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Research and Applications
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ABSTRACT

Objective: To utilize, in an individual and institutional privacy-preserving manner, electronic health record (EHR)

data from 202 hospitals by analyzing answers to COVID-19-related questions and posting these answers online.

Materials and Methods: We developed a distributed, federated network of 12 health systems that harmonized

their EHRs and submitted aggregate answers to consortia questions posted at https://www.covid19questions.

org. Our consortium developed processes and implemented distributed algorithms to produce answers to a va-

riety of questions. We were able to generate counts, descriptive statistics, and build a multivariate, iterative re-

gression model without centralizing individual-level data.

Results: Our public website contains answers to various clinical questions, a web form for users to ask ques-

tions in natural language, and a list of items that are currently pending responses. The results show, for exam-

ple, that patients who were taking angiotensin-converting enzyme inhibitors and angiotensin II receptor block-

ers, within the year before admission, had lower unadjusted in-hospital mortality rates. We also showed that,
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when adjusted for, age, sex, and ethnicity were not significantly associated with mortality. We demonstrated

that it is possible to answer questions about COVID-19 using EHR data from systems that have different policies

and must follow various regulations, without moving data out of their health systems.

Discussion and Conclusions: We present an alternative or a complement to centralized COVID-19 registries of

EHR data. We can use multivariate distributed logistic regression on observations recorded in the process of

care to generate results without transferring individual-level data outside the health systems.

Key words: COVID-19, observational study, common data elements, electronic health record, regression analysis

INTRODUCTION

The COVID-19 pandemic represents a watershed event in public

health and has highlighted numerous opportunities and needs in

clinical and public health informatics infrastructure.1–3 One of the

key challenges is the rapid response of analyses and interpretation of

observational data to inform clinical decision-making and patient

expectations, understanding, and perceptions.4–8

Several initiatives are building COVID-19 registries or consortia

to analyze electronic health record (EHR) data.7 The expectation is

that these resources will provide researchers and clinicians access to

a rich source of observational data to understand the clinical pro-

gression of COVID-19, to estimate the impact of therapies, and to

make predictions regarding outcomes. Registries may contain lim-

ited data for patients diagnosed with COVID-19: the barriers to

having more data are based on both privacy concerns and on what

elements have been deemed valuable by health professionals and

researchers at a particular point in time. The problems with a new

and evolving disease like COVID-19 is that we do not know what

data or information will be most valuable. For example, in the pan-

demic’s early stages, the dermatological and hematological findings

were not evident, and those data were not included in registries or

reports.9 Interest in specific laboratory markers (eg, D-dimer, tropo-

nin) for these disturbances and additional medications (eg, antihy-

pertensive drugs) or phenotypes (eg, diabetes, blood type) has

increased over time.10–12 Additionally, it is challenging for research-

ers and clinicians to understand the structure and quality of the data

in data repositories, and to formulate queries to consult the data in

their institution and in others.

Thus, the utilization of EHRs to characterize COVID-19 disease

progression and outcomes is challenging. However, EHR data may

be useful when a randomized clinical trial cannot be conducted. Ob-

servational data may also help determine if results from a random-

ized clinical trial replicate after relaxing eligibility criteria for real-

world applications. While the scientific community has raised con-

cerns about the reproducibility of findings, data provenance, and

proper utilization of observational data, resulting in some COVID-

19 articles being retracted,13 there remains a clear need to responsi-

bly, ethically, and transparently analyze observational data to pro-

vide hypothesis generation and guidance in the pursuit of evidence-

based healthcare.

In this study, we focus on using novel decentralized data gover-

nance and methods to analyze EHR-derived data.

MATERIALS AND METHODS

Researchers’ questions posed in natural language are answered by

distributed data maintained in 12 health systems, covering 202 hos-

pitals located in all US states and two territories and one interna-

tional academic medical center (Table 1). This collaboration

provides the capability for comparisons with historical data from

over 45 million patients and uses a dynamic approach to account

for an evolving awareness of the most impactful COVID-19 ques-

tions to answer and hypotheses to explore. All sites have transformed

or are actively transforming data into the Observational Medical

Outcomes Partnership Common Data Model (OMOP CDM), but

some of them only use data from COVID-19 registry patients (ie,

do not transform the full EHR-based data warehouse), and others

only have the items required by the query in OMOP. The ability

to build and evaluate multivariate models across a large number

of health systems and integrate results from registries differentiates

our approach from most federated clinical data research network

approaches.

The development of our Q&A system involved the inclusion of

new concept codes in local repositories, agreement on concept defi-

nitions (eg, what constitutes a COVID-19 hospitalization, what

codes should be included in the definition of History of Coronary

Heart Disease, and how to map laboratory test records into LOINC,

for which we developed a mapping tool).14 Instead of a singular

control of a coordinating center, the R2D2 consortium allows par-

ticipating institutions to “own” the development and testing of

queries across various sites, which promotes a balanced division of

workload and increases the ability of individual sites to develop gen-

eralizable queries and manage responses with help from the whole

consortium. The translation of questions into code relies on mem-

bers of the Reliable Response Data Discovery for COVID-19

(R2D2) Consortium. The analyses performed on data transformed

into the OMOP CDM from relevant patient cohorts do not require

data transfer outside the participating institutions and reduce the

risk of individual or institutional privacy breaches. After a partially

automated quality control process, which is carefully reviewed by

multiple consortium members, only the results of calculations (eg,

counts, statistics, coefficients, variance–covariance matrices) are re-

leased from the healthcare institutions; no individual patient-level

data are shared.15

Workflow
Figure 1 shows our general workflow, including human interpreta-

tion and clarification of questions and human quality control of

answers, using graphs and related visualizations as much as possible.

The responsibility of the Lead Site—to create a template query for

all responding sites to use for rapid response—rotates among institu-

tions (ie, health systems). A more detailed workflow is illustrated in

Figure 2 using a swim-lane format with an emphasis on roles. The

Q&A process starts when a user creates a request through the public

website, https://covid19questions.org. Next, the data scientist at the

Consortium Hub verifies whether this question had been answered
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before and passes it on to the clinician at the Consortium Hub to as-

sess the feasibility (ie, if the received question is answerable from the

local data mart), who then assigns it to one of the 12 institutions as

a Lead Site. Throughout the whole process, the tracking system is

used to report an issue to assignees, respond to the issue, update the

code and results, and prompt to rerun the updated structured query

language (SQL). Next, another clinician at the Lead Site works

with the local database analyst to review and develop a concept

set. This is an iterative process within the Lead Site: to develop a

concept set, create SQL, generate results, and evaluate the results

against the EHR records, including chart reviews. The outputs of

the Lead Site-level process are a template query (.sql format) and a

template output (.csv format), which are uploaded to the shared

code repository.

Once 11 Responding Sites get notification e-mails about the tem-

plate query and format for the results, their database analysts will

run the template SQL to get preliminary results and review these

against their EHR data with clinicians. This part of the process is

where the Responding Site most frequently runs into errors and

challenges and requires troubleshooting. For example, when missing

concepts, like D-dimer or blood type (illustrated in Figure 3), are

discovered, the database analyst at the Responding Site creates an is-

sue in the tracking system and resolves this with the database analyst

and the clinician at the Leading Site. Since there are 11 Responding

Sites, this means the Lead Site coordinates the concept set and SQL

development through one-on-one sessions between the Lead Site

and Responding Site. Through this iterative process among 12 sites,

the concept set and SQL are continuously updated, improving their

sensitivity and specificity to identify the right patients and hospitali-

zation encounter records. This involves rewriting and updating

existing extract-transform-load (ETL) scripts to map source EHR

data to target the common data model (CDM, which in our case is

the Observational Medical Outcomes Partnership, OMOP).16 The

institutions with the same EHR system or database management sys-

tem share common experience and knowledge to help each other de-

velop ETL scripts together and evaluate the OMOP query results

against EHRs.

When all Responding Sites have uploaded their site-level results,

the data scientist at Consortium Hub merges these results into a sin-

gle file. A generic and extensible format for site-level summary result

is used to answer general epidemiology and clinical research ques-

tions (Figure 4). Then a data quality check is conducted. While use of

a CDM in a large clinical data research network is a widely used ap-

proach to enable interoperable query development, a query formu-

lated in 1 institution may not return accurate results in another due

to variations in data integration and data quality differences. Several

rounds of confirmations and checks with data analysts and clinical

informaticians at each institution are often necessary to answer ques-

tions with confidence. There are many potential sources of errors,

and Table 2 displays selected examples of data quality checks. The

check types are based on the PEDSnet framework17 and revised to fit

our project’s specific needs. The data scientist resolves issues together

with the Lead Site and the Responding Site. When the aggregate

results pass the quality control test, the Consortium Hub clinician

conducts the final review to ensure its clinical relevancy. During

several rounds of code releases and responses among the Lead

Site and the Responding Site, database developers rewrite their ETL

scripts to increase the accuracy of the query results. Finally, if the cli-

nician approves the release of the result, the data scientist uploads the

answer to the public website (https://covid19questions.org), notifies

the requestor via an e-mail, and this completes the workflow. Quality

improvement-related steps and data visualization are either semiauto-

mated or manually conducted. ETL refresh, initial data quality check,

and data aggregation are automated with scheduling scripts.

Federated regression
In addition to count queries, we also applied Grid Binary LOgistic

REgression (GLORE)15 to compute the effect of the exposure vari-

Table 1. Participating sites: Cedars Sinai Medical Center (CSMC), University of Colorado Anschutz Medical Campus (CU-AMC), Ludwig Max-

imilian University of Munich (LMU), San Mateo Medical Center (SMMC), University of California (UC) Davis (UCD), Irvine (UCI), San Diego

(UCSD), San Francisco (UCSF), University of Southern California (USC), University of Texas Health Science Center at Houston and Memo-

rial Hermann Health System (UTH), Veterans Affairs Medical Center (VAMC)

Institutionb Hospitals Beds Discharges per year EHR system Data source

CSMC 2 1019 61 386 Epic EHR

CU-AMC 12 1829 106 325 Epic EHR

LMUa 12 1964 78 673 SAP/i.s.h.med

QCare IMESO

COVID-19 Registry

SMMC 1 62 1951 Harris Software

(Pulsecheck)

Cerner (Soarian)

eClinicalworks

EHR

UCD 1 620 32 248 Epic EHR

UCI 1 417 21 656 Epic EHR

UCLA 2 786 47 491 Epic EHR

UCSD 3 808 29 895 Epic EHR

UCSF 3 796 48 120 Epic EHR

USC 2 1511 23 454 Cerner EHR

UTH 17 4164 233 890 Cerner COVID-19 Registry

VAMC 146 13 000 676 402 ViSTa/CPRS EHR

Total 202 26 976 1 361 491

aAvailable data on hospital characteristics from 2018.
bTwo additional sites joined the consortium and will begin answering queries in 2021.
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able on the outcome, adjusted for confounders, without sharing

patient-level data, as this would increase the risk for a privacy

breach. We rewrote the Newton-Raphson method to find the maxi-

mizer of the likelihood function of the parameters in logistic regres-

sion for horizontally partitioned datasets. Since the first and the

second derivatives of the log likelihood functions are separable (ie,

they can be partially calculated at each site), in each Newton-

Raphson iteration, each client institute calculated a (pþ1) dimen-

sional vector of parameters, where p is the number of features in the

model such as age, sex, and race and a (pþ1) by (pþ1) variance-

covariance matrix; then JSON files containing these two objects are

sent to the Consortium Hub. At each iteration, the Consortium Hub

automatically updates the global coefficient vector and the variance-

covariance matrix and sends them back to the clients.

RESULTS

Between 12/11/2020 and 8/31/2020, our consortium had 928 255

tested patients for SARS-CoV-2, 59 074 diagnosed with COVID-19,

with 19 022 hospitalized and 2591 deceased. Our public questions

and answers portal (https://covid19questions.org) provides answers

to research questions using several univariate or multivariate analy-

ses, including potential associations between mortality and comor-

bidities; prehospitalization use of medications; laboratory values;

and hospital events.

For each question, we report on the number of participating

institutions and the time period within which local queries were run.

Figures 4–6 illustrate the answers.

Example 1. “Many adult COVID-19 patients who were hospital-

ized did not get admitted to the ICU and were discharged

alive. How many returned to the hospital within a week, either

to the emergency room or for another hospital stay?” This question

is important both from the standpoint of understanding the natural

course of disease and planning for needed resources. Although

efforts are underway to understand postdischarge outcomes in

COVID-19 infected patients, to date they have been limited to case

series,18 modest sample sizes,19 or single-center or geographically

concentrated health systems.20 These extant studies may also be

hampered by fixed inclusion/exclusion criteria.21

Example 2. “Among adults hospitalized with COVID-19, how

does the in-hospital mortality rate compare per subgroup (age, ethnic-
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Figure 1. What happens behind the scenes: from questions to answers. The workflow of the question-answer system is shown in 5 steps. Step 1. Users access a

public web portal and post a new question if they cannot find a posted answer. Step 2. The questions get triaged to a Consortium Hub clinical informatician who

determines their general interest and assigns the edited version of the question to a Lead Site. Step 3. At the Lead Site, the clinical informatician and the database

analyst work together to create concept sets, design a query, and check local results. Step 4. The Responding Site runs the released structured query language

(SQL) code and uploads its results to the Consortium Hub. During this step, the clinical informatician and the Responding Site data analyst adjust the concept set,

inclusion logic, and database query code in SQL for local implementation; obtain and quality control the site-level results; and submit results to the Consortium

Hub. Step 5. The Consortium Hub aggregates the site-level results, generates the visualizations, and posts the answer on the web portal.
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ity, sex, and race)?” The answers from univariate analyses indicate

that age, ethnicity, and sex are significant. A distributed logistic regres-

sion (Figure 6) shows, among these, that only age is significant. There

is great interest and growing peer-reviewed literature on risk factors

for COVID-19 mortality; the agility of our approach allows us to

quickly rerun queries and rebuild models as new predictors become

relevant and the understanding of the disease evolves.20,22,23

Cohort and concept set
As questions frequently refer to the same subsets of patients, we de-

veloped electronic cohort definitions that facilitate our answers. We

followed the US Centers for Disease Control and Prevention (CDC)

guideline24 and the National COVID-19 Cohort Collaborative25

and Observational Health Data Sciences and Informatics (OHDSI)

approaches26 to develop a cohort of hospitalization encounters for

Figure 2. Swimlane diagram. A Q&A process flow starts from a user entering a request and ends with the user receiving e-mail notification about a response. At

the Consortium Hub, the data scientist is responsible for aggregating site-level results and for data quality checks. The clinician at the Consortium Hub is respon-

sible for feasibility assessment of the question, triaging to a Lead Site, and for the approval of the aggregate answer. At the Lead Site, the clinician reviews the

assigned question text and works with the database analyst to translate the question into SQL and ensure the results are clinically relevant. The database analyst

at the Lead Site writes the SQL code, runs it, verifies the results, and releases the code to the Consortium Hub. At the Responding Site, the database analyst runs

the Lead Site’s SQL code, reviews the results together with local clinicians, and uploads the site-level results to the Consortium Hub through an iterative process

of ETL update, local data mapping, and concept set development led by the Lead Site.
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COVID-19 as a base for all inpatient questions. Through an iterative

process among multiple sites, we developed a canonical SQL whose

results match with that of the ground truth cohort definition. The in-

tersection of the R2D2 canonical SQL, the private reference (ie,

EHR- or registry-based) and the universal reference (ie, a positive

polymerase chain reaction test for SARS-COV-2) was maximized

for existing and new sites.

Figure 3A displays the electronic phenotyping of adults

hospitalized with COVID-19 derived by the canonical SQL and

stored procedure SQL scripts. Hospitalization encounters were iden-

tified by using the following concepts stored in the OMOP

<VISIT_OCCURRENCE> table: Emergency Room and Inpatient

Visit (Concept Id 262), Inpatient Visit (Concept Id 92021) or Inten-

sive Care (Concept Id 32037). To enter the COVID-19 hospitaliza-

tion cohort, all four inclusion criteria needed to be met:

1) a minimum age of 18 years at the date of hospitalization,

2–3) a hospitalization without a length of stay requirement on or

after January 1, 2020, and

4) at least 1 occurrence of

a. a positive viral test for SARS-CoV-2, or

b. a COVID-19 related diagnosis between the interval of 21 days

prior to hospitalization and hospital encounter discharge.

The following concepts of the OMOP <MEASUREMENT> ta-

ble for the definition of a positive viral test for SARS-COV-2 were

used:

1. the occurrence of the precoordinated measurement concept

(Concept Name: 2019 novel coronavirus detected, Concept Id:

37310282), or

2. the occurrence of at least one concept for a SARS-CoV-2 viral

test (eg, Concept Name: SARS-CoV-2 (COVID19) RNA [pres-

ence] in respiratory specimen by NAA with probe detection,

A

B

Figure 3. Cohort definition and concept set development. Defining a cohort of patients that is frequently used to answer questions helps us reuse code. In this

example, defining the cohort of patients hospitalized with COVID-19 involves use of SARS-CoV-2 test results or diagnosis codes (A). In (B), we illustrate how a lab-

oratory test is defined differently at two sites and how blood type had yet to be harmonized into OMOP at one site.
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Concept Id: 706163) and at least one value_as_concept_id for

a positive result (eg, Concept Name: Positive, Concept Id:

45884084).

For identification of COVID-19 related diagnoses, we included

the following ICD-10-CM Codes: Other coronavirus as the cause of

diseases classified elsewhere (B97.29), COVID-19, virus identified

(U07.1), Pneumonia (J12.89), Acute Bronchitis (J20.8), Lower

Respiratory Infection (J22, J98.8), and Acute Respiratory Distress

Syndrome (J80). Following 2 ICD-10-CM Official Coding and

Reporting Guidelines released by CDC before and at/after April 1,

2020, we used diagnosis code aggregations to define a COVID-19

related diagnosis. An illness due to COVID-19 was specified if 1

of the ICD-10-CM codes (J12.89, J20.8, J22, J98.8, J80) was

recorded in combination with either B97.29 (before April 1, 2020),

or in combination with U07.1 (on/after April 1, 2020). These

joint diagnosis codes needed to occur during the same hospitaliza-

tion encounter, with a look back period of 21 days prior to hospital-

ization. We applied the same logic for mapped SNOMED concepts

(261326, 260139, 4307774, 256451, 4195694, 320136, 4100065,

37311061). More ICD codes are detailed in Table 3. Precoordinated

diagnoses codes (SNOMED, OMOP Extension) are shown in

Supplementary Tables 1–3. Refinement of phenotypes was guided

by chart review.

Use cases of concept set are shown in Figure 3B. As the Respond-

ing Sites’ OMOP databases are not accessible to the Lead Site, a
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query developed at the Lead Site might miss a concept used in other

sites. In such a case, the database analyst at the Responding Site

notifies the Lead Site by creating a GitHub issue, with zero or unex-

pectedly low count or proportion in the results generated by the ini-

tial template query authored by the Lead Site. For example, in

Figure 3B, during the Concept Set development for the quantitative

laboratory measurement D-dimer, the responding site notified the

Lead site about using another concept for D-dimer, (Concept ID:

3048540 instead of Concept ID: 3051714), returning values with a

different measurement unit than the ones of the Lead Site (n/L in-

stead of mg/L). Therefore, the Lead Site had to add the missing con-

cept to the Concept Set and implemented logic to cover a

measurement unit transformation. In the case of the Concept Set de-

velopment for blood type, a responding site was missing concepts

for blood type in its local OMOP CDM database. An ETL script

was implemented to map EHR data to OMOP CDM. Sources of dis-

crepancy were diverse; examples included unit differences in mea-

surement values, differently mapped concepts, and noncompliance

to the coding guideline. All SQL codes and concept sets for an-

swered questions are publicly available from the GitHub repository:

https://github.com/DBMI/R2D2-Public. The public repository is

updated whenever a new question and its answer get posted on the

public website. The similarities and the differences of our approach

to other consortia are detailed in the Supplementary Material.

Supplementary Figure 1 shows the screen shot of the real exam-

ple JSON file used during the GLORE run to answer the in-hospital

mortality question. No patient-level information was shared or

transferred between institutions. All clients repeatedly sent the

updated JSON file to the Consortium Hub until the estimates stabi-

lized or reached a predefined number of iterations. To enhance the

security, the Consortium Hub server allowed (ie, “white listed”)

only the preregistered IP addresses of client machines and opened

the port only during the scheduled time window.

Several other questions and answers are shown in the portal. A

novel governance structure (Figures 1 and 2) allows us to distribute

the workload across various teams without relying on a traditional

coordinating center, instead including a Consortium Hub. This ap-

proach keeps patient data in-house, simplifies data use agreements,

avoids delegation of control of patient data to another institution,

and allows any institution to benchmark its results to those pro-

duced by the consortium, since all questions and respective final, ag-

gregated answers, database query code, concept definitions, and

analytics code are made public. It complies with HIPAA,27 the Com-

mon Rule,28 the GDPR,29 and the California Consumer Privacy

Act30 with regards to handling of patient data. Code sharing and

public answers promote transparency and reproducibility without

disclosing patient or institutional information.

DISCUSSION

Our approach is practical and generalizable: The network can be

repurposed to any other disease of interest, as it is not based exclu-

sively on data elements deemed relevant for COVID-19. Because pri-

vacy protection is at the core of our network, a wide range of

institutions can participate. We provide a rapidly deployable and re-

producible alternative or complement to centralized registries of

EHR data that allows healthcare institutions to stay in control of their

data.

This study has advantages but also some limitations. The advan-

tages are that we can, in relatively short time, publicly post answers,

using data from a spectrum of institutions with different levels of in-

formation technology baselines and expertise in standardized data

models and vocabularies, institutional policies, and state and federal

regulations. Because we keep data locally and only consult data ele-

ments that are necessary to answer specific questions, this approach

has a very low risk of privacy breach. However, for this reason, our

approach does not provide answers in real time. We made this prac-

tical decision to quickly collect aggregate counts and statistics near

real time within existing institutional policies and OMOP imple-

mentation to meet the clinical need of a rapidly spreading pandemic

while preserving patient privacy. A real-time query with a fully auto-

mated process would be ideal, but this necessitates a long process of

Table 2. Data quality checks and issues. Different data quality check types are enumerated together with real issues identified with this

COVID-19 project

Check Type Example of data quality issue

Date/time reversal A condition/observation was recorded after discharge date

Extreme outlier The hospital length of stay was greater than 80 days. The median length

of stay ranged between 11 and 15 days in China and US studies

Gaps in data transformation Discharge disposition and ICU departments were not transformed to

OMOP

Loss of granularity during mapping Invasive and noninvasive mechanical ventilation mapped to the same

concept

Impossible events Multiple death events occurred in different time points from multiple

hospital encounters

Noncompliance to the output format Header was missing in the predefined output .csv format, missing col-

umns, shifted columns, and duplicate rows

Unexpected proportion The percentage of current smokers was 65% at a certain site. The na-

tional percentage of smoking was 15.6% among male adults in 2018

US CDC data

Unexpected zero count The number of patients who were taking any antihypertensives was zero

Unmatched group sum The total sums of patient count in age groups and race groups were dif-

ferent even when all cell counts were greater than 10

Version mismatch The version of the template query was revised after the query result was

uploaded
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interinstitution agreement, amendments to the institutional policies,

and a complete harmonization of EHR data across all sites. The use

of OMOP CDM data is dependent on recurring ETL processes on

each site, which presents a challenge to presenting real-time data.

Additionally, as opposed to registries that typically focus on a single

disease or condition, we have comparator data from other patients.

Institutional privacy is also preserved because all public answers

combine the aggregate data from at least three Responding Sites.

Making concept definitions, query code, and results publicly avail-

able enhances reproducibility. A major advantage is that existing

registries or consortia can serve as additional sites to help answer

certain questions. However, the limitations are inherent from con-

Figure 5. Examples of 2 COVID-19 questions and answers: return to hospital and mortality. (A) 8.6% of hospitalizations without an ICU admission resulted in the

patient presenting to the emergency room or a hospital readmission within 7 days (data from 10 health systems). (B–E) Unadjusted mortality rates from aggre-

gated results are shown with 95% confidence intervals (data from 10 health systems). Univariate analyses indicate that lower age, Hispanic ethnicity, and female

sex (as recorded in the EHR) are associated with lower mortality for adult hospitalized COVID-19 patients.
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sidering all sites equal when formulating a final answer, as regional

or institutional practice variations are not represented in the

answers. Additionally, the distributed nature of the consortium adds

a requirement for educating some system leaders on distributed ana-

lytics. A specific limitation of our current consortium is the prepon-

derance of institutions based in California: 67%, or 17.5% of

COVID-19 patients. This was a convenience sample of organiza-

tions that had a history of collaboration. We are currently adding

two new large health systems. One system is in the Northeast United

States, and another is in the Southeast. To display changes over time

and to help users compare our results to public results, new SQL

code has been developed. Additionally, the increasing use of auto-

mated stored procedures will help reduce the manual process.

We believe that our Covid-19 Clinical Data Consult is a tool

for achieving rapid and robust responses to COVID-19 questions

submitted by the public or by researchers. We can achieve those

goals by combining a transparent, privacy-preserving code-sharing

workflow with the use of harmonized distributed data. A vision

for the future in which there is convergence of data services would

include interoperability with other efforts, including federated mul-

tivariate analyses across different consortiums (eg, R2D2, 4CE, and

N3C).

CONCLUSION

Instead of centralizing data at the Consortium Hub, we focus on inter-

preting and clarifying the research questions in order to determine the

data elements required. Our teams analyze these data elements to gen-

erate aggregate statistics at the multiple institutions, documenting the

specific version of SQL code executed at a specific time point to gener-

ate their answers. In addition to basic counts and proportions to ad-

just for confounders, we use distributed multivariate analyses to

estimate risk-adjusted odds ratios. This is done in a synchronized fash-

ion for iterative federated algorithms, such as one previously reported

for building a logistic regression model. We have shown previously

that a model obtained this way is identical to one built using data that

are centralized in a single location. We made SQL codes, cohort defi-

nitions, and concept sets publicly available at https://github.com/

DBMI/R2D2-Public. We invite other institutions, consortia, and regis-

tries worldwide to join us at https://covid19questions.org.

A

B

Log Odds Ratio
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9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
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Figure 6. Regression results. (A) Adjusted effects from the Grid binary LOgistic REgression (GLORE) (15) federated logistic regression model (3146 patients from

8 health systems). The baselines were SEX¼female, RACE¼white, ETHNICITY¼non-Hispanic. AGE (in years) was divided by 100. After adjustment via distributed

logistic regression, AGE remains significant. (B) Results from local logistic regression performed at two sites are also shown for comparison with GLORE results.
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