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Abstract
We consider submanifolds of sub-Riemannian Carnot groups with intrinsic C1 regularity
(C1

H ). Our first main result is an area formula for C1
H intrinsic graphs; as an application, we

deduce density properties for Hausdorff measures on rectifiable sets. Our second main result
is a coarea formula for slicing C1

H submanifolds into level sets of a C1
H function.

Keywords Carnot groups · Area formula · Coarea formula · Hausdorff measures ·
Submanifolds

Mathematics Subject Classification 53C17 · 28A75 · 22E30

1 Introduction

The interest towards Analysis and Geometry in Metric Spaces grew drastically in the last
decades: a major effort has been devoted to the development of analytical tools for the study
of geometric problems, and sub-RiemannianGeometry provided a particularly fruitful setting
for these investigations. The present paper aims at giving a contribution in this direction by
providing some geometric integration formulae, namely: an area formula for submanifolds
with (intrinsic) C1 regularity, and a coarea formula for slicing such submanifolds into level
sets of maps with (intrinsic) C1 regularity.
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A. Julia et al.

We will work in the setting of a Carnot group G, i.e., a connected, simply connected and
nilpotent Lie group with stratified Lie algebra. We refer to Sect. 2.1 for precise definitions;
here, we only recall that Carnot groups have a distinguished role in sub-Riemannian Geome-
try, as they provide the infinitesimal models (tangents spaces) of sub-Riemannian manifolds,
see e.g. [5]. As usual, a Carnot group is endowed with a distance ρ that is left-invariant and
1-homogeneous with respect to the group dilations.

Our main objects of investigation are C1
H submanifolds, which are introduced as (noncrit-

ical) level sets of functions with intrinsic C1 regularity: let us briefly introduce the relevant
definitions, which are more precisely stated in Sect. 2. Given an open set � ⊂ G and another
Carnot1 group G

′, a map f : � → G
′ is said to be of class C1

H if it is differentiable à la
Pansu [45] at all p ∈ � and the differential DH f p : G → G

′ is continuous with respect to
p. Let us mention that the C1

H regularity of f is equivalent to its strict Pansu differentiability
(see Proposition 2.4): such a notion is introduced in Sect. 2.3 and turns out to be useful for
simplifying several arguments. Given a Carnot group G

′, a set � ⊂ G is a C1
H (G; G

′)-
submanifold if it is locally a level set of a map f : G → G

′ of class C1
H such that, at all

points p, DH f p is surjective and ker DH f p splits G. We say that a homogeneous subgroup
W < G splits G if it is normal and there exists another homogeneous subgroup V < G,
which is complementary to W, i.e., such that V ∩ W = {0} and G = WV. Observe that V is
necessarily isomorphic to G

′, see Remark 2.8. We will also say that p is split-regular for f
if DH f p is surjective and ker DH f p splits G.

In Sects. 2.4 and 2.5 we prove that an Implicit Function Theorem holds for a C1
H sub-

manifold �; namely, � is (locally) an intrinsic graph, i.e., there exist complementary
homogeneous subgroups W, V of G and a function φ : A → V defined on an open subset
A ⊂ W such that � coincides with the intrinsic graph {wφ(w) : w ∈ A} of φ. The function
φ is of class C1

W,V
(see Definition 2.13) and it turns out to be intrinsic Lipschitz continuous

according to the theory developed in recent years by Franchi, Serapioni and Serra Cassano,
see e.g. [16,18,19]. We have to mention that both the Implicit Function Theorem and the
intrinsic Lipschitz continuity of φ follow also from [38, Theorem 1.4]: the proofs we provide
in Sects. 2.4–2.5, however, seem shorter than those in [38] and allow for some finer results
we need, see e.g. Lemmas 2.12 and 2.14. For related results, see [4,6,15,17,48] and recently
[3,49].

Our first main result is an area formula for intrinsic graphs of class C1
W,V

(hence, in

particular, for C1
H submanifolds) where complementary subgroups W < G and V < G are

fixed with W normal. Throughout the paper we denote by ψd either the spherical or the
Hausdorff measure of dimension d in G.

Theorem 1.1 (Area formula) Let G be a Carnot group and let G = WV be a splitting.
Let A ⊂ W be an open set, φ ∈ C1

W,V
(A) and let � := {wφ(w) : w ∈ A} be the

intrinsic graph of φ; let d be the homogeneous dimension of W. Then, for all Borel functions
h : � → [0,+∞), ∫

�

hdψd =
∫
A
h(wφ(w))A(T H

wφ(w)�)dψd(w). (1)

The functionA( · ) appearing in (1) is continuous and it is called area factor: it is defined
in Lemma 3.2 and it depends only on (W, V and) the homogeneous tangent space T H

p � at
points p ∈ �. The definition of area factor in Lemma 3.2 is only implicit, but of course
we expect it can be made more explicit in terms of suitable derivatives of the map φ: to
the best of our knowledge, this program has been completed only in Heisenberg groups, see

1 One could more generally assume that G
′ is only graded, see Remark 2.6.
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e.g. [2,4,7,8,17]. A relevant tool in the proof of Theorem 1.1 is a differentiation theorem
for measures (Proposition 2.2) which is based on the so-called Federer density (10): the
importance of this notion was pointed out only recently by V.Magnani, see [39–41] and [20].
Observe that the validity of a (currently unavailable) Rademacher-type Theorem for intrinsic
Lipschitz graphs would likely allow to extend Theorem 1.1 to the case of intrinsic Lipschitz
φ.

A first interesting consequence of Theorem 1.1 is the following Corollary 1.2, which is
reminiscent of the well-known equality between Hausdorff and spherical Hausdorff mea-
sures on C1 submanifolds (and, more generally, on rectifiable subsets) of R

n . We refer to
Definitions 2.18 and 2.19 for the notions of countably (G; G

′)-rectifiable set R ⊂ G and
of approximate tangent space T H R. Such sets have Hausdorff dimension Q − m, where Q
and m denote, respectively, the homogeneous dimensions of G, G′; we writeHQ−m, SQ−m ,
respectively, for Hausdorff and spherical Hausdorff measures. We denote byTG,G′ the space
of possible tangent subgroups to (G; G

′)-rectifiable sets2 and, by abuse of notation, we write
T H R for themap R � p 	→ T H

p R ∈ TG,G′ . The spaceTG,G′ is a subset of the Grassmannian
of vector subspaces associated to G and inherits its topology.

Corollary 1.2 Let G, G
′ be Carnot groups of homogeneous dimensions Q, m, respectively.

Then, there exists a continuous functiona : TG,G′ → [1, 2Q−m] such that, for every countably
(G; G

′)-rectifiable set R ⊂ G

SQ−m R = a(T H R)HQ−m R . (2)

Moreover, ifG is aHeisenberg groupH
n with a rotationally invariant distance ρ andG

′ = R,
then the function a is constant, i.e., there exists C ∈ [1, 22n+1] such that

S2n+1 R = CH2n+1 R ∀ (Hn, R)-rectifiable set R ⊂ H
n .

Heisenberg groups and rotationally invariant distances are defined in Sect. 2.1 by condition
(37), while Corollary 1.2 is proved in Sect. 3. To the best of our knowledge, this result is new
even in the first Heisenberg group H

1, see also [41, page 359]. Corollary 1.2 is deeply
connected to the isodiametric problem, see Remark 3.3. Let us point out that for higher
codimensional subgroups of Heisenberg groups, we do not knowwhether a similar result can
hold. A difficulty is that two homogeneous subgroups of H

2 of codimension 2 need not be
isomorphic and thus isometric.

Not unrelated with Corollary 1.2 is another interesting consequence of Theorem 1.1,
namely, the existence of the density of Hausdorff and spherical measures on rectifiable sets.
In Corollary 3.6 we indeed prove that, if R ⊂ G is (G; G

′)-rectifiable, then the limit

d(p) := lim
r→0+

ψQ−m(R ∩ U(p, r))

r Q−m

exists for ψQ−m-a.e. p ∈ R, where U(p, r) is the open ball of center p and radius r for
the distance of G. Actually, d(p) depends only on T H

p R, in a continuous way. When G is
the Heisenberg group H

n endowed with a rotationally invariant distance, G′ = R
m for some

1 ≤ m ≤ n, and ψ is the spherical measure, then d is constant, see Corollary 5.5.
The area formula is a key tool also in the proof of our second main result, the coarea

formula in Theorem 1.3 below. The classical coarea formula was first proved in the seminal
paper [13] and it is one of the milestones of Geometric Measure Theory. Sub-Riemannian

2 Equivalently, TG,G′ is the space of normal subgroups P < G for which there exist a complementary
subgroup in G and a surjective homogeneous morphism L : G → G

′ such that P = ker L .
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coarea formulae have been obtained in [25–27,33–36], assuming classical (Euclidean) regu-
larity on the slicing function u, and in [37,42,43], assuming intrinsic regularity but only in the
setting of the Heisenberg group. Here we try to work in the utmost generality: we consider a
C1
H submanifold� ⊂ G, seen as the level set of aC1

H map f with values in a stratified group
M, and we slice it into level sets of a map u with values into a homogeneous group L. We
will assume thatL, M are complementary homogeneous subgroups of a larger homogeneous
group K = LM: one could of course choose K = L × M, but our hypothesis allows to work
in greater generality. For an example see Remark 4.3 in Sect. 4. We also denote by Q, �,m
the homogeneous dimensions of G, L, M, respectively.

Theorem 1.3 (Coarea formula) Let G and K be stratified groups and L and M graded sub-
groups of K so that K = LM. Let Q, �,m be the homogeneous dimensions of G, L, M,
respectively. Let � ⊂ G be open and fix f ∈ C1

H (�; M) and assume that all points in �

are split-regular for f , so that � := {p ∈ � : f (p) = 0} is a C1
H submanifold. Consider a

function u : � → L such that u f ∈ C1
H (�; K) and assume that

for ψQ−m-a.e. p ∈ �,

{
either DH (u f )p|T H

p � is not surjective on L,

or p is split-regular for u f .
(3)

Then, for every Borel function h : � → [0,+∞) the equality∫
�

h(p)C(T H
p �, DH (u f )p) dψ

Q−m(p) =
∫
L

∫
�∩u−1(s)

h(p)dψQ−m−�(p) dψ�(s) (4)

holds.

In (4), the symbol C(T H
p �, DH (u f )p) denotes the coarea factor: let us stress that it

depends only on the restriction of u to� and that it does not depend on the choice of f outside
of�, see Remark 4.2. Theψ�-measurability of the functionL � s 	→ ∫

�∩u−1(s) h dψ
Q−m−�

is part of the statement.
Observe that whenever there exists a split-regular point for u f , then K is automatically

stratified by Remark 2.8. Conversely, if K is not stratified but the other assumptions of the
theorem hold, then the left-hand side in (4) is zero, from which we infer that for ψ�-almost
all s ∈ L one has ψQ−m−�(� ∩ u−1(s)) = 0.

The assumption u f ∈ C1
H (�; K) becomes more transparent when K = L × M is a

direct product (roughly speaking, when L, M are “unrelated” groups): in this case, it is in
fact equivalent to the C1

H regularity of u. Moreover, since T H
p � = ker DH f p , the equality

DH (u f )p|T H
p � = DHup|T H

p � holds. Eventually, the statement of Theorem 1.3 can at the
same time be simplified, stated in a more natural way, and generalized to rectifiable sets, as
follows.

Corollary 1.4 Let G, L, M be Carnot groups, let � ⊂ G be an open set and let R ⊂ � be
(G; M)-rectifiable; assume that u ∈ C1

H (�; L) is such that

for ψQ−m-a.e. p ∈ R,

{
either DHu p|T H

p R is not surjective on L,

or T H
p R ∩ ker DHup splits G.

(5)

Then, for every Borel function h : � → [0,+∞) the equality∫
R
h(p)C(T H

p R, DHup) dψ
Q−m(p) =

∫
L

∫
R∩u−1(s)

h(p)dψQ−m−�(p) dψ�(s) (6)

holds.
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Corollary 1.4 also holds if L is not Carnot, although in that case both terms of (6) are
zero.

Remark 1.5 Let us stress that assumptions (3) and (5) cannot be easily relaxed: given a map
u ∈ C1

H (�, R
2) defined on an open subset � of the first Heisenberg group H

1 ≡ R
3, the

validity of a coarea formula of the type∫
�

C(DHup)dψ
4(p) =

∫
R2

ψ2(� ∩ u−1(s))dL 2(s)

is indeed a challenging open problem as soon as DHup is surjective, see e.g. [28,30,42].
In our notation, this situation corresponds to M = {0} and L = R

2. Since the kernel of
any homogeneous surjective morphism H

1 → R
2 is the center of H

1, which does not
admit any complementary subgroup, no point can be split-regular for u. Therefore, if (5)
holds, then C(DHup) = 0 by Proposition 4.6, and thus both sides of the coarea formula
are null. In particular, (5) implies that for L2-a.e. s ∈ R

2, ψ2(� ∩ u−1(s)) = 0. However,
a coarea formula was proved for u : H

n → R
2n , assuming u to be of class C1,α

H , see [28,
Theorem 6.2.5] and also [42, Theorem 8.2].

Remark 1.6 The following weak version of Sard’s Theorem holds: under the assumptions
and notation of Theorem 1.3, then

ψQ−m−�({p ∈ � : DH (u f )p(T
H
p �) � L} ∩ u−1(s)) = 0 for ψ�-a.e. s ∈ L. (7)

Moreover, since every level set � ∩ u−1(s) is a C1
H submanifold around split-regular points

of u f , Theorem 1.3 implies that

� ∩ u−1(s) is (G; K)-rectifiable for ψ�-a.e. s ∈ L. (8)

Clearly, statements analogous to (7) and (8) hold under the assumptions and notation of either
Corollary 1.4 or Theorem 1.7 below.

The proof of Theorem 1.3 follows the strategy used in [13] (see also [37]) and, as already
mentioned, it stems from the area formula of Theorem 1.1, as we now describe. First, in
Proposition 4.5 we prove a coarea inequality, that in turn is based on an “abstract” coarea
inequality (Lemma 4.4) for Lipschitz maps between metric spaces. Second, in Lemma 4.6
we prove Theorem 1.3 in the “linearized” case when both f and u are homogeneous group
morphisms: in this case formula (4) holds with a constant coarea factor C(P, L) which
depends only on the normal homogeneous subgroup P := ker f and on the homogeneous
morphism L = u (actually, on L|� only). Lemma 4.6, whose proof is a simple application
of Theorem 1.1, actually defines the coarea factor C(P, L). The proof of Theorem 1.3 is then
a direct consequence of Theorem 4.1, which states that for ψQ−m-a.e. p ∈ � the Federer
density 	ψd (μ�,u; p) of the measure

μ�,u(E) :=
∫
L

ψQ−m−�(E ∩ � ∩ u−1(s))dψ�(s), E ⊂ �

is equal to C(T H
p �, DH (u f )p). For “good” points p, i.e., when DH (u f )p|T H

p � is onto
L, such equality is obtained by another application of Theorem 1.1, see Proposition 4.8:
this is the point where one needs the assumption (3), which guarantees that, locally around
good points, the level sets � ∩ u−1(s) are C1

H submanifolds. The remaining “bad” points,
where DH (u f )p|T H

p � is not surjective on L, can be treated using the coarea inequality, see
Lemma 4.9.
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Recall that the classical Euclidean coarea formula is proved when the slicing function u
is only Lipschitz continuous. Extending Theorem 1.3 to the case where u is only defined
on � and Lipschitz continuous seems for the moment out of reach; nonetheless, after the
completion of the present paper the authors were able to achieve this in Heisenberg groups,
see the forthcoming paper [23]. See also [50] for a counterexample to the existence of tangent
planes to submanifolds that are just intrinsically Lipschitz T H

p �.
Observe that one should first provide, for a.e. p ∈ �, a notion of Pansu differential of u

on T H
p �: this does not follow from Pansu’s Theorem [45].

Furthermore, the function f in Theorem 1.3 should play no role, and actually any result
should depend only on the restriction of u to �.

Let us also stress that, to the best of our knowledge, Theorem 1.3 provides the first sub-
Riemannian coarea formula that is provedwhen the set� is not a positiveψQ-measure subset
of G (i.e., in the notation of Theorem 1.3, when M = {0}). The only exception to this is [43,
Theorem 1.5], where a coarea formula was proved for C1

H submanifolds of codimension 1 in
Heisenberg groups H

n, n ≥ 2. As a corollary of Theorem 1.3, we are able both to extend this
result, to all codimensions not greater than n, and to improve it, in the sense that we show
that the implicit “perimeter” measures considered in [43, Theorem 1.5] on the level sets of
u are indeed Hausdorff or spherical measures. Furthermore (see Proposition 5.6), when H

n

is endowed with a rotationally invariant distance, u takes values in R
�, and the measures ψd

under consideration are Sd , then the coarea factor coincides up to constants with the quantity

J Ru(p) :=
(
det(L ◦ LT )

)1/2
, L := DHup|T H

p R, (9)

In (9), the point p belongs to a rectifiable set R ⊂ H
n and, by abuse of notation, we use

standard exponential coordinates on H
n ≡ R

2n+1 to identify T H
p R with a (2n + 1 − m)-

dimensional plane; with this identification DHup is a linear map on R
2n+1 that is, actually,

independent of the last “vertical” coordinate. The superscript T denotes transposition.

Theorem 1.7 (Coarea formula in Heisenberg groups) Consider an open set � ⊂ H
n, a

(Hn, R
m)-rectifiable set R ⊂ � and a function u ∈ C1

H (�; R
�) such that 1 ≤ m + � ≤ n.

Then, for every Borel function h : R → [0,+∞) the equality

∫
R
h(p)C(T H

p R, DHup) dψ
2n+2−m(p) =

∫
R�

∫
R∩u−1(s)

h(p)dψ2n+2−m−�(p) dψ�(s)

holds.
Moreover, if H

n is endowed with a rotationally invariant distance ρ, then there exists a
constant c = c(n,m, �, ρ) > 0 such that

c

∫
R
h(p)J Ru(p) dS2n+2−m(p) =

∫
R�

∫
R∩u−1(s)

h(p)dS2n+2−m−�(p) dL�(s).

The first statement of Theorem 1.7 is an immediate application of Corollary 1.4, while the
second one needs an explicit representation for the spherical measure on vertical subgroups
of H

n (i.e., elements of THn ,Rk ) which uses results of [8]. See Proposition 5.1.
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2 Preliminaries

2.1 First definitions

Let V be a real vector space with finite dimension and [·, ·] : V × V → V be the Lie bracket
of a Lie algebra g = (V , [·, ·]). We say that g is graded if subspaces V1, . . . , Vs are fixed so
that

V = V1 ⊕ · · · ⊕ Vs

and [Vi , Vj ] := span{[v,w] : v ∈ Vi , w ∈ Vj } ⊂ Vi+ j for all i, j ∈ {1, . . . , s},
where we agree that Vk = {0} if k > s. Graded Lie algebras are nilpotent. A graded Lie
algebra is stratified of step s if equality [V1, Vj ] = Vj+1 holds and Vs �= {0}. Our main
object of study are stratified Lie algebras, but we will often work with subspaces that are
only graded Lie algebras.

On the vector space V we define a group operation via the Baker–Campbell–Hausdorff
formula

pq :=
∞∑
n=1

(−1)n−1

n

∑
{s j+r j>0: j=1...n}

[pr1qs1 pr2qs2 · · · prn qsn ]∑n
j=1(r j + s j )

∏n
i=1 ri !si !

= p + q + 1

2
[p, q] + . . . ,

where

[pr1qs1 pr2qs2 · · · prn qsn ] = [p, [p, . . . ,︸ ︷︷ ︸
r1 times

[q, [q, . . . ,︸ ︷︷ ︸
s1 times

[p, . . .︸ ︷︷ ︸
...

] . . . ]] . . . ]].

The sum in the formula above is finite because g is nilpotent. The resulting Lie group, which
we denote by G, is nilpotent and simply connected; we will call it graded group or stratified
group, depending on the type of grading of the Lie algebra. The identification G = V = g

corresponds to the identification between Lie algebra and Lie group via the exponential map
exp : g → G. Notice that p−1 = −p for every p ∈ G and that 0 is the neutral element of G.

If g′ is another graded Lie algebra with underlying vector space V ′ and Lie group G
′,

then, with the same identifications as above, a map V → V ′ is a Lie algebra morphism if
and only if it is a Lie group morphism, and all such maps are linear. In particular, we denote
by Homh(G; G

′) the space of all homogeneous morphisms from G to G
′, that is, all linear

maps V → V ′ that are Lie algebra morphisms (equivalently, Lie group morphisms) and that
map Vj to V ′

j . If g is stratified, then homogeneous morphisms are uniquely determined by
their restriction to V1.

For λ > 0, define the dilations as the maps δλ : V → V such that δλv = λ jv for v ∈ Vj .
Notice that δλδμ = δλμ and that δλ ∈ Homh(G; G), for all λ,μ > 0. Notice also that a
Lie group morphism F : G → G

′ is homogeneous if and only if F ◦ δλ = δ′
λ ◦ F for all

λ > 0, where δ′
λ denotes the dilations in G

′. We say that a subset M of V is homogeneous
if δλ(M) = M for all λ > 0. Let P be a homogeneous subgroup of G and θ a Haar
measure on P. Since δλ|P is an automorphism of P, there is cλ > 0 such that (δλ)#θ = cλθ .
Since the map λ 	→ δλ|P is a multiplicative one-parameter group of automorphisms, the
map λ 	→ cλ is a continuous automorphism of the multiplicative group (0,+∞), hence
cλ = λ−d for some d ∈ R. As δλ is contractive for λ < 1, we actually have d > 0. Since
any other Haar measure of P is a positive multiple of θ , the constant d does not depend on
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the choice of the Haar measure. We call such exponent d the homogeneous dimension of P.
The homogeneous dimension of the ambient space G is denoted by Q and it is easy to see
that Q := ∑s

i=1 i dim Vi .
A homogeneous distance on G is a distance function ρ that is left-invariant and 1-

homogeneous with respect to dilations, i.e.,

(i) ρ(gx, gy) = ρ(x, y) for all g, x, y ∈ G;
(ii) ρ(δλx, δλy) = λρ(x, y) for all x, y ∈ G and all λ > 0.

When a stratified group G is endowed with a homogeneous distance ρ, we call the metric
Lie group (G, ρ) aCarnot group. Homogeneous distances induce the topology ofG, see [29,
Proposition 2.26], and are biLipschitz equivalent to each other. Every homogeneous distance
defines a homogeneous norm ‖ · ‖ρ : G → [0,+∞), ‖p‖ρ := ρ(0, p). We denote by | · |
the Euclidean norm in R

�.
Open balls with respect to ρ are denoted by Uρ(x, r), closed balls by Bρ(x, r), or simply

U(x, r) and B(x, r) if it is clear which distance we are using. We also use the notation
B(E, r) := {x : d(x, E) ≤ r} for subsets E of G. The diameter of a set with respect to
ρ is denoted by diam(E) or diamρ(E). Notice that diamρ(Uρ(p, r)) = 2r , for all p ∈ G

and r > 0. By left-invariance of ρ it suffices to prove this for p = 0. On the one hand the
triangle inequality implies diamρ(Uρ(0, r)) ≤ 2r . On the other hand, if v ∈ V1 is such that
ρ(0, v) = r , then ρ(0, v−1) = r and ρ(v−1, v) = ρ(0, 2v) = 2ρ(0, v) = 2r , because
vv = v + v = δ2v. It follows that diamρ(Uρ(0, r)) ≥ 2r .

If ρ and ρ′ are homogeneous distances on G and G
′, the distance between two homomor-

phisms L, M ∈ Homh(G; G
′) is

dρ,ρ′(L, M) := max
p �=0

ρ′(L(p), M(p))

‖p‖ρ

= max‖p‖ρ=1
ρ′(L(p), M(p)).

The function dρ,ρ′ is a distance on Homh(G; G
′) inducing the manifold topology.

2.2 Measures and Federer density

In the following, the word measure will stand for outer measure. We work on G and its
subsets endowed with the metric ρ. In particular, the balls are those defined by ρ and the
Hausdorff dimension of (G, ρ) coincides with the homogeneous dimension Q.

For d ∈ [ 0, Q ], let Hd and Sd be the Hausdorff and spherical Hausdorff measures of
dimension d in G defined for E ⊂ G by

Hd(E) := lim
ε→0+ inf

⎧⎨
⎩

∑
j∈N

(diam E j )
d : E ⊂

⋃
j∈N

E j , diam E j < ε

⎫⎬
⎭ ,

Sd(E) := lim
ε→0+ inf

⎧⎨
⎩

∑
j∈N

(2r j )
d : E ⊂

⋃
j∈N

B(x j , r j ), 2r j < ε

⎫⎬
⎭ .

It is clear that, in the definition ofHd , one can ask the covering sets E j to be closed.Moreover,
we clearly haveHd(E) ≤ Sd(E) ≤ 2dHd(E). Note that contrarily to the usual Euclidean or
Riemannian definition, we do not introduce normalization constants; this is due to the fact that
the appropriate constant is usually linked to the solution to the isodiametric problem, which
is open in Carnot Groups and their subgroups and also highly dependent on the metric ρ. See
also Remark 3.3. In the following, ψd will be either Hd or Sd and E will be, respectively,
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the collection of closed subsets of G of positive diameter or the collection of closed balls in
G with positive diameter.

If μ is a measure on G, define the ψd -density of μ at x ∈ G as

	ψd (μ; x) := lim
ε→0+ sup

{
μ(E)

(diam E)d
: x ∈ E ∈ E , diam E ≤ ε

}
. (10)

This upper density is sometimes called Federer density [20,39,40]; note that if ψd is the
spherical measure, its Federer density can differ from the usual spherical density, as the latter
involves centered balls. Recall that a measure ν is Borel regular if open sets are measurable
and for every A ⊂ G there exists a Borel set A′ ⊂ G such that A ⊂ A′ and ν(A′) = ν(A).
We will use the following density estimates, which follow from [14, Theorems 2.10.17 and
2.10.18].

Theorem 2.1 (Density estimates) Let ψd be as above, μ a Borel regular measure, and fix
t > 0 and a set A in G. Then

(i) if 	ψd (μ; x) < t for all x ∈ A, then μ(A) ≤ tψd(A),

(ii) if	ψd (μ; x) > t for all x ∈ A and V is an open set containing A, thenμ(V ) ≥ tψd(A).
In particular, if μ is outer regular, then

μ(A) = inf{μ(V ), A ⊂ V , V is open } ≥ tψd(A).

Aconsequence of these results is the following (see also [39, Theorem9] and [20, Theorem
1.11]). We use the fact that a locally finite Borel regular measure on a separable complete
metric space is outer regular, see Proposition 3.3.44 in [22].

Proposition 2.2 If μ is locally finite and Borel regular on G, and if x 	→ 	ψd (μ; x) is a
Borel function which is positive and finite μ-almost everywhere, then

μ = 	ψd (μ; ·)ψd .

Proving that the Federer density is aψd -measurable or a Borel function is in general not an
easy task; we provide a criterion, which will be useful later in Sects. 4.4 and 4.5. Recall that
a Borel measure ν is doubling if there exists C ≥ 1 such that ν(U(p, 2r)) ≤ C ν(U(p, r))
for all p ∈ G and r > 0.

Proposition 2.3 Given a set � ⊂ G such that ψd � is locally doubling Borel regular
measure, assume that μ is a locally finite Borel regular measure, absolutely continuous with
respect to ψd �; then

(i) 	ψd (μ; ·) is (ψd �)-measurable;

(ii) 	ψd (μ; ·) < +∞, ψd -a.e. on � and

	ψd (μ; p) = lim
r→0+

μ(B(p, r))

ψd(� ∩ B(p, r))
, for ψd -a.e. p ∈ �;

(iii) μ = 	ψd (μ; ·)ψd �.

In particular

lim
r→0+

∫
�∩B(p,r)

∣∣	ψd (μ; ·) − 	ψd (μ; p)∣∣ dψd = 0, for ψd -a.e. p ∈ �.
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Proof It is well-known (see e.g. [47]) that Radon-Nikodym Differentiation Theorem holds
for differentiating ameasurewith respect to a doublingmeasure. Precisely, by combining [47,
Theorems 2.2, 2.3, 3.1] one infers that the Radon-Nikodym derivative

	(p) := lim
r→0+

μ(B(p, r))

ψd(� ∩ B(p, r))

exists and is finite ψd -a.e. on �. Moreover, 	 is (ψd �)-measurable, μ = 	ψd � and
(see [21, Section 2.7])

lim
r→o+

∫
�∩B(p,r)

|	 − 	(p)| dψd = 0 for ψd -a.e. p ∈ �.

As a consequence, we have only to prove that 	ψd (μ; p) = 	(p) for ψd -a.e. p ∈ �. In
turn, it is enough to show that, for every fixed s, t ∈ Q, s < t , the sets

A := {p ∈ � : 	(p) < s < t < 	ψd (μ; p)}
B := {p ∈ � : 	ψd (μ; p) < s < t < 	(p)}

are ψd -negligible. On the one hand, let A′ be a Borel set with A ⊂ A′, ψd(A) = ψd(A′)
and A′ ⊂ {	 < s}. Then

sψd(A) = sψd(A′) ≥
∫
A′

	dψd = μ(A′) ≥ μ(A) ≥ tψd(A),

where the last inequality is a consequence of Theorem 2.1 (i i). Thus, ψd(A) = 0. On the
other hand, let B ′ be a Borel set with B ⊂ B ′, μ(B ′) = μ(B). Then

tψd(B) ≤
∫
B′

	dψd = μ(B ′) = μ(B) ≤ sψd(B),

where the last inequality follows from Theorem 2.1 (i). Therefore ψd(B) = 0. ��

2.3 Pansu differential

Let G and G
′ be two graded groups and � ⊂ G open. A function f : � → G

′ is Pansu
differentiable at p ∈ � if there is L ∈ Homh(G; G

′) such that

lim
x→p

ρ′( f (p)−1 f (x), L(p−1x))

ρ(p, x)
= 0.

The map L is called Pansu differential of f at p and it is denoted by DH f (p) or DH f p . A
map f : � → G

′ is of class C1
H if f is Pansu differentiable at all points of � and the Pansu

differential p 	→ DH f (p) is continuous. We denote by C1
H (�; G

′) the space of all maps
from � to G

′ of class C1
H .

A function f : � → G
′ is strictly Pansu differentiable at p ∈ � if there is L ∈

Homh(G; G
′) such that

lim
ε→0

sup

{
ρ′( f (y)−1 f (x), L(y−1x))

ρ(x, y)
: x, y ∈ Uρ(p, ε), x �= y

}
= 0.

Clearly, in this case f is Pansu differentiable at p and L = DH f (p).
The next result allows us to simplify several arguments in the sequel:
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Proposition 2.4 A function f : � → G
′ is of class C1

H on � if and only if f is strictly Pansu
differentiable at all points in �.

Proof Assume that f ∈ C1
H (�, G

′) and let p ∈ � be fixed; then, by [38, Theorem 1.2] one
has

lim
ε→0

sup

{
ρ′( f (y)−1 f (x), DH fx (y−1x))

ρ(x, y)
: x, y ∈ Uρ(p, ε), x �= y

}
= 0.

The continuity of x 	→ DH fx provides

lim
ε→0

sup

{
ρ′(DH fx (y−1x), DH f p(y−1x))

ρ(x, y)
: x, y ∈ Uρ(p, ε), x �= y

}
= 0

and the strict differentiability of f at p follows.
Conversely, assume that f is strictly Pansu differentiable at all points in �; we have to

prove that p 	→ DH f p is continuous. Assume not, i.e., assume there exist δ > 0 and, for
every n ∈ N, points xn ∈ � and vn ∈ G such that ‖vn‖ρ = 1, xn → p and

ρ′(DH fxn (vn), DH f p(vn)) ≥ 2δ ∀ n ∈ N.

By strict differentiability of f at p there exist n̄ and s̄ > 0 such that

ρ′( f (xn)−1 f (xnδsvn), DH f p(δsvn))

s
≤ δ ∀ n ≥ n̄, s ∈ (0, s̄).

In particular, for every n ≥ n̄ and s ∈ (0, s̄) we have

ρ′( f (xn)−1 f (xnδsvn), DH fxn (δsvn))

≥ ρ′(DH f p(δsvn), DH fxn (δsvn)) − ρ′( f (xn)−1 f (xnδsvn), DH f p(δsvn))

≥ 2δs − δs = δs.

This would contradict the differentiability of f at xn . ��

Lemma 2.5 If f ∈ C1
H (�; G

′), then f : (�, ρ) → (G′, ρ′) is locally Lipschitz.

Proof Let p ∈ �. By strict differentiability of f at p, there is ε > 0 such that

ρ′( f (y)−1 f (x), L(y−1x))

ρ(y, x)
< 1 for all x, y ∈ Uρ(p, ε), x �= y,

where L = DH f (p). Since ρ′(0, L(y−1x)) ≤ Cρ(y, x) for some positive C , then
ρ′( f (y), f (x)) = ρ′(0, f (y)−1 f (x)) ≤ (C + 1)ρ(y, x), that is, f is Lipschitz continu-
ous on Uρ(p, ε). ��

Remark 2.6 If f : � → G
′ is locally Lipschitz, then the image of a rectifiable curve in G is

a rectifiable curve in G
′ tangent to the first layer V ′

1 in the grading of G
′. Therefore, when G

is stratified, each connected component U of � is pathwise connected by rectifiable curves,
and this implies that f (U ) is contained in (a coset of) the stratified subgroup of G

′ generated
by V ′

1. Moreover, as soon as G is stratified and f is open or has a regular point, then G
′ must

be a stratified group.
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2.4 Intrinsic graphs and implicit function theorem

We refer to [19] for a more general theory of intrinsic graphs. Recall the identification
G = g = V that we made in Sect. 2.1.

Lemma 2.7 LetV andW be homogeneous linear subspaces of a graded groupG. IfV∩W =
{0} and dimV + dimW = dimG, then the map W × V → G, (w, v) 	→ wv, is a surjective
diffeomorphism.

Proof Denote by φ : W×V → G the map φ(w, v) := wv. Since its differential at (0, 0) is a
linear isomorphism, φ is a diffeomorphism from a neighborhood of (0, 0) to a neighborhood
of 0 ∈ G. Since φ(δλw, δλv) = δλφ(w, v) for all λ > 0, we conclude that φ is a surjective
diffeomorphism onto G. ��

Ahomogeneous subgroupW is complementary to a homogeneous subgroupV ifG = WV

and W ∩ V = {0}. We denote by WV the set of all homogeneous subgroups of G that are
complementary to V. Observe that if W ∈ WV, then dimW + dimV = dimG; this fact will
be used implicitly several times in the sequel. By Lemma 2.7, we have3 W ∈ WV if and only
if V ∈ WW. Again by Lemma 2.7, any choice of V and W ∈ WV gives two smooth (but not
always Lipschitz) projections

πW : G → W, πV : G → V, (11)

which are defined, for every p ∈ G, by requiring πW(p) = w ∈ W and πV(p) = v ∈ V

to be the only elements such that p = wv. We will also write pW and pV for πW(p) and
πV(p), respectively.

We say that a homogeneous subgroup W splits G if it is normal andWW �= ∅. In this case
we call a choice of W and V ∈ WW a splitting of G and we write G = W · V. We say that
p ∈ � is a split-regular point of f if the Pansu differential of f at p exists and is surjective,
and if ker(DH f (p)) splits G. Recall that the kernel of a group morphism is always normal.
A singular point is a point that is not split-regular.

Remark 2.8 We observe that, if p ∈ � is a split-regular point of f ∈ C1
H (�; G

′) and
V ∈ Wker(DH f (p)), then DH f (p)|V : V → G

′ is an isomorphism of graded groups. In
particular,V is necessarily stratified. For instance, ifG

′ = R
m , thenV is an Abelian subgroup

of G contained in V1.

Notice that a point can fail to be split-regular for f ∈ C1
H (�; G

′) for two distinct reasons:
non-surjectivity of the differential, or non-existence of a splitting of G with the kernel of
DH f p at some point p. However, the set of split-regular points is open, i.e., if DH f p is
surjective and (ker DH f p) ·V is a splitting, then, for q close enough to p, DH fq is surjective
and (ker DH fq) · V is a splitting.

Lemma 2.9 (Coercivity) If f ∈ C1
H (�; G

′), p ∈ � is a split-regular point and V is comple-
mentary to ker(DH f (p)), then there are a neighborhood U of p and C > 0 such that, for
all q ∈ U and v ∈ V with qv ∈ U,

ρ′( f (q), f (qv)) ≥ C‖v‖ρ.

3 This is also a consequence of a the standard fact in group theory that, for any two subgroups H and K of a
group G, the product HK is a subgroup of G if and only if HK = K H .
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Proof Arguing by contradiction, assume that there are sequences q j ∈ � and v j ∈ V \ {0}
such that q j → p and v j → 0 as j → ∞, and ρ′( f (q j ), f (q jv j )) ≤ ‖v j‖ρ/ j . Up to
passing to a subsequence, we can assume that there exists w̄ = lim j→∞ δ‖v j‖−1v j . It follows
that w̄ ∈ V and ‖w̄‖ρ = 1. Moreover, by strict differentiability

DH f (p)w̄ = lim
j→∞ δ‖v j‖−1

ρ
( f (q j )

−1 f (q jv j )) = 0,

in contradiction with the fact that V is complementary to the kernel of DH f (p). ��
Let W ∈ WV. A set � ⊂ G is an intrinsic graph W → V if there is a subset A ⊂ W and

a function φ : A → V such that � = {wφ(w) : w ∈ A}. If A = W, we say that � is an
entire intrinsic graph. Clearly, � ⊂ G is an intrinsic graph W → V if and only if the map
πW|� : � → W is injective; in particular, every P ∈ WV is an intrinsic graph W → V. Left
translations and dilations of W → V intrinsic graphs are again W → V intrinsic graphs, see
[4, Proposition 3.6].

The proof of the following lemma is inspired by [10, Theorem A.5]. Similar statements
are contained in [17, Theorem 3.27] and [38, Theorem 1.4].

Lemma 2.10 (Implicit Function Theorem) Let �0 ⊂ G be open, g ∈ C1
H (�0; G

′) and let
o ∈ G be a split-regular point of g. Let G = W ·V be a splitting of G such that ker(DHg(o))
is a (necessarily entire)4 intrinsic graph W → V. Then there are neighborhoods A of πW(o)
in W, B of g(o) in G

′ and � ⊂ �0 of o, and a map ϕ : A × B → V such that the map
(a, b) 	→ aϕ(a, b) is a homeomorphism A × B → � and g(aϕ(a, b)) = b. In particular,
the map φ : A → V defined by φ(a) := ϕ(a, g(o)) is such that {p ∈ � : g(p) = g(o)} =
{aφ(a) ∈ G : a ∈ A}.
Remark 2.11 Notice that if o ∈ G is a split-regular point of g then Wker(DH g(o)) �= ∅.
Moreover, for W = ker(DHg(o)) and V ∈ Wker(DH g(o)), G = W · V is a suitable splitting
for Lemma 2.10, with ker(DHg(o)) being the intrinsic graph of the zero function.

Proof of Lemma 2.10 First, we prove that there is an open neighborhood U ⊂ �0 of o such
that the restriction g|pV : pV∩U → G

′ is injective, for all p ∈ U . Arguing by contradiction,
suppose that this is not the case. Then there are sequences p j , q j → o such that p−1

j q j ∈ V

and g(p j ) = g(q j ). From the strict Pansu differentiability of g at o, it follows that

0 = lim
j→∞

ρ′(g(q j )
−1g(p j ), DHg(o)[p−1

j q j ])
ρ(p j , q j )

= lim
j→∞

∥∥∥∥DHg(o)

[
δ 1

ρ(p j ,q j )
(p−1

j q j )

]∥∥∥∥
ρ′

.

By the compactness of the sphere {v ∈ V : ‖v‖ρ = 1}, up to passing to a subsequence, there
is v ∈ V with ‖v‖ρ = 1 such that lim j→∞ δρ(p j ,q j )

−1(p−1
j q j ) = v. Therefore, we obtain

DHg(o)v = 0, in contradiction with the assumptions. This proves the first claim.
Second, since the restriction g|pV∩U : pV∩U → G

′ is a continuous and injectivemap, and
since bothV andG

′ are topologicalmanifolds of the samedimension (byRemark2.8), thenwe
can apply the Invariance ofDomain Theorem and obtain that g|pV∩U : pV∩U → g(pV∩U )

is a homeomorphism and that g(pV ∩U ) is an open set.
Third, let U2 � U1 � U be open neighborhoods of o. We claim that there is A ⊂ W

open such that πW(o) ∈ A and such that for every p ∈ oV ∩ U2 and for every a ∈ A there

4 Notice that, if ker(DH g(o)) is an intrinsic graphW → V, then it is entire, that is, πW(ker(DH g(o))) = W.
Indeed, since ker(DH g(o)) is an intrinsic graphW → V, thenV∩ker(DH g(o)) = {0} and thus the restriction
DH g(o) : V → G

′ is surjective. Hence, if w ∈ W, then there v ∈ V such that DH g(o)w = DH g(o)v. So,
wv−1 ∈ ker(DH g(o)) and πW(wv−1) = w.
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is q ∈ aV ∩ U1 such that g(p) = g(q). Arguing by contradiction, suppose that this is not
the case. Then there are sequences a j ∈ W with a j → πW(o) and p j ∈ oV ∩ U2 such that
g(p j ) /∈ g(a jV ∩U1). By the compactness of Ū1 and the continuity of g, for each j there is
q j ∈ a jV ∩ Ū1 such that

ρ′(g(p j ), g(q j )) = inf{ρ′(g(p j ), g(q)) : q ∈ a jV ∩U1}. (12)

Since g is a homeomorphism on each fiber pV ∩ U and since g(p j ) /∈ g(a jV ∩ U1), the
function a jV∩U → R, q 	→ ρ′(g(p j ), g(q)), is open. Therefore, we have q j ∈ a jV∩∂U1.
Up to passing to a subsequence, there are p0 ∈ oV ∩ Ū2 and q0 ∈ oV ∩ ∂U1 such that
p j → p0 and q j → q0. Now, notice that a jπW(o)−1 → 0 and that, for j large enough, we
have a jπW(o)−1 p j ∈ a jV ∩U1. Therefore, using (12),

lim
j→∞ ρ′(g(p j ), g(q j )) ≤ lim

j→∞ ρ′(g(p j ), g(a jπW(o)−1 p j )) = 0,

that is, g(p0) = g(q0). Since p0 ∈ oV ∩ Ū2 and q0 ∈ oV ∩ (U \ U1), this contradicts the
injectivity of g on oV ∩U and proves the claim.

Next, let B := g(oV ∩U2), which is an open neighborhood of g(o), and � := π−1
W

(A) ∩
g−1(B) ∩ U1. The previous claims imply that for every a ∈ A and every b ∈ B there is a
unique v ∈ V such that av ∈ � and g(av) = b. Define ϕ : A × B → V as ϕ(a, b) = v.

Finally, we claim that the map �(a, b) := aϕ(a, b) is a homeomorphism A × B → �.
Notice that, if p = �(a, b), then a = πW(p) and b = g(p): therefore, � is injective.
Moreover, if p ∈ �, then πW(p) ∈ A, g(p) ∈ B and �(πW(p), g(p)) = p: therefore, � is
also surjective. Since�−1 : � → A×B is a continuous bijection, then it is a homeomorphism
by the Invariance of Domain Theorem. This completes the proof. ��

Weobserve that, when g : G → G
′ is a homogeneous groupmorphism, then the statement

of Lemma 2.10 holds with A = W, B = G
′ and � = G.

Lemma 2.12 Under the assumptions and notation of Lemma 2.10, suppose o = 0 and define
for λ > 0

ϕλ : δ1/λA × δ1/λB → δ1/λ�

(a, b) 	→ δ1/λϕ(δλa, δλb)

Let ϕ0 be the implicit function associated with DHg(0), that is, ϕ0 : W × G
′ → V is such

that DH g(o)(aϕ0(a, b)) = b for all a and b.
Then ϕλ → ϕ0 locally uniformly as λ → 0+.

Proof Without loss of generality, we assume � to be compactly contained in the domain of
g. Define gλ : δ1/λ� → G

′ by

gλ(x) = δ1/λg(δλx).

Notice that gλ(aϕλ(a, b)) = b for all (a, b) ∈ δ1/λA × δ1/λB. Possibly taking a smaller �,
by Lemma 2.9 there is C > 0 such that ρ′(g(x), g(y)) ≥ Cρ(x, y) for all x, y ∈ � with
πW(x) = πW(y). It follows that that ρ′(gλ(x), gλ(y)) ≥ Cρ(x, y) for all x, y ∈ δ1/λ� with
πW(x) = πW(y), because πW ◦ δλ = δλ ◦ πW.

Fix a compact set K ⊂ W × G
′ and let (a, b) ∈ K . Then, for small enough λ (depending

only on K ) we have (a, b) ∈ δ1/λA × δ1/λB, aϕλ(a, b) ∈ δ1/λ� and aϕ0(a, b) ∈ δ1/λ�,
hence

ρ(ϕλ(a, b), ϕ0(a, b)) = ρ(aϕλ(a, b), aϕ0(a, b))
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≤ 1

C
ρ′(gλ(aϕλ(a, b)), gλ(aϕ0(a, b)))

= 1

C
ρ′(b, gλ(aϕ0(a, b)))

= 1

C
ρ′(DHg0(aϕ0(a, b)), gλ(aϕ0(a, b))).

Since g is Pansu differentiable at 0, gλ → DHg0 uniformly on compact sets. The map
(a, b) 	→ aϕ0(a, b) is a homeomorphism W × G

′ → G, hence ϕλ → ϕ0 uniformly on
compact sets. ��

2.5 C1H submanifolds and rectifiable sets

A set � ⊂ G is a submanifold of class C1
H (or C1

H submanifold for short) if there exists a
Carnot group G

′ such that for every p ∈ � there are an open neighborhood � of p in G

and a function f ∈ C1
H (�; G

′) such that p is split-regular for f and � ∩ � = { f = 0}. In
this case, we sometimes call � a C1

H (G; G
′)-submanifold. Notice that the target group G

′ is
unique up to biLipschitz isomorphism, as a consequence of Lemma 2.14.

The homogeneous tangent subgroup to � at p ∈ � is the homogeneous normal subgroup
T H
p � := ker(DH f (p)). Statement (i i i) in the next lemma implies thatT H

p � does not depend

on the choice of f . Observe also that the homogeneous dimension of T H
p � is equal to the

difference of the homogeneous dimensions of G and G
′ and is, in particular, independent of

p; we call this integer homogeneous dimension of � and denote it by dimH �. It coincides
with the Hausdorff dimension of � (see Proposition 2.17).

Definition 2.13 Given a splittingG = W ·V and an open set A ⊂ W, we say that φ : A → V

is of class C1
W,V

(A) if the intrinsic graph � of φ is a C1
H submanifold and T H

wφ(w)� ∈ WV

for every w ∈ A.

Observe that, since V is isomorphic to G
′, the homogeneous dimension of W is equal to

that of �.

Lemma 2.14 Let � ⊂ G be a C1
H submanifold and o ∈ �. Let G = W · V be a splitting

such that T H
o � is the intrinsic graph of φ0 : W → V. The following statements hold:

(i) There are open neighborhoods � of o and A of πW(o), and a function φ ∈ C1
W,V

(A)

such that � ∩ � is the intrinsic graph of φ.
(ii) Assume o = 0 and define φλ(x) := δ1/λφ(δλx); then φλ ∈ C1

W,V
(δ1/λA) and φλ → φ0

uniformly on compact sets as λ → 0+.
(iii) limλ→0+ δ1/λ(o−1�) = T H

o � in the sense of local Hausdorff convergence of sets. This
convergence is locally uniform in o.

(iv) If U is a neighborhood of o such that � ∩ U is the level set of f ∈ C1
H (U , G

′) and o
is a split-regular point of f , then G

′ is isomorphic to V.

Note that statement (i i) has a similar formulation when o �= 0, however the formula is
longer and not particularly useful to us; using this formula, one could then prove that the
convergence is locally uniform in o. The proof of statements (i), (i i) and (i i i) is left to the
reader, since it is a consequence of Lemmas 2.10 and 2.12 and of Proposition 2.4. As for
statement (iv), it is enough to notice that the group morphism DH f (o)|V : V → G

′ is
injective (because V ∩ ker DH f (o) = {0}) and surjective (because o is split-regular).

An important property of the parametrizing map φ is that it is intrinsic Lipschitz in
accordance with the theory developed by Franchi, Serapioni and Serra Cassano, see e.g. [16,
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19]. We recall that, given a splitting G = W · V and A ⊂ W, a map φ : A → V is intrinsic
Lipschitz if there exists C ⊂ G such that the following conditions hold

(a) C is a cone, i.e., δλC = C for all λ > 0;
(b) V is an axis of C, i.e., V ⊂ C and V \ {0} ⊂ C̊;
(c) the graph � := {aφ(a) : a ∈ A} of φ satisfies � ∩ (pC) = {p} for all p ∈ �.

Remark 2.15 The above definition of Lipschitz continuity for intrinsic graphs W → V,
though slightly different, is equivalent to the one introduced by Franchi, Serapioni and Serra
Cassano, see e.g. [10, Remark A.2].

Corollary 2.16 Intrinsic C1
H submanifolds are locally intrinsic Lipschitz graphs.

Proof Let � ⊂ G be a C1
H submanifold, o ∈ � and V ∈ WT H

o � . We need to prove that then
there are a neighborhood � of o and a cone C with axis V such that for all p ∈ � ∩ � we
have (� ∩ �) ∩ pC = {p}.

Let � be a neighborhood of o with f ∈ C1
H (�; G

′) such that � ∩ � = {p ∈ � : f (p) =
f (o)} and all points in � are split-regular for f . Up to shrinking �, we can also assume, by
Lemma 2.9, that there exists C > 0 such that

ρ′( f (p), f (pv)) ≥ C‖v‖ρ ∀ p ∈ �, v ∈ V such that pv ∈ �,

and that, by Lemma 2.5, f : (�, ρ) → (G′, ρ′) is L-Lipschitz, for some L ≥ 0. Define the
cone

C := {0} ∪
⋃
v∈V

Uρ(v, C
L ‖v‖ρ) ⊂ G.

Requirements (a) and (b) above are clearly satisfied; to prove (c), let B be a ball such that the
ball B ′ with the same center and three times the radius is contained in �. Pick p ∈ � ∩ B
and q ∈ B ∩ pC\{p}. There exists v ∈ V such that pv ∈ B ′ and ρ(q, pv) < C

L ‖v‖ρ , hence

ρ′( f (p), f (q)) ≥ ρ′( f (p), f (pv)) − ρ′( f (pv), f (q)) ≥ C‖v‖ρ − Lρ(q, pv) > 0.

We conclude that f (q) �= f (p) and thus q /∈ �. This completes the proof. ��
The following result is an easy consequence of Lemma 2.14, Corollary 2.16 and [19, The-

orem 3.9]. We denote by ψd either the d-dimensional Hausdorff or d-dimensional spherical
Hausdorff measure on G as in Sect. 2.2.

Proposition 2.17 (Local Ahlfors regularity of the surface measure on C1
H submanifolds) Let

� ⊂ G be a C1
H (G, G

′) submanifold and let d := dimH �; then, for every compact set
K ⊂ � there exist C = C(K ) > 0 and r0 > 0 such that for all r ∈ (0, r0)

1

C
rd ≤ ψd(� ∩ U(p, r)) ≤ Crd ∀ p ∈ K . (13)

In particular, the measure ψd � is locally doubling.

Some of the results of this paper hold for the more general class of rectifiable sets that we
now introduce.

Definition 2.18 (Rectifiable sets) We say that a set R ⊂ G is countably (G; G
′)-rectifiable

if there exists G
′ and countably many C1

H (G; G
′)-submanifolds � j ⊂ G, j ∈ N, such that,

denoting by Q,m the homogeneous dimensions of G, G
′, one has

ψQ−m
(
R \

⋃
j

� j

)
= 0.
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We say that R is (G; G
′)-rectifiable if, moreover, ψQ−m(R) < +∞.

The groupsG, G
′ will be usually understood andwewill simplywrite rectifiable in place of

(G; G
′)-rectifiable. Notice that, if ψQ−m(R) > 0, then the group G

′ is uniquely determined
by R up to biLipschitz isomorphism, as it is for C1

H (G; G
′)-submanifolds. We recall also

that this notion of rectifiability is not known to be equivalent to the ones which involve cones
and intrinsic Lipschitz graphs, see for instance [9,16,19,24].

A key object in the theory of rectifiable sets is the approximate tangent space.

Definition 2.19 (Approximate tangent space) Let R ⊂ G be countably (G; G
′)-rectifiable

and let � j , j ∈ N, be as in Definition 2.18; for ψQ−m-a.e. p ∈ R we define the approximate
tangent space T H

p R to R at p as

T H
p R := T H

p �j̄ whenever p ∈ �j̄ \
⋃

j≤j̄−1

� j .

Definition 2.19 is well-posed provided one shows that, for ψQ−m-a.e. p ∈ R, T H
p R does

not change if in Definition 2.18 one changes the covering family of submanifolds (� j ) j . In
turn, it is enough to show that, if�′, �′′ are level sets of f ′ ∈ C1

H (�′; G
′), f ′′ ∈ C1

H (�′′; G
′)

defined on open sets�′,�′′ ⊂ G and all points are split-regular for f ′, f ′′, then (see also [11,
Section 2])

ψQ−m({p ∈ �′ ∩ �′′ : T H
p �′ �= T H

p �′′}) = 0. (14)

Let I be the set in (14). Assume by contradiction that ψQ−m(I ) > 0; we can without loss
of generality suppose that �′ is the intrinsic graph of a map φ : A → V defined on an open
set A ⊂ W for some splitting G = W · V. Let J := {w ∈ A : wφ(w) ∈ I }; by Theorem 1.1
one has ψQ−m(J ) > 0, hence there exists w̄ ∈ J such that

lim
r→0+

ψQ−m(J ∩ U(w̄, r))

ψQ−m(W ∩ U(w̄, r))
= 1.

Taking Lemma 2.14 (iii) into account and using a density argument, it is straighforward to
prove that the blow-up of I at p̄ := w̄φ(w̄), i.e., the limit limλ→0+ δ1/λ( p̄−1 I ) in the sense
of local Hausdorff convergence, is contained in T H

p̄ �′. Similarly it is contained in T H
p̄ �′′.

By density, the tangent of I should have the same dimension as the tangents of �′ and �′′
and thus, the two tangents coincide, which is a contradiction.

3 The area formula

Let P be a homogeneous subgroup of G with dimH P = d and let θ be a Haar measure on P.
By dilation invariance of E and P one has

	ψd (θ, 0) = lim
ε→0+ sup

{
θ(E ∩ P)

diam(E)d
: 0 ∈ E ∈ E , 0 < diam(E) ≤ ε

}

= lim
ε→0+ sup

{
θ(δdiam(E)−1E ∩ P)

diam(δdiam(E)−1E)d
: 0 ∈ E ∈ E , 0 < diam(E) ≤ ε

}

= sup {θ(E ∩ P) : 0 ∈ E ∈ E , diam(E) = 1} . (15)

This simple observation turns out to be useful to study the Federer density 	ψd of ψd
P.
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Lemma 3.1 Let P be a homogeneous subgroup of G with homogeneous dimension d and let
ψd be either the spherical or the Hausdorff d-dimensional measure on G. Then ψd

P is a
Haar measure on P and for all x ∈ P,

sup
{
ψd(E ∩ P) : x ∈ E ∈ E , diam(E) = 1

}
= 	ψd (ψ

d
P, x) = 1. (16)

Proof As E and ρ are left invariant, ψd
P is a left invariant measure on P. Therefore, we

only need to show that it is non zero and locally finite to prove that it is a Haar measure. Fix a
Haar measure θ on P. Since θ is d-homogeneous, θ is Ahlfors d-regular on (P, ρ), therefore
there are constants 0 < c < C such that

cθ(B) ≤ Hd(B) ≤ Cθ(B)

for all Borel subsets B ⊂ P, see for instance [21, Exercise 8.11]. By basic comparisons of
the Hausdorff and spherical measures, we infer that ψd is non zero and locally finite. We can
conclude that ψd is a Haar measure on P.

It remains to prove the equalities in (16). The first equality now follows from (15) and
left-invariance. The second equality follows instead from Theorem 2.1. ��

The following lemma proves Theorem 1.1 in a “linearized” case and allows to define the
area factor A.

Lemma 3.2 (Definition of the area factor) Let W · V be a splitting of G with W normal.
Assume that P is a homogeneous subgroup of G which is also an intrinsic graph W → V

and let �P : W → P be the corresponding graph map. Then, there exists a positive constant
A(P), which we call area factor, such that

ψd
P = A(P)�P#(ψ

d
W).

Furthermore, the area factor is continuous in P.

We stress the fact that the area factor A depends on the choice of the splitting W · V.

Proof In order to prove the first part of the lemma it suffices to show thatμ := �P#(ψ
d

W)

is a Haar measure on P. To see that it is locally finite, note that �P is a homeomorphism
between W and P and that therefore bounded open sets in P have finite positive μ measure.
We need to prove that μ is left invariant. Choose a set E ⊂ P. Let p = pW pV be a point on
P and pick a point x = xWxV ∈ E , we can write

πW(px) = πW(pW pVxW p−1
V

pVxV) = pWϕ(xW),

where ϕ : W → W is the group automorphism ϕ(w) := pVwp−1
V

. Let v ∈ g be such that
pV = exp(v), where exp : g → G is the exponential map. Then we have

det(Dϕ(e)|W) = det(AdpV |W) = det(eadv |W) = etr(adv |W) = 1,

where tr(adv|W) = 0 because adv is nilpotent. Here, we denoted by ad and Ad the adjoint
representations of g and G respectively; recall that Adexp(v) = eadv . This implies that ϕ

preserves Haar measures of W and thus

μ(pE) = ψd(πW(pE)) = ψd(pWϕ(πW(E)) = ψd(πW(E)) = μ(E).

We conclude that μ is a Haar measure on P, so the first part of the statement is proved.
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Let us prove that A(P) is continuous with respect to P. By Proposition 2.2, A(P)−1 is
equal to 	ψd (μ, 0) and, by (15),

A(P)−1 = sup{ψd(πW(E ∩ P)) : 0 ∈ E ∈ E , diam E = 1}.
Fix ε > 0 and let P and P

′ be homogeneous subgroups that are intrinsic graphs on W of
maps φP, φP′ : W → V such that

ρ(φP(w), φP′(w)) < ε ∀w ∈ πW(B(0, 1)). (17)

Pick E ∈ E with 0 ∈ E and diam E = 1 such thatψd(πW(E∩P)) > (1−ε)A(P)−1. Notice
that, if w ∈ πW(E ∩ P), then ρ(wφP(w),wφP′(w)) < ε. Therefore, denoting by B(E, r)
the closed r neighborhood of E , we have

πW(E ∩ P) ⊂ πW(B(E, ε) ∩ P
′).

If ψd is the Hausdorff measure, then B(E, ε) ∈ E and diam(B(E, ε)) ≤ 1+ 2ε; If ψd is the
spherical measure, then E = B(x, 1/2) for some x ∈ G and thus B(E, ε) ⊂ B(x, 1/2+ε) ∈
E with diam(B(x, 1/2 + ε)) ≤ 1 + 2ε. In both cases, we obtain

A(P′)−1 ≥ (1 + 2ε)−d(1 − ε)A(P)−1. (18)

Notice that this inequality holds for allP andP
′ satisfying (17), hencewe also haveA(P)−1 ≥

(1 + 2ε)−d(1 − ε)A(P′)−1. We conclude that P 	→ A(P)−1 is continuous and, as A(P) is
strictly positive and finite, P 	→ A(P) is continuous as well. ��

It is worth observing that the area factor implicitly depends on the fixed group W. We are
now ready to prove our first main result.

Proof of Theorem 1.1 Letting f be a C1
H (G, G

′) map defining the C1
H submanifold �, the

map p 	→ T H
p (�) = ker(DH f p) is continuous on �. By continuity of the area factorA and

of the map w 	→ wφ(w) on A, the function a(w) := A(T H
wφ(w)�) is continuous on A with

values in (0,∞). We define the measure μ, supported on �, by

μ(E) :=
∫

πW(E∩�)

a(w)d (ψd
W)(w)

for any E ⊂ G. We shall prove (1) by applying Proposition 2.2, that is, we will show that
	ψd (μ; o) = 1 for all o ∈ �. Fix o ∈ � and assume without loss of generality that o = 0.
Then

	ψd (μ; 0) = lim
r→0+ sup

{
μ(E)

diam(E)d
: 0 ∈ E ∈ E , diam(E) < r

}
.

Using the continuity of the function a, we have

	ψd (μ; 0) = a(0) lim
r→0+ sup

{
ψd(πW(E ∩ �))

(diam E)d
: 0 ∈ E ∈ E , diam(E) < r

}
.

Since the projection πW commutes with dilations, we have for 0 < η ≤ 1,

ψd(πW(δηE ∩ �)) = ηdψd(πW(E ∩ δ1/η�)).

Thus

	ψd (μ; 0)
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= a(0) lim
r→0+ sup

{
ψd(πW(E ∩ δ1/η�)) : 0 ∈ E ∈ E , diam(E) = 1, 0 < η < r

}
.

We claim that

lim
r→0+ sup

{
ψd(πW(E ∩ δ1/η�)) : 0 ∈ E ∈ E , diam(E) = 1, 0 < η < r

}

= sup{ψd(πW(E ∩ T H
0 �)) : 0 ∈ E ∈ E , diam(E) = 1}. (19)

As in Lemma 2.14, we denote by φη : δ1/ηA → V the function whose intrinsic graph is
δ1/η� and by φ0 : W → V the one for T H

0 �; then, φη converges to φ0 uniformly on compact
sets as η → 0. In particular, for every ε > 0 there is rε > 0 such that πW(B(0, 1)) ⊂ δ1/ηA
and ρ(φη(w), φ0(w)) < ε for all w ∈ πW(B(0, 1)) and η ∈ (0, rε).

We start by proving that the left hand side (LHS) of (19) is not greater than the right
hand side (RHS); we can assume LHS > 0. Fix ε > 0. Then there are η ∈ (0, rε) and E
such that 0 ∈ E ∈ E , diam E = 1 and ψd(πW(E ∩ δ1/η�)) > (1 − ε)LHS. Notice that
πW(E) ⊂ πW(B(0, 1)) and that

πW(E ∩ δ1/η�) ⊂ πW(B(E, ε) ∩ T H
0 �).

If ψd is the Hausdorff measure, then Ẽ := B(E, ε) ∈ E and diam Ẽ ≤ 1 + 2ε; If ψd is the
sphericalmeasure, then E = B(x, 1/2) for some x ∈ G and thus B(E, ε) ⊂ B(x, 1/2+ε) =:
Ẽ ∈ E and diam Ẽ ≤ 1 + 2ε. Thus, by d-homogeneity of ψd

W, we have

RHS ≥ ψd(πW(Ẽ ∩ T H
0 �))

(diam Ẽ)d
≥ 1 − ε

(1 + 2ε)d
LHS.

The inequality RHS ≥ LHS follows from the arbitrariness of ε.
For the converse inequality, fix ε > 0 and Ẽ with 0 ∈ Ẽ ∈ E and ψd(πW(Ẽ ∩ T H

0 �)) ≥
(1 − ε)RHS. Notice that, for every η ∈ (0, rε),

πW(δ1−2ε Ẽ ∩ T H
0 �) ⊂ πW(B(δ1−2ε Ẽ, ε) ∩ δ1/η�)

and that diam(B(δ1−2ε Ẽ, ε)) ≤ 1. Similarly as before, we can find Ẽε ∈ E such that
B(δ1−2ε Ẽ, ε) ⊂ Ẽε and diam Ẽε = 1. Therefore,

LHS ≥ lim sup
η→0+

ψd(πW(Ẽε ∩ δ1/η�))

≥ lim sup
η→0+

ψd(πW(B(δ1−−2ε Ẽ, ε) ∩ δ1/η�))

≥ ψd(πW(δ1−−2ε Ẽ ∩ T H
0 �))

= (1 − −2ε)dψd(πW(Ẽ ∩ T H
0 �))

≥ (1 − −2ε)d(1 − ε)RHS.

This concludes the proof of (19).
Eventually, by (16) and the definition of the area factor in Lemma 3.2,

	ψd (μ; 0) = A(T H
0 �) sup{ψd(πW(E ∩ T H

0 �)) : 0 ∈ E ∈ E , diam(E) = 1} = 1.

��
We conclude this section with some applications of Theorem 1.1. We start by proving the

first part in the statement of Corollary 1.2 about the relation between Hausdorff and spherical
Hausdorff measures on rectifiable sets; the second part of Corollary 1.2, concerning the same
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application in the setting of the Heisenberg group endowed with a rotationally invariant
distance, will be proved in Proposition 5.4
Proof of Corollary 1.2, first part. If P ∈ TG,G′ , let a(P) as the constant such that

SQ−m
P = a(P)HQ−m

P, (20)

which exists because both measures are Haar measures.
Now, let G = W · V be a splitting and � the C1

H intrinsic graph of φ : A → V with
A ⊂ W. Then, denoting by AW

S and AW

H the area factors for the spherical and Hausdorff
measures with respect to W,

SQ−m � = AW

S (T H�)�#(S
Q−m

W)

= a(W)
AW

S (T H�)

AW

H(T H�)
AW

H(T H�)�#(H
Q−m

W)

= a(W)
AW

S (T H�)

AW

H(T H�)
HQ−m �.

Since � is arbitrary, we can apply this equality to � = P ∈ WW to see that

a(P) = a(W)
AW

S (P)

AW

H(P)
.

Continuity of a and (2) are now clear. ��
Remark 3.3 The definition of a in (20) together with Proposition 2.2 (with μ = SQ−m and
ψd = HQ−m) distinctly shows that the precise value of a(W) is related with the isodiametric
problem on W about maximizing the measure of subsets of W with diameter at most 1
(see [46]). This task is a very demanding one already in the Heisenberg group endowed with
the Carnot-Carathéodory distance, see [31].

We now prove a statement about weak* convergence of measures of level sets of C1
H

functions; this will be used in the subsequent Corollary 3.6 as well as later in the proof of the
coarea formula. We note that the proof of Lemma 3.4 relies on the Area formula (1): we are
not aware of any alternative strategy.

Lemma 3.4 (Weak* convergence of blow-ups) Consider an open set � ⊂ G, a function
g ∈ C1

H (�; G
′) and a point o ∈ � that is split-regular for g. Let m denote the homogeneous

dimension of G
′ and, for b ∈ G

′ and λ > 0, define

�λ,b := δ1/λ(o
−1{p ∈ � : g(p) = g(o)δλb}) = {p ∈ δ1/λ(o

−1�) : g(oδλ p) = g(o)δλb}.
Then, the weak* convergence of measures

ψQ−m �λ,b
∗
⇀ ψQ−m {p : DHg(o)p = b} as λ → 0+

holds. Moreover, the convergence is uniform with respect to b ∈ G
′, i.e., for every χ ∈ Cc(G)

and every ε > 0 there is λ̄ > 0 such that
∣∣∣∣∣
∫

�λ,b

χdψQ−m −
∫

{DH g(o)=b}
χdψQ−m

∣∣∣∣∣ < ε ∀ λ ∈ (0, λ̄), b ∈ G
′.
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Proof Up to replacing g with the function x 	→ g(o)−1g(ox), we can assume o = 0 and
g(o) = 0; in particular, �λ,b = δ1/λ({p ∈ � : g(p) = δλb}). Notice that, by Lemma 2.10,
�λ,b �= ∅ for all b in a neighborhood of 0 and λ small enough.

Possibly restricting �, we can assume that there exists a splitting G = W · V, open sets
A ⊂ W, B ⊂ G

′ and a map ϕ : A× B → V such that the statements of Lemma 2.10 hold. If
p ∈ �λ,b, then there is a ∈ A such that p = δ1/λ(aϕ(a, δλb)) = δ1/λaϕλ(δ1/λa, b), where
ϕλ(a, b) := δ1/λϕ(δλa, δλb). In particular, �λ,b is the intrinsic graph of ϕλ(·, b) : δ1/λA →
V.

Denoting by ϕ0 : W × G
′ → V the implicit function associated with DHg(0), we have

by Lemma 2.12 that ϕλ → ϕ0 uniformly on compact subsets of W × G
′. Moreover

lim
λ→0+ Taϕλ(a,b)�λ,b = lim

λ→0+ Tδ1/λ(δλaϕ(δλa,δλb))δ1/λ�1,δλb

= lim
λ→0+ Tδλaϕ(δλa,δλb)�1,δλb

= lim
λ→0+ ker(DHg(δλaϕ(δλa, δλb)))

= ker(DHg(0)) ∈ WV,

where the convergence is in the topology of WV and it is uniform when (a, b) belong to
a compact set of W × G

′. Therefore, using the area formula of Theorem 1.1, for every
χ ∈ Cc(G) we have

lim
λ→0+

∫
�λ,b

χdψQ−m = lim
λ→0+

∫
δ1/λA

χ(aϕλ(a, b))A(Taϕλ(a,b)�λ,b)dψ
Q−m(a)

=
∫
W

χ(aϕ0(a, b))A(ker DHg(0))dψ
Q−m(a)

=
∫

{DH g(0)=b}
χdψQ−m, (21)

where the limit is uniform when b belongs to a compact subset of G
′. Let us show that the

convergence is actually uniform on G
′.

Since g is Lipschitz continuous in a neighborhood of 0, there is a positive constant C such
that ρ′(0, g(δλ p)) ≤ Cλ for all p ∈ spt χ and λ small enough. Therefore, if ρ′(0, b) > C ,
then spt χ ∩�λ,b = ∅. Possibly increasingC , we can assume that spt χ ∩{DHg(o) = b} = ∅
for all b such that ρ′(0, b) > C . Therefore, the uniformity of the limit (21) for b ∈ BG′(0,C)

implies uniformity for all b ∈ G
′. This completes the proof. ��

In the proof of the following corollary, we will need this simple lemma:

Lemma 3.5 Let θ be a Haar measure and ρ a homogeneous distance on a homogeneous
group P. Then θ(∂ Uρ(0, R)) = 0 for all R > 0.

Proof By homogeneity, there holds

θ(∂ U(0, R)) = lim
ε→0+ θ(U(0, R + ε)) − θ(U(0, R − ε))

= θ(U(0, 1)) lim
ε→0+((R + ε)dimH P − (R − ε)dimH P) = 0.

��
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Corollary 3.6 There exists a continuous function d : TG,G′ → (0,+∞) with the following
property. If R ⊂ G is a (G; G

′)-rectifiable set and Q,m denote the homogeneous dimensions
of G, G

′, respectively, then

lim
r→0+

ψQ−m(R ∩ U(p, r))

r Q−m
= d(T H

p R) for ψQ−m-a.e. p ∈ R. (22)

Moreover, if R is a C1
H submanifold, then the equality in (22) holds at every p ∈ R.

Clearly, d depends on whether the measure ψQ−m under consideration is the Hausdorff
or the spherical one.

Proof of Corollary 3.6 Let� be aC1
H submanifold and letμ := ψQ−m (R\�); Theorem2.1

(ii) implies that

	ψQ−m (μ; p) = 0 for ψQ−m-a.e. p ∈ �,

hence

lim
r→0+

ψQ−m((R \ �) ∩ U(p, r))

r Q−m
= 0 for ψQ−m-a.e. p ∈ R ∩ �.

A similar argument, applied to μ := ψQ−m (�\R), gives

lim
r→0+

ψQ−m((� \ R) ∩ U(p, r))

r Q−m
= 0 for ψQ−m-a.e. p ∈ R ∩ �,

i.e.,

lim
r→0+

ψQ−m(R ∩ U(p, r))

r Q−m
= lim

r→0+
ψQ−m(� ∩ U(p, r))

r Q−m
for ψQ−m-a.e. p ∈ R ∩ �

provided the second limit exists. In particular, it is enough to prove the statement in case R
is a C1

H submanifold.
Let p ∈ R be fixed; for λ > 0 define Rλ := δ1/λ(p−1R) and, by Lemma 3.4,

ψQ−m Rλ
∗
⇀ ψQ−m T H

p R. Since ψQ−m(T H
p R ∩ ∂ U(0, 1)) = 0, using [1, Proposi-

tion 1.62 (b)] and Lemma 3.5, one gets

lim
r→0+

ψQ−m(R ∩ U(p, r))

r Q−m
= lim

r→0+ ψQ−m(Rλ ∩ U(0, 1)) = ψQ−m(T H
p R ∩ U(0, 1)).

Statement (22) follows on setting d(P) := ψQ−m(P ∩ U(0, 1)) for every P ∈ TG,G′ .
It remains only to prove the continuity of d at every fixed W ∈ TG,G′ . Every P ∈ TG,G′

in a proper neighborhood of W is an intrinsic graph over W. Denoting by πW : G → W the
projection defined in (11), we have by Lemma 3.2 that

d(P) = ψQ−m(P ∩ U(0, 1)) = A(P)ψQ−m(πW(P ∩ U(0, 1))),

hence we have to prove only the continuity of P 	→ ψQ−m(πW(P ∩ U(0, 1))) at W. Let
ε > 0 be fixed; then, if P is close enough to W, one has

W ∩ U(0, 1 − ε) ⊂ πW(P ∩ U(0, 1)) ⊂ W ∩ U(0, 1 + ε)

and the continuity of P 	→ ψQ−m(πW(P ∩ U(0, 1))) at W follows. ��
We conclude this section with the following result, similar in spirit to Lemma 3.4. It will

be used in the proof of Lemma 4.7.
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Corollary 3.7 Suppose that, for n ∈ N, Ln : G → G
′ is a homogeneous morphism and that

the sequence of Ln converges to a surjective homogeneous morphism L : G → G
′ such that

ker L splits G. Then the following weak* convergence of measures holds:

ψQ−m {Ln = s} ∗
⇀ψQ−m {L = s},

where s is an element ofG′, Q is the homogeneous dimension ofG andm is the homogeneous
dimension of G

′. More precisely, given a function χ ∈ Cc(G) and ε > 0, there exists N ∈ N

such that for all n ≥ N and s ∈ G
′

∣∣∣∣
∫

{Ln=s}
χdψQ−m −

∫
{L=s}

χdψQ−m
∣∣∣∣ < ε.

Proof Denote by W := ker L and let G = W · V a splitting. Recall that V and G
′ are also

vector spaces, the morphisms Ln are linear maps and that L|V : V → G
′ is an isomorphism.

Therefore, there exists N ∈ N such that Ln |V is an isomorphism for all n ≥ N . For all such
n and s ∈ G

′, define φs
n : W → V by

φs
n(w) := Ln |−1

V
(Ln(w)−1s).

Notice that {Ln = s} is the intrinsic graph of φs
n . Let φ

s∞ : W → V be the constant function
whose intrinsic graph is {L = s}: it is clear that φs

n(w) → φs∞(w) uniformly on compact
sets in the variables (w, s) ∈ W × G

′.
Fix χ ∈ Cc(G). Then∫

{Ln=s}
χdψQ−m = A(ker Ln)

∫
W

χ(wφs
n(w))dψQ−m(w)

where the functions χ̃n : (s, w) 	→ χ(wφs
n(w)) are continuous and uniformly converge to

(s, w) 	→ χ(wL|−1
V

(s)) as n → ∞. Moreover,A(ker Ln) → A(ker L) = 1. This completes
the proof. ��

4 The coarea formula

4.1 Set-up

LetG be a Carnot group, ρ a homogeneous distance onG and Q the homogeneous dimension
of G. Let also M, L and K be graded groups and such that LM = K and M ∩ L = {0}; let
m and � be the respective homogeneous dimensions of M and L. In all the following, we
assume that Q ≥ l + m. Notice that Theorem 1.3 is non-trivial only when both L and K are
stratified, but M need not be stratified, as shown in Remark 4.3.

Our aim is to prove Theorem 1.3, which by Proposition 2.2 will be a consequence of
the following Theorem 4.1: here, C(P, L) denotes the coarea factor corresponding to a
homogeneous subgroup P of G and a homogeneous morphism L : G → L; the coarea factor
is going to be defined later in Proposition 4.6. The function C(P, L) is continuous in P and
L , see Lemma 4.7.

Theorem 4.1 Let � ⊂ G be open, let f ∈ C1
H (�; M) and assume that all points in � are

split-regular for f , so that � := {p ∈ � : f (p) = 0} is a C1
H submanifold. Consider a

function u : � → L such that u f ∈ C1
H (�; K) and assume that

for ψQ−m-a.e. p ∈ �,

{
either DH (u f )p|T H

p � is not surjective on L,

or p is split-regular for u f .
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For s ∈ L set �s := � ∩ u−1(s). Then

(i) for every Borel set E ⊂ � the function L � s 	→ ψQ−m−�(E ∩ �s) ∈ [0,+∞] is
ψ�-measurable;

(ii) the function

μ�,u(E) :=
∫
L

ψQ−m−�(E ∩ �s)dψ�(s), (23)

defined on Borel sets, is a locally finite measure;
(iii) the Radon–Nikodym density 	 of μ�,u with respect to ψQ−m � is locally bounded

and
	(p) = C(T H

p �, DH (u f )p) for ψQ−m-a.e. p ∈ �. (24)

Remark 4.2 Let us prove that the differential DH (u f )p|T H
p � depends only on the restriction

of u to � and, moreover, that it does not depend on the choice of the defining function f
for �. In particular, in view of Proposition 4.6 also the coarea factor C(T H

p �, DH (u f )p)
depends only on the restriction of u to �.

Let v ∈ T H
p �; then there exist sequences r j → 0+ and q j → p such that q j ∈ � and

v = lim j→∞ δ1/r j (p
−1q j ). In particular, ‖q−1

j pδr j v‖ρ = o(r j ) and, by Lemma 2.5,

lim
j→∞ δ1/r j

(
(u f )(q j )

−1(u f )(pδr j v)
) = 0.

Since f |� = 0 we obtain

DH (u f )p(v) = lim
j→∞ δ1/r j

(
(u f )(p)−1(u f )(pδr j v)

)

= lim
j→∞ δ1/r j

(
(u f )(p)−1(u f )(q j )

)

= lim
j→∞ δ1/r j

(
u(p)−1u(q j )

)
.

This proves the claim.

Remark 4.3 Here is an example where Theorem 1.3 applies andwhere the general hypotheses
on the subgroups M, L and K are necessary. Let G be the free group of rank 3 and step 2.
A basis of its Lie algebra, g, is X1, X2, X3, X12, X13, X23 with Xi j = [Xi , X j ]. Consider
the subgroup K of G generated by X2, X3 (and X23), which is isomorphic to the Heisenberg
group.K has a complementary normal subgroup K̃, generated by X1, X12, X13. Furthermore,
K itself admits a splitting of the form LM, where L = span{X2, X23} and M = span{X3}.
Lastly, another splitting of G is given by the subgroups (K̃L) and M.

Denote by πK : G → K the projection onto K along K̃ and by f the projection onto M

along KL. Defining u : G → L as the map p 	→ πK(p) · f (p)−1, there holds (u f )(p) =
πK(p). The maps f and u f are regular C1

H maps, however the range of u is L, which is
not a stratified group and the direct product L × M is not a stratified group. Therefore,
u × f : G → L × M cannot be a regular C1

H map.

The proof of Theorem 4.1 is divided into several steps. We start by proving that μ�,u

is a well defined, locally finite measure concentrated on �; this uses an abstract coarea
inequality. Then we consider the linear case in order to apply a blow-up argument; in doing
so, we will define the coarea factor. We finally consider separately “good points”, i.e., those
where DH (u f )|T H� has full rank, and “bad points”, where DH (u f )|T H� is not surjective:
at good points the blow-up argument applies, while the set of bad points is negligible by an
argument similar to the proof of the coarea inequality.
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4.2 Coarea Inequality

In this section we prove Proposition 4.5, which is a consequence of the following Lemma 4.4;
the latter is basically [14, Theorem 2.10.25], with a slightly different use of the Lipschitz
constant. See also [32, Theorem 1.4] and [12, Lemma 3.5].

Lemma 4.4 (Abstract Coarea Inequality) Let (X , dX ) and (Y , dY ) be boundedly compact
metric spaces and assume that there exist β ≥ 0 and C ≥ 0 such that

Hβ(E) ≤ C diam(E)β for all E ⊂ Y ,

where Hβ is the β-dimensional Hausdorff measure on (Y , dY ). Let u : X → Y be a locally
Lipschitz function and for ε > 0 consider

Lipε(u) := sup

{
dY (u(x), u(y))

dX (x, y)
: 0 < dX (x, y) < ε

}
, Lip0(u) := lim

ε→0
Lipε(u).

Then, for every α ≥ β and every Borel set A ⊂ X with Hα(A) < +∞, the function
y 	→ Hα−β(u−1(y) ∩ A) isHβ -measurable and∫

Y
Hα−β(u−1(y) ∩ A)dHβ(y) ≤ C Lip0(u)βHα(A).

Moreover, the set function A 	→ ∫
Y Hα−β(u−1(y) ∩ A)dHβ(y) is a Borel measure.

The proof is standard. In our setting, the “abstract” coarea inequality translates as follows.

Proposition 4.5 (Coarea inequality) Under the assumptions and notation of Theorem 4.1,
one has

(i) u|� is locally Lipschitz continuous;
(ii) for every Borel set E ⊂ G, the function L � s 	→ ψQ−m−�(E ∩ �s) ∈ [0,+∞] is

ψ�-measurable;
(iii) for every compact K ⊂ �, the coarea inequality

μ�,u(K ) ≤ C Lip(u|K )�ψQ−m(K )

holds for a suitable C = C(L) > 0;
(iv) μ�,u is a Borel measure on � satisfying μ�,u � ψQ−m � with locally bounded

density.

Proof We notice that the measure ψQ−m � is locally finite by the estimate (13). The
local Lipschitz continuity of u|� follows from Lemma 2.5 because of the assumption u f ∈
C1
H (�; K) and the fact that u|� = u f |� . Statement (ii) follows from [14, 2.10.26]; the

careful reader will observe that [14, 2.10.26] is stated only when ψ� = H�, but its proof
easily adapts to the case ψ� = S�. Statement (iv) is now a consequence of statement (iii)
and the Radon–Nikodym Theorem, which can be applied because ψQ−m � is doubling
by (13) (see, e.g., [47]). ��

4.3 Linear case: definition of the coarea factor

In the following Proposition 4.6 we prove the coarea formula in a “linear” case, and in doing
so we will introduce the coarea factor. We are going to consider a homogeneous subgroup
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P of G that is also a C1
H submanifold. We observe that this implies that P coincides with its

homogeneous tangent subgroup; in particular, P is normal and it is the kernel of a surjective
homogeneous morphism on G.

Proposition 4.6 (Definition of the coarea factor) Let P be a homogeneous subgroup of G.
Let L : P → L be a homogeneous morphism. Let μP,L be as in (23), namely,

μP,L :=
∫
L

ψQ−m−� L−1(s)dψ�(s).

Then, μP,L is either null or a Haar measure on P. In particular, there exists C(P, L) ≥ 0,
which we call coarea factor, such that

μP,L = C(P, L) ψQ−m
P. (25)

Moreover, C(P, L) > 0 if and only if L(P) = L.

Proof Since L is Lipschitz on P, we can apply Lemma 4.4 and obtain that μP,L is a well
defined Borel measure that is also absolutely continuous with respect toψQ−m

P and finite
on bounded sets.

If L(P) �= L, then μP,L = 0 and thus (25) holds with C(P, L) = 0.
If L(P) = L, then we will show that μP,L is a Haar measure on P, which is equivalent to

(25) with C(P, L) > 0. For s ∈ L let P
s := L−1(s). Since P

s is a coset of P
0, ψQ−m−�

P
s

is the push-forward of ψQ−m−�
P
0 (which is a Haar measure on P

0) via a left translation.5

It follows that μP,L is nonzero on nonempty open subsets of P.
We need only to show that μP,L is left-invariant: let p ∈ P and choose a Borel set A ⊂ P.

For every s ∈ L we have p−1
P
s = {q ∈ P : L(pq) = s} = P

L(p)−1s . By left invariance of
ψQ−m−� and ψ�, we have

μP,L(pA) =
∫
L

ψQ−m−�((pA) ∩ P
s)dψ�(s)

=
∫
L

ψQ−m−�(p(A ∩ P
L(p)−1s))dψ�(s)

=
∫
L

ψQ−m−�(A ∩ P
L(p)−1s)dψ�(s) = μP,L(A)

as wished. ��

We now prove a continuity property for the coarea factor C(P, L). We agree that, when
L : G → L is defined on the whole G, the symbol C(P, L) stands for C(P, L|P).

Lemma 4.7 Assume that, for n ∈ N, surjective homogeneous morphisms F, Fn : G → M

and homogeneous maps L, Ln : G → L are given in such a way that

(i) LF and LnFn are homogeneous morphisms G → K;
(ii) ker F and ker(LF) split G;
(iii) Fn → F and Ln → L locally uniformly on G as n → ∞.

Then C(ker Fn, Ln) → C(ker F, L) as n → ∞.

5 Recall that for a homogeneous group morphism f defined on G, there holds dimH ker f + dimH im f =
dimH G

123



A. Julia et al.

Proof Set Pn := ker Fn and P := ker F ; let V be a complementary subgroup to P. Then, as
Pn → P, for large enough n, Pn · V is a splitting of G and the subgroup Pn is the intrinsic
graph P → V of a homogeneous map φn ∈ C1

P,V
(P). Observe that φn → 0 locally uniformly

on P because Pn → P. This, together with Lemma 3.2 and the continuity of the area factor
by Lemma 3.2, implies that ψQ−m

Pn converges weakly* to ψQ−m
P. Therefore, by

Proposition 4.6 we have only to show that

μPn ,Ln

∗
⇀ μP,L . (26)

If L|P is surjective, also LF is surjective. Since ker(LF) splits G, then (26) follows from
Corollary 3.7, integrating over s ∈ L and noting that LF−1(s) = L|−1

P
(s). If L|P is not

surjective, we can without loss of generality suppose that Ln |Pn is surjective for all n. By
homogeneity, it suffices to prove that μPn ,Ln (BG(0, 1)) → 0. We have

μPn ,Ln (BG(0, 1)) =
∫
L

ψQ−m−�(Pn ∩ L−1
n (s) ∩ BG(0, 1))dψ�(s)

≤ ψ�(Ln(BG(0, 1) ∩ Pn)) sup
s∈L

ψQ−m−�(BG(0, 1) ∩ Pn ∩ L−1
n (s))

≤ 2Q−m−�ψ�(Ln(BG(0, 1) ∩ Pn))

where the last inequality holds because, considering p ∈ Pn such that Ln(p) = s−1, we have
by Lemma 3.1

ψQ−m−�(BG(0, 1) ∩ Pn ∩ L−1
n (s)) = ψQ−m−�(BG(p, 1) ∩ Pn ∩ L−1

n (0)) ≤ 2Q−m−�.

Thus, we have to prove that ψ�(Ln(BG(0, 1) ∩ Pn)) → 0; notice that Ln(BG(0, 1) ∩ Pn)

converges in the Hausdorff distance to L(BG(0, 1) ∩ P), which is a compact set contained in
a strict subspace of L. As ψ� is a Haar measure on L, it is upper semi-continous with respect
to Hausdorff convergence and ψ�(Ln(BG(0, 1) ∩ Pn)) → 0 as n → ∞. ��

4.4 Good points

By “good” point o ∈ � we mean a point where the differential DH (u f )|T H
o � is surjective

onto L; the following Proposition 4.8 shows that the Radon–Nikodym density 	 of μ�,u

with respect to ψQ−m � can be explicitly computed at its Lebesgue points and coincides
with the coarea factor. Notice that almost every o ∈ � is a Lebesgue point for	, in the sense
that

lim
r→0+

∫
�∩U(o,r)

|	 − 	(o)| dψQ−m = 0. (27)

Proposition 4.8 Under the assumptions and notation of Theorem 4.1, the equality

	(o) = C(T H
o �, DH (u f )(o)). (28)

holds for ψQ−m-a.e. o ∈ � such that DH (u f )|T H
o � is onto L.

Proof We are going to prove (28) for all o ∈ � such that DH (u f )|T H
0 � is onto L, o is

split-regular for u f and (27) holds; up to left translations, we may assume that o = 0 and
u(0) = 0. For every Borel set A ⊂ G and λ > 0 we have, on the one hand

μ�,u(δλA) =
∫

�∩δλA
	(p)dψQ−m(p)
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= λQ−m
∫

(δ1/λ�)∩A
	(δλ p)dψ

Q−m(p)

= λQ−m(	 ◦ δλ)ψ
Q−m δ1/λ�(A).

On the other hand,

μ�,u(δλA) =
∫
L

ψQ−m−�((δλA) ∩ � ∩ {u = s})dψ�(s)

=
∫
L

ψQ−m−�(δλ(A ∩ δ1/λ� ∩ {uλ = δ1/λs}))dψ�(s)

= λQ−m
∫
L

ψQ−m−�(A ∩ δ1/λ� ∩ {uλ = t}))dψ�(t),

where uλ(p) := δ1/λu(δλ p). Therefore, one has the equality of measures

(	 ◦ δλ)ψ
Q−m δ1/λ� =

∫
L

ψQ−m−� (δ1/λ� ∩ {uλ = b})dψ�(b). (29)

We now compute the weak* limits as λ → 0+ of each side of (29). Concerning the left-hand
side, for every χ ∈ Cc(G) one has

∫
δ1/λ�

χ(p)	(δλ p)dψ
Q−m(p)

=
∫

δ1/λ�

χ(p)(	(δλ p) − 	(0))dψQ−m(p) + 	(0)
∫

δ1/λ�

χ(p)dψQ−m(p),

Let r > 0 be such that spt χ ⊂ U(0, r), then
∣∣∣∣∣
∫

δ1/λ�

χ(p)(	(δλ p) − 	(0))dψQ−m(p)

∣∣∣∣∣
≤ ‖χ‖∞

∫
U(0,r)∩δ1/λ�

|	(δλ p) − 	(0)|dψQ−m(p)

= ‖χ‖∞λm−Q
∫
U(0,λr)∩�

|	(p) − 	(0)|dψQ−m(p)

≤ C ‖χ‖∞
∫
U(0,λr)∩�

|	(p) − 	(0)|dψQ−m(p)

for a suitable positive C . Exploiting (27) one gets

lim
λ→0+

∫
δ1/λ�

χ(p)	(δλ p)dψ
Q−m(p) = 	(0) lim

λ→0+

∫
δ1/λ�

χ(p)dψQ−m(p)

= 	(0)
∫
T H
0 �

χ(p)dψQ−m(p), (30)

the last equality following from Lemma 3.4.
We now consider the right-hand side of (29); setting (u f )λ(p) := δ1/λ((u f )(δλ p)), for

every χ ∈ Cc(G) one has

lim
λ→0+

∫
L

∫
δ1/λ�∩{uλ=b}

χdψQ−m−�dψ�(b) = lim
λ→0+

∫
L

∫
{(u f )λ=b}

χdψQ−m−�dψ�(b)
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=
∫
L

∫
{DH (u f )(0)=b}

χdψQ−m−�dψ�(b),

where we used Lemma 3.4 and the fact that the inner integrals are equal to zero when b is
outside a fixed compact set. The definition of the coarea factor then gives

lim
λ→0+

∫
L

∫
δ1/λ�∩{uλ=b}

χdψQ−m−�dψ�(b) =
∫

χdμT H
0 �,DH (u f )(0)

= C(T H
0 �, DH (u f )(0))

∫
T H
0 �

χdψQ−m (31)

The statement is now a consequence of (29), (30) and (31). ��

4.5 Bad points

In contrast with “good” ones, “bad” points are those points p where (DH (u f ))(p)|T H
p � is

not surjective. The following lemma states that they are μ�,u-negligible: a posteriori, this is
consistent with the fact that, by definition, the coarea factor is null at such points.

Lemma 4.9 Under the assumptions and notation of Theorem 4.1, one has

μ�,u({p ∈ � : DH (u f )(p)|T H
p � is not onto L}) = 0.

Proof It is enough to show that μ�,u(E) = 0 for an arbitrary compact subset E of {p ∈
� : DH (u f )(p)|T H

p � is not onto L}, which is closed. We have ψQ−m(E) < ∞. Fix ε > 0;
by the compactness of E and the locally uniform differentiability of both f and u f , there
exists r > 0 such that B(E, r) ⊂ � and, for all p ∈ E and all q ∈ � ∩ U(p, r), there holds
f (p) = f (q),

‖(DH f p)(p
−1q)‖ = ‖(DH f p)(p

−1q)−1‖
= ‖(DH f p)(p

−1q)−1( f (p)−1 f (q))‖ ≤ ερG(p, q),

and

ρK
(
DH (u f )p(p

−1q), (u f )(p)−1(u f )(q)
) ≤ ερG(p, q).

Observe6 that there is C > 0 such that, for all p ∈ E and all q ∈ � ∩ U(p, r),

dist(q, pT H
p �) ≤ C‖DH f p(p

−1q)‖. (32)

We infer that

dist(q, pT H
p �) ≤ CερG(p, q).

Fixing a positive integer j > 1/r , one can cover E by countably many closed sets {B j
i }i

of diameter d j
i := diam B j

i belonging to the class E and such that

d j
i < 1/ j, for all i, and

∑
i

(d j
i )Q−m < ψQ−m(E) + 1/ j . (33)

6 Remember that, in exponential coordinates, DH f p is a linear surjective map with continuous dependence
in p and T H

p � = ker(DH f p). Thus, (32) is an application of Lemma 6.1 in the appendix.
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Imitating the proof of [12, Lemma 3.5], we define the functions g j
i : L → [0, 1] by g j

i =
(d j

i )Q−m−�1
u(B j

i ∩�)
. Note that, using the standard notation ψ

Q−m−�
δ for the pre-measures

used in the Carathéodory construction, one has

ψ
Q−m−�
1/ j (u−1(y) ∩ E) ≤

∑
i

g j
i (y), (34)

for all y ∈ L.
Then one gets, using upper integrals,

∫
L

ψ
Q−m−�
1/ j (E ∩ u−1(s))dψ�(s)

(34)≤
∫
L

∑
i

g j
i (y)dψ

�(y)

∗≤
∑
i

∫
L

g j
i (y)dψ

�(y)

≤
∑
i

∫
L

(d j
i )Q−m−�1

u(B j
i ∩�)

(s)dψ�(s)

≤
∑
i

(d j
i )Q−m−�ψ�(u(Bi

j ∩ �)), (35)

where the inequality marked by ∗ follow from Fatou’s Lemma. We claim that there is M > 0
such that

ψ�(u(B j
i ∩ �)) ≤ M�C(ε, L)(diam B j

i )�, (36)

for a suitable C(ε, L) > 0 such that limε→0+ C(ε, L) = 0.
Let us prove (36). Fix some B = B j

i ; we can assume that B intersects E in at least a point
p, which implies in particular that B ⊂ B(E, 1/ j). Without loss of generality, suppose that
p = 0 and (u f )(p) = 0; we know that for every q ∈ B ∩ �

dist(q, T H
0 �) ≤ ε‖q‖G and ρK(u(q), DH (u f )0(q)) ≤ ε‖q‖G.

Let M be the maximum between 1 and the Lipschitz constant of u f on B(E, r). Observing
that DH (u f )0 has Lipschitz constant at most M , we get

dist(u(q), DH (u f )0(T
H
0 �)) ≤ ρK(u(q), DH (u f )0(q)) + M dist(q, T H

0 �)

≤ (M + 1)ε‖q‖G ≤ 2Mε‖q‖G.

Denoting by L
′ the homogeneous subgroup DH (u f )0(T H

0 �), which is strictly contained in
L, and using the fact that u(B ∩ �) ⊂ L, we conclude that

u(B ∩ �) ⊂ BL(L′, 2Mε diam B) ∩ BL(0, M diam B),

where we also used the fact that the Lipschitz constant of u|B∩� = (u f )|B∩� is at most M .
By homogeneity one has

ψ�(u(B ∩ �)) ≤ (diam B)� ψ�(BL(L′, 2Mε) ∩ BL(0, M))

≤ M�(diam B)� ψ�(BL(L′, 2ε) ∩ BL(0, 1)).

The claim (36) follows on letting

C(ε, L) := sup
P

ψ�(BL(P, 2ε) ∩ BL(0, 1))
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where the supremum is taken among proper homogeneous subgroups of L. The fact that
limε→0+ C(ε, L) = 0 can be easily checked in linear coordinates on the vector space L, by
comparing ρL with the Euclidean distance and noting that ψ� is a multiple of the Lebesgue
measure.

Combining (36), (35) and (33), we obtain∫
L

ψ
Q−m−�
1/ j (E ∩ u−1(s))dψ�(s) ≤ M�C(ε, L)(ψQ−m(E) + 1/ j)

and, letting j → ∞, we deduce by Fatou’s Lemma that

μ�,u(E) ≤ M�C(ε, L)ψQ−m(E).

The proof is accomplished by letting ε → 0+. ��
Lemma 4.9, combined with Propositions 2.17 and 2.3, provides the following conse-

quence. Recall that ψd is Borel regular and that the restriction of a Borel regular measure to
a Borel set is Borel regular again.

Corollary 4.10 Under the assumptions and notation of Theorem 4.1, the equality 	(p) = 0
holds for ψQ−m-a.e. p ∈ � such that DH (u f )|T H

p � is not surjective on L. In particular

	(p) = 0 = C(T H
p �, DH (u f )(p))

at all such points p.

4.6 Proof of the coarea formula

In this section we prove the main coarea formulae of the paper. We start by Theorems 1.3
and 4.1.
Proof of Theorems 1.3 and 4.1. Notice that Theorem 4.1 implies Theorem 1.3. Statements (i)
and (i i) and the first part of (i i i) of Theorem 4.1 follow from Proposition 4.5. The remaining
claim (24) follows from Proposition 4.8 and Corollary 4.10. ��

A direct consequence is Corollary 1.4, where we assume that K = L × M is a direct
product:

Proof of Corollary 1.4 It is enough to prove the statement in case R is a C1
H submanifold;

actually, we can also assume that there exists f ∈ C1
H (�; M) such that R = � := {p ∈ � :

f (p) = 0} and all points in� are split-regular for f . SinceK = L×M is a direct product, we
have u f ∈ C1

H (�; K) and DH (u f )p(g) = DHup(g)DH f p(g) for every g ∈ G. Moreover,
since T H

p � = ker DH f p , the equality DH (u f )p|T H
p � = DHup|T H

p � holds. In particular,
condition (5) now implies (3), and the statement directly follows from Theorem 1.3. ��

5 Heisenberg groups

The most notable examples of Carnot groups are provided by Heisenberg groups. For an
integer n ≥ 1, the n-th Heisenberg group H

n is the stratified Lie group associated with the
step 2 algebra V = V1 ⊕ V2 defined by

V1 = span{X1, . . . , Xn, Y1, . . . , Yn}, V2 = span{T },
[Xi , Y j ] = δi j T for every i, j = 1, . . . , n.
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In H
n , we consider coordinates (x, y, t) ∈ R

n × R
n × R, according to which the group

operation reads

(x, y, t)(x ′, y′, t ′) = (x + x ′, y + y′, t + 1
2

∑n
j=1(x j y

′
j − x ′

j y j )).

We say that a homogeneous distance ρ on H
n is rotationally invariant7 ([44]) if

ρ(0, (x, y, t)) = ρ(0, (x ′, y′, t)) whenever |(x, y)| = |(x ′, y′)|, (37)

where | · | is the Euclidean norm in R
2n . Observe that ρ is rotationally invariant if and only

if it is multiradial according to [8, Definition 2.21], i.e., if ρ(0, (x, y, t)) = f (|(x, y)|, |t |)
for a suitable f .

If H
n = W · V is a splitting of the n-th Heisenberg group H

n with W normal, then
necessarily V is an Abelian horizontal subgroup, i.e., V ⊂ V1, while W is vertical, i.e.,
V2 ⊂ W. See [17, Remark 3.12]. Moreover, if 1 ≤ k ≤ n, then the following conditions are
equivalent:

(i) P ⊂ H
n is a vertical subgroup with topological dimension 2n + 1 − k;

(ii) P = P × V2 for some (2n − k)-dimensional subspace P ⊂ V1;
(iii) P ∈ THn ,Rk .

Proving the equivalence of the statements above is a simple task when one takes into account
that every vertical subgroup of codimension at most n possesses a complementary horizontal
subgroup, see e.g. [17, Lemma 3.26].

5.1 Area formula in Heisenberg groups

We provide an explicit representation for the spherical measure on vertical subgroups of H
n .

Proposition 5.1 Assume that H
n is endowed with a rotationally invariant homogeneous dis-

tance ρ and let 1 ≤ k ≤ n. Then, there exists a constant c(ρ, n, k) such that for every vertical
subgroup P ∈ THn ,Rk

c(ρ, n, k)S2n+2−k
P = H2n+1−k

E P,

whereH2n+1−k
E denotes the Euclidean Hausdorff measure on R

2n+1 ≡ H
n.

Proof Let P ∈ THn ,Rk be a fixed vertical subgroup; by [17, Lemma 3.26] there exists a
complementary Abelian horizontal subgroup V = V × {0}, for a proper k-dimensional
subspace V ⊂ V1. Let W be the (2n − k)-dimensional subspace orthogonal to V in V1 and
set W := W × V2, it is a vertical subgroup that is complementary to V. Let P ⊂ V1 such
that P = P × V2.

Let f : W → V be such that P = {w + f (w) : w ∈ W } and let φ : W → V such that
P = {w(φ(w), 0) : w ∈ W}. Now, notice that if z ∈ W and t ∈ R, then

(z, t)(φ(z, t), 0) = (z + φ(z, t), t + 1

2
ω(z, φ(z, t)),

where ω is the standard symplectic form on R
2n . Since z + φ(z, t) ∈ P and (z + V ) ∩ P =

{z + f (z)}, then we have φ(z, t) = f (z).

7 The terminology “rotationally invariant” might be misleading in H
n for n > 1, as not all rotations around

the T axis are isometries
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The area formula of [8, Theorem 1.2], together with [8, Theorem 2.12 and Proposition
2.13] from the same paper, provide a constant c(ρ, n, k) > 0 such that

c(ρ, n, k)S2n+2−k
P = �#(J

φφ H2n+1−k
E W), (38)

where Jφφ is the intrinsic Jacobian of φ as in [8, Definition 2.14] and� is the intrinsic graph
map. On the other hand, the Euclidean area formula gives

H2n+1−k
E P = F#(J F H2n+1−k

E W), (39)

where F : W → P is defined by F(x, y, t) := ( f (x, y), t) for every (x, y) ∈ W and J F is
the Euclidean area factor. As a matter of fact, using the equality f = φ, one has Jφφ = J F
and the statement immediately follows from (38) and (39). ��
Remark 5.2 Proposition 5.1 holds, with no changes in the proof, in the more general case H

n

is endowed with a homogeneous distance that is (2n+1−k)-vertically symmetric according
to [8, Definition 2.19].

Remark 5.3 When H
n is endowed with a rotationally invariant distance ρ, then for every

pair (P, P
′) of one-codimensional homogeneous subgroups of H

n , there exist an isometry
(Hn, ρ) → (Hn, ρ) that maps P to P

′. The proof is left to the reader. However, this is not
the case for codimension 2 subgroups of H

2, nor for codimension 1 subgroups of H
1 × R.

Indeed, if two subgroups are not isomorphic, they cannot be isometric.

The following proposition completes the proof of Corollary 1.2.

Proposition 5.4 If H
n is endowed with a rotationally invariant homogeneous distance and

G
′ = R, then the function a in Corollary 1.2 is constant, i.e., there exists C ∈ [1, 22n+1]

such that

S2n+1 R = CH2n+1 R ∀ (Hn, R)-rectifiable set R ⊂ H
n .

Proof When G = H
n and G

′ = R, then the function a defined in (20) is constant by
Remark 5.3. ��

Similarly, Corollary 3.6 can be improved when G is the Heisenberg group endowed with
a rotationally invariant distance.

Corollary 5.5 Assume G is the Heisenberg group H
n endowed with a rotationally invariant

distance andG
′ = R

m for some 1 ≤ m ≤ n; ifψ2n+2−m is the spherical Hausdorff measure,
then the function d in Corollary 3.6 is constant.

If m = 1 and ψ2n+2−m is the Hausdorff measure, then the function d in Corollary 3.6 is
constant.

Proof Concerning the first part of the statement, letW ∈ THn ,Rm be fixed; by Proposition 5.1
we have

d(W) = lim
r→0+

S2n+2−m(W ∩ U(0, r))

r2n+2−m

= S2n+2−m(W ∩ U(0, 1)) = c(n,m)H2n+1−m
E (W ∩ U(0, 1))

and the latter quantity does not depend on W by rotational invariance of the distance. The
second part of the statement is an immediate consequence of Remark 5.3. ��
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5.2 Coarea formula in Heisenberg groups

When one considers spherical measures in the Heisenberg group endowed with a rotationally
invariant distance, then the coarea factor coincides up to a multiplicative constant with the
quantity

J Ru(p) :=
(
det(L ◦ LT )

)1/2
, L := DHup|T H

p R .

We prove this fact.

Proposition 5.6 Consider the Heisenberg group H
n endowed with a rotationally invariant

distance. Let P ∈ THn ,Rm be a vertical subgroup of topological dimension 2n + 1 − m and
let L : P → R

� be a homogeneous morphism; assume 1 ≤ m + � ≤ n. Then

C(P, L) = c(n,m + �)

c(n,m)

(
det(L ◦ LT )

)1/2
,

where the positive constants c(n,m) and c(n,m + �) are those provided by Proposition 5.1.

Proof If L is not onto R
�, then the statement is true. We assume that L is surjective. By

Proposition 5.1

μP,L =
∫
R�

S2n+2−m−� L−1(s)dL�(s)

= c(n,m + �)

∫
R�

H2n+1−m−�
E L−1(s)dL�(s)

= c(n,m + �)(det L ◦ LT )1/2H2n+1−m
E P,

where we used the Euclidean coarea formula. A second application of Proposition 5.1 gives

μP,L = c(n,m + �)

c(n,m)
(det L ◦ LT )1/2S2n+2−m

P

and this is enough to conclude. ��
We now have all the tools needed in order to prove our coarea formula in Heisenberg

groups.

Proof of Theorem 1.7 The first part of the statement is an immediate consequence of Corol-
lary 1.4 and the fact that, if DHup|T H

p R is surjective on R
�, then T H

p R ∩ ker DHup is a
vertical subgroup of dimension 2n + 1−m − � ≥ n + 1, and by [17, Lemma 3.26] it admits
a complementary (horizontal) subgroup.

The second part of the statement is now a consequence of Proposition 5.6; clearly, one
has c = c(n,m + �)/c(n,m) according to the constants introduced in Proposition 5.1.
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6 Appendix

This appendix contains an extension to homogeneous morphisms of a result which is folklore
for linear maps.

Lemma 6.1 Let G, H be graded groups with fixed homogeneous distances and let K ⊂
Homh(G; H) be a compact set of surjective homogeneous group morphisms G → H. Then
there is C such that

dist(q, ker(L)) ≤ C‖L(q)‖ (40)

for all L ∈ K and q ∈ G.

Proof Denote by δλ the dilations and by ‖ · ‖ (indistinctly) the homogeneous norms of G and
H .

We claim that if M ∈ Homh(G; H) is a surjective homogeneous group morphism then
there is a neighborhood U of M in Homh(G; H) and a constant c such that (40) holds for
L ∈ U . The lemma will follow by a compactness argument.

To prove the claim, observe that, in exponential coordinates, G and H are vector spaces
and the elements of Homh(G; H) are linear maps. So, there is a homogeneous vector space
V ⊂ G (i.e., δλV = V for all λ > 0, but V is not necessarily a subgroup) such that
V ⊕ ker(M) = G and the restriction M |V : V → H is a linear isomorphism.

Given a homogeneous linear map P : H → V (i.e., δλ ◦ P = P ◦ δλ for all λ > 0, but P
does not need to be a group morphism) define the quantity

|P| := max{‖Ph‖ : ‖h‖ ≤ 1},
so that ‖Ph‖ ≤ |P|‖h‖ for every h ∈ H .

It is not hard to see that P 	→ |P| is continuous. Indeed, consider a sequence Pn converging
to P (as linear maps, hence uniformly on compact sets). On the one hand, for every n there is
hn with ‖hn‖ = 1 and |Pnhn | = |Pn |; up to passing to a subsequence, we have hn → h with
‖h‖ = 1 and |P| ≥ ‖Ph‖ = limn ‖Pnhn‖ = lim supn |Pn |. On the other hand, there is h
such that ‖h‖ = 1 and |P| = ‖Ph‖ and thus lim infn |Pn | ≥ lim infn ‖Pnh‖ = ‖Ph‖ = |P|.
We conclude that limn |Pn | = |P|.

Next, there is a compact neighborhood U of M such that every map L ∈ U restricts to a
linear isomorphism L|V : V → H . The function L 	→ |L|−1

V | is positive and continuous on
U . Since U is compact, there is c > 0 such that |L−1

V | ≤ c for all L ∈ U . We conclude that,
for every q ∈ G and L ∈ U ,

dist(q, ker L) = dist(q ker L, 0) ≤ ‖L−1
V (Lq)‖ ≤ c‖Lq‖.

This completes the proof of the initial claim. ��
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