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Background: A multimodal connectomic analysis using diffusion and functional
MRI can provide complementary information on the structure–function network
dynamics involved in complex neurodegenerative network disorders such as Parkinson’s
disease (PD). Deep learning-based graph neural network models generate higher-level
embeddings that could capture intricate structural and functional regional interactions
related to PD.

Objective: This study aimed at investigating the role of structure–function connections
in predicting PD, by employing an end-to-end graph attention network (GAT) on
multimodal brain connectomes along with an interpretability framework.

Methods: The proposed GAT model was implemented to generate node embeddings
from the structural connectivity matrix and multimodal feature set containing
morphological features and structural and functional network features of PD patients
and healthy controls. Graph classification was performed by extracting topmost
node embeddings, and the interpretability framework was implemented using saliency
analysis and attention maps. Moreover, we also compared our model with unimodal
models as well as other state-of-the-art models.

Results: Our proposed GAT model with a multimodal feature set demonstrated superior
classification performance over a unimodal feature set. Our model demonstrated
superior classification performance over other comparative models, with 10-fold CV
accuracy and an F1 score of 86% and a moderate test accuracy of 73%. The
interpretability framework highlighted the structural and functional topological influence
of motor network and cortico-subcortical brain regions, among which structural features
were correlated with onset of PD. The attention maps showed dependency between
large-scale brain regions based on their structural and functional characteristics.
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Conclusion: Multimodal brain connectomic markers and GAT architecture can
facilitate robust prediction of PD pathology and provide an attention mechanism-
based interpretability framework that can highlight the pathology-specific relation
between brain regions.

Keywords: multimodal brain connectivity, structure-function, Parkinson’s disease, graph attention network,
interpretability

INTRODUCTION

Brain connectomics is an emerging whole-brain network
approach to neuroscience that is based on magnetic resonance
imaging (MRI) of the brain. In comparison to traditional
neuroimaging analysis techniques such as regional or voxel-wise
analysis, connectomics can capture a higher-order interaction
or relation between various brain regions. Over the years,
connectome-based delineation of neuropathology has been
performed using different MRI modalities such as diffusion-
weighted imaging (DWI) and functional MRI (fMRI) (Hayes
et al., 2016; Tessitore et al., 2016; Hohenfeld et al., 2018).
Functional connectivity (FC) derived from functional MRI
reflects time-dependent neuronal synchronization between brain
regions anchored through an anatomical infrastructure of white
matter pathways called structural connectivity (SC) which is
computed from diffusion MRI. The interrelation between the
structure–function topography is of high interest in disentangling
the complexities of the large-scale dynamics of the brain.
Moreover, the deviation of structure–function coupling in
neurodegenerative pathology such as Parkinson’s disease is
intriguing. Novel graph-based deep learning techniques could
be one possible means to unravel complex structure–function
dynamics and facilitate deeper insights into aberrant structural
pathways and associated functional disruptions in several
neurodegenerative disorders.

The brain connectomes are essentially graph matrices, where
nodes represent the brain regions and edges indicate the physical
(structural) or functional link between different regions. Owing
to the non-Euclidean, graphical nature of the connectome, it
is crucial to employ sophisticated graph embedding techniques
that can represent the graphs in a lower-dimensional space,
while preserving its structure and relation between nodes (Cai
et al., 2018). Classical graph embedding techniques such as
dimensionality reduction and matrix factorization methods,
although easy to implement, have certain drawbacks; for example,
they cannot represent higher-order proximities of a graph, have
high time complexity, and are deterministic rather than learnable
(Chen et al., 2020). Random walks-based embedding techniques
for brain connectivity depend on a randomized sampling strategy
and do not consider node features while generating embeddings,
whereas neural network-based machine learning algorithms
use hand-engineered connectivity or network measures (Chen
et al., 2020). To this end, graph neural networks (GNNs) are
powerful deep learning-based node embedding models that can
overcome these limitations, by extracting meaningful topological
features and interaction patterns from the graph, in an end-
to-end learnable framework. GNNs are designed to generate

embeddings for a node by aggregating features of its neighboring
nodes, for either a node classification, graph classification,
or link prediction task (Zhou et al., 2020). In recent years,
neuroimaging studies have employed task-specific variants of
graph convolution networks (GCNs), which is a popular GNN
model that generalizes the convolution neural network (CNN)
architecture on graph-structured data (Parisot et al., 2018; Zhang
et al., 2018; Jansson and Sandström, 2020; Jiang et al., 2020; Li X.
et al., 2020; Goli, 2021; Liu et al., 2021; Qu et al., 2021; Wang et al.,
2021; Yao et al., 2021). The graph attention network (GAT) is
another powerful GNN model which generates node embeddings
by employing a self-attention mechanism, where certain nodes in
the neighborhood are given more attention over others, thereby
focusing on the most relevant part of the graph (Veličković et al.,
2017). The key properties of GAT that make it more suitable over
other GNN models for a neuroimaging-based application are
that it can deal with variable-sized input features, it can perform
multiple attention mechanisms parallelly that capture different
aspects or projections of the data, and it can be employed in an
inductive learning task, whereby the model can be generalized to
perform accurately on unseen graphs (Veličković et al., 2017).

Neuroimaging studies have developed and employed machine
learning frameworks for performing a brain connectome-based
multimodal classification of the diseased population by fusing
brain connectivity with a phenotypic score, a clinical variable, or
a genetic marker (Ingalhalikar et al., 2012; Calhoun and Sui, 2016;
Bi et al., 2019; Markello et al., 2021). Recently, neuroimaging
studies have begun exploring GNNs on multimodal brain
connectomes by using structural and FC features together or in
combination with a phenotypic score. A GCN-based encoder–
decoder model was developed by Li Y. et al. (2020) to classify
drinkers and non-drinkers by simultaneously reconstructing FC
from SC networks and extracting relationships between them,
yielding a 74% classification accuracy. Another study predicted
early mild cognitive impairment from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset by implementing GCN
on a population graph, constructed using phenotypic and
multimodal imaging (Liu et al., 2020). Joint structural and
functional MRI analyses were performed using GCN where
relational information between nodes was attained from T1w
structural measures and functional brain summaries were
obtained using fMRI for classifying autistic patients (Arya et al.,
2020). More recently, a multimodal GCN (M-GCN) framework
was proposed to predict phenotypic measures by considering
the FC as input, guided by subject-wise structural connectomes
(Dsouza et al., 2021). Application of the GAT model and its
potential interpretability framework was first demonstrated on
a bipolar dataset using the FC matrix as the graph and feature
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set containing anatomical and statistical FC features (Yang et al.,
2019). This study implemented a dense hierarchical pooling
strategy with a biological motivation that brain networks contain
a community structure. However, this may introduce a prior
bias and its effectiveness across different pathologies needs to
be tested. Although the incorporation of edge features in GAT
could enhance model performance, the inclusion of a dense
FC matrix may, however, include spurious connections which
may adversely affect the attention mechanism by generating
irrelevant attention heads and thus ultimately affecting the model
training. Nevertheless, this study encourages the utility of GAT
architecture for a detailed modality-specific interpretation on
model predictions.

Deep models that can employ and interpret multimodal
connectomic data have not yet been introduced and applied
to understand complex neurodegenerative disorders such as
PD, which includes alterations in the motor network as well
as variable changes in multiple brain subnetworks, which
could be associated with non-motor symptoms like cognitive
impairment, freezing of gait, hallucinations, mood disturbance,
sleep disorders, and olfactory dysfunction (Tessitore et al., 2016,
2019). In this work, we propose a novel GAT architecture
for graph classification, using multimodal brain connectomics
that can accurately predict PD and additionally provides
a comprehensive interpretability framework highlighting the
intricate structure–function interactive patterns related to the
pathology of PD. Our GAT model is employed on SC, FC, and
morphological features such as cortical thickness and is anchored
to SC for computing node embeddings. The most discriminative
node embeddings are fetched using a top-k approach which
substantially reduces the dimensionality of the feature set for the
final classification task. Moreover, we provide an interpretability
framework using saliency analysis that highlights the influence of
structural and functional nodal features and attention maps that
portrays the relation between brain regions, facilitating a deeper
insight into model predictions and its clinical interpretability.

MATERIALS AND METHODS

Data Acquisition and Processing
The dataset for this study consists of multiple MRI sequences
of 75 patients with PD (age = 57.70 ± 7.41, M/F = 65/10)
and 34 healthy controls (age = 56.05 ± 5.27, M/F = 26/8),
scanned on a Philips 3T MRI. T1-weighted images were acquired
using TR/TE 8.06/3.6 ms, voxel size 1 × 1 × 1 mm, and
flip angle = 8; functional MRI (fMRI) was acquired using
TR/TE 2,000/35 ms, voxel size 1.65 × 1.65 × 3 mm3, matrix
size = 144 × 144, flip angle = 90, and no. of volumes 140
for 4 min and 60 s; and diffusion-weighted images (DWIs)
were acquired using a single-shot spin-echo echo planar imaging
(EPI) sequence with TR/TE = 8,583–9,070/60–62 ms and
voxel size = 1.75 × 1.75 × 2 mm. The diffusion gradient
was applied in 15 directions, with b value = 1,000 s/mm and
a single b = 0 s/mm. All subjects were recruited from the
general neurology outpatient clinics and Parkinson’s disease and
movement disorders subspeciality clinic at the National Institute

of Mental Health and Neurosciences (NIMHANS), Bangalore,
India. PD was diagnosed as per the UK Parkinson’s Disease
Society Brain Bank criteria. PD was diagnosed as per the UK
Parkinson’s Disease Society Brain Bank criteria (Hughes et al.,
1992). All subjects were screened for cognitive impairment using
Mini Mental State Examination (MMSE), and a score below
24 was set as the exclusion criteria. Clinical information of
patients such as disease severity and stage of disease was evaluated
using the Unified Parkinson’s Disease Rating Scale (UPDRS-III)
score and the modified Hoehn and Yahr (H&Y) staging system,
respectively, along with variables such as age at onset (AAO)
of PD, duration of illness (DOI), and Levodopa equivalent daily
dosage (LEDD). Participants with any history of neuropsychiatric
disorders were excluded from the study. This study was approved
by the Institute Ethics Committee of NIMHANS, and informed
consent was taken from all participated that were recruited for
this study. The detailed demographic information of all subjects
is mentioned in Table 1.

Construction of Multimodal Brain
Connectomes and Feature Set
T1-Image Preprocessing
The T1w images were preprocessed and parcellated into 86
brain regions of interest (ROIs), containing 68 cortical and 18
subcortical regions of the Desikan atlas (Desikan et al., 2006)
using FreeSurfer (Fischl, 2012). These 86 ROIs act as nodes of
the brain connectome. Preprocessing of T1w images includes
skull stripping, bias correction, and tissue segmentation, followed
by a surface-based non-linear registration to map cortical sulci
and gyri and a volume-based registration to map the subcortical
regions using FreeSurfer. Segmentation of the 86 regions was
manually checked for each subject. Seed voxels in the 86 regions
were located by dilating the white matter (WM) masks and
intersecting it with segmented node labels to compute the gray
and white matter boundary.

Structural Connectivity
DWI images were initially preprocessed by performing eddy
current and motion correction and brain extraction. The T1-
weighted images were registered to the diffusion images by

TABLE 1 | Demographic and clinical characteristics of patients with Parkinson’s
disease and healthy controls.

Parkinson’s
disease (n = 75)

Healthy controls
(n = 34)

Gender (F:M) 10:65 8:26

Age (years) 57.70 ± 7.41 56.05 ± 5.27

Age at onset (years) 51.14 ± 9.08 –

Duration of illness (years) 5.87 ± 2.74 –

MMSE score 28.04 ± 1.61

UPDRS III (OFF) 34.53 ± 8.25

Hoehn and Yahr stage 2.31 ± 0.28

LEDD 616.01 ± 277.65 –

F, female; M, male; MMSE, Mini-Mental Status Examination; UPDRS, Unified
Parkinson’s Disease Rating Scale; LEDD, levodopa equivalent daily dose.
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employing an affine transformation, and subsequently the 86
ROIs were transferred to the diffusion space using nearest-
neighbor interpolation. Structural connectomes were computed
using a probabilistic tractography algorithm which performs
fiber tracking by repeatedly sampling diffusion distributions at
each seed voxel in the brain. Streamlines are constructed such
that each sample follows the next and a probability-weighted
distribution of possible fiber tracks is obtained (Behrens et al.,
2007). Tracking parameters were set to 2 fibers per voxel and
5,000 sample streamlines per voxel. The connectivity measure
used was conditional probability Pij between the seed ROI, i,
and the target ROI, that quantifies connectivity such that Pij≈
Pji. The undirected weighted SC matrix was thresholded at 0.1
edge value which sparsened the matrix by 50%, keeping the
stronger connections.

Functional Connectivity
Preprocessing of fMRI data included de-spiking, realignment of
all functional volumes for motion correction, and co-registration
of fMRI images to FreeSurfer preprocessed T1 images from
Section “T1-Image Preprocessing.” The data were denoised by
regressing out 6 motion parameters and the mean signal from
the WM and cerebrospinal fluid (CSF) regions to reduce motion
and physiological artifacts. Denoised data were band-pass filtered
with a frequency range 0.01–0.1 Hz and smoothened using a
kernel of 5 mm full width half maximum (FWHM). Subjects with
large motion were discarded by applying a cutoff of more than
30% data having mean frame-wise displacement > 0.5 mm. FC
was computed in native space using 86 ROIs from the Desikan
Killiany atlas by calculating pairwise Pearson’s correlation
between a mean time series of each ROI with every other ROI of
the atlas. The correlation matrices were normalized using Fisher’s
r to z transform and thresholded with a density cutoff of 0.5,
to sparsen the matrix by eliminating the weak and retaining the
strongest connections.

Multimodal Feature Set
The multimodal feature set consists of morphological features
from T1-weighted images and structural and functional features
that were computed from SC and FC matrices. Morphological
features indicating the structural regional attributes such as
volume and cortical thickness were extracted from preprocessed
T1 images using FreeSurfer software (Fischl, 2012). Network-
based nodal features indicating the local topological attributes
of a node such as clustering coefficient (CC), betweenness
centrality (BC), degree (D), strength of connectivity (S), local
efficiency (LE), modularity (Mod), and participation coefficient
(PC) were computed using Brain Connectivity Toolbox (Rubinov
and Sporns, 2010). Details of these graph theory measures
are provided in Supplementary Material. We also computed
4 statistical features such as mean, standard deviation (std),
skewness (skew), and kurtosis (kurt) on the all-edge values
belonging to a particular node in the graph, indicating the overall
distribution of connections, for each node. Thus, the multimodal
feature set contained 24 features comprising 13 structural
features (2 morphological features + 7 network + 4 statistical)

and 11 functional features (7 network + 4 statistical) computed
from T1-weighted images, SC and FC matrices, respectively.

Multimodal Graph Classification Using
Graph Attention Network
Graph Attention Network
A GAT architecture is built by stacking single attentional
layers on graph-structured data (Veličković et al., 2017). The
input to the GAT layer is [G(nxn), h] where G indicates the
graph matrix with n nodes and h is a set of node features,
h =

{
−→
h 1,
−→
h 2,, ..,

−→
h n,

}
, hi ∈ RF , containing F no. of features.

The input features are transformed to a set of higher-level features

h′ =
{
−→
h
′

1,
−→
h
′

2, ..,
−→
h
′

n

}
, h′i ∈ RF′with cardinality F′. In order to

obtain the new features, a shared learnable linear transformation
is applied to every node, parameterized by weight vector W ∈
RF = F′ .A self-attention mechanism (a) is employed on the nodes,
wherein an attention coefficient eij is computed which indicates
the importance of a neighborhood node j’s features on node i.

eij = a
(

W
−→
h i,W

−→
h j

)
(1)

In the most basic form of the model, every node attends to every
node in its neighborhood, where the neighborhood is defined
by the first-order neighbors of node i, thereby considering the
graph structure into the attention mechanism. In order to make
coefficients comparable across different nodes, all choices for j
nodes are normalized using a softmax function. The attention
mechanism is a single-layer feedforward network, parameterized
by vector a and containing a leaky rectified linear unit (ReLU)
non-linearity. The fully expanded expression of normalized
attention coefficients is:

aij = softmaxj
(
eij
)
=

exp
(

LeakyReLU
(
−→a T

[
W
−→
h i ‖W

−→
h j

]))
∑

k∈Ni
exp

(
LeakyReLU

(
−→a T

[
W
−→
h i ‖W

−→
h k

])) (2)

Finally, the normalized attention coefficients are used to

compute the output features (
−→
h
′

) for every node after applying a
non-linearity.

−→
h
′

i = σ

∑
j∈Ni

αijW
−→
h j

 (3)

Moreover, to stabilize the attention mechanism, a multihead
attention is employed, where p independent attention
mechanisms are computed for a node parallelly, each generating

a feature vector
−→
h
′

i, as shown in Equation (3). The features from
each head are concatenated, resulting in the final output with PF′
features, as shown in Equation (4):

−→
h
′

i = σ

 1
P

P∑
p=1

∑
jεNi

α
p
ijW

p−→h j

 (4)
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where α
p
ij is the pth attention mechanism and Wp is the

corresponding linear transformation weight matrix. For a node
classification task, the GAT model averages multihead attention
coefficients from the output layer.

Graph Classification Using Graph Attention Network
In this study, we employed the GAT model described in section
“Graph Attention Network” for a graph classification task, as
shown in Figure 1. The node embeddings from the output
GAT layer are aggregated using a top-k readout function to
generate graph-level embeddings, which are taken forward for
classification. The graph embeddings characterize an individual
graph based on its structure and relation between neighboring
node features. The input to our proposed GAT model is {(G (n,e)),
h,y}s where G{nxn} denotes an undirected graph which is the SC
matrix, containing n = 86 nodes from the Desikan Killiany atlas,
e edges indicate the strength of connections between different
nodes for s no. of subjects, and h =

{
−→
h 1,
−→
h 2,, ..,

−→
h n,

}
, hi ∈

RFm, denotes the multimodal feature set (Fm) containing 24
features including morphological (Fmor), structural (Fst), and
functional (Ffn) features for n nodes and y indicates group labels.
The higher-level node features generated from each head in a
GAT layer are concatenated and inputted to the next layer. The

features at the output layer,
−→
h
′

i, from Equation (4) are given
to a readout module which extracts the top k no. of nodes for
each embedding. These top k node embeddings provide a graph-
level representation that encapsulates the most discriminative
node features, while lowering the feature dimensionality that
may eventually prevent overfitting of the model. The final graph

embeddings
−→
h
′

g for each graph g are obtained by concatenating
the top k node embeddings. Subsequently, graph embeddings are
passed through a fully connected neural network layer with a
softmax activation on the last layer, to generate predictions.

Interpretability of the Graph Attention Network Model
Attention mechanism employed by the GAT model is one of
its distinguishing attributes over other GNN models, as it can
facilitate an in-depth understanding of the model’s working
and can highlight the parts of data that the model focuses on
while generating predictions. The multihead attention evaluates
multiple aspects of the datasets parallelly, capturing different
characteristics or complementary attributes within the same
dataset. This novel attention mechanism of the GAT model
can highlight the most distinguishing brain regions and the
interactions between them that contributes to the classification
accuracy. However, GAT computes several attention mechanisms
at each head and the most relevant attention mechanism can be
determined using a fidelity score F.

F =
1
N

N∑
i = 1

(
1
(
ŷi = yi

)
− 1

(
ŷ1−mi

i = yi

))
(5)

where N = no. of graphs, yi is the original accuracy of graph i, mi is
the mask for attention weights, and ŷ1−mi

i is the accuracy obtained
when removing the masked attention weights. The fidelity score
measures the difference of accuracy between the model’s original

predictions and the new predictions obtained by masking each
attention head (Pope et al., 2019). The higher fidelity score
for a head indicates that the particular attention mechanism
employed by the model provides maximum contribution toward
classification accuracy. The attention map is a directional plot of
attention coefficients for nodes in a graph, consisting of source
and destination nodes that indicate the nature of interaction
or dependency between nodes. Another interpretability measure
employed in this study is saliency analysis which computes the
gradients by back-propagating from the model predictions to the
multimodal input features of the graph as given by S =

(
∂y
∂h

)
,

where y indicates model predictions and h indicates set of input
features (Pope et al., 2019). Higher gradient values indicate higher
contribution of the particular node’s input feature toward an
accurate prediction.

Experiments
Our multimodal model (GAT-SCfs) containing the SC matrix
and multimodal feature set was compared against another
multimodal model, GAT-FCfs containing the FC matrix and
multimodal feature set, to assess the influence of structural and
functional neighborhood in classification of PD. To evaluate
the classification performance of multimodal feature set over
a unimodal feature set, we implemented a purely unimodal
structural (GAT-SC) and functional (GAT-FC) model using both
features and graphs of the respective modality only. To overcome
data imbalance, we performed synthetic minority oversampling
technique (SMOTE)-based augmentation on the flattened SC and
FC matrices and morphological features, while the remaining
network-based nodal features were computed on the augmented
graph datasets. A total data of 150 samples (HC-75, PD-75)
were used, out of which 10% was kept aside as testing dataset
and the remaining data were split into 80% train set and 20%
validation set. The feature set was normalized using min–max
normalization. Our GAT models contained 2 layers with 6
attention heads in the 1st layer and a single attention head
in the output layer, followed by extraction of top 20 (k) node
embeddings in the readout module which were given to three
fully connected layers for classification. The training details
of the model are mentioned in Supplementary Material. The
interpretability framework of GAT-SCfs was implemented on
the validation dataset. The fidelity score was computed for the
6 attention heads from the first layer, and the top 2 attention
heads with the highest fidelity scores were visualized. The average
attention maps of the correctly predicted samples were used
for visualization. In saliency analysis, we obtained the top most
gradients from the average saliency map of correctly predicted
samples and correlated them with clinical scores of PD patients
using Pearson’s correlation, to evaluate the association between
the obtained important features and the progression of PD.

Correlation was performed between moderately high salient
node features with a saliency score greater than 0.02 (as seen
in Figure 3) and clinical variables such as AAO, DOI, UPDRS-
III, H&Y, MMSE, and LEDD score, with a significance threshold
of uncorrected p < 0.005. Additionally, we compared the
classification performance of our proposed multimodal GAT
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FIGURE 1 | The figure represents proposed the GAT model with multimodal input set along with a graph classification and interpretability framework. Section (A) is
the input framework that represents a graph matrix and feature set as inputs to the GAT model. Diffusion MRI scans are preprocessed, and tractography is
performed using a probabilistic tractography algorithm. Structural connectivity (SC) is computed by employing an atlas brain parcellation from a structural
T1-weighted MRI, on the constructed fiber tract to obtain a [n × n] SC matrix with n no. of nodes. Similarly, the preprocessed functional time series from the fMRI
scans are used along with the atlas-based brain parcellations to compute an n × n FC matrix. The SC is the input graph matrix provided to the model. The feature
inputs (h) to the model contains concatenated SC- and FC-based network features (Fst and Ffn) and morphological features obtained from structural scans for all n
nodes. Section (B) indicates the GAT-based graph classification framework, which includes the GAT model with an input layer (L1) with 6 attention heads, whose
outputs are concatenated and provided as input (h) to the output GAT layer (L2) containing a single head. The output node embeddings from L2 are given to a
readout module which employs a top-k mechanism on all node embeddings to extract the top-k most important node embeddings that represent a graph-level
embedding (hg). These graph embeddings are then given as input to the fully connected layer which generates output predictions (y) as PD or Healthy. Section (C) is
the interpretability framework that represents the explainability methods employed on the GAT model to acquire discriminative inputs. The saliency map represents
the gradient values that indicate the contribution of each nodal feature toward an accurate prediction; here the x-axis represents the features and y-axis represents
the nodes. The fidelity score generates the most discriminative attention heads or mechanisms that largely contribute toward accurate model predictions.

models with other popular graph embedding models such as
GCN model, node2vec, and traditional machine learning models
like random forest (RF) and multilayer perceptron (MLP).
Performance of all models was evaluated using average CV
accuracy, test accuracy, and F1 score. The average CV accuracy
was calculated by taking the mean of the validation accuracies
obtained from all 10 folds, and test accuracy was evaluated on
an independent test set. Accuracy is a measure indicating true
positive or true negative predictions. The F1 score is defined
as the harmonic mean of the model precision and recall and is
calculated as F1 score = 2∗(Precision∗Recall)/(Precision+Recall),
where Precision = (TruePositives /TruePositive + FalsePositive)
and Recall = (TruePositives/TruePositive+FalseNegative). The
F1 score is a better indicator of false positive and false negative
predictions. Furthermore, we evaluated the statistical significance
for the average CV and test accuracy of the proposed GAT-SCfs
model by implementing a non-parametric permutation test, with
1,000 permutations of the labels, which indicates the probability
or likelihood of obtaining the accuracy by chance. The input
dataset for GCN models was the same as the GAT models, and
the node2vec model contained the SC and FC matrices as input
to generate multimodal nod embeddings, whereas for traditional

machine learnings, the model multimodal feature set comprising
both structural and functional network features was used. Details
on the training of the comparative models and permutation
testing on test accuracy are provided in Supplementary Material.

RESULTS

Detailed demographics and clinical data of PD patients and
HC groups involved in this study are shown in Table 1. The
classification performance of the multimodal GAT-SCfs model
yielded a higher test accuracy of 73% (permutation testing
p-value = 0.02), 10-fold CV accuracy, and F1 score of 86%
(permutation testing p-value < 0.001) as compared to the
GAT-FCfs multimodal model which showed a CV accuracy
of 83% and an F1 score of 81%, as shown in Table 1. The
multimodal model GAT-SCfs also provided superior accuracy
over its unimodal model, GAT-SC, which gave an accuracy of
79%. Similar performance was shown by FC-based multimodal
and unimodal GAT models as shown in Table 2. Thus, both
structure and function multimodal models outperformed the
unimodal models. Comparison of GAT models with existing
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state-of-the-art graph embedding models such as GCN and
node2vec and traditional machine learning models is also shown
in Table 2. Both SC- and FC-based multimodal GAT models
performed substantially better than the multimodal GCN models
of the respective modalities, on the average CV accuracy.
The multimodal node2vec model displayed fluctuating accuracy
in the range of 80–90% at every run. Although multimodal
node2vec performed marginally better than the proposed
multimodal GAT-SCfs model at some instances, the architecture
of the model was highly unstable and the construction of random
walks is computationally extensive. The t-sne visualization of
graph embeddings for all multimodal GAT, GCN, and node2vec
models and unimodal GAT models is shown in Figure 2, which
further supports the discriminative ability of the GAT-SCfs model
with fewer false positives. The GAT-SCfs model showed higher
average CV accuracy and F1 score as compared to RF and
MLP models. However, the RF and node2vec models yielded a
higher test accuracy. Performance of comparative models on the
unimodal feature set is provided in Supplementary Material,
which illustrates that as compared to GNN architectures,
the traditional ML models could provide higher classification
accuracy using a unimodal feature, particularly the structural
features as compared to when using a multimodal feature
set. Overall, our experimental findings demonstrate that the
multimodal MRI features of structurally defined neighboring
brain regions were able to predict PD pathology more accurately
as compared to a unimodal feature set.

Saliency maps highlight the most discriminative nodes
and features contributing toward the model’s classification
performance. The saliency analysis of the GAT-SCfs model
shown in Figure 3 indicates that the node-bilateral cerebellum,
precuneus, frontal pole, pallidum, and ventral diencephalon
played a major role in correctly predicting PD and HC groups.
Among the features, SC_mean, SC_S, SC_BC, and FC_BC were

TABLE 2 | Classification results of the proposed GAT model and
comparative models.

Sr. no. Model CV accuracy F1-score (CV) Test accuracy

Classification performance of GAT models

1 GAT-SCfs 86 86 73

2 GAT-FCfs 83 81 60

3 GAT-SC 79 80 60

4 GAT-FC 72 69 66

Classification performance of comparative models

5 GCN-SCfs 76 69 53

6 GCN-FCfs 77 66 66

7 Node2Vec 85 80 80

8 RF 83 83 80

9 MLP 82 84 66

the most distinguishing features of the abovementioned brain
regions. Occurrence of SC_BC and FC_BC implies that a joint
structural and functional influence of these nodes plays a major
role in classifying PD. The topmost gradients of the saliency
matrix, obtained at a threshold of 0.02, further showed a negative
correlation (uncorrected p < 0.005) with AAO scores as shown
in Figure 4, indicating that the later onset of PD was associated
with reduced structural influence of precuneus, cerebellum, and
thalamus, and the LEDD score was associated with SC strength
of the pallidum.

To understand the different attention mechanisms employed
by the GAT-SCfs model, we visualized the averaged attention
weight matrix of the correctly predicted data. Attention weights
are represented as a symmetric weight matrix of 86 × 86
dimensions, where the edges indicate the bidirectional attention
employed by the source node to the destination node. The
attention weights from each head at each layer are displayed

FIGURE 2 | Tsne visualizations of graph embeddings obtained from multimodal and unimodal GAT models as well as from comparative graph-based models such
as GCN and node2 Vec.
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FIGURE 3 | The figure represents an average saliency map of all correctly predicted samples. The map indicates the gradient values, conveying the importance of
each nodal feature toward an accurate model prediction. The x-axis holds the multimodal features while the y-axis indicates the nodes.

in Figure 5 using a heatmap, where the y-axis denotes source
nodes and the x-axis denotes destination nodes. Fidelity scores
obtained on the heads of the 1st layer were head-1 = 0.14, head-
2 = 0.11, head-3 = 0.14, head-4 = 0.11, head-5 = 0.40, and
head-6 = 0.40. The attention mechanism of head-5 (L1H5) and

head-6 (L1H6) from the 1st GAT layer contributed maximum
toward correctly predicting PD and HC groups. The attention
mechanism from L1H5 was taken forward by the final output
GAT layer as indicated by the similar heatmaps of attention head
in the output layer (L2H1) and head-5 (L1H5). Overall, L1H4
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FIGURE 4 | The figure represents correlation between high saliency nodal features and clinical measures at a significance of uncorrected p < 0.005. (A,C,D)
Represent a negative correlation of AAO with nodes such as right hemispheric precuneus, cerebellum, and thalamus proper, and (B) indicates a negative correlation
between LEDD score and right pallidum.

shows large dependency between regions of the same hemisphere,
particularly between the cerebellum, basal ganglia regions such
as pallidum, putamen, caudate, and thalamus proper, and
several other cortical regions. L1H6 illustrates a strong influence
of specific regions such as basal ganglia regions, precuneus,
thalamus, and bilateral cerebellum on widespread areas of the
brain mainly comprising the default mode network (DMN) and
executive and visual networks. Figure 6 shows the topmost
attention weights, thresholded at 0.045 for L1H5 and 0.085
for L1H6 for a clearer visualization and interpretation. These
findings are concordant with the existing literature indicating the
disruption of corticostriatal circuits in PD.

DISCUSSION

In this work, we propose the utility of the GNN-based
graph classification framework using GAT architecture along
with multimodal structure–function brain network features for
accurately predicting PD, with a comprehensive interpretability
framework. Our proposed model implemented using a structural
neighborhood, and multimodal feature sets yielded superior

classification performance over a GAT model with a unimodal
feature set. The interpretability framework consisting of saliency
analysis illustrated the structure–function topological influence
of the basal ganglia and cerebello-thalamo-cortical (CTC) regions
in delineating PD patients and the relation between their
structural alterations and clinical score. Attention maps with high
fidelity highlighted the key relations between regions of the motor
network, executive network, DMN, and visual network which
contributed toward an accurate classification of PD. Our findings
of a joint structural and functional involvement of several cortical
and subcortical regions demonstrates the utility of a multimodal
connectomic framework in predicting PD pathology.

Our proposed GAT-SCfs model demonstrated higher
classification performance with a maximum 10-fold CV
accuracy 86%, as compared to other comparative models as
shown in Table 2 and Figure 3. GAT-SCfs also displayed
higher sensitivity and specificity in classifying PD, depicted
through its high F1 score. Results suggest that extending
the original GAT architecture that was designed for a node
classification task, to an end-to-end graph classification task
by adding a readout module that generates graph embeddings
by aggregating the topmost node embeddings, could become a
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FIGURE 5 | Heatmaps indicating the pairwise attention weights between nodes, generated by each attention head (H1–H6), at every layer (L1, L2) of the proposed
GAT model.

FIGURE 6 | Visualization of attention weights between pairs of brain regions, obtained from top two attention heads (L1H5 and L1H6). (A) Attention mechanism
L1H5 illustrates the major role of frontal,SMA and temporal regions, while (B) Attention mechanism L1H6 illustrates the influence of cerebello-cortical regions in
correctly predicting PD.
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potential candidate in multimodal brain connectomic analysis.
Moreover, the proposed interpretability framework that makes
use of attention mechanism on a graph dataset could shed
light on the relevant nodal interaction or dependencies of a
particular neuropathology. As hypothesized, the GAT-SCfs
model with a structurally connected neighborhood showed
higher predictive capability, probably indicating that the
disrupted structural connections and related functional deficits
provide discriminative information on the structure–function
relationship, specific to pathology. Both multimodal models,
GAT-SCfs and GAT-FCfs, showed a higher accuracy over
unimodal models, supporting the utility of multimodal features
in characterizing the pathophysiology of PD. The multimodal
GAT models showed higher CV accuracy compared to GCN,
node2vec, and traditional machine learning models. These
findings suggest a superior ability of GAT architecture over GCN
in disorders involving multiple network disruptions, which are
captured through multiple attention mechanisms. Unlike the
GNN models, the node2vec model does not include node features
and relies on a random walk-based strategy for optimizing the
local neighborhood, to generate node embeddings. The higher
test accuracy and moderately high CV accuracy of RF and
node2vec models suggest its comparable performance with
GAT-SCfs in predicting PD. However, the GAT model employs
an attention mechanism on graph, which provides different
relations or interactions between nodes, similar to a subnetwork,
associated with the pathology. The multimodal node2vec model
displayed variable accuracies at every run, probably due to the
non-robustness of the random walks algorithm, and thus led to
an unstable classification outcome.

Our interpretability framework attributed to the GAT model
facilitated detailed understanding of the model predictions.
The saliency analysis method back-propagates from model
predictions to the input node features, in order to map the
influence of each input on the final outcome. The saliency map
in Figure 2 illustrated a high structural and functional influence
of the cerebellum in predicting PD along with other motor
network regions such as the pallidum, ventral diencephalon, and
precuneus from DMN and the frontal pole from the executive
network. Anatomical and functional studies have suggested
that altered basal ganglia and cerebello-thalamo-cortical loops
underlie the pathophysiology of motor symptoms such as tremor
in PD (Middleton and Strick, 2000; Wu et al., 2012; Lewis et al.,
2013; Simioni et al., 2015; Wang et al., 2016; Barbagallo et al.,
2017). Abnormal DMN connectivity has also been observed in
PD patients (van Eimeren et al., 2009; Yao et al., 2014). The
saliency map findings are also in line with existing literature
that reports abnormal local network measures such as centrality
and local efficiency in structural (Li et al., 2017; Shah et al.,
2017) and functional (Tessitore et al., 2019) brain networks of
PD patients. A high gradient on the statistical measure SC_mean
suggests that the whole-brain SC of the abovementioned regions
could be altered in PD. Overall, the saliency map portrayed a
higher influence of structural network measures as compared
to functional ones in correctly predicting PD and HC groups.
A moderately high gradient on FC kurtosis may indicate
large variability of functional network measures across subjects.

Additionally, on assessing the relationship between the salient
nodal features and PD pathology, we found that the structural
influence of the precuneus, cerebellum, and thalamus-proper was
negatively associated with age of onset of PD, indicating that the
structural influence of these regions was lower in patients with
a late onset of PD. The LEDD score correlated negatively with
SC strength of the pallidum, which may indicate a normalization
effect of medication.

We leveraged the multiple attention mechanisms of GAT
for a spatial interpretation, which indicates the relation
between neighboring brain regions, based on their features.
Among the multiple attentions computed by the model, we
analyze the two most relevant attention mechanisms (L1H5
and L1H6) that largely contribute toward correct prediction
of PD and HC groups. L1H4 showed a distinctly high
intrahemispheric relation between brain regions. Figure 6A
highlights the topmost attention weights and illustrates the
relation between cerebellum and the executive, visual, and DMN
regions. This attention mechanism reflects disruption of several
brain networks, possibly demonstrating the large-scale network
deficits associated with non-motor symptoms in PD. Attention
mechanism L1H6 indicates widespread influence of specific
brain regions. Figure 6B displays the influential role of the left
cerebellum, right pallidum, and precuneus. Specifically, the right
pallidum plays an instrumental role on the characteristics of
frontal and temporal regions, whereas the cerebellum plays an
influential role on multiple brain regions. These findings provide
additional support to the key role of the cerebellum and basal
ganglia regions that influence or trigger the functionality of
supplementary motor areas, DMN, motor, and executive and
visual network regions in PD.

This study has a few limitations. Firstly, the absolute
thresholding of connectivity matrices may introduce a bias
in the input to the GAT model. However, the field of
brain connectomics have not yet reached a consensus on the
optimal thresholding strategy for functional and structural brain
networks. We choose the proportional thresholding technique,
with a liberal threshold that approximately equalizes the matrix
density of SC and FC at 50%, to retain high as well as
moderately strong connections of the matrix. Also, it is reported
that high thresholding of the FC matrix, approximately up
to 50% density, depicts small world properties in functional
brain networks (Achard et al., 2006; Van Den Heuvel et al.,
2009; Fornito et al., 2010). Secondly, our acquired functional
and diffusion data did not involve high temporal and angular
resolution, respectively; therefore, the low quality of functional
EPI and DWI acquisitions may limit the robustness of functional
correlations and the diffusion model (Mori, 2007; Berman et al.,
2013; Tomasi et al., 2015; Wang et al., 2016). However, the
proposed GAT model can be employed on a high-resolution
dataset that may highlight more intricate structure–function
network characteristics of PD. Third, this study has used
MRI-based imaging features in the GAT model; however,
addition of demographic or clinical variables such as a severity
score could enhance the model’s predictive capability, and
future studies could explore the efficient incorporation of
these variables in a GNN architecture. Finally, our original
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dataset had a smaller size that may limit the training efficiency
of the GNN model. We tried to mitigate this drawback
by performing SMOTE-based augmentation of data prior to
implementing the model. Future studies could further explore
the effect of different thresholding strategies for structural
and functional network on the computation of attention
coefficient and performance of the GAT model. Incorporating
information of individual edges could further enhance the
discriminative ability of the GAT model. Moreover, it would
be interesting to explore whether a temporal GAT framework
could elucidate dynamic network changes in the brain related to
network disorders.

CONCLUSION

In this study, we proposed a novel GAT-based graph classification
model using multimodal brain connectomes and a readout
module that extracts topmost node embeddings from a graph
to predict PD. Our findings demonstrate the utility of the
GNN framework, particularly using an attention-based GAT
model with structural neighborhood and a multimodal feature
set in classifying PD. Moreover, our detailed interpretability
framework consisting of saliency analysis and attention maps
and highlights the structure–function influence of the basal
ganglia regions, cerebellum, and DMN regions in predicting
PD pathology. Our model illustrates the high discriminative
power of multimodal brain connectomics and GAT architecture
in identifying multisystem network abnormalities for robust
classification of neuropathologies.
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