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Abstract: Wireless sensor networks (WSNs) are composed of a large number of sensor nodes that are deployed at target
locations. Topology control (TC) is one of the significant fundamental challenges in WSNs because of node energy and
computing power constraints. TC algorithms try to produce reduced topology by preserving network connectivity. This study
presents a novel TC algorithm based on binary Grey wolf optimisation. It uses the active and inactive schedules of sensor
nodes in binary format as well as introduces fitness function to minimise the number of active nodes (ANs) for achieving the
target of lifetime expansion of the nodes and network. The proposed algorithm is compared with other TC algorithms. The result
reduces a minimum of 10% of ANs and energy consumption by 6.84%. The proposed approach also gives maximum coverage
and connectivity. The designed fitness function also benefits in the process of selecting a node with low residual energy to join
the active topology. The standard deviation in the remaining energy for the proposed algorithms is lower than the other TC
schemes.

1 Introduction
Wireless sensor networks (WSNs) have a large number of
applications in the Internet of things and machine-to-machine
communication along with several others such as environment
monitoring, forecasting, traffic control, object tracking, security
health care [1]. The diversity of these evolving applications
represents the great success of this technology.

Nevertheless, the computation, storage, communication, energy
resources, and capabilities are the limitations of WSN [2]. For
addressing some of these issues, numerous solutions have been
suggested in the literature. In the recent past, lots of efforts have
been taken in designing energy-efficient WSNs with proficient
packet delivery and data recovering models. By using optimum
topology and well-connected nodes in the underlying network, the
routeing process, as well as the lifetime of the network and nodes
can be improved.

Moreover, change in the nodes’ transmitting range and
adjustment in its active and inactive schedules can change the
network topology. Optimisation of network topology results in
energy conservation and leads to network longevity. Deployment
of high-density sensor nodes can achieve this dynamic feature, as a
retrieval plan for the apparent failure of some of them [3].

Topology control (TC) in a sensor network is an iterative
process and has two phases. The first phase is topology
construction that builds the reduced topology, whereas the second
phase of topology maintenance changes the reduced topology by
considering parameters such as residual energy, timeout period, and
other parameters. In reduced topology, one can control radio power
to accomplish optimised topology, whereas, in the maintenance
phase, the topology can be reconfigured as per the schedule of
active and inactive nodes. Graph of the initial stage of WSN with
high connectivity between the nodes is shown in Fig. 1a, which
guarantees high coverage and connectivity almost all the time. 
However, there is a high possibility of the existence of interference
and collisions during the involvement of many nodes in conveying
and receiving data simultaneously [4]. Besides, sink node, as well
as intermediate nodes, will be receiving large redundant data from
nearby nodes that results in rapid energy loss, and hence curtail the

network lifetime. Interference and collisions also affect data
throughput and network performance.

To overcome these drawbacks, topology restructuring is
essential, and it can be done by establishing a communication
backbone that connects the whole network through the few selected
nodes. Reduced topology generated by executing a topology
construction algorithm is shown in Fig. 1b. In the topology
maintenance phase, only active nodes (ANs) will trigger their
transceiver while other nodes will go into sleep mode. An efficient
and optimised TC algorithm plays a crucial role in data
transmission and routeing while protecting connectivity and
coverage.

Although researchers have already reported some TC
mechanisms, the optimal use of ANs for enhancement of network
lifetime and its reliability is still a challenging and open issue. In
this paper, we present a novel algorithm for network optimisation,
primarily focusing on TC. The developed algorithm is based on
binary Grey wolf optimiser, and it minimises the number of ANs in
the WSNs and also the overall energy consumption. It produces the
reduced topology with lesser number of ANs, without
compromising the network performance.

The remaining structure of this paper is organised as: Section 2
presents a literature study related to network TC techniques, while
Section 3 describes the continuous and binary format of Grey wolf
optimisation (GWO). Section 4 presents the proposed binary GWO
for TC (BGWOTC). Section 5 discusses results and performance
analysis, whereas this paper is concluded in Section 6.

2 Literature review
The A3 algorithm proposed in [5] for topology construction is a
rising tree-based algorithm based on the concept of distance among
the nodes, and remaining energy is the metric. The tree is generated
by starting with the sink node and then successively nodes with
minimal degree neighbours are selected for creating
communication backbone. In the process of node selection, one-
hop neighbour nodes communicate locally for activation decision
because of priority in the metric list. The improved A3 algorithm
A3Cov [6] uses sensing range to provide the coverage. It inherits
the non-localised and reasonable way of producing a connected
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backbone and includes additional nodes to generate coverage
solution. A3Cov provides better coverage and network lifetime
than A3 at the cost of increased energy consumption. Connected
dominating set (CDS) Rule-K topology construction algorithm in
[7] is distinct from the original CDS-based algorithms [8] that
generate communication backbone by combining, marking, and
snipping rule. A3 and CDS algorithm uses received signal strength
indicator and residual energy of the receiver node as metrics.
Energy-efficient CDS algorithm [9] follows a different procedure
that of the A3. It creates multiple maximal independent sets (MISs)
of CDS tree and then the choice of proper MIS is made for
generating optimal communication backbone. Local minimum
spanning tree (MST) uses the same approach as of k-local MST,
and it is wholly distributed TC algorithm [10]. Simulated annealing
algorithm is used to convert local MST into an MST with degree
constraint [11, 12]. Addition of one or more constraints to the
fundamental MST problem changes it to a multi-objective problem,
which is the nondeterministic polynominal time-hard problem.

Swarm intelligence plays a crucial role in adaptive TC and
sensor deployment due to the resemblance of the nature of swarm
intelligence and WSNs routine. Glowworm swarm optimisation-
based wireless sensor deployment [13] scheme shows improvement
in coverage after the initial placement. Every sensor node in a
network is treated as individual glowworms, whereas the intensity
of the firefly is nothing but distance between the sensor node and
its neighbours. Sensor deployment by this approach achieves
maximum coverage with restricted movement of the sensor nodes.
Particle swarm optimisation (PSO)-based algorithm [14] is
proposed to achieve optimal solutions such as minimising energy
consumption for global connectivity. The simulation result shows
that it performs better than the conventional MST algorithms. To
address the issue of the existence of high connectivity and low
coverage in conventional methods, optimised MST TC using PSO
is proposed [15]. It converges to the reduced topology evenly with

lower-energy consumption and has a robust structure. However, the
time complexity is very high. PSO TC algorithm for WSNs for
dynamic adjustment of transition radius between the nodes [16]
achieves the lesser average number of neighbours and the energy
consumption.

Vertex sort TC (VSTC) algorithm [17] adjusts the transition
radius of nodes. A location of each node is used and characterised
in a binary system to augment the coverage area and decrease the
quantity of ANs. Swarm intelligence-based modified bat
optimisation algorithm [18] is used to determine the accuracy of
node localisation problem in WSNs. It increases the localisation
success ratio and achieves fast convergence. TC is considered as a
multi-objective – constrained MST problem, and the discrete
version of PSO is used for generating optimal topology schemes.
Discrete PSO and local MST-based topology scheme are
introduced in [19]. Distance between nodes, coverage of each edge,
and residual energy are considered to reduce the topology. GWO
[20] is one of the most recent bio-inspired optimisation methods; it
mimics hunting procedure of a pack of Grey wolves. It has
effective imitation more than hunting in the pack and can be used
in network optimisation.

A three-level hybrid clustering routeing algorithm based on the
GWO is used in [21]. A centralised cluster head is selected in level
one, whereas GWO-based routeing is performed in level two.
Distributed clustering based on a cost function is proposed in level
three. The proposed algorithm performs better than other well-
known algorithms in terms of network lifetime, stability period,
and residual energy. Being new metaheuristic approach, not much
research is addressed in the literature on the use of GWO and
BGWOTC in WSN.

3 Grey wolf optimisation
Generally, Grey wolves choose to reside in a group. Average group
size is 5–12. They have extremely strict regulations in the leading
social hierarchy. In a Grey wolf group, wolves are categorised as
alpha (α), beta (β), omega (ω), and delta (δ). Here α, generally a
pair of wolves leads the pack and liable for making decisions and
hunting. Decisions of α wolves are communicated to the group. βs
are secondary wolves; they assist in judgement building or added
actions to the αs. βs are possibly the pre-eminent candidates to be
α. Here, β wolf respects the α but rules the other lower-level
wolves as well. β fortifies α’s orders all over the pack and provides
feedback to α. Here, ω wolves are nothing but scapegoats in the
group. They have to capitulate to the remaining leading wolves. ωs
belong to final layer of wolves that are permitted to eat. Here, δ
wolves have to follow to αs and βs; however, they rule ω.
Detectives, guards, elders, seekers, and wardens belong to this
class. Detectives watch the margins of the terrain and inform the
group if some risk. Guards shelter and guarantees the security of
the group. The proficient wolves, those who were α or β, are
seniors. Hunters assist the αs and βs in hunting prey and providing
food for the group. Finally, the wardens are accountable for helping
the fragile, sick, and wounded wolves in the group.

3.1 Mathematical model for continuous GWO

In GWO, there are three prime solutions, namely α, β, and δ.
Solution α is derived from α wolves and is the best solution, while
β and δ solutions are from β and δ wolves, treated as second- and
third-best solutions, respectively. All other solutions are considered
to be ω solutions that are evolved from ω wolves. Hunting in the
pack is directed by α, β, δ, and ω trail these three candidate
solutions. The first step in the hunting process is encircling the
prey, and it can be modelled as

S̄ t + 1 = Sp t − Ū ⋅ V̄ (1)

V̄ = W̄ ⋅ Sp t − S̄ t (2)

where S is the location of a Grey wolf, SP is the location of prey, t
is the iteration number, and V̄ is the distance vector. Ū and W̄ are
coefficient vectors given by

Fig. 1  Initial stage of WSN with high connectivity between the nodes
(a) Original network, (b) Reduced topology
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Ū = 2k ⋅ r̄1 − k (3)

W̄ = 2 ⋅ r̄2 (4)

where k is linearly reduced from 2 to 0 during the consecutive
iterations, and r̄1, r̄2 are the random vectors in [0, 1]. Here, α
generally leads the hunt. Occasionally, the β and δ wolves also
contribute to hunting. To imitate the hunting nature of Grey wolves
mathematically, α (best candidate solution), β (second-best
candidate solution), and δ (third-best candidate solution) are
expected to have improved information regarding the possible
position of prey. The first three most excellent candidate solutions
attained so far are saved and communicated with the other hunt
managers, together with ωs for updating their locations concerning
the location of the best hunt managers. For updating the wolves
location, we have

S̄ t + 1 = S1 + S2 + S3

3 (5)

S1 = S∝ − U1 ⋅ V∝ (6)

S2 = Sβ − U2 ⋅ Vβ (7)

S3 = Sδ − U3 ⋅ Vδ (8)

where S1, S2, and S3 are the first three best solution candidates in the
group at a given iteration t. U1, U2, and U3 are as defined in (3), and
V∝, Vβ, and Vδ are position vectors defined as

V∝ = W1 ⋅ S∝ − S̄ (9)

Vβ = W2 ⋅ Sβ − S̄ (10)

Vδ = W3 ⋅ Sδ − S̄ (11)

where W1, W2, and W3 are as given in (4). The parameter k controls
the trade-off between the searches for prey (exploration) and
converges while attacking prey (exploitation) in successive
iterations. To update parameter k linearly in each iteration [19] with
the range from 2 to 0 can be written as

k = 2 1 − t
T (12)

where T is the total number of iterations allowed for the
optimisation. Grey wolves diverge from each other during
exploration and converge during the exploitation process. The
choice of k speeds up the algorithm to move toward the best
candidate solution. Ū can be used to decide divergence or
convergence as given:

Ū > 1 enforces divergence and moves to find the next better
position.
Ū < 1 enforces convergence and updates the position as the best
solution.

The objective function for GWO mainly focuses on finding the
optimal solution say x in the particular search space as represented
by

minimise f x , x = x1, x2, x3, …, xn ∈ Rn (13)

where n is the number of dimensions contained in a solution.
x ∈ F ∈ S, where F is the feasible region in the search space S,
which defines an n-dimensional rectangle R. The domain size for
rectangle R is lb i ≤ x i ≤ ub i . lb and ub are lower and upper
bounds, respectively. Constraints in the feasible region can be
given as

gj x ≤ 0, for j = 1, 2, …, r (14)

hj x = 0, for j = r + 1, …, m (15)

If any solution x satisfies the constraint gj or hj in region F, then gj
is considered to be an active constraint at x.

3.2 Binary GWO

The wolves in continuous GWO (CGWO) change their positions in
the space continuously. The solutions of active or inactive nodes in
WSN are constrained to the binary {0, 1} values that induce an
additional form of the CGWO, called as BGWO. A group of binary
form solutions at any given time are generated. We propose the use
of the enhanced version of the CGWO, along with BGWO for the
topology construction. For such approach, the pool of solutions
will always be in binary format, and every solution will be on the
corner of a hypercube [19].

The locations of a given wolf are updated according to the
CGWO strategy while keeping the binary representation based on
(16). To crossover initial solution (x1, x2, x3),, we have applied
crossover mechanism per dimension as defined in the equation
below:

st =

lt if rand < 1
3

mt if 1
3 < rand < 2

3
nt otherwise

(16)

where st is the output of the crossover at dimension t; lt, mt, and nt
are binary values of the first, second and third parameters in
dimension t, and rand is a number randomly chosen from 0 to 1. To
crossover initial solution (x1, x2, x3), we have applied crossover
mechanism per dimension as defined in (16). It is a suitable
crossover between x1, x2, x3 and s1, s2, s3 are the binary vectors,
representing the effect of wolf move toward the α, β, and δ in
sequence. s1, s2 and s3 are determined as

s1
t = 1 if (sα

t + rstep∝
t ) ≥ 1

0 otherwise
(17)

s2
t = 1 if (sβ

t + rstepβ
t ) ≥ 1

0 otherwise
(18)

s3
t = 1 if (sδ

t + rstepδ
t ) ≥ 1

0 otherwise
(19)

where sα
t  is the position vector of the α wolf in dimension t and

rstep∝
t  is binary step in dimension t that can be given as

rstep∝
t = 1 if kstep∝

t ≥ rand
0 otherwise

(20)

where kstep∝
t  is continuous valued step size for dimension t,

determined by using sigmoid function. As a result, Grey wolf
position vectors are updated and converted into binary using

St
m + 1 i = 1 if sigmoid s1 + s2 + s3

3 ≥ rand

0 otherwise
(21)

where rand is a random number chosen from a uniform distribution
∈ 0, 1 , Sm

t + 1 i  is the updated position in dimension t at iteration
m for the ith sensor node, and sigmoid(s) is defined as

sigmoid s = 1
1 + e−10 s − 0.5 (22)
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4 BGWO model for TC (BGWOTC)
The network lifetime of the deployed WSN is the period for which
it performs well for the assigned responsibility. It can be defined as
the period between the network deployment time and the time at
which the WSN does not assure determined coverage or
connectivity assignment. Network lifetime can be extended by
using the appropriate subset of sensors dynamically to transfer the
data efficiently. In this work, we have measured network lifetime
as 50% of nodes dead. By assuming N mobile sensor nodes with
uniform initial energy and stationary base station of high-energy
node placed in (Xsink, Ysink), we applied CGWO for updating
positions of sensor nodes. Sensor nodes of WSN are mapped with
wolves in the pack for optimisation. To update parameter k in the
range of 2 to 0, we have proposed

k = 2 1 − t2

T2 (23)

CGWO is applied iteratively to update the position of sensor nodes
to obtain the candidate solution S = {S1, S2, S3, …, Sn}. In the next
phase, BGWO is applied to convert the candidate solution into a
binary vector. The binary format is obtained by using (21) and (22).
Each sensor position Si possesses either the value 1 or 0, to indicate
that node i within the topology is active or inactive, respectively.
Pseudocode of the algorithm for finding candidate solution and its
binary format is outlined in flowchart given in Fig. 2. 

When nodes are to be deployed in the monitoring area, the
value calculated by (21) and (22) is not able to map to the
corresponding sensor node. Hence, we need to define fitness
function for corresponding nodes. The fitness function requires
knowledge about initial energy, the number of adjacent nodes, and
then considers the surplus and the conservation of energy. On the
basis of these constraints, sensors are grouped into different sets
according to their active/inactive states.

A check procedure is performed on each set to see whether the
nodes in the set can provide full coverage or not. As we divide the
monitored area into small graphs, for each set Si, we can count the

number of neighbouring nodes that are covered by the sensor nodes
in that set.

The fitness function used to ensure the final topology covers all
the nodes is given as

f x = ∑
i = 1

n Sm
t + 1 i
AiEi

(24)

where Ai is the number of neighbouring nodes to Si and Ei is the
initial energy of sensor node Si. Pseudocode for determining fitness
value for each sensor node in Algorithm II is presented as
flowchart as shown in Fig. 3. 

5 Results and performance analysis
To test and analyse the performance of the proposed BGWOTC
algorithm, extensive simulations were carried out. The
characteristics of the nodes in the experimental set up are assumed
to be the same as that of the energy model introduced in [22]. For
the evaluation of performance and comparison, we considered the
A3 algorithm [5], A3Cov [6], particle swarm optimisation based
topology control scheme (PSOTCS) algorithm [18], and VSTC
algorithm [16]. The performance of these algorithms is measured
on the bases of metrics listed in Table 1. 

Fig. 2  Flowchart to find candidate solution and binary form of the sensor
node

 

Fig. 3  Flowchart to evaluate fitness value for the sensor node
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Before the discussion on the result and performance of the
proposed algorithm, we define and describe energy consumption,
remaining energy, and network lifetime.

Energy consumption: Summation of energy consumed by each
node during sensing and transmission in every cycle. Initially, the
maximum numbers of nodes are selected for creating the
preliminary topology that assures maximum coverage. In
subsequent cycles, redundant and jobless nodes are sent to the
inactive mode for energy conservation so that they can be used
later. In each optimisation cycle, energy Ec is consumed. The total
energy consumed in transmitting the packet of p bits through the
distance q between the transmitter and receiver is defined as

Ec p, q =
pED + pETALq2, q < q0

pED + pETAGq4, q ≥ q0
(25)

Energy consumed by the receiver to receive the packet of p bits is

ECM p = p × ED (26)

where ED is the energy dissipation per bit q0 = ETAL/ETAG.
Remaining energy: Average of remaining energy of all the

associated nodes with the topology in the network for each cycle. If
n is the number of nodes that are associated with the topology, then

the energy dissipated in transmitting the packet of p bits through
the distance q by the member node of the path per cycle is (see
(27)) . The mean dissipated energy for the cycle is

Ēdes =
∑x ∈ n Edes

s x
N

(28)

The remaining energy ER for the next cycle is

ER
s + 1 x = ER

s x − ED
s x (29)

The mean remaining energy for the next cycle is

ER =
∑x ∈ n ER

s x
N

(30)

The standard deviation of the remaining energy is

σ ER =
∑x ∈ n ER − ER x 2

N
(31)

Network lifetime: It is the functioning period of the network until a
certain number of nodes are active. For our case, we have
considered network lifetime as the period until 10% of the nodes
are alive.

Simulations are performed for 1000 m × 1000 m area. We
assumed that 100 through 1000 sensor nodes are uniformly
distributed in a region. The initial energy of the sensor node is
taken as 0.5 J. Energy consumed during idle period is 50 nJ/bit and
amplifier energy is ∈amp = 10 pJ/bit/m2. Communication and
sensing range of each sensor node is 100 and 20 m, respectively.
The node energy distribution is uniform. For the performance
analysis, we have calculated the average of ten different runs for
each network size. Energy consumption for the reduced topology
cases for all four algorithms is computed and compared as shown
in Fig. 4. The results show that reduced topology generated by
BGWOTC algorithm has minimal energy consumption, namely
26.51, 20.62, and 6.84% lesser than that of A3Cov, PSOTCS, and
VSTC, respectively. These figures at the top edge of each bar show
the minimum number of ANs required for different network sizes
for the respective algorithms. It demonstrates that the proposed
BGWOTC generate the reduced topology and the average number
of ANs is reduced by 21, 18, and 10% in comparison with A3Cov,
PSOTCS, and VSTC, respectively. The number of ANs increases
with the size of the growing network. BGWOTC has achieved the
best result for the ratio of ANs to the rest of the nodes compared
with the existing algorithms. It is not only significant to decrease
the number of ANs but it is also crucial that the selected nodes
should possess enough residual energies. The fitness function
proposed in BGWOTC algorithm helps in the process of selecting
a node with sufficient residual energy.

We have calculated the remaining energies for different network
sizes and all the four schemes. The standard derivation of the
remaining energy for the four algorithms is shown in Fig. 5. It can
be seen that the remaining energy is more balanced in BGWOTC
than the other three. For more number of nodes, standard deviation
also increases in most cases.

Fig. 6 shows the percentage of coverage for all four schemes. It
illustrates that BGWOTC provides the highest coverage in the
network of all sizes since the proposed algorithm periodically
reduces ANs while maintaining the required performance of the
network. Higher coverage with lesser number of ANs is achieved
because of the ability of BGWOTC to escape from the local
optimum.

It shows that BGWOTC possesses an ability to tackle coverage
problem small as well as large WSN networks. It effectively

Table 1 Metrics for performance analysis
Metric Notation and description
total number of nodes in
the network

N

number of ANs AN
total network energy TNE = ∑i = 1

N Ei, Ei is the initial energy of
node i

energy consumption E = Ei − Ec, Ec is the energy consumed
per cycle

transmission amplifier
energy for free-space path

ETAL

transmission amplifier
energy for multipath

ETAG

coverage it is the percentage of ANs in the network
which represents the degree of coverage

of the network in the reduced topology
connectivity connectivity is the capacity of network

nodes to communicate
 

Edes
s x =

(n − 1)pED + npECM + pED + pETAGq4, x ∈ q

pED + pETAGq2, x ∉ q
(27)

Fig. 4  Comparison of energy consumption by the reduced topology by
different algorithms
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identifies the best distribution of sensor nodes in WSN as the
algorithm continues to search until it reaches the optimal solution
with better convergence, whereas the A3Cov, PSOTC, and VSTC
reach to the inertia state quite in advance leading to the poor search
results. We have also determined the influence of different
maintenance schemes on the area coverage and the network

lifetime with 1000 nodes. The results in Fig. 7 show that
BGWOTC provides the best coverage and network lifetime for a
substantially longer period compared with the other three
algorithms. It extends the coverage almost by 30% for 800 h
network lifetime. This happens due to the fact that the algorithm
uses lesser number of ANs with more remaining energy than other
nodes, so it will not die immediately after being selected.

To analyse the computational performance of our algorithm for
a network size of 100 nodes, we calculated the time required for
algorithm execution on a standard computer with fifth-generation
i5 processor, 8 GB machine.

For BGWOTC, the expected runtime for the optimised topology
formation is O(nA×nD), where nA is the number of ANs and nD is
the average node degree. Table 2 shows the time required for the
reduced topology creation for each algorithm for 100 node
networks. 

The proposed distinct approach for selecting the value of
parameter k improves the speed to reach optimal candidate
solution. The results demonstrate that the proposed BGWOTC is
much faster than the other three schemes.

6 Conclusion
We have presented a novel WSN TC algorithm by using BGWO.
The proposed fitness function minimises the requirement of the
number of ANs in the sensor network and also reduces energy
consumption without compromising the network coverage and
connectivity. The results demonstrate that the proposed algorithm
outperforms the existing optimisation approaches by substantially
reducing the number of ANs, maintaining low-energy usage, and
giving the highest coverage. The algorithm computes the best
candidate solution with lesser time, enabling the faster TC, and
improvement in network performance.
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