP-complete problem 3-SAT. Let F be a formula in
the class 3CNF, let p1, . . . , pm be the propositional letters in F , and let {1..k}
denote the clauses in F . From F we construct an OWL 2 QL ontology OF and a
query QF as follows.

• The signature Σ of OF is such that:

– Σi contains B, G, E1, E2, H, and ci for each clause i in F , with
j ∈ {1 . . . k};

– Σc contains D, E1, E2, H;
– both Σi and Σc contain pj , pj for each propositional letter pj in F , with
j ∈ {1 . . .m};

– Σp contains T , S, R1, R2, R3.

• The axioms of the ontology are used to force OF to represent the formula
F , with the following basic ideas: (i) the fact Ri(cj , ph) (resp. Ri(cj , ph))
will model the situation where the i-th literal of cj is ph (resp. ¬ph),
and (ii) a model of OF where ph is disjoint from D will represent a truth
assignment for F where ph is false, whereas a model of OF where ph is
not disjoint from D will represent a truth assignment for F where ph is
true.
In what follows, we denote by Li,j the class corresponding to the j-th
literal in the i-th clause, where i ∈ {1, . . . , k}, and j ∈ {1, 2, 3}. For
example, if the first literal in the clause 2 is p2, and the third literal in
the clause 4 is ¬p3, then L2,1 is p2, and L4,3 is p3. The ontology OF is
constituted by the following axioms:

– H vc ¬D,
– E1(B), E2(B), S(E1, E2), R1(G,H), R2(G,H), R3(G,H),
– ∀i ∈ {1, . . . ,m}: S(pi, pi), T (G, pi),
– ∀i ∈ {1, . . . , k}: T (ci, E1), R1(ci, Li,1), R2(ci, Li,2), R3(ci, Li,3).

Fig. 3 shows an example of OF for F = (p1 ∨ p2 ∨ p3) ∧ (p2 ∨ p1 ∨ p3).
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Figure 3: Encoding of the formula F = (p1 ∨ p2 ∨ p3) ∧ (p2 ∨ p1 ∨ p3)

• According to the two ideas illustrated above, F is satisfiable exactly if there
is a model of OF where for every pair pi, pi, one of them is not disjoint
from D, and every ci is related by means of R1, R2 or R3 to at least one
literal that is not disjoint from D. We will prove that the negation of the
above condition can be checked by means of a boolean conjunctive query
QF that expresses that in every model of OF : (i) there exists i such that
both pi and pi are non-empty, or (ii) there exists a ci such that all its
R1-,R2-, and R3-fillers are disjoint from D. The query QF is defined as
follows:

QF ← T (x, z1) ∧ R1(x, y1) ∧ R2(x, y2) ∧ R3(x, y3) ∧ y1 vc ¬D ∧
y2 vc ¬D ∧ y3 vc ¬D ∧ S(z1, z2) ∧ z1(w1) ∧ z2(w2)

Note that the “or” of conditions (i) and (ii) is obtained by the atom T (x, z1),
that is valid in OF in exactly two cases: in the first case, x is bound to a specific
ci, and z1 is bound to E1, so that condition (i) is trivially true with z2 bound
to E2, and condition (ii) is checked on ci by the appropriate atoms of QF (i.e.,
R1(x, y1), R2(x, y2), R3(x, y3), y1 vc ¬D, y2 vc ¬D, y3 vc ¬D); in the second
case, z1 is bound to a certain pi, and x is bound to G, so that condition (i)
is checked on pi, pi by the atoms S(z1, z2), z1(w1), z2(w2) of QF , and condition
(ii) is trivially true with y1, y2, y3 bound to H.

Theorem 23. F is satisfiable if and only if OF 6|= QF .
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Proof. If-part. Let I = 〈W, ·I〉 be a model of OF such that I 6|= QF , and let
MF be the propositional assignment defined as follows:

• if (pIi )C is not disjoint from (DI)C , then pi is true, and pi is false in MF ;

• if (pIi )C is disjoint from (DI)C , then pi is false, and pi is true in MF .

We show that MF is a model of F . First, notice that for every i, pi and pi
have clearly different truth value. Second we show that for every i, if (pIi )C is
not disjoint from (DI)C , then (pIi )C is disjoint from (DI)C . Indeed, suppose,
by contradiction, that for some i, both (pIi )C and (pIi )C are not disjoint from
(DI)C , implying that there exists a, b such that a ∈ (pIi )C and b ∈ (piI)C .
Now, consider the function h such that h(x) = GI , h(z1) = pIi , h(y1) = h(y2) =
h(y3) = HI , h(z2) = pIi , h(w1) = a, and h(w2) = b. It is easy to see that h
is a query homomorphism from QF to I, and therefore I |= QF , which is a
contradiction.

Third, we show that for every clause i in F , there is at least one literal that is
true according to MF . Indeed, consider clause i, and suppose that every literal
in i is false in MF , i.e., every pj appearing positive in i is false in MF , and every
pj appearing negative in i is true in MF . By construction of MF , this means
that for every class pj corresponding to a letter appearing positive in i, (pIj )C is
disjoint from (DI)C , and for every class pj corresponding to a letter appearing
negative in i, (pIj )C is not disjoint from (DI)C , that, as we saw before, implies
that (pIj )C is disjoint from (DI)C . But this in turn implies that the function
f such that f(x) = cIi , f(z1) = EI1 , f(z2) = EI2 , f(w1) = f(w2) = BI ,
f(y1) = LIi,1, f(y2) = Li,2, and f(y3) = LIi,3, is a query homomorphism from
QF to I, and therefore I |= QF , which is a contradiction.

Thus, we conclude that MF is indeed a model of F .

Only-if-part. Let MF be a model of F , and let I = 〈W, ·I〉 be the interpre-
tation for OF defined as follows (where a is in the domain of I):

• (DI)C = {a}

• if pi is true in MF , then (pIi )C = {a}, and (pIi )C = ∅;

• if pi is false in MF , then (pIi )C = ∅, and (pIi )C = {a};

• all other aspects of I are such that exactly the facts in OF are true in I;
for example, (EI1 )C = {BI}, (EI2 )C = {BI}.

Clearly, I is a model of OF . We show that I 6|= QF . Indeed, the only possibility
for QF to be true in I is the existence of a query homomorphism h from QF
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to I such that (h(x), h(z1)) ∈ (T I)P , which corresponds to the following two
cases:

1. h(x) = GI , h(y1) = h(y2) = h(y3) = HI , and h(z1) = pIj , h(z2) = pIj for a
certain j. In this case, by construction of I, either (h(z1)I)C or (h(z2)I)C
is empty, contradicting that h is a query homomorphism from QF to I.

2. h(x) = cIi for a certain i, h(z1) = EI1 , and h(y1) = LIi,1, h(y2) =
LIi,2, h(y3) = LIi,3. In this case, since MF is a model of F , by construction
of I we have that aI ∈ (LIi,1)C , aI ∈ (LIi,2)C , or aI ∈ (LIi,3)C , and there-
fore one among (LIi,1)C , (LIi,2)C , and (LIi,3)C is not disjoint from DI in I,
contradicting that h is a query homomorphism from QF to I.

Thus, we conclude that no query homomorphism exists from QF to I, and
therefore I 6|= QF .

Note that in the above reduction both the ontology and the query contain
only TBox axioms of the form α1 vc ¬α2. It is not difficult to see that a similar
proof can be obtained under the assumption that only the axioms of the form
α1 vp ¬α2, or of the form Irr(α) appear in the ontology and the query.

From Theorem 23 and from the observation that the size of OF is polynomial
with respect to the size of F , and the size of QF does not depend on F , we
immediately derive the following corollary.

Corollary 24. Query entailment under MS is coNP-hard w.r.t. ontology com-
plexity.

Next, we prove that query entailment under MS is Πp
2-hard w.r.t. combined

complexity. We consider the problem of checking the satisfiability of a 2-QBF,
i.e., a Quantified Boolean Formula of the form ∀x1, . . . , xn∃y1, . . . , ymc1∧· · ·∧ck,
where each ci is a clause with exactly three literals on the boolean variables
x1, . . . , xn, y1, . . . , ym. First, notice that, given a 2-QBF F , we can obtain a
new formula F ′ as follows. For each boolean variable z of F :

1. we introduce a variable z̄;

2. we substitute every negative literal ¬z in F with z̄;

3. we add every z̄ to the list of existentially quantified variable;
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4. we add to F suitable clauses cz,1 and cz,2 to sanction that exactly one between
z, z̄ is true, with cz,1 = (z ∨ z̄) and cz,2 = (¬z ∨ ¬z̄). In order to distinguish
these newly introduced clauses, we call them auxiliary clauses, while we call
original clauses the clauses originally belonging to F .

It is easy to see that F ′ is a 2-QBF that is satisfiable if and only if F is
satisfiable, and that the size of F ′ is linear with respect to the size of F . Thus,
in the following, we focus on the 2-QBF formula F ′. Also, for clarity purposes,
we denote by x1, . . . , xn and by y1, . . . , ym the boolean variables of F ′ that
are, respectively, universally and existentially quantified. Also, we will use z
(possibly with subscript) to refer to boolean variables of F ′ of any of the two
kinds mentioned above.

From F ′, we define an OWL 2 QL ontology OF ′ and a query QF ′ as follows.

• The signature Σ of OF ′ is such that:

– Σi contains a; moreover, it contains for each original clause ci, with
i ∈ {1, ..., k}, an individual ci, as well as individuals til1,l2,l3 and vi,hl1,l2,l3 ,
with l1, l2, l3 ∈ {0, 1} and h ∈ {1, 2, 3}, such that at least one of the lh’s
is equal to 1; finally, it contains, for each variable z, an individual cz,1,
as well as individuals tzl1,l2 and vz,hl1,l2 , with l1, l2 ∈ {0, 1} and h ∈ {1, 2},
such that exactly one of the lh’s is equal to 1;

– both Σi and Σc contain D and E; moreover, for each universally quanti-
fied variable xj , with j ∈ {1, . . . , n}, they both contain one class named
xj ;

– Σp contains In, Has, V al;
– Σd, Σi, Σt, and ΣLit are empty.

• Intuitively, the axioms of the ontology are used to force OF ′ to encode, for
each clause of F ′, all possible assignments for the variables occurring in
the clause, that set a truth value for each existentially quantified variable
and keep undefined all universally quantified variables. Note, in partic-
ular, that assignments of existentially quantified variables are defined by
identifying such variables only on the basis of their position within the
clause and by appropriately connecting occurrences of each variables to
the empty class E to set it to false and to the non-empty class D to set
it to true. On the other hand, assignments of universally quantified vari-
ables are kept undefined by representing each such variable xj through
a class xj such that it is uncertain whether it is empty or not, i.e., the
axiom xj vc ¬xj is uncertain in OF ′ , in the sense that neither such axiom
nor its negation are logically implied by OF ′ . Then, each completion of
OF ′ encodes all assignments of truth values to both existentially quanti-
fied variables and universally quantified variable, based on the assumption
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that for each xj , with j ∈ {1, . . . ,m}, an assignment to true is encoded
by violating the axiom xj vc ¬xj , while an assignment to false is encoded
by introducing the axiom xj vc ¬xj .
To provide a better intuition of the encoding, consider the following ex-
ample. Let ci be an original clause having the form ci = (xj ∨ yf ∨ yk),
where j ∈ {1, . . . , n} and f, k ∈ {1, . . . ,m}. The set of axioms

In(ci, ti1,0,1), Has(ti1,0,1, xj), V al(xj , xj)
Has(ti1,0,1, v

i,2
1,0,1), V al(vi,21,0,1, E)

Has(ti1,0,1, v
i,3
1,0,1), V al(vi,31,0,1, D)

models a truth value assignment for the variables in ci (represented by the
individual ti1,0,1), that sets the existentially quantified variable occurring
in second position of ci to false (by representing such occurrence through
the individual v1,2

1,0,1, and connecting it to the empty class E through the
property V al) and the one occurring in third position to true (by repre-
senting such occurrence through the individual v1,3

1,0,1, and connecting it
to the non-empty class D through V al). Observe, also, that the assign-
ment encoded by the above set of axioms keeps undefined the truth value
assigned to the universally quantified variable xj , by representing it as a
class such that the axiom xj vc ¬xj is uncertain. Then, by extending
the set with the axiom xj(ej), where ej is an entity not occurring any-
where else in the ontology, we obtain a completion of OF ′ encoding an
assignment that sets to true the universally quantified variable xj .
Based on the above intuition, OF ′ consists of the following axioms:

– E vc ¬E is in OF ′ ;
– D(a) is in OF ′ ;
– for i ∈ {1, .., k}, the axiom In(ci, til1,l2,l3) is in OF ′ , for every til1,l2,l3 ;

– for each variable z of F ′, the axiom In(cz,1, tzl1,l2) is in OF ′ , for every
tzl1,l2 ;

– for each axiom In(ci, til1,l2,l3), and for each h ∈ {1, 2, 3}, let zh be the
h-th variable of ci; if zh is universally quantified, then Has(til1,l2,l3 , zh)
is in OF ′ , otherwise Has(til1,l2,l3 , v

i,h
l1,l2,l3

) is in OF ′ ;

– for each axiom In(cz,1, tzl1,l2) in OF ′ , Has(tzl1,l2 , v
z,2
l1,l2

) is in OF ′ ; more-
over, if z is universally quantified, thenHas(tzl1,l2 , z) is inOF ′ , otherwise
Has(tzl1,l2 , v

z,1
l1,l2

) is in OF ′ ;

– for each axiom Has(til1,l2,l3 , v
i,h
l1,l2,l3

) in OF ′ , V al(vi,hj1,j2,j3
, D) is in OF ′

if lh = 1, otherwise V al(vi,hl1,l2,l3 , E) is in OF ′ ;

– for each axiom Has(tzl1,l2 , v
z,1
l1,l2

) inOF ′ , V al(vz,hl1,l2 , D) is inOF ′ if lh = 1,
otherwise V al(vz,hl1,l2 , E) is in OF ′ ;
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– for each universally quantified variable xj of F ′, the axioms V al(xj , xj)
and xj vc >c are in OF ′ .

• According to the ideas illustrated above, F ′ is satisfiable if for every com-
pletion, there exists a subset of the axioms of OF ′ that encodes an as-
signment for the variables of F ′ that satisfies all clauses of F ′. Thus, we
define the conjunctive query QF ′ as follows:

QF ← γ1 ∧ γ2

where γ1 and γ2 are conjunctions of atoms that we now define. In the
following we use the symbol ai,j to denote a query variable whose name
coincides with the name of the j-th variable occurring into the i-th clause
of F ′. Thus, for example, if the clause c1 has the form (x1 ∨ ȳ1 ∨ y2), a1,1
denotes the variable x1, a1,2 the variable ȳ1, and a1,3 the variable y2.

– γ1 is the conjunction of atoms containing, for each clause ci, the follow-
ing atoms, forming what we call the ci-subquery:

In(ci, wi),
Has(wi, si,1), V al(si,1, ai,1),
Has(wi, si,2), V al(si,2, ai,2),
Has(wi, si,3), V al(si,3, ai,3),
Has(wi, pi)), V al(pi, yi),
yi(ui)

Intuitively, each ci-subquery checks for the existence of a set of atoms
within every completion of OF ′ that encodes an assignment to the vari-
ables occurring in ci that satisfies ci.

– γ2 is the conjunction of atoms containing, for each variable z (and then
for each auxiliary clause cz,1), the following atoms, forming what we
call the z-subquery:

In(cz,1, wz),
Has(wz, sz,1), V al(sz,1, z),
Has(wz, sz,2), V al(sz,2, z̄),
Has(wz, pz,1), V al(pz,1, yz,1),
Has(wz, pz,2), V al(pz,2, yz,2),
yz,1(uz), yz,2 vc ¬yz,2

Intuitively, each z-subquery checks for the existence of a set of atoms
within every completion of OF ′ that encodes an assignment such that
exactly one among the variables z and z̄ is true.

Theorem 25. F is satisfiable if and only if OF ′ |= QF
′ .

Proof. ⇒ Suppose that F ′ is satisfiable, i.e., for every assignment α to the uni-
versally quantified variables of F ′, the formula obtained from F ′ by substituting
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each occurrence of the universally quantified variables x1, . . . , xn with the value
that α assigns to such variables, is satisfiable. We show that the certain answer
to QF ′ over OF ′ is true, by showing that for every complete ontology derived
from OF ′ , the certain answer to the query is true.

Consider any assignment α to the universally quantified variables of F ′, and
let OαF ′ be the ontology obtained from OF ′ by asserting that the class xj is
empty for each universally quantified variable xj to which α assigns false, and
by asserting that xj is non-empty for each universally quantified variable xj to
which α assigns true. We show that the certain answer to QF ′ over OαF ′ is true.
Consider any assignment β to the existentially quantified variables of F ′ such
that α ∪ β makes the body of F ′ (i.e., the set of clauses constituting F ′) true,
and define the binding B for the variables of QF ′ as follows:

• For each clause ci = (z1 ∨ z2 ∨ z3) and the associated ci-subquery of QF ′ ,
wi is bound to the object til1,l2,l3 such that l1, l2, l3 is the combination
of values that α ∪ β assigns to the variables z1, z2, and z3 appearing in
clause ci, whereas si,h is bound to the variable zh if zh is a universally
quantified variable and, in this case, also the query variable zh is bound to
zh; otherwise si,h is bound to vi,hl1,l2,l3 and the query variable zh is bound
to E or to D according to whether lh = 0 or lh = 1, respectively. Finally,
the query variables pi and yi are bound to the same values to which are
bound any of the query variables si,h and zh, respectively, for h such that
lh = 1. Note that by construction, there must be at least one such h.

• For each boolean variable z of F ′ and the associated z-subquery of QF ′ ,
wp is bound to the object tzj1,j2

such that j1, j2 is the combination of values
that α∪ β assigns to the variables z and z̄, whereas sz,1 is bound to z if z
is universally quantified in F ′ and, in this case, the query variable z is also
bound to z; otherwise sz,h is bound to vz,hl1,l2 and the query variables z and
z̄ are respectively bound to D and E if lh = 1, while they are respectively
bound to E and D, otherwise. Finally, pz,1 and pz,2 are bound to z and
z̄ respectively, if l1 = 1 (i.e., if z is assigned to true by α ∪ β), otherwise
they are bound to the z̄ and z, respectively.

It is immediate to verify that the binding B makes the answer to QF ′ true.

⇐ Suppose that the certain answer to QF
′ w.r.t. OF ′ is true. We show

that F ′ is satisfiable. If the certain answer to QF
′ w.r.t. OF ′ is true, then it

follows that for every choice we make (empty or non-empty) for each class xj
corresponding to the universally quantified variable xj , there exists a binding
for the variables of QF ′ such that QF ′ is true. Consider any such binding B.
By essentially reasoning in reverse with respect to the other direction of the
theorem, one can easily verify that from B we can derive an assignment for the
existentially quantified variables of F ′ that makes F ′ true. This proves that if
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the certain answer to QF ′ w.r.t. OF ′ is true, then F ′ is satisfiable.

By combining Theorem 25 with the observation that both OF ′ and QF
′

have a size that is polynomial with respect to the size of F , we easily derive the
following corollary.

Corollary 26. Query entailment under MS is Πp
2-hard w.r.t. combined com-

plexity.

6. Entailment of general queries: upper bounds

In this section we present an algorithm for checking the entailment of general
queries under MS that matches the lower bounds described in the previous
section. To this aim, we start by observing that the results of the previous
section show that the complexity of the problem originates from negative axioms
which are uncertain, i.e., they are neither logically implied by the ontology nor
violated by it. In other words, the presence of uncertain negative axioms forces
us to reason by cases when answering queries. Motivated by this observation,
in this section we start by studying query entailment over a class of ontologies,
called TBox-complete, in which, intuitively, there is complete knowledge about
negative axioms. Then we move to unrestricted ontologies, and show that query
entailment can be reduced to query entailment over a set of TBox-complete
ontologies.

6.1. The case of TBox-complete ontologies

We remind the reader that we implicitly refer to an OWL 2 QL ontology O over
vocabulary V and with signature Σ. In the following, we denote by NO the set
of all negative axioms that can be built starting from the expressions in Exp.

We next introduce the notion of TBox-complete ontology, which in turn is
based on the notion of certain negative axiom. Intuitively, an axiom is certain
if it is either logically implied by the ontology, or it is violated in the ontology.

Definition 27. An axiom α in NO is certain if either O |= α or O |= ¬α. An
axiom that is not certain is called uncertain. O is TBox-complete if every axiom
in NO is certain.

Note that, by the above definition, every unsatisfiable ontology is trivially
TBox-complete.
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Example 28. The ontology presented in Example 22 is not TBox-complete.
Indeed, for example, the axiom A vc ¬B is neither logically implied nor violated
by it.

TBox-complete ontologies enjoy notable properties, which turn out to be
crucial for entailment of general queries. In the following, we show that in the
case of TBox-complete ontologies, the canonical pseudo-model is crucial not
only for the entailment of instance queries, as we showed in Section 4, but also
for the entailment of general queries. Towards this goal, following the same
line of reasoning used for instance queries, we now define the notion of extended
homomorphism, which, intuitively, is an extension of the notion of instance-
based homomorphism that also considers semantic properties expressed as TBox
axioms.

Definition 29. Let I = 〈W, ·I〉 be an interpretation for O. An extended
homomorphism from Can(O) to I is a function Ψ from ∆̄o to ∆o and from ∆̄v

to ∆v such that:

• Ψ is an instance-based homomorphism from Can(O) to I, and

• Ψ further preserves in W the following intensional properties of WCan(O):

5. for every e1, e2 ∈ ∆̄o, if eC̄1 ∩ eC̄2 = ∅, then Ψ(e1)C ∩Ψ(e2)C = ∅;
6. for every e1, e2 ∈ ∆̄o, if eP̄1 ∩ eP̄2 = ∅, then Ψ(e1)P ∩Ψ(e2)P = ∅;
7. for every e1, e2 ∈ ∆̄o, if eD̄1 ∩ eD̄2 = ∅, then Ψ(e1)D ∩Ψ(e2)D = ∅;
8. for every e ∈ ∆̄o, if for every e′ ∈ ∆̄o, (e′, e′) /∈ eP̄ , then for every
e′′ ∈ ∆o, (e′′, e′′) /∈ Ψ(e)P ;

9. for every e1, e2 ∈ ∆̄o, if eC̄1 ⊆ eC̄2 , then Ψ(e1)C ⊆ Ψ(e2)C ;
10. for every e ∈ ∆̄o and every t ∈ D, if {e′ | (e′′, e′) ∈ eD̄ for some e′′} ⊆

tT̄ , then {v | (o, v) ∈ Ψ(e)D for some o} ⊆ Ψ(t)T ;
11. for every e1, e2 ∈ ∆̄o, if eP̄1 ⊆ eP̄2 , then Ψ(e1)P ⊆ Ψ(e2)P ;
12. for every e1, e2 ∈ ∆̄o, if eD̄1 ⊆ eD̄2 , then Ψ(e1)D ⊆ Ψ(e2)D;
13. for every e ∈ ∆̄o, if for every e′ ∈ ∆̄o (e′, e′) ∈ eP̄ , then for every

e′′ ∈ ∆o, (e′′, e′′) ∈ Ψ(e)P .

The following proposition shows that if O is TBox-complete, then besides
representing all models of O with respect to instance checking, Can(O) repre-
sents all the models of O with respect to logical implication of TBox axioms.

Proposition 30. If O is TBox-complete, then for every model I ∈ModMS(O)
there exists an extended homomorphism from Can(O) to I.
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Proof. If ModMS(O) = ∅, then the statement is trivially true. Therefore, in
what follows we assume ModMS(O) 6= ∅, and we let I ∈ModMS(O) be 〈W, ·I〉.

We assume that O is TBox-complete and refer to the function Ψ defined
in the proof of Proposition 16, where we showed that Ψ is an instance-based
homomorphism from Can(O) to I. In the following we show that Ψ is indeed
an extended homomorphism from Can(O) to I, i.e., that it further satisfies
properties 5-13 of Definition 29, thus proving that an extended homomorphism
from Can(O) to I always exists.

We remind the reader that, by definition, for every k, the k-portion of
Can(O), denoted Cank(O), is such that the functions ·C̄k , ·P̄k , ·D̄k , and ·T̄k

are all undefined for s ∈ So and for w ∈ Sv. Therefore, in what follows, we
check whether Ψ satisfies properties 5-13 of Definition 29 only for e, e1, e2 in
Exp.

• Consider Property 5. Let e1, e2 ∈ ∆̄o be such that eC̄1 ∩ eC̄2 = ∅, and
suppose by contradiction that there exists e ∈ ∆o such that e ∈ Ψ(e1)C ,
and e ∈ Ψ(e2)C . Since from the definition of Ψ, we know that for every e ∈
Exp, Ψ(e) = eI , we have that e ∈ (eI1 )C∩(eI2 )C . Also, since I is a model of
O, and O is TBox-complete, we have that O∪{e1 v ¬ce2} is unsatisfiable,
or, equivalently, O |= ∃x.e1(x)∧e2(x). But then, by Proposition 11, there
exists a query homomorphism from the query ∃x.e1(x)∧e2(x) to Can(O),
which clearly contradicts eC̄1 ∩ eC̄2 = ∅. Similarly, we can prove that Ψ
satisfies Properties 6 and 7.

• Consider Property 8. Let e ∈ ∆̄o be such that for every e′ ∈ ∆̄o, (e′, e′) /∈
eP̄ , and suppose by contradiction that there exists e′′ ∈ ∆o such that
(e′′, e′′) ∈ Ψ(e)P̄ . By virtue of how Ψ is defined, this implies (e′′, e′′) ∈
(eI)P . Since I is a model of O and O is TBox-complete, we have that
O ∪ {Irr(e)} is unsatisfiable, or, equivalently, O |= ∃x.e(x, x). But then,
by Proposition 11, there exists a query homomorphism from the query
∃x.e(x, x) to Can(O), which clearly contradicts that for every e′ ∈ ∆̄o,
(e′, e′) /∈ eP̄ .

• Consider Property 9. We recall that Ψ is defined by induction on k,
where k is the number of rule applications which leads to Chasek(O). In
particular, Ψk is a function on ∆̄o

k ∪ ∆̄v
k, such that Ψ =

⋃
j∈N Ψj , where

∆o
k and ∆v

k are respectively the object and value domain of Cank(O). We
then show, by induction on k, that, for every k ≥ 0, Ψk satisfies Property
9, and we will do it by preventively showing that

(i) for every e1, e2 ∈ Exp, if αe1 ∈ e
C̄k
2 , then O |= e1 vc e2.

Base step: k = 0. We show that (i) holds. Since by construction of
Chase0(O), αe1 ∈ e

C̄0
2 implies e1 = e2, and since obviously O |= e1 vc e1,
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we conclude that property (i) is satisfied.
We now show that Ψ0 satisfies Property 9. The only non-trivial case is
e1 6= e2. Notice that, if eC̄0

1 6= ∅, then by construction of Chase0(O), there
exists αe1 in S0

o such that αe1 ∈ e
C̄0
1 and αe1 /∈ eC̄0 for every e 6= e1. In

particular, αe1 /∈ eC̄0
2 , and therefore eC̄0

1 ⊆ eC̄0
2 implies eC̄0

1 = ∅. which
contradicts our hypothesis. Hence, it must be the case that eC̄0

1 = ∅. Thus,
since O is TBox-complete, it follows that O |= e1 vc ¬e1 and, therefore,
O |= e1 vc e2 for every e2 ∈ Expc. Since I is a model of O, we conclude
that Ψ0(e1)C ⊆ Ψ0(e2)C , which proves that Ψ0 satisfies property 9.
Inductive step: k ≥ 0. We assume that (i) holds for k and we prove
that it holds for k + 1. Suppose that αe1 ∈ e

¯Ck+1
2 . Clearly, the only non

trivial case is when αe1 /∈ e
C̄k
2 . It is easy to see that this can happen only

if Chasek+1(O) is obtained from Chasek(O) by the application of rule
1 on the basis of e3(αe1) , e3 vc e2 ∈ Chasek(O). Then, by inductive
hypothesis, O |= e1 vc e3, which combined with e3 vc e2, proves that
O |= e1 vc e2.
Let us now assume that Ψk satisfies Property 9, and let us show that Ψk+1

also satisfies Property 9. Suppose that e
¯Ck+1

1 ⊆ e
¯Ck+1

2 . The only non trivial
case is when O |= ¬(e1 vc ¬e1). Then, αe1 ∈ e

C̄0
1 and αe1 ∈ e

¯Ck+1
1 , which

by implies that αe1 ∈ e
¯Ck+1

2 . Thus, it follows from property (i) that O |=
e1 vc e2, and since I is a model of O, we have Ψk+1(e1)C ⊆ Ψk+1(e2)C ,
which means that Ψk+1 satisfies Property 9.

• The proof for Property 10, 11 and 12, is analogous to the one for Property
9. In particular, they are respectively based to the following properties,
analogous to (i):

(ii) for every t ∈ D, if we ∈ tT̄k , then O |= ρ(e) vt t;

(iii) for every e1, e2 ∈ Exp, if (β1
e1
, β2
e1

) ∈ eP̄k
2 , then O |= e1 vp e2;

(iv) for every e1, e2 ∈ Exp, if (γe1 , we1) ∈ eD̄k
2 , then O |= e1 vd e2.

• Consider Property 13. Similarly to the other cases, we show, by induction
on k, that, for every k ≥ 0, Ψk satisfies Property 13, and we will do it by
preventively showing that

(v) for every e ∈ Exp, if (β1
e , β

1
e ) ∈ eP̄k , then O |= Ref(e).

Base step: k = 0. Since by construction of Chase0(O), for no e ∈ Expp
it holds that (β1

e , β
1
e ) ∈ eP̄0 , we have that property (v) is satisfied.

We next show that Ψ0 satisfies Property 13. Notice that, by construction,
Chase0(O) contains at least the axiom >c(α>c

) since >c ∈ Expc and
O ∪ >c vc ¬>c is unsatisfiable. Hence, at least the object α>c is in ∆̄o

0,
but for every e ∈ Expp, (α>c

, α>c
) /∈ eP̄0 . Therefore, the premise of
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Property 13 never holds and the Property is trivially satisfied.

Inductive step: k ≥ 0. We assume that (v) holds for k and we prove
that it holds for k+1. Suppose that (β1

e , β
1
e ) ∈ e ¯Pk+1 . Clearly, the only non

trivial case is when (β1
e , β

1
e ) /∈ eP̄k . It is easy to see that this can happen

only if Chasek+1(O) is obtained from Chasek(O) by the application of
one of the following rules:

– rule 2, on the basis of e′(β1
e , β

1
e ) , e′ vp e ∈ Chasek(O); but then,

by inductive hypothesis, O |= Ref(e′), which combined with e′ vp e,
proves that O |= Ref(e);

– rule 5, on the basis of e(β1
e , e
′) , Ref(e) ∈ Chasek(O); then, clearly,

O |= Ref(e);
– rule 10, on the basis of e−(β1

e , β
1
e ) ∈ Chasek(O); then, by inductive

hypothesis, O |= Ref(e−), which proves that O |= Ref(e).

Let us now assume that Ψk satisfies Property 13, and let us show that
Ψk+1 also satisfies Property 13. Suppose that for every e′ ∈ ¯∆o

k+1 (e′, e′) ∈
e

¯Pk+1 .
Since e is non empty, then O |= ¬(e vp ¬e), and (β1

e , β
2
e ) ∈ eP̄0 . But then

β1
e ∈ ∆̄o

0 and β1
e ∈ ¯∆o

k+1, which implies that (β1
e , β

1
e ) ∈ e ¯Pk+1 . Thus, it

follows from (v) that O |= Ref(e), and since I is a model of O, we have
that for every e′ ∈ ∆o (e′, e′) ∈ Ψ(e)P .

We are now ready to generalize Proposition 17, and show that, if O is satis-
fiable and TBox-complete, then Can(O) is representative of all its models with
respect to entailment of general queries.

Proposition 31. If O is satisfiable and TBox-complete, and Q = q1 ∪ . . . ∪ qn
is a general query over O, then O |= Q if and only if there exists a query
homomorphism from Q to Can(O).

Proof. The proof is based on Proposition 30, and follows the same line of rea-
soning of Proposition 17.

The following theorem is the basis for reducing entailment of general queries
to entailment of metaground queries in the context of TBox-complete ontologies.

Theorem 32. If O is TBox-complete, and Q = q1 ∪ . . .∪ qn is a general query
over O, then O |= Q if and only if there exists i ∈ {1, . . . , n} and a conjunctive
query q′ ∈MG(qi,O) such that O |= q′.
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Proof. If-part. If there exists i ∈ {1, . . . , n} and a conjunctive query q′ ∈
MG(qi,O) such that O |= q′, then there is a query homomorphism from q′

to Can(O). Let µ′ be the instantiation of qi that led to q′, and let µ be ob-
tained by extending µ′ with the assignment of the variables of q′ given by the
query homomorphism from q′ to Can(O). It is easy to see that µ is a query
homomorphism from qi to Can(O), and therefore also a query homomorphism
from Q to Can(O), and which implies that O |= Q.

Only-if-part. If O |= Q, then there is a query homomorphism from Q to
Can(O), and therefore there is a query homomorphism h from qi to Can(O),
for some i ∈ {1, . . . , n}. By construction of Chase(O), all elements in So and
Sv are individuals or values in Chase(O), respectively, and therefore by the
definition of Can(O), the metavariables of qi are mapped to elements in Exp
by h. It follows that there is an instantion q′ of qi such that there is a query
homomorphism from q′ to Can(O), which implies that O |= q′.

Combined with Proposition 11, the above theorem provides us with an algo-
rithm for entailment of general queries over OWL 2 QL TBox-complete ontologies
under MS. The algorithm simply checks whether there is a disjunct of the query
for which there exists a metagrounding such that both the conjuntion of its
TBox atoms and the metaground instance query constituted by its ABox atoms
are entailed by the ontology. Obviously, the algorithm can be implememted
using current off-the-shelf OWL 2 QL reasoners.

It is easy to see that this leads to the following complexity results.

Theorem 33. Entailment of general queries over TBox-complete ontologies
under MS is in AC0 w.r.t. ABox complexity, PTime w.r.t. ontology complexity,
and NP-complete w.r.t. combined complexity.

The above theorem states that query entailment of general queries under
TBox-complete ontologies has the same computational property as query entail-
ment of metaground instance queries, i.e., usual first-order conjunctive queries,
under unrestricted ontologies. Hence, it confirms the intuition that the com-
plexity of answering general queries over unrestricted ontologies originates from
the presence of negative axioms that are neither logically implied nor violated.

At the same time, the results above have a practical interest. Indeed, even
though one might think that TBox-completeness is a strong assumption, limiting
the applicability of the above result in practice, we argue that TBox-complete
ontologies are neither unreasonable, nor expensive to be devised in practice.
The reasons are twofold. On one hand, many ontologies derived from Entity-
Relationship schemas, Object-oriented schemas or UML diagrams are actually
TBox-complete. On the other hand, it is easy to see that, given an ontology
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O that is not TBox-complete and with a set S of negative axioms that are un-
certain, an automated, rather inexpensive procedure can be devised, that adds
to O suitable facts to make the negative axioms in S violated. One can show
that, in several interesting cases, such an addition achieves TBox-completeness
without changing the intended meaning of the ontology O.

6.2. The case of unrestricted ontologies

Let us now come back to the case of unrestricted ontologies, i.e., ontology
that are not TBox-complete, and therefore may contain a nonempty set of neg-
ative axioms in NO that are uncertain. In order to solve the issue highlighted
by Example 22 for such ontologies, we now introduce the notion of completion
of an ontology, that is crucial for characterizing the sets of models of an ontol-
ogy under MS. Such notion relies on the notion of violation set of a negative
axiom. Intuitively, given an axiom α in NO, the violation set of α, denoted
by Fα, is the set containing the ABox axioms that are necessary and sufficient
to violate α in the ontology O ∪ Fα. The violation sets Fα for the different
types of possible axioms in NO are depicted in Table 5, where we adopt the
following naming scheme (possibly including subscripts): a, r, d, and t denote,
respectively, an atomic class, an atomic object property, a data property, and
a datatype. sα, s′α, s′′α denote distinct entities, specific for α, that are not con-
tained in Σ, and wα denotes any literal that does not belong to ΣLit.

Negative axiom α Violation set of α

a1 vc ¬a2 {a1(sα), a2(sα)}
a vc ¬∃r {a(sα), r(sα, s′α)}
a vc ¬∃r− {a(sα), r(s′α, sα)}
a vc ¬δ(d).t {a(sα), d(sα, wα)}

with wα s.t. wLSα ∈ tDT
∃r1 vc ¬∃r2 {r1(sα, s′α), r2(sα, s′′α)}
∃r−1 vc ¬∃r

−
2 {r1(s′α, sα), r2(s′′α, sα)}

∃r−1 vc ¬∃r2 {r1(s′α, sα), r2(sα, s′′α)}
∃r vc ¬δ(d).t {r(sα, s′α), d(sα, wα)}

with wα s.t. wLSα ∈ tDT
∃r− vc ¬δ(d).t {r(s′α, sα), d(sα, wα)}

with wα s.t. wLSα ∈ tDT
r1 vp ¬r2 {r1(sα, s′α), r2(sα, s′α)}
r−1 vp ¬r2 {r1(s′α, sα), r2(sα, s′α)}
d1 vd ¬d2 {d1(sα, wα), d2(sα, wα)}
Irr(r) {r(sα, sα)}
Irr(r−) {r(sα, sα)}

Table 5: Violation sets of negative axioms
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Definition 34. Let UO ⊆ NO be the set of uncertain negative axioms in O,
and let σ ⊆ UO. The completion of O with respect to σ is the ontology, denoted
as Oσ, defined as follows:

Oσ = O ∪ σ ∪ CU
O\σ

where CUO\σ is the union of the violation sets of all the negative axioms in UO
that are not in σ.

Intuitively, the completion of O with respect to σ is the ontology that is
obtained by asserting that all axioms in σ are satisfied by O and that all axioms
in UO that are not in σ are violated by O. Note that Oσ may be unsatisfiable
even if O is satisfiable.

It is straightforward to see that, by definition, for every subset σ of UO, we
have that Oσ is TBox-complete.

The following example shows examples of completions of an ontology with
respect to various sets of axioms.

Example 35. Consider the ontology introduced in Example 22. One can easily
verify that UO = {A vc ¬B, B vc ¬A}, as all other axioms in NO are either
implied or violated by O.

Let σ0 = ∅, σ1 = {A vc ¬B}, σ2 = {B vc ¬A}, and σ3 = {A vc ¬B,
B vc ¬A}. The following are examples of completions of O:

Oσ0 = O ∪ {A(s), B(s), B(s′), A(s′)}
Oσ1 = O ∪ {A vc ¬B, B(s), A(s)}
Oσ2 = O ∪ {B vc ¬A, A(s), B(s)}
Oσ3 = O ∪ {B vc ¬A, A vc ¬B}

where s, s′ denote entities not occurring in O. Note, in particular, that all
completions are TBox-complete, and Oσ1 and Oσ2 are unsatisfiable.

From the definition of completion of an ontology with respect to a set of
negative axioms we can easily derive the following theorem.

Theorem 36. If Q is a general query over O, then O |= Q if and only if
Oσ |= Q for every σ ⊆ UO.

Proof. The proof is based on showing that ModMS(O) =
⋃
σ⊆UO ModMS(Oσ).
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Consider I ∈ModMS(O). For every α ∈ UO, either I |= α or I |= ¬α. Let
σI be the subset of axioms of UO that are satisfied in I. By definition of σI ,
I |= OσI , and therefore, I ∈ ModMS(OσI ), thus proving that ModMS(O) ⊆⋃
σ⊆UO ModMS(Oσ).

For the converse, since for every σ ⊆ UO, we have that O ⊆ Oσ , it is obvious
that

⋃
σ⊆UO ModMS(Oσ) ⊆ModMS(O).

Theorem 36 directly provides us with an algorithm for entailment of general
queries over unrestricted ontologies. We illustrate it in the following example.
Example 37. Consider the ontology and the query discussed in Example 22,
as well as the set of axioms σi, for i = 1, . . . , 4, introduced in Example 35. It is
easy to see that Oσ0 |= q and Oσ3 |= q. Since Oσ1 and Oσ2 are unsatisfiable, we
also have that Oσ1 |= Q and Oσ2 |= q. Since σ1, σ2, σ3, and σ4 are all possible
subsets of UO, we conclude that O |= q.

The results above lead us to the following complexity results for answering
general queries over unrestricted ontologies.
Theorem 38. Query entailment under MS is in AC0 w.r.t. ABox complexity,
in coNP w.r.t. ontology complexity, and in Πp

2 w.r.t. combined complexity.

Proof. By Theorem 33 we know that given a general query Q and a TBox-
complete ontology, the problem of checking whether O |= Q is AC0 with respect
to ABox complexity. Clearly, since the computation of Oσ for every subset σ
of UO does not depend on the size of ABox, the ABox complexity of query
answering is AC0 also for unrestricted ontologies. As far as ontology complexity
is concerned, it is easy to see that the problem is in coNP. Indeed, a nonde-
termistic version of the algorithm for the complememt of the problem is the
following: to check non-entailment of Q from O, we guess a set σ ⊆ UO, and
then check whether the TBox-complete ontology Oσ does not entails Q, by us-
ing the algorithm described in the previous subsection. Hence, once we have
guessed the set σ ⊆ UO, we perform a task that is clearly in PTime with respect
to the size of the ontology. So, there is an algorithm for the complement of the
problem whose complexity is in NP, and therefore there is a coNP algorithm
for checking whether Oσ |= Q. As far as combined complexity is concerned,
in the above algorithm, once we have guessed the set σ ⊆ UO, we can use a
coNP oracle for checking Oσ 6|= Q. Since the algorithm that we have described
is for the complememt of the problem, it follow that there is an algorithm for
checking Oσ |= Q whose combined complexity is coNPNP.

By combining Corollary 24 and Corollary 26 with Theorem 38, we obtain
the following.
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Corollary 39. Query entailment under MS is coNP-complete w.r.t. ontology
complexity and Πp

2-complete w.r.t. combined complexity.

7. Conclusions

We have presented a new semantics for the OWL 2 QL ontology language,
named Metamodeling Semantics (in short, MS), specifically tailored to capture
basic features of metamodeling. In particular, MS provides the ability of inter-
preting metaclasses and metaproperties, i.e., classes and properties admitting
classes or properties as instances, in a way that seriously takes into account the
syntactic capability offered by OWL 2 of allowing a same entity to simultaneously
play distinct roles, such as, for example, the role of individual and the role of
class. Note that such an ability is in contrast to the standard W3C Direct
Semantics for OWL 2, which resorts to interpret occurrences of the same entity
name in positions of different types as denoting distinct entities.

We have studied the computational properties of reasoning under MS over
ontologies expressed in OWL 2 QL and showed that while the worst-case complexity
of entailment of unions of conjunctive queries is tractable for queries including
only ABox atoms, the entailment of general unions of conjunctive queries is
Πp

2-complete. Also, we identified a class of ontologies, called TBox-complete, for
which entailment of general queries is tractable.

Our work can be continued along several research directions. First, here, we
did not consider inequalities, while the standard OWL 2 QL allows one to express
them by means of DifferentIndividuals. As already mentioned, we know that
inequalities may in general lead to undecidability, but we believe that by care-
fully restricting their occurrences within queries, entailment of general queries
over TBox-complete ontologies is still tractable under MS.

Second, we studied the computational properties of reasoning under MS,
focusing on OWL 2 QL, which is one of the three tractable profiles of OWL 2. It
would be interesting to extend our study to the other two tractable profiles, i,e.
OWL 2 EL and OWL 2 RL. In particular, considering the OWL 2 EL profile poses new
challenges, since the set of expressions that can be built over the entities of an
OWL 2 EL ontology is in general infinite, which implies that, in principle, relying
on the metagrounding technique is not possible.

Third, general metamodeling requires to overcome the syntactic restrictions
of OWL 2 QL. In particular, we are currently studying to which extent it is possible
to enrich the metamodeling capabilities of the ontology language, keeping the
same computational cost of reasoning. Possible extensions concern mechanisms
to assert that an entity can play only some specific role, e.g. “Maurizio” is not a
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class nor a property”, or to define a property as a specialization of the instance
of relation (i.e., rdf:type) or the subclass of relation (i.e., owl:subclassof).
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Appendix A. Complete proof of Proposition 16

Proof. Let I = 〈W, ·I〉 ∈ModMS(O) be a model of O. We define a function Ψ
from ∆̄o to ∆o and from ∆̄v to ∆v, and we show that Ψ is an instance-based
homomorphism from Can(O) to I.

Specifically, we define Ψ by induction on k, where k is the number of rules
whose application leads to Chasek(O), by setting Ψk as a function on ∆̄o

k ∪ ∆̄v
k,

and letting Ψ =
⋃
j∈N Ψj . Simultaneously, we show, by induction on k, that Ψk

is an instance-based homomorphism from Cank(O) to I.

Base step. Let k = 0. First of all, we set Ψ0(e) = eI for every e ∈ Exp, and
Ψ0(v) = v, for every v ∈ ∆v. As for every element that is not in Exp∪∆v, and
therefore is in S0

o ∪ S0
v , we observe that it appears exactly once in Chase0(O).

Based on this observation, for every s1, s2 ∈ S0
o and for every s ∈ S0

v we set Ψ0
as follows:

• if s1 = αc, then Ψ0(s1) = o, where o is any object in (cI)C . Note that at
least one such object exists in ∆o, since by construction O ∪ {c vc ¬c} is
unsatisfiable;

• if s1 = β1
p and s2 = β2

p , then Ψ0(s1) = o1, and Ψ0(s2) = o2, where o1, o2
is any pair of objects such that 〈o1, o2〉 ∈ (pI)P . Note that such pair must
exist, since by construction O ∪ {p vp ¬p} is unsatisfiable;

• if s1 = γd and s = wd, then Ψ(s1) = o and Ψ0(s) = v, where o, v is any
pair such that 〈o, v〉 ∈ (dI)D. Note that such pair must exist since by
construction O ∪ {d vd ¬d} is unsatisfiable;

• if s1 = βirrp , then Ψ(s1) = o, where o is any object such that 〈o, o〉 ∈ (pI)P .
Note that at least one such object exists in ∆o, since by construction
O ∪ {Irr(p)} is unsatisfiable.

We next show that Ψ0 is an instance-based homomorphism from Can0(O)
to I, by showing it satisfies all properties of Definition 15.

• Property (1): let e1, e2 be two objects in ∆̄o
0 such that e2 ∈ eC̄0

1 . We want
to show that Ψ0(e2) ∈ Ψ0(e1)C . Since e2 ∈ eC̄0

1 , e1(e2) ∈ Chase0(O),
where e1 is a class expression belonging to Expc. Thus, by definition,
Ψ0(e1) = eI1 . Also, by construction of Chase0(O), e1(e2) either belongs
to O or it was added in one of the steps 1, 2(a), 2(b), 2(c), or 3 of its
construction.
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– Suppose that e1(e2) ∈ O. Then, e2 ∈ Σi and hence Ψ0(e2) = eI2 .
But then, since I is a model of O, eI2 ∈ (eI1 )C and therefore Ψ0(e2) ∈
Ψ0(e1)C .

– Suppose that e1(e2) was added in step 1. Then e1 = >c and e2 ∈ Σi.
It follows that Ψ0(e2) = eI2 . Also, since I is a model of O, (>Ic )C =
{o | oI = true} and (eI2 )I = true (because e2 ∈ Σi). Therefore,
Ψ0(e2) ∈ Ψ0(e1)C .

– Suppose that e1(e2) was added in step 2(a). Then, e2 = αc, where
c ∈ Expc, O ∪ {c vc ¬c} is unsatisfiable, αc ∈ S0

o , and either e1 = c
or e1 = >c. In both cases, by definition of Ψ0, Ψ0(e2) = o where
o ∈ (cI)C and oI = true. Hence, in both cases, Ψ0(e2) ∈ Ψ0(e1)C .

– Suppose that e1(e2) was added in step 2(b). Then, e1 = >c and either
e2 = β1

p or e2 = β2
p , where p ∈ Expp, O ∪ {p vc ¬p} is unsatisfiable,

and β1
p , β

2
p ∈ S0

o . Suppose that e2 = β1
p (resp., e2 = β2

p), then by
definition of Ψ0, Ψ0(e2) = o1 where 〈o1, o2〉 ∈ (pI)P (resp. 〈o2, o1〉 ∈
(pI)P ), for some o2 ∈ ∆o, and oI1 = true. Hence, Ψ0(e2) ∈ Ψ0(e1)C .

– By following the same line of reasoning of the previous case, we can
prove that if e1(e2) was added in step 2(c) or step 3, then Ψ0(e2) ∈
Ψ0(e1)C .

• Property (2): let e1, e2, e3 be three objects in ∆̄o
0 such that 〈e2, e3〉 ∈ eP̄0

1 .
This means that e1(e2, e3) ∈ Chase0(O), where e1 is an object property
expression belonging to Expp. Thus, by construction, e1(e2) either belongs
to O or it was added in one of the steps 1, 2(b), or 3 of its construction.
It is easy to see that, by following the same line of reasoning used for
Property (1), one can show that 〈Ψ0(e2),Ψ(e3)〉 ∈ Ψ0(e1)P .

• Property (3): let e1, e2 be two objects in ∆̄o
0 and v a value in ∆̄v

0 such
that 〈e2, v〉 ∈ eD̄0

1 . This means that e1(e2, e3) ∈ Chase0(O), where e1 is
an object property expression belonging to Expd and e3 is either a literal
in ΣLit such that v = eLS3 or e3 = v is a variable in S0

v . Thus, by definition,
Ψ0(e1) = eI1 . Now, notice that, by construction, e1(e2, e3) either belongs
to O or it was added in one of the steps 1 or 2(c) of its construction.

– Suppose that e1(e2, e3) ∈ O. Then, e2 ∈ Σi and e3 ∈ ΣLit. Hence,
Ψ0(e2) = eI2 and Ψ0(e3) = eLS3 = v. But then, since I is a model of
O, (Ψ0(e2),Ψ(e3)) ∈ Ψ0(e1)D.

– Suppose that e1(e2, e3) was added in step 1. Then, e1 = >d, e2 ∈ Σi,
and e3 ∈ ΣLit, and by definition of Ψ0, Ψ0(e2) = eI2 and Ψ0(e3) =
eLS3 = v. But then, since I is a model of O, (>Id )D = {o | oI =
true} ×∆v and (eI2 )I = true, which proves that 〈Ψ0(e2),Ψ(e3)〉 ∈
Ψ0(e1)D.

– Suppose that e1(e2, e3) was added in step 2(c). Then, e1 = d,
e2 = γd, and e3 = v = wd, where e1 ∈ Σd and γd ∈ S0

o , wd ∈ S0
v ,

and O ∪ {d vc ¬d} is unsatisfiable. Then, by definition of Ψ0,
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Ψ0(e2) = o, and Ψ0(e3) = w, where 〈o, w〉 ∈ (dI)D, which proves
that 〈Ψ0(e2),Ψ(e3)〉 ∈ Ψ0(e1)D.

• Property (4): let e be an object of ∆̄o
0 and v a value in ∆̄v

0 such that v ∈ eT̄0 .
This means that e(e2) ∈ Chase0(O), where e1 is a datatype expression
belonging to Expt. In fact, by construction, e(e2) can only be added to
Chase0(O) in step 2(c), where e = rdfs:Literal and e2 = v = γd, where
d ∈ Σd, O ∪ {d vc ¬d} is unsatisfiable, and γd ∈ S0

o . Then by definition
of Ψ0, Ψ0(e2) = w where 〈o, w〉 ∈ (dI)D, for some o ∈ ∆o. Also, since I
is a model of O, (rdfs:LiteralI)T = ∆v and w ∈ ∆v, which proves that
Ψ0(e) ∈ Ψ0(e)T .

Inductive step. Let k be the number of rules whose application leads
to Chasek(O) and suppose that Ψk is an instance-based homomorphism from
Cank(O) to I. Then, suppose that a new chase rule is applied to get
Chasek+1(O). We have to show how to define Ψk+1 and prove that it is an
instance-based homomorphism from Cank+1(O) to I.

We define Ψk+1 = Ψk ∪Ψ′, where Ψ′ is the part of Ψk+1 taking care of the
new variables possibly introduced in Sk+1

o ∪Sk+1
v . Note that, since by applying

rules (1-5,7,9-11) no new variable is introduced, Ψ′ 6= ∅ only if the (k + 1)-th
rule is either (6) or (8).

• Suppose that the (k+ 1)-th rule is (1). In particular, suppose that c1(i1)
∈ Chasek(O), c1 vc c2 ∈ Chasek(O), and c2(i1) /∈ Chasek(O). Then,
by applying rule (1), c2(i1) is introduced in Chasek+1(O), and hence the
only difference between Cank and Cank+1 is that i1 /∈ cC̄k

2 , whereas i1 ∈
c
C̄k+1
2 .

Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, since c1(i1) ∈ Chasek(O) and since, by inductive
hypothesis, Ψk+1 is an instance-based homomorphism from Cank to I,
Ψk+1(i1) ∈ (Ψk+1(c1))C . On the other hand, since I is a model of O,
we know that I |= c1 vc c2, implying that Ψk+1(i1) ∈ (Ψk+1(c2))C , and,
hence, that Ψk+1 is an instance-based homomorphism from Cank+1 to I.

• Suppose that the (k+1)-th rule is (2). In particular, suppose that p1(i1, i2)
∈ Chasek(O), p1 vp p2 ∈ Chasek(O), and p2(i1, i2) /∈ Chasek(O). Then,
by applying rule (2), p2(i1, i2) is introduced in Chasek+1(O), and hence
the only difference between Cank and Cank+1 is that 〈i1, i2〉 /∈ pP̄k

2 ,
whereas 〈i1, i2〉 ∈ pP̄k+1

2 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, since p1(i1, i2) ∈ Chasek(O), and since, by induc-
tive hypothesis, Ψk is an instance-based homomorphism from Cank to I,
〈Ψk+1(i1),Ψk(i2)〉 ∈ (Ψk+1(p1))P . On the other hand, since I is a model
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of O, we know that I |= p1 vp p2, implying that 〈Ψk+1(i1),Ψk+1(i2)〉 ∈
(Ψk+1(p2))P , and, hence, Ψk+1 is an instance-based homomorphism from
Cank+1 to I.

• Suppose that the (k+1)-th rule is (3). In particular, suppose that d1(i1, l)
∈ Chasek(O), d1 vd d2 ∈ Chasek(O), and d2(i1, l) /∈ Chasek(O). Then,
by applying rule (3), d2(i1, l) is introduced in Chasek+1(O), and hence
the Cank and Cank+1 differ for the following. Let v = lLS if l ∈ ΣLit and
v = l, otherwise. Then, 〈i1, v〉 /∈ dD̄k

2 and v /∈ ρ(d2)T̄k , whereas 〈i1, v〉 ∈
d
D̄k+1
2 and l ∈ ρ(d2)T̄k+1 .

Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, since, by inductive hypothesis, Ψk is an
instance-based homomorphism from Cank to I, 〈Ψk+1(i1),Ψk+1(v)〉 ∈
(Ψk+1(d1))D. On the other hand, since I is a model of O, we know
that I |= d1 vd d2, implying that 〈Ψk+1(i1),Ψk+1(v)〉 ∈ (Ψk(d2))D, and
Ψk+1(v) ∈ (Ψk+1(ρ(d2)))T , and, hence, Ψk+1 is an instance-based homo-
morphism from Cank+1 to I.

• Suppose that the (k+ 1)-th rule is (4). In particular, suppose that d(i, l)
∈ Chasek(O), ρ(d) vt t ∈ Chasek(O), and t(l) /∈ Chasek(O). Then,
by applying rule (4), t(l) is introduced in Chasek+1(O), and hence the
only difference between Cank and Cank+1 is the following. Let v = lLS

if l ∈ ΣLit and v = l, otherwise. Then, v /∈ tT̄k , whereas v ∈ tT̄k+1 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, since, by inductive hypothesis, Ψk is an instance-
based homomorphism from Cank to I, Ψk+1(v) ∈ (Ψk+1(ρ(d)))T . On
the other hand, since I is a model of O, we know that I |= ρ(d) vt t,
implying that Ψk+1(v) ∈ (Ψk+1(t))T , and, hence, Ψk+1 is an instance-
based homomorphism from Cank+1 to I.

• Suppose that the (k+1)-th rule is (5). In particular, suppose that Ref(p) ∈
Chasek(O) and that there exists i ∈ Vi∪Sko such that p(i, i) /∈ Chasek(O).
Then, by applying rule (5), p(i, i) is introduced in Chasek+1(O), and
hence the only difference between Cank and Cank+1 is that 〈i, i〉 /∈ pP̄k ,
whereas 〈i, i〉 ∈ pP̄k+1 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, by inductive hypothesis, Ψk+1 is an instance-
based homomorphism from Cank to I. On the other hand, since I is a
model of O, we know that I |= Ref(p), implying that 〈Ψk+1(i),Ψk+1(i)〉 ∈
(Ψk+1(p))P , which proves that Ψk+1 is an instance-based homomorphism
from Cank+1 to I.

• Suppose that the (k+1)-th rule is (6). In particular, suppose that ∃p.c(i1)
∈ Chasek(O), and that no i exists such that c(i) ∈ Chasek(O) and p(i1, i)
∈ Chasek(O). Then, by applying rule (6), c(s) and p(i1, s) are intro-
duced in Chasek+1(O), where s is a new object variable introduced in
Chasek+1(O) such that Sk+1

o = Sko ∪ {s} and Sk+1
v = Skv .
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Let us now consider Ψk+1. We define it by extending Ψk, choosing an
appropriate object for Ψk+1(s), and we have to prove that all the instance-
based properties of Ψk+1 are preserved from Cank+1 to I. Since ∃p.c(i1)
∈ Chasek(O), we know that i1 ∈ (∃p.c)C̄k and, by inductive hypothesis,
Ψk(i1) ∈ (Ψk(∃p.c))C . Moreover, since I is a model of O, there exists at
least one object o in ∆o such that:

〈Ψk(i1), o〉 ∈ (pI)P and o ∈ (cI)C (∗).

Choose one such o, and set Ψk+1(s) = o. Since c(s) ∈ Chasek+1(O), we
have s ∈ cC̄k+1 , and since p(i1, s) ∈ Chasek+1(O), we have 〈i1, s〉 ∈ pP̄k+1 .
But then, from Ψk+1(s) = o, Ψk+1(c) = cI , Ψk+1(p) = pI , and (∗),
it immediately follows Ψk+1(s) ∈ (Ψk+1(c))C and 〈Ψk+1(i1),Ψk+1(s)〉 ∈
(Ψk+1(p))P , which is enough to prove that Ψk+1 is an instance-based
homomorphism from Cank+1 to I.

• Suppose that the (k+1)-th rule is (7). In particular, suppose that p(i1, i2)
∈ Chasek(O), c(i2) ∈ Chasek(O), and ∃p.c(i1) /∈ Chasek(O). Then, by
applying rule (7), ∃p.c(i1) is introduced in Chasek+1(O), and hence the
only difference between Cank and Cank+1 is that i1 /∈ (∃p.c)C̄k , whereas
i1 ∈ (∃p.c)C̄k+1 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, by inductive hypothesis, Ψk+1 is an instance-
based homomorphism from Cank to I. On the other hand, since I is a
model of O, we know that I |= p(i1, i2), and I |= c(i2), thus implying
that Ψk(i1) ∈ (Ψk(∃p.c))C , which proves that Ψk+1 is an instance-based
homomorphism from Cank+1 to I.

• Suppose that the (k+1)-th rule is (8). In particular, suppose that δ(d).t(i)
∈ Chasek(O), and that there exists no l such that t(l) ∈ Chasek(O), and
d(i, l) ∈ Chasek(O). Then, by applying rule (8), t(w), and d(i, w) are
introduced in Chasek+1(O), where w is a new value variable introduced
in Chasek+1(O) such that Sk+1

o = Sko and Sk+1
v = Skv ∪ {w}.

Let us now consider Ψk+1. We define it by extending Ψk, choosing an
appropriate value for Ψk+1(w), and we have to prove that all the instance-
based properties of Ψk+1 are preserved from Cank+1 to I. Since δ(d).t(i)
∈ Chasek(O), we know that i ∈ (δ(d).t)C̄k and, by inductive hypothesis,
Ψk(i) ∈ (Ψk(δ(d).t))C . Also, since I is a model of O, there exists at least
one value v in ∆̄v such that:

〈Ψk(i), v〉 ∈ (dI)D and v ∈ (tI)T (∗∗).

Choose one such v, and set Ψk+1(w) = v. To show that Ψk+1 is an
instance-based homomorphism from Cank+1 to I we have to show that
all instance-based properties of Cank+1 that involve w are preserved in
I. By construction of Chasek+1(O), since t(w) ∈ Chasek+1(O), we have
w ∈ cT̄k+1 , and since d(i, w) ∈ Chasek+1(O), we have 〈i, w〉 ∈ dD̄k+1 .
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But then, from Ψk+1(w) = v, Ψk+1(t) = tI , Ψk+1(d) = dI , and (∗∗),
it immediately follows Ψk+1(w) ∈ (Ψk+1(t))T and 〈Ψk+1(i),Ψk+1(w)〉 ∈
(Ψk+1(d))D, which is enough to prove that Ψk+1 is an instance-based
homomorphism from Cank+1 to I.

• Suppose that the (k+ 1)-th rule is (9). In particular, suppose that d(i, l)
∈ Chasek(O), t(l) ∈ Chasek(O), and δ(d).t(i) /∈ Chasek(O). Then, by
applying rule (9), p.c(i1) is introduced in Chasek+1(O), and hence the
only difference between Cank and Cank+1 is that i /∈ (δ(d).t)C̄k , whereas
i ∈ (δ(d).t)C̄k+1 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, by inductive hypothesis, Ψk+1 is an instance-
based homomorphism from Cank to I. On the other hand, since I is
a model of O, we know that I |= d(i, l), and I |= t(l), thus implying
that Ψk(i) ∈ (Ψk(δ(d).t))C , which proves that Ψk+1 is an instance-based
homomorphism from Cank+1 to I.

• Suppose that the (k + 1)-th rule is (10). In particular, suppose that
p−(i1, i2) ∈ Chasek(O) and p(i2, i1) /∈ Chasek(O). Then, by applying rule
(10), p(i2, i1) is introduced in Chasek+1(O), and hence the only difference
between Cank and Cank+1 is that 〈i2, i1〉 /∈ pP̄k , whereas 〈i2, i1〉 ∈ pP̄k+1 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, since, by inductive hypothesis, Ψk is an instance-
based homomorphism from Cank to I, 〈Ψk(i1),Ψk(i2)〉 ∈ (Ψk(p−1 ))P .
On the other hand, since I is a model of O, we know that ((p−)I)P =
((pI)P )−1, implying that 〈Ψk(i2),Ψk(i1)〉 ∈ (Ψk(p))P , and, hence, Ψk+1
is an instance-based homomorphism from Cank+1 to I.

• Suppose that the (k + 1)-th rule is (11). In particular, suppose that
p(i1, i2) ∈ Chasek(O) and p−(i2, i1) /∈ Chasek(O). Then, by applying
rule (11), p−(i2, i1) is introduced in Chasek+1(O), and hence the only
difference between Cank and Cank+1 is that 〈i2, i1〉 /∈ (p−)P̄k , whereas
〈i2, i1〉 ∈ (p−)P̄k+1 .
Let us now consider Ψk+1. Since no new variable is introduced, Ψk+1 =
Ψk. Hence, on one hand, since, by inductive hypothesis, Ψk is an instance-
based homomorphism from Cank to I, 〈Ψk(i1),Ψk(i2)〉 ∈ (Ψk(p1))P .
On the other hand, since I is a model of O, we know that ((p−)I)P =
((pI)P )−1, implying that 〈Ψk(i2),Ψk(i1)〉 ∈ (Ψk(p−))P , and, hence, Ψk+1
is an instance-based homomorphism from Cank+1 to I.
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