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Abstract: Workflow compositions have been exploited in business process modelling to handle concurrent invocations of
modular components. With the emergence of Industry 4.0 warehouse automation, which enable the integration of business
processes, mechanised robots, sensor—actuators and human participants, analysis and specification of workflows become
crucial. As such environments have dynamic deployments due to varying demand rates and environmental conditions, the
workflow compositions are intended to be adaptable to runtime changes. In addition, monitoring the end-to-end latency and
optimal runtime binding is critical in industrial deployments such as warehouse automation. The authors provide specifications in
the concurrent programming language Orc that supports most commonly used workflow patterns. Complex deployments
involving multiple robotic agents and business processes further require analysis of correctness, liveness, and safety properties.
In order to verify the workflows, the Orc specifications are translated into workflow net representations, with verification done
using the TAPAAL model checker. The advantages of deploying fine grained analysis of workflows are demonstrated over
picker/delivery robots involved in warehouse operations. The envisioned set of reusable specifications may be extended and

applied to a variety of Industry 4.0 deployments to handle complex workflow interactions.

1 Introduction

Industry 4.0 [1] proposes the integration of robotics, cyber-physical
systems, software services, and human participants with the
following features:

i.  Interoperability: Machines, internet of things (IoT) [2] devices,
and humans connected and coordinating with each other.

il. [Information transparency: Physical systems enhanced with
sensor data to create added value information systems.

iii. Technical assistance: This involves the use of intelligent
devices to aid in informed decision making. Robotic
automation may be identified to perform repetitive, unsafe or
precise tasks.

iv. Decentralised decisions: The ability of such systems to make
autonomous decisions; only critical cases will involve human
intervention.

Warehouse automation [3] is an area of interest, as implementing
the Industry 4.0 requirements would lead to significant monetary
and performance benefits to large retailers. Current Industry 3.0
warehouse solutions are heavily dependent on centralised
monitoring, human participants, and static deployments. Industry
4.0 warehouses are envisioned to move away from this with
distributed/hybrid architectures, heavy automation, and adaptable
deployments. In warehouses that may have hundreds of humans
and robots on the shop floor [4], complex problem domains
(scheduling, optimisation, and planning) require intricate handling
of concurrent actions. High-level requirements will be translated to
low-level task specifications, which would require formal
workflow composition rules. Furthermore, concrete specifications
of workflow descriptions are needed to hierarchically move from
business requirements to executable component code for software/
automated resources.

Workflow composition and analysis is an important area of
work, receiving considerable scrutiny in the supply-chain,
manufacturing, and business process communities. Such
workflows are said to be grounded on a few basic patterns [5]
based on which multiple standards and languages such as business
process execution language (BPEL) [6] have been proposed.
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However, with the emergence of the internet of things (IoT) [2] and
robotic process automation [7], such workflow specifications
require enhancements to handle robotic and cyber-physical
participants. Runtime binding of a set of services, seen in service-
oriented architectures (SOAs) [8] must be integrated with other
components such as robotic process automation software and
autonomous robotic hardware.

Problems that need to be solved in the context of Industry 4.0
include workflow compositions such that individual agents
(humans, robots, and servers) can satisfy a sub-part of the
workflow process. In complex industrial workflows involving
multiple modular components, the variation in invoking concurrent
modules can affect the end-to-end quality of service (QoS)
behaviour. This is in line with the Industry 4.0 Future Warehouse
concept, where the centralised orchestrations provided by
warehouse management systems (WMSs) [9] may be decentralised
using autonomous interacting components [10]. In our work, we
model the behaviours of cyber-physical systems, robotic processes/
hardware, and human participants of workflows using multi-agent
systems [11]. Integrating all such modular components into a
unified specification framework is key to understanding trade-offs
between invocation of services and resources needed in the form of
robotic agents.

As a realistic use case, we employ multiple ‘pickers-to-parts’
autonomous robots in a warehouse setting, inspired by the Kiva
robot delivery system [4] employed by Amazon (https://
www.amazonrobotics.com/). In the ‘pickers-to-parts’ model, the
conveyor belt-like robotic automation is replaced by a system of
mobile autonomous robots that dynamically approach and pick
parts in an industrial setup. We demonstrate that through the
accurate use of workflow models, concurrent invocation and
instantiation rates of such robots can be analysed. This can
significantly impact the timing delays in stocking/procuring
components from warehouses. Specifications are studied using the
concurrent programming language Orc (https:/
orc.csres.utexas.edu/)  [12], with  high-level = warehouse
compositions interacting with individual picking/delivery robots.
We extend this modelling with formal verification using
translations to workflow net [13] models and the TAPAAL [14]
model checking tool. Soundness, boundedness, and liveness
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Fig. 1 Tasks typically observed in warehouse distribution

properties are studied for workflows that are safety critical. This
would generate verifiable workflows that satisfy properties from
the Industry 4.0 specifications [15]. The set of reusable workflow
specifications would prove useful in a variety of automated
industrial deployments. The fine-grained interactions further lead
to latency monitors that may be tuned at runtime to provide marked
improvements in completion times.
The principal contributions of this study are as follows:

i. Identify workflow models involved in Industry 4.0 warehouse
procurement, storage, and delivery.

ii. Integrate modular robotic processes and computations to tackle
warehouse workflow processes.

iii. Specify fine-grained (reusable) workflow compositions for
warechouse automation involving concurrent —services
invocation, robotic specifications, and latency constraints in
Orc.

iv. Formal verification through the use of model checkers that
ensures soundness, liveness, and deadlock-freeness of Industry
4.0 workflows.

v. Demonstrate latency improvements provided by such fine
grained workflow composition analysis on the end-to-end
warehouse supply chain.

The rest of this paper is organised as follows: Section 2 provides an
overview of processes involved in automated warehouse
management, including robotic agents. The use and analysis of
workflow patterns and eventual specifications in Orc are studied in
Section 3. An overview of workflow verification, properties, and
model checking is presented in Section 5. Section 4 specifies and
analyses the automated warehouse workflow specifications with
latency evaluation and verification. The evaluation of design-time
and runtime executions of automated warehousing workflows,
verification, and end-to-end latency analysis is studied in Section 6.
This is followed by related work and conclusions in Sections 7 and
8.

2 Industry 4.0 warehouses

In this section, we present an overview of automated warehouses as
well as autonomous robotic agents that are typically deployed in
them.

2.1 Automated warehouses

Multi-product and multi-supplier warehouses play a critical role in
most logistic supply chains [3]. Warehouses are used as a buffer to
maintain excess product when there are variations in procurement
on customer demand. They also allow consolidation of products in
distribution centres located closer to delivery locations.
Additionally, warehouses may perform ancillary activities such as
breaking pellets into manageable units, labelling, and packaging of
goods [3]. Typical multi-supplier warehouses have product receipt,
storage, and delivery stages as described in Fig. 1:
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i.  Procurement. When a notification for goods arrival is
processed, the goods must initially be checked for order
integrity and damages. The products typically arrive in large
pallets and may be broken down to prepare for storage. The
broken down stock keeping units (SKUs) are then radio
frequency identification (https://www.rfidjournal.com/
logistics) tagged before being readied for storage.

ii. Storage: Picking and storage of SKUs must be handled
efficiently. Of late, this is being automated with robotic
pickers, forklifts, and delivery robots used in tandem [4]. The
storage typically has a large storage area consisting of multiple
racks. A subset of the stored products is moved to a forward
area to ensure quicker delivery of products.

iii. Delivery: Once a delivery order is received, the products are
procured from the warehouse. Typically, this process in
handled by a centralised orchestrator that determines the
number of pickers and time limits needed to procure products
from the warehouse. Once all the required products are
procured, they are collated and checked. Finally, packing and
shipping of the product are done for order fulfilment.

As seen in Fig. 1, input order rates and the order service level
agreements (SLAs) [16] are the parameters that may be monitored
for such warehousing tasks. Multiple factors can affect this
including the rate of supply of goods, forward area storage, and
efficient storage locations. As picking and delivery tasks are being
heavily automated by making use of robotic deployments [4],
sequential or parallel invocation of these devices can have
significant impact on the delay. Most warehouses intend to
optimise these criteria to reduce flow time: the interval between
order arrival and shipping.

Traditionally, the WMS [9] is tightly coupled with inventory
management, order processing, and task assignment in warehouses.
The WMS must be input with physical dimensions of all products,
storage locations, and participants in the warehouse. It is a
centralised system to orchestrate the flow of products, people, and
machines on the warehouse floor. While such a system may work
on a small scale, future warehouses involving increased automation
and autonomy of participants need alternative models [4]. In multi-
supplier, multi-party warehouses that involve multiple components,
loose coupling of services would prove to be a superior
architectural framework.

2.2 Robotic agents

In order to study the use of robotic automation in Industry 4.0
deployments at a high level of abstraction, we make use of
intelligent agents. An intelligent agent perceives its environment
through sensors, and determines the plan of actions to complete a
task and acts upon the environment through effectors [17]. Robotic
agents perceive the environment through camera/odometry sensors
and make use of motor effectors to manipulate actions with respect
to the environment. Typical agent actions, for instance with a part-
picking robot, include

i. Perception: Camera sensors that sense pixels of varying
intensity. This aids the robot in object detection and
identification. Robot location, view, and environment may also
be perceived.

ii. Actions: Pick up parts and sort into appropriate bins.
Constraints may be placed on the robot capabilities and
accuracy in performing such actions.

iii. Goals: Place parts in correct bins within the given time
constraints.

iv. Environment. Warehouse environments with a conveyor belt or
racks carrying parts.

Algorithm 1 (Fig. 2) presents an overview of an intelligent robot's
perception and action via a knowledge base [17]. The knowledge
base coordinates appropriate actions in relation to an individual
robot's perception (for instance identifying the correct part). The
knowledge base may also include descriptions of domain ontology,
task templates, and resource descriptions. When a group of robots
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1 Input: Robot Perception; Knowledge Base; Goal;

2 Output: Robot Action;

3 Knowledge Base <— Update(Knowledge-Base, Perception);
4 Action < Choose-Best-Action(Knowledge-Base, Goal);

5 Knowledge Base <— Update(Knowledge-Base, Action);

Fig. 2 Algorithm 1: intelligent robotic agent
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Fig. 3 Decomposing high-level workflow tasks to business artefacts and
robotic processes

or a robot interacting with software/machines requires handling of
complex tasks, an individual knowledge base would prove
insufficient [4]. Additional workflow plans are needed to complete
large tasks in a coordinated manner. This requires formal workflow
specifications, described next.

Multi-agent systems [11] are typically employed to model
interactions between heterogeneous, distributed and autonomous
communicating devices. The autonomous agents have incomplete
information and limited viewpoints of a global problem; consensus
on the global task may be provided by sharing knowledge in a
peer-to-peer or hierarchical fashion [11]. Data is also decentralised
as agents may sense, store, and perform decision updates
periodically. Such a decentralised, distributed architecture is crucial
for large warehouses with dynamic delivery/order completion rates
coupled with on demand resource provisioning and monitoring
[10]. A practical implementation of such a system on the
warehouse floor involves Amazon's Kiva robots [4] that
autonomously move around a warehouse to aid in picking and
delivery of goods.

When such multiple agents are involved within the picking and
delivery workflow, it might be possible to allocate the entire task to
a robot or create a multi-robot task. Typically, when multiple
robotic agents are involved, the improvements are as follows: (i)
Speed: A set of homogeneous delivery robots r;, i € {1,n} would
speed up the task by a factor of at most n. (ii) Volume: Each
delivery/picking robot may have a limited number of items that can
be conveyed at the required throughput. (iii) Fault-tolerance:
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Owing to redundancy in invoking multiple robots 7;, a single point
of workflow failure is reduced considerably.

A requirement needed in multi-robot warehouse coordination is
to have a unified specification framework to translate high-level
requirements to low-level task specifications. This would involve
studying concurrent workflow patterns and robot coordination that
can be extensible to multiple deployment environments. In
conjunction with concurrency, fine-grained analysis of latency
constraints would also be factored into the model, which is
essential for automated processes.

3 Workflow composition languages

Workflows integrating business processes, cyber-physical systems,
and human participants have been extensively studied. This has
received further gallop with the use of SOAs [8], in order to invoke
modularly developed services. Industry standard workflow
languages such as BPEL [6] have been produced. In this section,
we look at techniques to hierarchically decompose high-level
business process models to specifications that may be run on
automated entities. Further formalisms on expressing workflows in
Orec are also introduced.

3.1 Workflow decomposition

As specified in [5], workflows may be viewed in the following
dimensions:

i.  Control flow: Concerns the partial ordering of tasks executed
in workflows.

ii. Resource dimension: Resources may be software, machines
(robots, agents), and humans.

iii. Case dimension: Concerns the proper allocation of resources in
order to satisfy constraints in a specific control-flow task.

Workflow specification languages allow the composition of
modular systems in a formal way. This has been exploited to create
distributed, verifiable deployments in SOA [8]. For our work, we
primarily deal with the control and data flow perspectives of
warehouse workflow execution. With complex tasks, task division
may be done sequentially, in parallel, using the fastest response or
in a hybrid manner.

The decomposition approach used is presented in Fig. 3, where
a high-level task is subdivided and assigned to autonomous robotic/
software resources. From a high-level organisational perspective,
the tasks taken by the business processes follow the business
artefact model [18], for instance, maintaining records of stock
arriving or orders taken. In order to further decompose these high-
level workflow processes, execution of robotic components using
workflow constructs are provided. In all these cases, multiple
constraints may be taken into account to decide which workflow to
implement at runtime (price, latency, and resource utilisation). As
we use intelligent agents [11] as the abstraction for robotic/
machine components, tasks may be further allocated to such
agents, who are able to sense, query knowledge bases and perform
actions related to specific goals. Further elucidation of such tasks
in the warehousing context is presented in the next section.

In automated deployments involving robotic/IoT components,
additional constraints crop up in workflow specifications,
including:

* Hierarchical plans: To deal with abstract business requirements,
a high-level plan may be proposed that iteratively decomposes
into executable instructions. For instance, a top-level plan may
be ‘collect the item for delivery’, which is decomposed
hierarchically until a picker robot has to execute path plan,
pick object,and deliver object actions.

* Complex control flow: Invoking actions may be done using
complex concurrent patterns such as synchronisation and data
dependent trace executions. Verifying that the executed path
confirms to specifications is an important aspect to consider in
such cases.
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» Time: Transactions and actions have time durations associated
with them. Some may have hard constraints (robotic precision
arm movement) while others may have soft constraints (delivery
within 10 h with probability 0.8). Another difficulty is reasoning
about compositions of such modular systems when integrated
into larger workflows.

* Resources: Execution of workflows must consider limitations on
the resources (human, robots) that may be employed and the
total cost entailed in executions. Parallelising activities can have
trade-offs that needed to be monitored and judiciously
employed.

Algorithm 2 (Fig. 4) incorporates workflow execution plans within
the context of intelligent robots (extension of Algorithm 1). Note
that state based description of robotic agents is incorporated in
order to provide efficient queries for goal completion. The first
action in the workflow plan W is completed, with the next step
iteratively allocated to the robotic agent driving it to iteratively
complete the goal (lines 6-9 in Algorithm 2). If there are multiple
robots allowed to execute a work item, the task allocation may be
done via push (allocation of tasks) or pull (auctioning, parallel
execution) control.

In order to formally specify such complex workflows, we make
use of Orc [12], a concurrent programming language developed
with wide area computations in mind.

3.2 Orc

In order to specify complex workflows, we make use of Orc [12], a
concurrent programming language developed with wide area
computations in mind. Orc has been shown to be able to specify
complex workflow patterns [19], with the added advantage of
being grounded in formal process-calculus and being able to deal
with timing constraints. Orc may be translated into workflow nets
[20] in order to verify liveness and safety properties that are crucial
for industrial workflows.

The execution of workflows in Orc makes use of expressions,
with the fundamental abstraction used in an Orc expression being a
site. A site may be local or remote: for instance, a local site
add (x,y) will provide the sum of two numbers; a remote site such
as GetStockvValue(a) would retrieve the stock value for a
particular item. In order to create more complex workflow
expressions based on site invocations, Orc makes use of the
following combinators:

* Parallel combinator (|): Given two sites s, and s,, the expression
sils, invokes both sites in parallel. The sites execute
independently and the output published can be any of the
outputs of s, or s,.

» Sequential combinator (> ): In the expression s, > s, site s, is
evaluated initially. Every value published by s, initiates a
separate execution of site s, with publications bound to any
execution of s,.

* Pruning combinator ( < ): In the expression s; < s,, both sites
s; and s, execute in parallel. If s, publishes a value, the execution
of s, is terminated and the suspended parts of s, proceeds — this
is the mechanism in Orc to block or terminate computations.

o Otherwise combinator (;): The expression s;;s, first executes
site s;. If s, publishes no value and halts, then s, is executed
instead. Halting is said to happen if all site calls with never
publish any more values or will not call any more sites.

Two further expressions are used to aid in execution. The signal
expression publishes a signal when executed and is similar to
if (true). The expression stop halts when executed as in
if (false). As Orc interacts with external sites, it has an inbuilt
timer site Rclock to interact with the passage of time. This may be
used to deal with timeouts when invoking remote sites.

As seen in Table 1, Orc sites and combinators may be applied to
express all the patterns seen in workflows [5]. While simple
patterns such as sequence and parallel split may be naively
represented using the combinators, more complex patterns such as
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Input: Robot Perception; Knowledge-Base; State; Goal; Time t;
Workflow;

Output: Robot Action;

Knowledge Base < Update(Knowledge-Base, Agent(Perception, t));

State < State-Description(Knowledge-Base, t);

[ I N )

G < Query(Knowledge-Base, Goal-Query(t));
W «+ Workflow(Knowledge-Base, G, State);
if W = Empty then

L Action + Stop;

ES TN

8 else
L Action « First(W);

9 W + Rest(W);

-

0 Knowledge Base < Update(Knowledge-Base, Agent(Action,t));
11 t < t+1;

Fig. 4 Algorithm 2: intelligent robotic agent with a workflow plan

Table 1 Workflow patterns [5] represented in Orc
Orc Workflow pattern

513> 8, sequence, milestone

s1]82 parallel split, multiple instances

v < (s1]82) exclusive choice, synchronising merge
515 8 implicit termination, cancel activity/case
(815 52) synchronisation

Sils>v simple merge, multi-choice, multi-merge
513> 5> 8 arbitrary cycles

ift deferred choice, discriminator
lock interleaved parallel routing

multi-merge and synchronisation require orchestration of sites,
combinators, and timers.

Orc provides the ability to specify custom sites and functions,
which proves suitable for specifying workflows in automated
warehousing environments. It can also deal with timing constraints,
concurrency, and scaling up/down of resources (using the object-
oriented paradigm) that makes it useful in specifying Industry 4.0
workflows. Unlike other XML-based languages such as BPEL [6],
Orec is based on a concurrent process calculus language that may be
specified with object-oriented paradigms, allowing for modular,
scalable, and reusable code. It also provides fine-grained timing
constraints that are traditionally missing in other workflow
specification languages. Furthermore, as Orc is based on a formal
process calculus, it can be used to verify properties of industrial
workflows. Orc specifications may be translated to Petri net
formalisms that may be input to model checkers to analyse safety/
liveness properties.

4 Warehouse workflow specifications

Current warchouses make use of a centralised WMS [9] to
coordinate all activities. Industry 4.0 compliant warehouses involve
robotic processes, hardware, and humans working in independent
modes to fulfil tasks. In order to provide a framework for such
interactions, we specify multiple sites using Orc based on the
operations provided in Fig. 1. Note that we specify this using
agent-oriented interactions [11] where agents may be software,
robotic entities or humans. Humans and robots can interact with the
workflow input/outputs and change behaviour accordingly.
Coordination is done through the centralised workflow
orchestration that received inputs/outputs from these deployed
agents. This moves away from a central WMS architecture to a
hierarchical/hybrid  architecture = incorporating  autonomous
components [10].

Fig. 5 presents a high-level view of our specification approach.
While typical late-runtime binding of services has been well
established in the SOA community [8], we append this with
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execution

1 |- Procurement site with pallet reception
2 | def class Procurement ()=
3 val PalletSize = Ref (5)
4 val SKU = Ref (500)
5 def ReceivePallet (ProdID) = Dictionary() >rp>
rp.prodID := ProdID
6 def BreakPallet (ProdID) = Dictionary() >bp>
bp.palletsize := PalletSize? >> bp.SKUsize
:= SKU?
7 def SKUPick (ProdID, SKUSize) = Dictionary() >sp>
sp.picksize := SKUSize
8 def ArrangeSKU (ProdID,SKUSize) = Dictionary ()
>ac> ac.picksize := SKUSize
9 stop
10
11 |- Delivery site with order fulfillment
12 |def class Delivery()=
13 def ReceiveOrder (OrderID) = Dictionary() >ro>
ro.order := OrderID
14 def Pick(OrderID,size) = Dictionary() >po>
po.size := size >> storage.RetrieveStock (
OrderID,po.size?)
15 def Check (OrderID,size) = Dictionary() >co>
co.size := size
16 def Pack (OrderID, size,checkstatus) = Dictionary()
>po> po.check := checkstatus
17 def Ship(OrderID, size,checkstatus,packing) =
Dictionary () >so> so.packed := packing
18 stop
19
20 |- Storage site with inventory management
21 | def class Storage ()=
22 val PercentinForward = Ref (20)
23 val PercentinWarehouse = Ref (80)
24 val CurrentStock = Ref (100)
25 def WarehouseStorage (ProdID) = Dictionary() >wss>
wss.percentage := PercentinWarehouse?
26 def ForwardStorage (ProdID) = Dictionary() >fs>
fs.percentage := PercentinForward?
27 def Stockvalue (ProdID,SKU) = SKU + CurrentStock?
>p> CurrentStock := p
28 def RetrieveStock (ProdID,Units) = Dictionary()
>rs> (Ift(Units <: 10) >> rs.stock := "
Forward") | (Ift(Units :> 10) >> Rwait(d) >>
rs.stock := "Warehouse")
29 stop
30
31 |wval Procurement = Procurement ()
32 |val Delivery = Delivery ()
33 |val Storage = Storage()

Fig. 6 High-level warehouse activities implemented in Orc

autonomous robotic components that are typically observed in
Industry 4.0 industrial deployments. Note that both the warehouse
workflow and the robotic components are specified in a unified
framework in Orc at design time. This allows execution with
various adaptation capabilities during runtime. The SOA-type
services may be late-bound or replaced with other competing
services from a registry to maintain SLAs. The autonomous robotic
agents that are invoked in the workflow have some adaptation
capabilities, with scaling-up/down of deployments possible
depending on the varying demand rates. Specifying the interactions
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of all these components in a formal composition framework is
necessary in order to

i. Reduce ambiguity in the execution of industrial workflows.

ii. Allow for fine-grained timing concurrency and timing analysis,
specially necessary with robotic automation.

iii. Reuse specifications across multiple deployments with
minimal changes in specifications.

iv. Ensure flexible deployments incorporating runtime adaptation
and reconfiguration of modular components.

The architecture specified in Fig. 5 is hybrid in nature. While a
centralised workflow orchestrator is used to coordinate the high-
level warehousing tasks in a centralised manner, the presence of
distributed autonomous entities such as robotic agents ensures
adaptation and intelligent distribution of tasks. A unified
framework to handle both high level and granular agent behaviour
is necessary to maintain coherent execution in complex Industry
4.0 deployments.

We specify the functionalities of the procurement, storage, and
delivery operations of a warehouse in Orc. In our specifications,
we make use of the def class declaration that allows us to
implement sites within Orc. The def class declaration provides
encapsulation similar to classes in object-oriented programming. It
also allows encapsulation of computations, methods, and resources
relevant to sites managing those resources. Invocation makes use
of the dot . access patterns for site calls. It consists of target
expression E and key K. First, E is deflated to value v; if value v
has a member named K, that member is published. Otherwise, the
expression halts.

4.1 Warehouse workflow composition

The workflow compositions of the general description provided in
Fig. 1 is given in Fig. 6. The general Orc abstractions used in the
high-level specifications follow the declaration/instantiation
expression (Fig. 7):

We explain some salient features of Fig. 6, which represents a
concrete implementation of warehouse operations:

* Procurement: The re-usable site definition of the procurement
workflow consists of functions to ReceivePallet,
BreakPallet, SKUPick, and ArrangeSKU. This can be
instantiated multiple times to receive products based on a
ProdID, breakdown pallets from PalletSize to SKU and
arrange them for storage. We make use of the Dictionary ()
site in Orc to create mutable maps from field names to values
that may be extended. Latency incorporated into each of the
sites may be specified using Rwait values. Assignment and
retrieval from mutable references are done using := and ?
patterns.

* Delivery: The site definition of the delivery workflow consists
of functions to ReceiveOrder, Pick, Check, Pack, and Ship.
Each step provides the input to the proceeding step, for instance,
with parameters such as checkstatus and packing. Note that
the definitions interact with the storage workflow using the
storage.RetrieveStock site call to retrieve products.

* Storage: The storage site serves as the intermediary to the
delivery and procurement workflows. It expresses the storage in
the WarehouseStorage area and the ForwardStorage area.
The current stock value is tracked in the Stockvalue site based
on procurement and delivery. Note that another site
RetrieveStock that procures smaller orders from the
ForwardStorage area and larger orders (with additional delay)
from the WarehouseStorage.

The advantage of encapsulating such sites in Orc is the ability to
reuse such specifications across multiple warehousing deployments
with minimal changes in composite specifications. Other workflow
composition languages such as the XML-based BPEL are unable to
efficiently support this code reuse in a new context.
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—-Warehouse Site Definition

def class WarehouseWorflow() =
def Function() = (data, activity)
stop

—-Instantiate Runtime Warehouse Workflow Site
val WarehouseWorkflow = WarehouseWorflow ()

—Invoke Warehouse Workflow
WarehouseWorkflow.Function instantiate

[N RN S e R N S

Fig. 7 High Level Instance of a Warehouse Workflow in Orc
1 | -Robot Site Definition
2 |def class Robot () =
3 def RobotAgent () = (attributes, action)
4 stop
5
6 | -Instantiate Runtime Robot Site
7 | val Robot = Robot ()
8
9 | -Robot Invocation in Workflow
10 | Robot.RobotAgent instantiate
11 (WarehouseWorkflow activity, RobotAgent action)
Fig. 8 High Level Instance of a Robot Workflow in Orc

KUKA KR 40 PA Palletizing Robot
Max. Payload 40 kg, Max. Reach 1.8 m

KUKA KMP 1500 Mobile Platform
Max. Payload 1500 kg, Max. Velocity 1 m/s

Fig. 9 KUKA warehouse automation picker and delivery robots

-Picker Robot with payload, reach, delay

1

2 | def class PickerRobot ()=

3 val Payload = 40

4 val Reach = 180

5 def Agent (ID) = Dictionary() >pr> pr.agentID := ID
>> pr.agentModel := "KUKA KR 40 PA" >>
Random(50) >v> Rwait (v) >> pr.agentdelay := v
>> pr.payload = Payload >> pr.reach = Reach

6 stop

7

8 | -Delivery Robot with payload, velocity, delay

9 |def class DeliveryRobot ()=

10 val Payload = Ref (0)

11 val Velocity = 1

12 val Distance = Random(100)

13 def Agent (ID) = Dictionary() >dr> dr.agentID := ID
>> dr.agentModel := "KUKA KMP 1500" >v>
Rwait (v) >> dr.agentdelay := v >> dr.weight
:= 50 >> Payload := dr.weight?

14 stop

15

16 |val PickerRobot = PickerRobot ()
17 |val DeliveryRobot = DeliveryRobot ()

Fig. 10 Runtime robotic agent specification in Orc

4.2 Robotic automation workflow composition

With automation being increasingly used for the delivery and
picking tasks of the warehouse, robotic specification and
invocation may be specified in Orc. We specify further reusable
robotic sites, with the following attribute and instantiation
expression (Fig. 8).

These may be physical robots such as those commercialised by
Kuka (https://www.kuka.com/) and shown in Fig. 9. In Fig. 10, we
define two sites called PickerRobot and DeliveryRobot that
may be instantiated multiple times by the warehousing workflows
using the Agent(ID) site call. Specifications for payload capacities,
velocity, range, and delay characteristics are included. The
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1 -Latency Increment Rules

2 | def class LatencyQoS() =

3 val counter = Ref (0)

4 def min(tl, t2) = if (tl <: t2) then tl else t2

5 def max(tl, t2) = if (tl :> t2) then tl else t2

6 def sequential(tl, t2) = tl + t2

7 def join(tl, t2) = max(tl, t2)

8 def best(tl, t2) = min(tl, t2)

9 def increment (tl) = counter? + tl >t> counter := t
>> counter?

10 stop

11

12 | val Latency = LatencyQoS ()

Fig. 11 Latency specification in Orc

advantage of such modelling is the hierarchical structure where the
high-level warehouse workflow in Fig. 6 may be suitably deployed
with autonomous robotic agents in Fig. 10 for run-time
instantiation, binding, and resource adaptation (as shown in Fig. 2).

Note that though there are multiple activities such as path
planning, optimal resource allocation, and robot-to-robot
coordination that may be considered, we place emphasis primarily
on the latency and concurrent task allocation among the robots.
Payload, velocity, and dimensions of the robots may be specified
using commercial data-sheets as in Fig. 9. As Orc is able to access
external site Application Programming Interfaces (APIs) through
JSON/RESTHful calls, it may be integrated with robotic deployment
environments such as ROS (http://www.ros.org/). It is also easy to
extend this framework to represent agents such as humans and
software that work autonomously but are coordinated by the
workflow composition. Knowledge repositories such as RoboEarth
[21] may be incorporated within this context to be applicable to
other robotic deployments (describing robot capabilities, action
partial orders, and environments).

4.3 Latency evaluation

As latency increments and timeouts are critical in industrial
automation, integrating rules to update these constraints are
necessary. QoS rules and algebraic expressions have been
evaluated in Orc [22]. Such rules for latency increments are
included, making use of the LatencyQos site provided in Fig. 11.
Note that the QoS increment rules are linked to the workflow
patterns used and may be seamlessly integrated into the complex
compositions. In Fig. 11, latency computations in fork-join
operations may be done by making use of Latency.join(tl,t2)
and that for selecting the fastest returning computation as
Latency.best (t1,t2). An operator called
Latency.increment (t1) is provided to track latency increments
during the computation of complex Orc expressions.

5 Workflow verification

In this section, we summarise properties that are typically used in
verification of workflow nets. An overview of the TAPAAL model
checker is also presented.

5.1 Workflow nets

In order to analyse and verify workflows integrated into automated
environments (Algorithm 2), we translate Orc expressions into
workflow nets, which have the advantage of being able to handle
state-based descriptions of complex workflows [13]. Formally
defining this

Definition 1: (net): A Petri net is a triple (P, T, F)

* Pis a finite set of places.
e Tis a finite set of transitions (PN T = @).
e FC(PXT)U(T XP)isasetofarcs.

A place p is called an input place of a transition ¢ iff there exists
a directed arc from p to t. Place p is called an output place of
transition ¢ iff there exists a directed arc from ¢ to p. The set of
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input places to places and transitions are represented by  p and e z.
Similarly, p « and ¢ « represent sets of places and transitions sharing
common inputs. At any time a place contains zero or more tokens.
The state or marking represents the distribution of tokens over
places in the net: M € P — N. A Petri net PN with initial state M is
denoted as (PN, M). Transitions that fire given Petri net restrictions
result in a new marking. Petri nets may be extended in the
following ways to handle more complex modelling aspects:

* Colour: Coloured tokens may represent resources or attributes in
the system. For instance, the flow of data such as order ID,
vendor name, and object quality attributes may be incorporated
with coloured tokens in Petri nets. Transitions describe the
interactions between input and output tokens.

* Time: Most complex models require temporal behaviour such as
durations and delays are to be incorporated. Time can be
associated with tokens, places, and transitions.

* Hierarchy: A high-level Petri net may invoke a subnet
hierarchically to decompose larger tasks to smaller subtasks. A
subnet is an aggregate of a number of places, transitions, and
subsystems.

5.2 Workflow net verification

A Petri net which models the control-flow dimension of a
workflow is called a workflow net [13].

Definition 2: (Workflow net): A Petri net PN = (P,T,F) is a
Workflow net if:

i. There is a single source place i € P such thatei = @&.
ii. There is a single sink place 0 € P suchthatos = @.
iii. Every node x € P X T is in the path from i to o.

A workflow net has one input place i and one output place o.
While workflow nets may be used to directly model complex
interactions, due to inherent limitations in data flow specifications,
we use workflow nets as an intermediary representation. The
following properties are typically employed to analyse workflow
nets such that they correctly map requirement specifications to
deployments [23]:

Definition 3: (Reachability): Given a workflow net
PN = (P, T, F) and a state M, a state M’ is called reachable from M

(M —> M) iff there is a firing sequence o such that M —— M’.

Definition 4: (Liveness): A workflow net (PN, M) is live iff for
every reachable state M’ and every transition ¢, there exists a state
M’ reachable from M’ that enable 7.

Definition 5: (Bounded): A workflow net (PN, M) is bounded
iff for each place p, there is a natural number n such that, for every
reachable state the number of tokens in p is less than n.

Definition 6: (Safe): A workflow net (PN, M) is safe iff for each
place p, the maximum number of tokens does not exceed 1.

For the case of workflow nets, the additional condition is that
the procedure will terminate eventually and the moment the
procedure terminates, there is a token in place o and all the other
places are empty. This is captured in the soundness property [23]:

Definition 7: (Soundness): A workflow net PN = (P, T,F) is
sound if and only if

i. For every state M reachable from state i, there exists a firing
sequence leading from state M to state o.

ii. State o is the only state reachable from state i with at least one
token in place o.

iii. There are no dead transitions in (PN, 7).

We make use of model checkers to formally verify the above
properties on Industry 4.0 workflows.
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Requi " Experimental
equirements Realize Verify Simulation
- ore > Workflow Net > Workflow
Abstract E bl + TAPAAL Simulation
Automation xecutable Validated Output +
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SLAs Re-model Re- Tune/
configure Optimize

Fig. 12 Workflow simulation, verification, and analysis

5.3 Model checking workflows

The reason for formally specifying workflows is the advantage of
verifying safety properties. This is critical, especially for complex
industrial systems involving precision robotic/IoT components.
Our model for integrating the hierarchy of Orc workflows into the
verification is provided in Fig. 12. As Orc can be translated into
workflow patterns, we perform model checking on workflow nets.
Analysis of workflow nets is done using the TAPAAL model
checker [14], with queries formulated in a subset of Computation
Tree Logic (CTL):

i. EF: There exists some reachable marking that satisfies the
property.

ii. EG: There exists a trace on which every marking satisfies the
property.

iii. AF: On all traces there is eventually a marking that satisfies
the property.

iv. AG: All reachable markings satisfy the property.

The predicate that needs to be checked is then specified using a
combination of conjunction, disjunction, negation, and atomic
propositions. The workflow analysis module in TAPAAL allows
verification of soundness/liveness properties of workflow nets,
including a detailed debugging information. Furthermore, search
strategies such as depth first, breadth first or optimised search may
be specified [14]. We now develop these techniques for
deployment over automated warchouse workflows described in
Orec.

5.4 Warehouse automation workflow verification

The rules for the translation of Orc expressions to workflow nets
are based on the mapping in Table 1 [5, 19]. While simple patterns
such as sequence and parallel split may be naively represented
using the combinators, more complex patterns such as multi-merge
and synchronisation require orchestration of sites, combinators, and
timers. The use of workflow patterns ensures correct mapping
between Orc specifications and the workflow net representation
[19]. Further details on the verification of workflows may be found
in [15].

Fig. 13a shows a high-level workflow net describing the
automated warehouse order processing, procurement, and shipping
transitions  (sequence  workflow  pattern). Once  the
Warehouse Procure transition is triggered, the picker and
delivery automation workflows are enabled (synchronisation
workflow pattern). The workflow net for the picker robot
(Fig. 13b) includes Task Assignment, robot Pose Estimate
and Motion Plan (sequence and parallel split workflow pattern).
The picker automation workflow completes by placing the object
token in the delivery robot (synchronisation workflow pattern).
Some of the expanded workflow steps are specific to robotic
functioning, with details provided in [15]. This modelling shows
how both business process workflows, robotic automation, and IoT
sensors/actuators may be unified using the Orc and Workflow net
modelling framework that we described in Section 3.

The workflow net model may be fed into model checkers for
verification. In Industry 4.0 systems, verification is crucial to
ensure correct execution of business automation requirements.
Terms described in Section 5 with regard to soundness, liveness,
and safety are crucial in automation workflows involving precision
robotics interacting with business processes. The unified modelling
also allows for composition of data flow and timing requirements
in complex workflows, examined in the next section.
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(a) Warehouse workflow net (sequence pattern), (b) Picker automation workflow net (sequence, parallel split, synchronising merge patterns)

|def ProcurementWorkflow() = procure.ReceivePallet(1l) >> procure.BreakPallet(1)
(procure.SKUPick(1,v),PickerRobot.Agent("prl")) >>

(procure.ArrangeCartons(1,v) ,DeliveryRobot.Agent("drl")) >> storage.WarehouseSKUStorage(1)
>> storage.ForwardStorage(1l) >> storage.Stockvalue(1,500) >> clock.time() >t>
Latency.increment(t) >v> Println("Procurement Time "+v)

V>

def DeliveryWorkflow() = delivery.ReceiveOrder(1l) >> DeliveryRobot.Agent("dr2") >>
(delivery.Pick(1,20),PickerRobot.Agent("pr2")) >> delivery.Check(1,5) >>
delivery.Ship(1,5,"ok","Pack") >> storage.RetrieveStock(1,5) >>
clock.time() >t> Latency.increment(t) >v> Println("Delivery Time "+v)

delivery.Pack(1,5,"ok") >>

ProcurementWorkflow()

| DeliveryWorkflow()

close]run]

Pallet Received ID: 1, Timestamp: 108

Order Received ID: 1, Timestamp: 113

Delivery Agent: dr2, Agent delay: 50, Timestamp: 114
Picking Agent: pr2, Agent delay: 35, Timestamp: 151

Picking Agent: pr1, Agent delay: 46, Timestamp: 156

Delivery Agent: dr1, Agent delay: 50, Timestamp: 611
Check Order ID: 1, Timestamp: 654

Pack Order ID: 1, Timestamp: 1154

Ship Order ID: 1, Timestamp: 1656

Delivery Time 1657
signal

Procurement Time 3770
signal

Stock from Forward Area for Order 1, Timestamp: 1656

Fig. 14 Orc simulation output integrating warehouse workflows composed with automation timing analysis

6 Simulation and analysis

In this section, we evaluate the use of workflow specification both
for design time analysis as well as for runtime configurations and
adaptation.

6.1 Orc execution of warehouse workflows

Design time execution and analysis of warehouse workflows is an
important aspect of supply-chain planning. Typically, these are
statically monitored/controlled through WMSs. Through our
approach, a more flexible simulation-based environment may be
generated, wherein modular workflows and robotic agents interact
via specifications in Orc.

Fig. 14 shows the simulated output of an Orc programme that
integrates workflow specifications and robotic agents. Two
interleaved complex workflows are called in parallel:

ProcurementWorkflow () | DeliveryWorkflow(). Each
of these has site calls to multiple procurements, storage, and
delivery activities specified in Fig. 6. Robotic piker and delivery
agent instantiations are also incorporated to automate warchouse
activities (Fig. 10). While each site may be implemented on
distributed agents, our simulation implements the sites locally with
exponentially distributed timing delays. Robotic delay parameters
are taken from specifications in Fig. 4, with latency increment rules
as specified in Fig. 11.
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The output of a composite workflow simulation in Orc is shown
in Fig. 14. We notice that various workflow activities proceed in
the specified order. By the use of the clock.time() and
Latency.increment (t) sites, the end-to-end procurement and
delivery times may be tracked. This may be used to specify the
order delivery SLAs as discussed in Fig. 1 (average/worst case
bounds). Delays in procurement provided by the picking and
delivery agents are also tracked within this framework. This
framework allows the warehouse activity planner to study and
analyse activities at design time. Specially in times with turbulent
demand and supply rates, this may be combined with optimisation
frameworks such as those proposed in [24] to efficiently manage
inventory supplies.

6.2 Workflow verification

We next verify if the Orc workflow model confirms to
specifications [15]. TAPAAL verification, when applied to the
translated Workflow net model (Fig. 13), confirms that the
workflow is sound and bounded by the number of tokens
provided. Definitions provided in Section 5 on reachability,
liveness, and safety are evaluated to be true. Using TAPAAL, the
following specific CTL queries are further verified relating to the
Industry 4.0 warehouse automation (Fig. 13 workflow net places/
transitions referred):
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i.  Workflow completion: There exists some marking that satisfies
state Warehouse Workflow.End will be reached (Fig. 15).

ii. Deadlock freeness: On all traces, there is eventually a marking
that satisfies absence of deadlocks (Fig. 16).

iii. Proper termination: All reachable markings satisfy the
condition that reaching state Warehouse Workflow.End
implies all other states are empty (Fig. 17).

iv. Violation absence: On all traces, there is eventually a marking
that satisfies an absence of tokens in multiple states (Fig. 18).

Such verification techniques guarantee verifiable correct
deployments in Industry 4.0 warehouse automation.

6.3 Adaptive runtime executions

Another advantage of making use of workflow compositions is the
intricate study of runtime executions. Consider a large picker/
delivery task that requires coordination among multiple robotic
agents (similar to Fig. 2). Typically, Amazon's Kiva system expects
picking and delivery tasks to be completed within 20 min [4]. We
consider the multiple models of invocation wherein two delivery
robots ‘drl’, ‘dr2’ approach a picker agent ‘prl’ for a task (shown
in Fig. 19).

We notice different instances of runtime execution within Orc:
sequential, wherein the two delivery agents are assigned tasks one
after the other; single, wherein the only one delivery agent is used
for multiple tasks; parallel, wherein the delivery agents are invoked
in parallel with a subset of tasks allocated; In the follower
invocation pattern, if a task assigned to one of the delivery robots is
not completed, an alternate robot is invoked; the fastest invocation
pattern tasks are duplicated but accepted from the fastest serving
robot.

Fig. 20 presents the simulated output of using a couple of agent
invocation patterns in composition while incorporating the timeout
constraint Rwait. In case the fastest pattern is unable to complete
the delivery within the constraint, the parallel invocation pattern is
invoked. It is due to such hierarchical, adaptable deployments of
robotic agents that workflow compositions are of importance in
complex deployments. Designers and planners of industrial
warehouse workflows can integrate concurrency and timing
behaviour in a unified framework through our specifications.

In order to provide a quantitative comparison of the schemes,
we consider delivery agent robots with exponential completion
times having mean of 5min. The cumulative density of
distributions collected after 10,000 Monte—Carlo runs (using
clock.time () in Orc) are shown in Fig. 21. As expected, the
parallel and fastest workflow specifications outrun the single
workflow execution. While the follower execution initially
overlaps the single execution times, once the threshold of 5 min is
exceeded, it improves to the sequential execution times. The
percentile values have also been displayed with the 95th percentiles
provided with the worst being single robot tasks allocation having
30 min latency and the best being fastest 14.2 min (52.6%
improvement), parallel 18.8 min (37.7% improvement) and
sequential/follower 24 min (20% improvement). With Amazon's
Kiva robots aiming for 15-20 min turnaround times [4], such
accurate analysis and workflow adaptation are crucial to ensure
SLAs. Note that while we recommend Monte—Carlo runs be
performed a-priori with statistical inputs, this may be replaced with
runtime monitoring and reconfiguration triggers based on
thresholds.

6.4 Warehouse automation timing analysis

Workflows in Orc allow for intricate timing analysis of end-to-end
systems. This may also be integrated as hard timeouts that must be
adhered to during workflow execution. We examine the timing
guards to be provided to the end-to-end warehouse, time to pick an
assigned object by the picker robot and deadline for the delivery
robot to reach the picking destination. Setting these deadlines
involves simulation analysis of Orc workflows (Fig. 6).

Fig. 22 shows the composed latency bounds produced for
various workflows in the automated warehouse example. Mean
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1 | - Workflow Completion
2 | EF Warehouse_Workflow.End = 1

Fig. 15 Verifying Workflow Completion in TAPAAL

1 | - Deadlock Freeness
2 |AF ! (deadlock)

Fig. 16 Verifying Deadlock Freeness in TAPAAL

1 | - Proper Termination

2 | AG (Warehouse_Workflow.End = 0 or (
Warehouse_Workflow.Start = 0 and
Picker_Robot.P0...P22 = 0 and
Delivery_ Robot.P3...P22 = 0))

Fig. 17 Verifying Proper Termination in TAPAAL

1 |- Violation Absence
2 | AF ! (Warehouse_Workflow.P1l >= 1 and (Picker_Robot.PO
>= 1 or Delivery_Robot.P3 >= 1))

Fig. 18 Verifying Absence of Violation in TAPAAL

1 | - Sequential Invocation of Agents

2 | def Sequential() = PickerRobot.Agent ("prl") >>
DeliveryRobot.Agent ("drl") >>
DeliveryRobot.Agent ("dr2")

3

4 |- Single Agent Invocation

5 | def Single() = PickerRobot.Agent ("prl") >>
DeliveryRobot.Agent ("drl") >>
DeliveryRobot.Agent ("drl")

6

7 |- Parallel Invocation of Agents (Task Division)

8 def Parallel() = PickerRobot.Agent ("prl") >>

9 (DeliveryRobot.Agent ("drl"), DeliveryRobot.Agent (

"dr2"))

10

11 |- Agent Invocation with Follower Agent

12 | def Follower () = PickerRobot.Agent ("prl") >>

13 (DeliveryRobot.Agent ("drl") | Rwait(t)) >> stop ;

DeliveryRobot .Agent ("dr2")

14

15 | = Pruning Invocation of Agents (Fastest Selected)

16 |def Fastest() = PickerRobot.Agent ("prl") >> (v << (
DeliveryRobot.Agent ("drl") | DeliveryRobot.Agent
("dr2")))

Fig. 19 Orc expressions with robotic workflows

--Fastest

def Fastest() = PickerRobot.Agent("prl") >> ( v <v< (DeliveryRobot.Agent("drl") |
DeliveryRobot.Agent("dr2")) ) >> Println("Fastest Configuration Successful with timestamp:
“+clock. time())

--Parallel

def Parallel() = PickerRobot.Agent("pr1") >> (DeliveryRobot.Agent("drl"),
DeliveryRobot.Agent("dr2")) >> Println("Parallel Configuration Successful with timestamp
"+clock.time())

Iff(x)>>Parallel() <x< (Fastest() >>true | Rwait(200)>>false)

Parallel Confi ttion Successful with 1228
signal

Fig. 20 Composite workflows involving timeouts and concurrent
invocation of agents

values of transitions (exponentially distributed) are considered with
10,000 Monte—Carlo runs of the Orc simulator. We notice that for
both Picker and Delivery, mean latencies are similar.
Improvement in mean latency of each workflow site/transition
(Figs. 6 and 13) from 10 to 5 min improves the latency deadline of
the 95th percentile by ~50%. This is reflected in the end-to-end
warehouse workflow that also improves the overall distribution.
The advantage of such a model is that the hard timing constraints/
improvements provided by the robots may be composed as soft
contractual guarantees in the SLA. For instance, if the Picker and
Placer robots complete tasks within 80 min, the order will be
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Fig. 24 Failure probabilities versus mean transition times and deadlines

successfully delivered to the customers within 100 min in 70% and
within 135 min in 95% of cases.

Fig. 23 shows the trade-off throughput that may be supported
by the warehouse when incoming orders/minute are increased. We
make use of the utilisation law [25] to derive the peak throughput
supported
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Operating latency bound

As expected, for shorter delivery times, the number of order/
minutes is limited. For instance, with a rate of 9 orders/minute it
would be prudent to move to transitions with 20 min deadlines to
ensure SLAs are met. Fig. 24 shows the failure probabilities for
various mean transition times (exponential distributions) and
deadlines, which is another view of the workflow execution. We
observe lower failure probabilities with extended deadlines coupled
with smaller mean transition times. For instance, for mean
transition times of 8 min, the failure probability of deadline 3
(picker 100 min, placer 100 min, warehouse 200 min) is 0.2, which
is a vast improvement over the 0.65 for deadline 2 (picker 75 min,
placer 75 min, warehouse 150 min) and 0.97 for deadline 1 (picker
50 min, placer 50 min, warehouse 100 min).

This demonstrates the end-to-end modelling, simulation,
verification, and latency analysis of Industry 4.0 warehouse
workflows.

7 Related work

In this section, we provide an overview of related work in Industry
4.0 warehouses, robotic automation and workflow modelling.

7.1 Industry 4.0 warehouses

Industry 4.0 [1] requires increased automation, autonomy and
adaptation among distributed entities working in factory/
warehousing environments. A central entity for control and
coordination in warehouses has traditionally been the WMS [3, 9].
However, with increased warehouse automation such as those
demonstrated with Amazon's Kiva robots [4], distributed and
decentralised monitoring and control of these components are
needed.
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While traditional warehouses only require orchestration of
business processes, automated warehouses include intelligent
robotic agents and IoT devices [17], requiring accurate workflow
models. In industrial environments where software and (mobile)
hardware components have tight interactions, such workflow
specifications would involve intricate flow control and concurrency
issues. In [26], the warehouse automation throughput is increased
by up to 10% by optimising inventory forward area stock and
maximising pick rate velocities. Petri net model of factory
workflows is presented in [27], using which properties such as
liveness and deadlock freeness are synthesised. A simulation
framework is further proposed in [28], where design of the
warehouses and deployment of automated guided vehicles may be
coordinated. In [26], the warehouse automation throughput is
optimised by optimising inventory forward area stock and
maximising pick rate velocities — shown to increase throughput by
up to 10% over the baseline.

7.2 Workflow modelling and analysis

The use of formal compositions and concurrent programming has
been well exploited in the SOA community [6, 8]. With robotic
process automation [7] increasingly coming into the forefront,
linking robotic processes and hardware within this framework
opens up the possibility to analyse heterogeneous interactions. An
instance of such work is [24], where the Dell logistic processes are
updated with optimisation services to dynamically vary resupply
rates.

The interactions may be specified using workflow semantics
which follows certain patterns [5]. The integration of distributed
computing paradigms and workflow compositions has further come
into the forefront with development of programming languages
such as Orc [12, 19]. Orc is able to handle all the workflow
patterns [5] seen in complex workflow specifications. Orc may be
translated into workflow nets [20] in order to verify liveness and
safety properties that are crucial for industrial workflows. In
industrial environments where software and (mobile) hardware
components have tight interactions, such workflow specifications
would involve intricate flow control and concurrency issues.
Algebraic rules for QoS increments have been specified in [22],
which is integrated into our model.

7.3 Robotic agent workflows

Multi-agent systems [11] provide the right level of abstraction to
study and reason about autonomous components in complex
deployments. In [29], concurrent patterns such as periodic timers
and active objects are integrated into robotic task executions.
Cloud robotics [30] is another improvement in traditional multi-
robot deployments, with cloud-based knowledge repositories such
as RoboEarth [21].

The use of workflow models in industrial settings involving
IoT, robotics, and software systems have started receiving some
attention. In [31], a model-based programming environment is
proposed that integrates robotic control flow with workflows
specified as structured flow charts. A visual workflow simulation
environment is proposed in [32] that helps integrate robotic and
human participants in Industry 4.0 workflows. In [29], concurrent
patterns such as periodic timers and active objects are integrated
into robotic task executions. The use of workflows to integrate IoT
sense—compute—actuate devices is proposed in [33]. In [34],
workflow patterns are analysed using queuing network models to
generate end-to-end performance guarantees.

In this study, we integrate reusable workflow specifications
with warehouse automation to ensure efficient and adaptable
runtime deployments. This would form a basis for design time
specifications across multiple Industry 4.0 warehouse scenarios.
The model has been studied in terms of modularity, reuse, latency
improvements, and verification of safety/liveness properties.

8 Conclusions

Industry 4.0 automated warehouses involve a myriad of
heterogeneous participants including WMSs, picking/delivery
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robots, and human agents. Integrating them into a unified
framework will involve analysis of multiple concurrent processes,
requiring workflow modelling and optimisation. In this work, we
integrate many such autonomous components by specifying
composite workflows in Orc. We demonstrate that complex
interactions and workflow patterns may be suitably instantiated
within this framework. The workflows are translated into workflow
net models to allow model checkers to analyse safety, soundness,
and liveness properties. Accurate timing analysis and bounds are
then studied, which allows bottlenecks and throughput
improvements to be identified in complex workflows. Analysis of
latency constraints in case of automated warehouse/picking
delivery shows that runtime improvements may be observed
through adaptive switching between workflow invocation patterns.
Such a set of reusable libraries would prove invaluable across
industrial warehouse management activities both for design time
configuration and runtime analysis.

In the future, we would like to integrate more low-level details
of automated warehouses including robot location, resource
utilisation, and delivery tracking.

9 References

[n Hermann, M., Pentek, T., Otto, B.: ‘Design principles for industric 4.0
scenarios’. 49th Hawaii Int. Conf. on System Sciences, Washington, DC,
USA, 2016

2] Greengard, S.: ‘The internet of things’ (MIT, Cambridge, MA, USA, 2015)

3] Bartholdi, J., Hackman, S.: ‘Warehouse and distribution science’ (The Supply
Chain and Logistics Institute, Georgia Institute of Technology, Georgia, 2016)

[4] Wurman, P., D'Andrea, R., Mountz, M.: ‘Coordinating hundreds of
cooperative, autonomous vehicles in warehouses’, A4A4I Artif. Intell. Mag.,
2008, 29, (1), pp. 9-19

[5] Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: ‘Workflow patterns:
the definitive guide’ (MIT Press, Cambridge, MA, USA, 2016)

[6] Pant, K., Juric, M.B.: ‘Business process driven SOA using BPMN and BPEL’
(Packt Publishing Ltd, Birmingham, UK, 2008)

[7] van der Aalst, W., Bichler, M., Heinzl, A.: ‘Robotic process automation’, Bus.
Inf. Syst. Eng., 2018, 60, (4), pp. 269-272
[8] Erl, T.: ‘Service-oriented architecture: concepts, technology, and design’

(Prentice Hall, Upper Saddle River, NJ, USA, 2005)

[9] JDA Warehouse Management System (WMS): Available at https://jda.com/
solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/
warehouse-management, 2018

[10] Kim, B., Graves, R., Heragu, S., et al.: ‘Intelligent agent modeling of an
industrial warehousing problem’, I/E Trans., 2002, 34, pp. 601-612

[11] Shoham, Y., Leyton-Brown, K.: ‘Multiagent systems: algorithmic, game-
theoretic, and logical foundations’ (Cambridge University Press, New York,
NY, USA, 2009)

[12] Kitchin, D., Quark, A., Cook, W., et al.: ‘The Orc programming language’.
Proc. FMOODS/FORTE, Lisboa, Portugal, 2009 (LNCS, 5522), pp. 1-25

[13]  van der Aalst, WM.P.: ‘Three good reasons for using a Petri-net-based
workflow management system’, in Wakayama, T., Kannapan, S., Khoong,
CM., et al. (Eds): ‘Springer information and process integration in
enterprises’ (Springer, Boston, MA, USA, 1998), pp. 161-182

[14] Byg, J., Joergensen, K.Y., Srba, J.: ‘TAPAAL: editor, simulator and verifier of
timed-arc Petri nets’. 7th Int. Symp. on Automated Technology for
Verification and Analysis, Macao, China, 2009 (LNCS, 5799), pp. 84-89

[15] Kattepur, A., Mukherjee, A., Balamuralidhar, P.: ‘Verification and timing
analysis of Industry 4.0 warehouse automation workflows’. IEEE 23rd Int.
Conf. on Emerging Technologies and Factory Automation (ETFA), Turin,
Italy, 2018

[16] Jin, L., Machiraju, V., Sahai, A.: ‘Analysis on service level agreement of web
services’, HP Laboratories, Palo Alto, 2002

[17] Russell, S., Norvig, P.: “‘Artificial intelligence: a modern approach’ (Pearson,
Essex, UK, 2009, 3rd edn.)

[18]  Nigam, A., Caswell, N.S.: ‘Business artifacts: an approach to operational
specification’, IBM Syst. J., 2003, 42, (3), pp. 428445

[19] Cook, W.R., Patwardhan, S., Misra, J.: “Workflow patterns in Orc’. Proc. Int.
Conf. on Coordination Models and Languages (COORDINATION), Bologna,
Italy, 2006

[20] Kotb, Y., Beauchemin, S., Barron, J.: ‘Workflow nets for multiagent
cooperation’, [EEE Trans. Autom. Sci. Eng., 2012, 9, (1), pp. 198-203

[21] Tenorth, M., Perzylo, A., Lafrenz, R., ef al.: ‘Representation and exchange of
knowledge about actions, objects, and environments in the RoboEarth
framework’, IEEE Trans. Autom. Sci. Eng., 2013, 10, (3), pp. 643-651

[22] Benveniste, A., Jard, C., Kattepur, A., et al.: ‘QoS-aware management of
monotonic service orchestrations’, Form. Methods Syst. Des., 2013, 44, (1),
pp. 143

[23] van der Aalst, W.M.P.: “Workflow verification: finding control-flow errors
using Petri-net-based techniques’. Business Process Management, Berlin,
Heidelberg, Germany, 2000 (LNCS, 1806), pp. 161-183

[24] Kattepur, A., Benveniste, A., Jard, C.: ‘Optimizing decisions in web services
orchestrations’. Int. Conf. on Service Oriented Computing (ICSOC), Paphos,
Cyprus, 2011, pp. 77-91

[25] Lazowska, E.D., Zahorjan, J., Graham, G.S., et al.: ‘Quantitative system
performance’ (Prentice Hall, Upper Saddle River, NJ, USA, 1984)

IET Collab. Intell. Manuf., 2019, Vol. 1 Iss. 3, pp. 78-89

This is an open access article published by the IET under the Creative Commons Attribution -NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)


https://jda.com/solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/warehouse-management
https://jda.com/solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/warehouse-management
https://jda.com/solutions/profitable-omni-channel-retail-solutions/intelligent-fulfillment/warehouse-management

[26]

[27]

[28]

[29]

[30]

Stowe, J.D.: ‘Throughput optimization of multi-agent robotic automated
warehouses’, Massachusetts Institute of Technology, 2016

Basile, F., Chiacchio, P., Coppola, J.: ‘A hybrid model of complex automated
warehouse systems — part I: modeling and simulation’, JEEE Trans. Autom.
Sci. Eng., 2012, 9, (4), pp. 640-653

Cossentino, M., Lodato, C., Lopes, S., et al.: ‘Multi agent simulation for
decision making in warehouse management’. Federated Conf. on Computer
Science and Information Systems (FedCSIS), Szczecin, Poland, 2011
Rusakov, A., Shin, J., Meyer, B.: ‘Concurrency patterns for easier robotic
coordination’. Int. Conf. on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 2015

Hu, G., Tay, W., Wen, Y.: ‘Cloud robotics: architecture, challenges and
applications’, JEEE Netw., 2012, 26, (3), pp. 21-28

IET Collab. Intell. Manuf., 2019, Vol. 1 Iss. 3, pp. 78-89
This is an open access article published by the IET under the Creative Commons Attribution -NonCommercial License
(http://creativecommons.org/licenses/by-nc/3.0/)

[31]

[32]

[33]

[34]

Geisinger, M., Barner, S., Wojtczyk, M., et al.: ‘A software architecture for
model-based programming of robot systems’, in Kroger, T., Wahl, F.M. (Eds):
‘Springer advances in robotics research’ (Springer, Berlin, Heidelberg,
Germany, 2009), pp. 135-146

Dukalski, R., Cencen, A., Aschenbrenner, D., et al.: ‘Portable rapid visual
workflow simulation tool for human robot coproduction’. 27th Int. Conf. on
Flexible Automation and Intelligent Manufacturing, Italy, 2017

Seiger, R., Assmann, U., Huber, S.: ‘A case study for workflow-based
automation in the internet of things’. IEEE Int. Conf. on Software
Architecture Companion (ICSA-C), Seattle, WA, USA, 2018

Kattepur, A.: ‘Towards structured performance analysis of industry 4.0
workflow automation resources’. ACM/SPEC Int. Conf. on Performance
Engineering, Mumbai, India, 2019

89



