
4.1  Introduction

Evolutionary robotics (Nolfi and Floreano 2000; Nolfi et al. 2016; Nolfi, 2021) is a method 
that allows the creation of robots capable of developing the ability to perform one or more 
functions as a result of an adaptation process analogous to natural evolution.

Robots are considered to be autonomous artificial organisms that adapt in close interaction 
with the environment without human intervention. The role of the experimenter is limited 
to the specification of the fitness function—that is, the criteria used to evaluate the perfor
mance level of the robots—and to the specification of the characteristics of the robots that 
are not subjected to the adaptive process. The remaining characteristics are encoded in a 
vector of parameters (genotype) and evolved through an evolutionary algorithm (Rechenberg 
1973; Goldberg and Holland 1988). In the majority of cases, the evolving robots are provided 
with neural network controllers. The connection weights of the network, which determine 
the behavior of the robot, are encoded in the genotype and evolved. Eventually, the archi-
tecture of the neural network (Stanley and Miikkulainen 2002; Durr, Mattiussi, and Floreano 
2006) and/or the morphology of the robot can be encoded in the genotype and evolved (Sims 
1994; Lipson and Pollack 2000; Auerbach and Bongard 2012; Hiller and Lipson 2012).

The evolutionary process is realized by creating an initial population of genotypes 
generated randomly and then repeating the following steps for a certain number of genera-
tions: 1) create a population of robots with the characteristics specified in the correspond-
ing genotypes, 2) allow the robots to interact with their environment for a finite amount 
of time and calculate a scalar value (fitness) that rates the performance of each robot with 
respect to a given problem, and 3) create a new population of genotypes composed of 
copies with random variations of the genotypes of the fittest robots.

An important aspect to consider is that the utilization of a fitness function that rewards 
the robot for performing a given function—for example, foraging—can drive the develop-
ment of several behavioral and cognitive capacities that are instrumental to the achievement 
of that function, such as avoiding obstacles and dangers, orienting and navigating in the 
environment, discriminating relevant objects, integrating sensory information over time and 
later using it to appropriately regulate the robot’s behavior, and so on. The analysis of the 
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way in which these capacities are realized and integrated in evolving robots can provide 
valuable information from the perspective of modeling the organization and the develop-
ment of similar capacities in natural systems.

Evolutionary robotics has been applied to the study of a wide range of phenomena, 
including embodied cognition, sensorimotor coordination, integration of behavioral and 
cognitive skills, social and collective behaviors, internal models, and interaction between 
evolution and learning. In the following sections, I will describe a few representative 
examples of the work conducted in these areas.

4.2  Evolving Bodies and Brains: Morphological Computation

The behavioral and cognitive skills of robots or animals are dynamical properties that 
unfold in time and arise from a large number of interactions between the agent’s nervous 
system, body, and environment (Chiel and Beer 1997; see also chapter 11). The dynamical 
process originating from the interactions depends on the characteristics of the agent’s body 
and brain. This implies that varying the characteristics of the body and/or of the brain can 
shape the dynamical process.

An example of behavior that can be realized by shaping the characteristics of the body 
or of the brain is walking on a declining plane. Indeed, it can be produced either by 
brainless robots with passive joints and carefully designed body morphologies (McGeer 
1990; Collins et al. 2005) or by highly controlled robots lacking the morphological fea-
tures of the former robots (Chestnutt et al. 2005). The term “morphological computation” 
(Pfeifer et al. 2006; Paul 2006; see also chapter 1) has been introduced to indicate pro
cesses performed by the body that otherwise would have to be performed by the brain. 
Solutions exploiting morphological computation are often advantageous in terms of 
energy efficiency and robustness with respect to alternative solutions (Pfeifer and Bongard 
2006).

The possibility of adapting both the body plan and the control policy of robots permits 
the selection of solutions that are simpler and more effective within the spectrum of those 
available—that is, among solutions relying primarily on morphological computation or on 
control. Moreover, it permits the generation of solutions in which the morphological and 
control features are coadapted. Evolutionary robotics constitutes an ideal approach for 
adapting both the policy and the morphology of robots since it is a model-free method 
that does not make any assumption about the structure of the adaptive system. Moreover, 
unlike alternative model-free training methods, it permits the adaptation of any type of 
parameter, including a combination of qualitatively different parameters. The number of 
body parts forming the body of the robot, the relative position of these parts, the physical 
properties of each body part, and the characteristics of the joints among body parts can 
be encoded in the genotype and evolved together with the characteristics of the neural 
network of the robot. This is typically realized by using genotypes that encode growing 
rules, which determine how the initial “embryo” grows and differentiates, rather than using 
genotypes that directly encode the property of a fully formed robot.

In a pioneering work in this area, Sims (1994) demonstrated how artificial evolution can 
be used to evolve the morphology and the control policy of simulated creatures capable of 
swimming, walking, and grabbing objects while competing with other creatures. Lipson and 
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Pollack (2000) later used a similar approach to evolve simulated walking robots that are then 
manufactured using a three-dimensional printer and spare electronic components.

Since that time, this approach has been used for various purposes. For example, Long 
(2012) evolved the stiffness of artificial tails of swimming robots to investigate how back-
bones evolved in early vertebrates. By evolving robots in environments of varying complex-
ity, Auerbach and Bongard (2012) showed how the complexity of the evolved morphology 
correlates with the complexity of the environment. For example, robots evolved to walk on 
irregular terrain develop morphologies that include appendages missing in robots evolved 
over flat terrain. Hiller and Lipson (2012) demonstrated how evolving robots made of cells 
with different material properties arranged in evolved topologies can produce a variety of 
locomotion behaviors. These behaviors originate from simple periodic expansion/contraction 
actions produced by some of the cells and from the physical interactions among the cells 
composing the robot body and among the cells and the environment. These simulated robots 
composed of multiple cells can then be transformed into artificial living creatures by assem-
bling ectoderm and cardiac stem cells in the same three-dimensional spatial configuration 
(Kriegman et al. 2020). Remarkably, these artificial living creatures are able to locomote 
and to explore their aqueous environment autonomously for days.

4.3  Sensorimotor Coordination

In agents that are embodied and situated, the role of perception cannot be separated by 
that of action and vice versa. What an agent perceives is determined by what it does, and 
what an agent does can be determined by what the agent needs to perceive.

The existence of a close link between perception and action draws on a number of distinct 
traditions in philosophy, in psychology, and in the cognitive sciences. It is at the core of the 
ecological theory of perception developed by Gibson (1979) and of several other fundamen-
tal contributions (Arbib 1989; Varela, Thomson, and Rosh 1991; Maturana and Varela 1987; 
Thelen and Smith 1994; Berthoz 2000; O’Regan and Noë 2001; Noë 2004; Clark 1998, 
1999). The coupling of the sensory and the motor process can be indicated with the term 
“sensorimotor coordination” (Dewey 1981 [1986]).

Evolutionary robotics constitutes an ideal framework for studying the role of sensorimo-
tor coordination in the development of behavioral and cognitive skills. The first reason is 
that the evolutionary process leaves the evolving robots free to determine the way in which 
they achieve their adaptive goals. Consequently, the robots are free to coordinate their 
perceptual and action processes in ways that are functional to the achievement of their 
objectives. The second reason is that the evolutionary process is driven by a fitness mea
sure that rates the overall performance of the robot—that is, the sum of rewards obtained 
over an extended evaluation period. This permits variations that enhance the coordination 
between the sensory and action process to be identified and retained regardless of whether 
the time interval between actions and associated rewards is immediate or delayed.

Indeed, sensorimotor coordination plays a crucial role in practically all experiments 
carried out by evolving robots. The first demonstration was reported in an experiment in 
which a wheeled robot provided with infrared sensors and situated in an arena surrounded 
by walls was evolved for the ability to find and remain near a cylindrical object (Nolfi 1996, 
2005). Interestingly, the evolved robots did not solve the problem by internally processing 
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the experienced sensory states in order to discriminate the stimuli corresponding to walls 
and cylinders, a strategy that was actually challenging since the stimuli experienced near 
cylinders and walls strongly overlap in sensory space. They instead solved the task by react-
ing to the stimuli to produce behavioral attractors—that is, oscillatory behavior generated 
by alternating move-forward/move-backward and turn-left/turn-right actions, near cylinders 
but not near walls. In other words, they exploited the fact that the execution of the same 
actions has different perceptual consequences near walls or cylinders that can lead to the 
production of the two required differentiated behaviors. This experiment can be replicated 
with the Evorobotpy software tool available from https://github​.com​/snolfi​/evorobotpy (see 
the instruction for running the ErDiscrim experiment in Nolfi 2021, chapter 13).

In an extended version of this experiment, in which the robot was provided with proprio-
sensors that encoded the speed of the robot’s wheels, Scheier, Pfeifer, and Kunyioshi (1998) 
observed the evolution of a qualitatively different sensorimotor strategy that exploits actions 
to self-select easy-to-interpret stimuli. In this case the evolved robots displayed a wall-
following behavior near walls and cylinders of moving straight along the wall and turning 
around the cylinder, respectively. They then used the perceived offset between the speed of 
the left and right wheel to keep producing the wall-following behavior near cylinders and 
to move away from walls. In other words, the robots acted to later experience favorable 
sensory states. They displayed an initial behavior that enabled them to later experience two 
well-differentiated states on their propriosensors near walls and cylinders.

Qualitatively similar solutions have been observed in more complex robots evolved for 
the ability to solve more challenging problems. This is the case, for example, of an experi-
ment in which a simulated iCub robot (Sandini, Metta, and Vernon 2004) was evolved for 
the ability to discriminate spherical and ellipsoid objects on the basis of rough tactile 
information (Tuci, Massera, and Nolfi 2010). The robot was provided with fourteen motor 
neurons that encoded the torque produced by seven sets of antagonistic muscles controlling 
the seven degrees of freedom (DOFs) of the arm and of the wrist, two motor neurons that 
encoded the desired extension/flexion of the thumb and of the four fingers, and two motor 
neurons that indicated the category of the object (i.e., spherical or ellipsoid). The sensors 
of the robot included eight neurons that encoded the current angular position of the DOFs 
of the arm and of the wrist, five neurons that encoded the extension/flexion of the five 
corresponding fingers, and ten neurons that encoded the ten touch sensors located on the 
fingertips and on the palm. Touch sensors binarily encoded whether the corresponding part 
of the robot body collided with another body. The robots were rewarded for discriminating 
the shape of the objects experienced during multiple evaluation episodes. They were not 
rewarded for the production of any specific behaviors and consequently were left free to 
select behaviors that enabled and/or facilitated the discrimination problem.

The analysis of the evolved robots demonstrates that they did indeed develop manipula-
tion behaviors that enabled them to experience stimuli allowing them to reliably discrimi-
nate the two types of objects despite the similarity of the objects’ shapes and the limited 
resolution of the touch sensors. The categorization process involves three phases. In the 
first part, the robot manipulates the object by wrapping it with its fingers and by moving 
the object until a suitable hand/object posture is reached. The information contained in the 
tactile stimuli experienced during this phase increases and finally reaches a high value 
when a hand/object achieves a suitable posture, which remains almost stable in the remain-
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ing part of the episode. During the second phase, the robot starts to produce a categoriza-
tion answer, keeps producing fine manipulation actions, and keeps integrating the sensory 
information experienced by eventually reversing its categorization decision. This contin-
ues during the third phase, in which the categorization decision is no longer reversible.

The solutions discovered by the evolved robots thus fit the dynamical view of cognition 
elaborated by Spivey (2007). The extension of the categorization process over time enables 
the robot to experience useful stimuli and to integrate the conflicting evidence experienced 
over time in order to maximize the accuracy of the categorization decision.

4.4  On the Relation between Reactive and Cognitive Capabilities

Evolutionary robotics can also be used to study the relation and the integration between 
behavioral and cognitive capabilities.

As discussed above, morphological computation and sensorimotor coordination can be 
used to perform processes that the brain would otherwise have to perform. The exploitation 
of the interaction between the agent and the environment thus permits reliance on solutions 
that are simpler, from an internal-processing perspective, than solutions that do not rely on 
these properties. This opens up questions about the relationship between reactive and cogni-
tive capabilities. Do they tend to interact in a synergetic or conflictual manner? And “is 
cognition truly seamless—implying a gentle, incremental trajectory linking fully embodied 
responsiveness to abstract thought and off-line reason? Or is it a patchwork quilt, with jumps 
and discontinuities and with very different kinds of processing and representations serving 
different needs?” (Clark 1999, 350).

Interesting evidence supporting a synergetic relation and a smooth incremental integration 
of reactive and cognitive capabilities has been reported in evolutionary experiments address-
ing the evolution of a robot selected for the ability to navigate in a double T-maze environ-
ment (figure 4.1; Carvalho and Nolfi 2016). The robot, which is initially located in an area 
at the bottom of the central corridor with a randomly varying position and orientation, should 

Figure 4.1
The object-discriminating robot.
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travel toward a target destination located at one of the four ends of the maze. The correct 
destination is marked by two green objects located in the central corridor. The robot should 
thus solve a time-delay problem in which the information experienced while it travels down 
the central corridor should later influence the direction in which the robot turns when it 
reaches the first and the second junction.

The analysis of evolving robots indicates that they solve the problem with a strategy 
that does not require them to store the information extracted from the green object in 
internal states, recognize the arrival at the first and at the second junction, or turn left or 
right on the basis of the internal states and of the junction. As shown in figure 4.2, the 
trajectories produced during different evaluation episodes first converge in the bottom 
portion of the central corridor and then diverge while the robot perceives the position of 
the green objects. The initial convergence enables the robot to reduce the differences 
caused by the varying initial positions and orientations. The divergent process allows the 
robot to enter into one of four separate basins of attraction of robot/environmental dynam-
ics that bring the robot to the right destination—the destination that matches the relative 
position of the two green beacons.

The strategy displayed by evolved robots thus exploits a form of cognitive off-loading—
that is, the possibility of off-loading an agent’s future intention into the external environment 
(Gilbert 2015a, 2015b). More specifically, the robot off-loads the information experienced in 
the central corridor by assuming different positions and orientations with respect to the cor-
ridor and by then maintaining such positions/orientations. The relative position of the robot 
in the corridor is then used to turn appropriately left or right at the first and then at the second 
junction. The trajectories displayed in figure 4.2 are produced by a robot that has no memory. 
However, similar strategies are produced by robots with memory—that is, by robots provided 
with recurrent connections in their internal neurons. The possibility of off-loading information 
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Figure 4.2
Trajectories of a typical evolved robot postevaluated for three hundred episodes. The trajectories (shown in 
magenta, blue, yellow, and cyan) indicate those produced by the robot during episodes in which it should have 
navigated toward the destination with the corresponding color. The target destination is marked by the relative 
position of the two green objects located to the left or right of the central corridor.
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in the environment is thus preferred to alternative solutions relying on internal processing 
independently from the availability of memory.

Interestingly, evolving robots subjected to position perturbations, such as being randomly 
moved left or right as a result of “gusts of wind” occurring from time to time, solve the 
problem by developing composite strategies that rely on cognitive off-loading to determine 
the motor trajectory and on memory to reenter the appropriate basin of attraction after a 
position perturbation. This and additional control experiments reported in Carvalho and Nolfi 
(2016) demonstrate how, at least in this domain, reactive strategies do not prevent but rather 
promote the development of cognitive capabilities. Moreover, they illustrate how the devel-
opment of cognitive capacities does not lead to the elimination of preexisting reactive capaci-
ties but rather to their extension.

4.5  Social and Collective Behavior

In the previous section, we limited our analysis to individual behaviors—to the evolution 
of robots placed in an environment that does not include other robots. The evolutionary 
method, however, can also be applied to evolve social behaviors. This can be done simply 
by situating the evolving robots in environments containing other robots.

This scenario has been used to study the conditions that support the evolution of coopera-
tive behavior. As expected, cooperative behavior readily emerges when a group of interact-
ing robots is formed by genetically related individuals (e.g., individuals possessing identical 
genotypes) or when selection operates at the level of the colony or swarm (Floreano et al. 
2007). When instead the individuals forming the colony are not genetically related and 
selection operates at the level of individuals, the evolutionary process leads to a dynamic 
in which cooperation periodically emerges and extinguishes (Mitri, Floreano, and Keller 
2009).

The evolution of genetically related robots readily produces self-organizing 
properties—that is, the spontaneous formation of spatial, temporal, or spatiotemporal 
structures or functions that emerge from local interactions among individual robots and 
that are robust with respect to environmental variations (Camazine et al. 2001; see also 
chapter  5). For example, Sperati, Trianni, and Nolfi (2011) conducted experiments in 
which a population of wheeled robots was evolved for the ability to forage. The evolving 
robots developed an ability to arrange themselves in dynamic chains that enabled the 
colony to efficiently navigate between a nest and a foraging area. These dynamic chains, 
which self-sustain in the presence of perturbations, allow robots with limited individual 
sensory capacities to efficiently navigate to the right destination by discovering and storing 
information on the location of the relevant environmental areas at the level of the colony. 
Another example of self-organized behavior has been observed in a population of robots 
capable of self-assembly—in this case, by physically attaching together—to master prob
lems that cannot be solved by individual robots. Robots evolved for the ability to move 
while attached developed an ability to negotiate a common direction of motion and to keep 
moving along that direction by compensating for misalignments originating during motion 
(Baldassarre et al. 2007). Also in this case, the ability to coordinate and to cooperate was 
robust with respect to variations in the environmental conditions. Indeed, evolved robots 
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were capable of coordinating independently from the configuration in which they were 
assembled. Moreover, robots evolved in specific environmental conditions demonstrated 
the ability to generalize their skills to new environmental conditions. Such generalization 
capacity included the ability to display new behaviors adapted to the new experienced 
conditions. For example, robot swarms evolved in an environment with no obstacles 
demonstrated an ability to avoid obstacles and to rearrange their shape to pass through 
narrow passages when situated in a mazelike environment with obstacles (Nolfi 2009).

The evolution of collective behavior in robots can also lead to the emergence of task 
specialization—that is, to individuals capable of assuming different complementary roles 
that increase the efficacy of the group (Ferrante et al. 2015; Pagliuca and Nolfi 2018).

The evolution of robots selected for the ability to solve a problem that benefits from coop-
eration has also been used to study the evolution of communication and language (Cangelosi 
and Parisi 2002; Nolfi and Mirolli 2010; see also chapter  20). In a series of experiments 
reported in De Greef and Nolfi (2010), the authors analyzed the origin and complexification 
of the communication system displayed by evolving robots across generations and the origin 
and transformation of the meaning associated with communication signals. These analyses 
indicate that the development of communication capabilities is strongly interlinked with the 
evolution of other capabilities. Robots need to develop appropriate behaviors to access and/
or generate the information to be communicated and to react appropriately to detected signals. 
Interestingly, the development of communication skills scaffolds the development of behav-
ioral skills and vice versa. This leads to the development of integrated capabilities and to a 
progressive complexification of robots’ skills (Nolfi 2013).

Finally, evolutionary robotics experiments have been used to explain why reciprocity, 
the reciprocal exchange of episodes of help between two partners, is rare in nature (André 
and Nolfi 2016). This fact contrasts with the predictions generated by game theoretic 
models that reciprocity should evolve easily (Axelrod and Hamilton 1981). As shown by 
André and Nolfi (2016), these game theoretic models’ predictions are in error because 
these methods do not model the mechanisms underlying the generation of behavior, a 
limitation that does not affect evolutionary robotics models. Indeed, the experiments 
carried out by evolving robots predict correctly that reciprocity is unlikely to evolve, due 
to the numerous neutral mutations required to generate a reciprocator behavior from indi-
viduals that do not reciprocate.

Another line of research has investigated the evolution of social behaviors in competing 
scenarios—for example, the evolution of a population of robots with conflicting interests. 
The coevolution of competing species such as predator and prey might favor the synthesis 
of evolutionary innovations. Indeed, “an adaptation in one lineage (e.g., predators) may 
change the selection pressure on another lineage (e.g., prey), giving rise to a counter-
adaptation. If this occurs reciprocally, an unstable runaway escalation of ‘arm races’ may 
result” (Dawkins and Krebs 1979, 489; Rosin and Belew 1997). In other words, adapta-
tions on one side call for counteradaptations on the other side, and the counteradaptations 
call for more counteradaptations, and so on, thus producing an escalation process. More-
over, the concurrent evolution of the agents and of the learning environment can lead to 
a spontaneous, progressive complexification of the adaptive problem. That is to say, a 
pedagogically sound training process can be produced in which progress in one population 
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is accompanied by a gradual complexification of the adaptive task caused by parallel pro
gress in the competing population (Rosin and Belew 1997).

Evolutionary experiments performed by evolving predator and prey robots (Cliff and 
Miller 1995; Nolfi and Floreano 1998) showed that co-evolution does indeed lead to “arms 
races” that produce a progressive complexification during the initial generations. The evo-
lutionary dynamics, however, later converge in a limit-cycle dynamic in which progress 
against current competitors (local progress) is accompanied by retrogression with respect 
to ancient or future competitors. Cycling dynamics of this type were found in natural evolu-
tion in a population of side-blotched lizards (Uta stansburiana) by Sinervo and Lively 
(1996) and in Daphnia and associated parasites conserved in lake sediment (Decaestecker 
et al. 2007). More recently, Simione and Nolfi (2017, 2019) showed how long-term global 
progress can be produced in controlled ecological conditions—that is, in experiments in 
which the evolving populations are divided into subgroups that normally interact with 
specific subgroups of the competing population and only occasionally with the remaining 
competitors.

4.6  Evolution, Development, and Learning

The basic evolutionary method illustrated in the introduction can be extended to incorpo-
rate development and learning. In the basic method, the process that maps a genotype into 
a robot is completed before the robot starts to interact with its environment. In other words, 
robots are born as fully formed individuals. In extended evolutionary methods, by contrast, 
the developmental process continues during the period in which the robot interacts with 
its environment.

A model described in Bongard (2011), in which the evolving robots developed from an 
anguilliform morphology to a legged morphology while they interacted with the external 
environment, provides an example. The comparison with control experiments, in which 
the robots did not transition through the anguilliform body plan, indicates that morphologi-
cal change accelerates the evolution of robust walking behaviors. A second example is 
given by a series of experiments reported in Kriegman, Cheney, and Bongard (2018) in 
which soft robots with developmental morphology were evolved for the ability to move 
over a surface. The analysis of the interaction between the evolutionary and developmental 
processes in these experiments enabled the authors to highlight an unknown aspect of 
genetic assimilation—namely, that the traits that render the agents robust to changes in 
other traits have a greater probability of becoming genetically assimilated in successive 
generations than traits that are less robust to genetic variations.

A model in which the brains of the robots keep developing while the robots operate in 
their environment was studied in Nolfi, Miglino, and Parisi (1994). In this model, the 
evolving robots were provided with neuron axons that grew and branched by establishing 
connections with other neurons while the robots operated in the environment. As with real 
nervous systems, the growth process of axons is influenced both by the activity patterns 
of the single neurons and by genetic factors (Purves 1994; Quartz and Sejnowski 1997). 
This leads to the evolution of robots capable of developing brains adapted to the environ-
ment in which they are situated—for example, to robots that might or might not develop 
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a brain area dedicated to processing light and in which development of the area is triggered 
by the exposure to light (Nolfi, Miglino, and Parisi 1994).

Other works have investigated the combination of evolution and learning (Nolfi and 
Floreano 1999). In these models the topology of the neural network was fixed, but the 
connection weights varied while the robots interacted with the environment on the basis 
of an unsupervised (Floreano, Durr, and Mattiussi 2008), self-supervised (Nolfi and 
Parisi 1993), or reinforcement-learning algorithm (Schembri, Mirolli, and Baldassarre 
2007). The combination of evolution and learning enables evolving robots to adapt to 
environmental variations that occur within generations. For example, it enables predator 
robots to modify their behavior on the fly while interacting with a prey robot to display 
the strategy that is effective against the current encountered prey (Floreano and Nolfi 
1997).

4.7  Internal Models

Evolutionary robotics is a model-free approach, a method that permits the robots to develop 
behavioral and cognitive skills from scratch without the need to rely on a model of the 
external environment and/or the robot’s own self. However, the abilities that the robots 
develop during their adaptation can include the ability to build and use a model of their own 
body, a model of the external environment, and/or a forward model that allows the conse-
quences of the robots’ actions to be predicted.

Bongard, Zykov, and Lipson (2006) give an example of a robot capable of acquiring a 
model of its own body. In this work, a physical robot was equipped with an onboard simu-
lator that it used to continually evolve a model of itself. The model consisted of a three-
dimensional description of the robot’s own body that enabled it to predict the perceptual 
effects of the actions it could execute without actually performing them. The robot then 
used the model to cope with damages, such as the mechanical separation of a leg. This 
was realized by 1) using the offset between the actual and predicted consequences of 
actions to diagnose the damage, 2) updating the model of the robot’s own body to reduce 
the offset between the predicted and actual consequences of the robot’s action, 3) evolving 
a new control policy capable of operating effectively with the damaged body by using a 
mental simulation, and 4) using the new control policy to keep operating effectively despite 
the damage. The availability of the world model thus permits the evolution of a compensa-
tory policy by using the imagined effect of variations of the current policy (mental simula-
tion) as a proxy for the actual effect of variations.

Cully et al. (2015) showed how the ability to recover from damages or faults can be 
speeded up by learning a behavior-performance map that encodes the correlation between 
the value of the connection weights and the value of fitness. The map can then be used to 
introduce mutations that have a higher chance of producing improvements with respect to 
random mutations.

Gigliotta, Pezzulo, and Nolfi (2011) demonstrated how a robot subjected to sensory depri-
vation can evolve the ability to react appropriately to sensory stimuli and to self-generate 
states functionally equivalent to sensory stimuli during sensory deprivation phases in which 
stimuli are not available. The behavior consists of moving the robot’s eye to foveate consecu-
tive portions of the image located over a circular trajectory. In normal phases, the robot can 
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determine the movement of the eye on the basis of the current perceived color. During blind 
phases, the robot should use self-generated internal states as proxies for missing sensory 
states. The analysis of the evolved robots indicates that the problem is not solved by generat-
ing states that match the missing sensory states. Rather, it is realized by generating internal 
states that elicit the appropriate movements but are not necessarily similar to the states that 
would be experienced in normal conditions.

Finally, Ha and Schmidhuber (2018) demonstrated how agents that determine their 
actions on the basis of features extracted from the sensory states, by a neural network 
trained with a self-supervised learning algorithm, outperform agents that determine their 
actions directly on the basis of the features encoded in sensory states. The problem consid-
ered consists of learning to drive in a car-racing environment called CarRacing-v0 (Brock-
man et al. 2016). The learning agent receives an image containing a top-down view of the 
car and the environment as input. The features are extracted by 1) a variational autoencoder 
network (Kingma and Welling 2013; Rezende et al. 2014) trained with the ability to encode 
perceived images in compact representations that can be used to reconstruct the original 
image and 2) a long short-term memory (LSTM) network (Hochreiter and Schmidhuber 
1997) trained to predict the compressed state of the next perceived image on the basis of 
the compressed state of the current image and of the action the agent is going to perform. 
These two networks are pretrained using the images collected by the agent during several 
evaluation episodes in which the agent moves by performing random actions. The neural 
network controller of the evolving agents, which receives as input the internal state extracted 
by the sensors from the two pretrained networks described above, is evolved by using a 
standard evolutionary method for the ability to drive the car. In a second experiment per-
formed by using the VizDoom game problem (Kempka et al. 2016), the authors showed 
that the autoencoder and LSTM prediction network described above can be used to evolve 
the agents in virtual worlds imagined by the agents themselves. The solutions evolved in 
these imagined worlds can then be successfully used to control the agent of a real VizDoom 
game.

4.8  Evolution as a Form of Learning

The evolutionary method can also be used to model ontogenetic learning (Schlesinger 
2004). This is because the evolutionary algorithm constitutes one of the simplest yet most 
effective ways to evolve an embodied neural network through a trial-and-error process 
based on distal rewards. An example is illustrated in experiments in which an iCub human-
oid robot (Sandini, Metta, and Vernon 2004) trained through an evolutionary method devel-
ops reaching and grasping skills analogous to those displayed by human infants from two 
to eighteen months of age (Savastano and Nolfi 2013). During this period, infants display 
a first transition from sweeping and unsuccessful arm movements to primitive, imprecise 
reaching and grasping behaviors and then a second transition leading to integrated and 
effective reaching and grasping behaviors (Konczak et al. 1995; Konczak, Borutta, and 
Dichgans 1997; Konczak and Dichgans 1997; von Hofsten and Rönnqvist 1993; Spencer 
and Thelen 2000).

As illustrated in figure 4.3 (left), the robot is set in an upright position in front of a suspended 
object. This setting is similar to that used by Hofsten (1982) to analyze the development of 

Downloaded from http://direct.mit.edu/books/oa-edited-volume/chapter-pdf/2023077/c003000_9780262369329.pdf by guest on 20 May 2022



70	 S. Nolfi

reaching and grasping behavior in infants (figure 4.3, center and right). The training of the 
robot is realized in three phases: 1) a prereaching phase in which the robot has simple prewired 
reflex behaviors, low visual acuity, and an immature nervous system; 2) a gross-reaching 
phase in which the robot has improved visual acuity and matured cortical areas; and 3) a 
fine-reaching phase in which the robot has access to perceptual information that encodes the 
relative position of the object with respect to the hand.

The analysis of the experiments shows that the lack of internal neural resources during the 
prereaching phase has an adaptive role (i.e., channels the developmental process toward better 
solutions during the gross-reaching phase) and a bias role (i.e., represents a necessary condi-
tion for the emergence of the exploratory motor-babbling behavior). This suggests that the 
later involvement of cortical areas (Martin 2005) can play an adaptive role in humans and 
might have evolved to accomplish this function. Moreover, analysis of the behavior displayed 
by the robots during the course of the training process shows that the following phenomena 
observed in infants originate spontaneously: 1) a reduced use (freeze) of the distal DOFs of 
the arm of the robot during the prereaching phase, 2) an exploratory (motor-babbling) behavior 
during the prereaching phase, and 3) a temporal regression of the reaching capabilities at the 
onset of the fine-reaching phase. The fact that these qualitative variations emerge spontane-
ously indicates that they do not necessarily reflect the presence of additional specific matu-
rational constraints. They can be the manifestation of a general self-structuring process that 
operates by temporarily reducing the complexity of the motor space, of the sensory space, 
and of the relevant task space, respectively.

In contrast to reinforcement-learning algorithms (Sutton and Barto 2018) that represent 
the most common choice to model trial-and-error learning, evolutionary algorithms present 
advantages and drawbacks. The advantages include the possibility of adapting all the char-
acteristics of the robot, including the robot’s morphology and the architecture of the robot’s 
neural network and the ability to operate well in the presence of sparse reward. Reinforcement-
learning algorithms, on the other hand, are generally more sample efficient.

The development of new evolutionary algorithms that operate by estimating the local 
gradient (Hansen and Ostermeier 2001) and eventually rely on stochastic gradient optimiz-
ers to vary the adaptive parameters (Salimans et al. 2017) makes the usage of evolutionary 
methods even more attractive. Indeed, although these gradient-ascent methods can also 
operate on populations that include multiple parents, they are typically used with popula-

Figure 4.3
The simulated setting (left) is derived from experiments carried out on infants (center and right) by von Hofsten 
(1982).
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tions composed of a single parent producing several offspring. The evaluation of the 
offspring is used to estimate the local gradient, which in turn is used to vary the parameters 
of the parent. This implies that, as in ontogenetic learning, the adaptation process is real-
ized by varying the parameters of a single individual.

As demonstrated by Salimans et al. (2017), modern evolutionary methods represent a 
scalable alternative to the state-of-the-art reinforcement-learning algorithm (Schulman 
et al. 2015, 2017). Indeed, they can be used to adapt neural network controllers with mil-
lions of parameters by achieving results that are competitive with reinforcement-learning 
methods. The results have been collected on state-of-the-art benchmarking problems: the 
Mujoco control problems that require controlling articulated robots (Todorov, Erez, and 
Tassa 2012) and the Atari games that require controlling game players that receive as input 
the images of the console (Bellemare et al. 2013).

4.9  Conclusion

Evolutionary robotics is not only a method for automatic robot development inspired by 
biology but also a tool for investigating open questions concerning natural systems such 
as, for example, the role of embodiment in cognition, the origins of symbolic communica-
tion, the relation between behavioral and cognitive capacities, and the mechanisms sup-
porting the development of cooperative behaviors.

Despite initial skepticism demonstrated by representatives of mainstream disciplines 
and even by pioneers of the approach (Matarić and Cliff 1996), over the years an increas-
ing number of researchers from a wide range of disciplines have adopted the method. The 
richness and fecundity of the approach combined with the novel opportunities granted by 
recent methodological progress suggest that it will continue to play an important role in 
the future.

Readers interested in acquiring hands-on knowledge on evolutionary robotics can access 
freely available tools that permit the replication of standard experiments and the design 
of new experiments (see Auerbach et al. 2014; Massera et al. 2014; Nolfi 2021; see also 
https://github​.com​/snolfi​/evorobotpy).

Additional Reading and Resources

• ​ A recent review of the field: Nolfi, S., J. Bongard, P. Husbands, and D. Floreano. 2016. 
“Evolutionary Robotics.” In Springer Handbook of Robotics, edited by Bruno Siciliano 
and Oussama Khatib, 1423–1541. 2nd ed. Berlin: Springer Verlag.
• ​ An article that illustrates in more detail the complex adaptive system nature of behavior 
and cognition in embodied agents: Nolfi, S. 2009. “Behavior and Cognition as a Complex 
Adaptive System: Insights from Robotic Experiments.” In Handbook of the Philosophy of 
Science. Volume 10: Philosophy of Complex Systems, edited by C. Hooker. General editors: 
Dov M. Gabbay, Paul Thagard, and John Woods. San Diego: Elsevier.
• ​ A more detailed review of the field: Nolfi, S., and D. Florean, Evolutionary Robotics: 
The Biology, Intelligence, and Technology of Self-Organizing Machines. Cambridge, MA: 
MIT Press, 2000.
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• ​ Evorobotpy (Nolfi 2021; https://github​.com​/snolfi​/evorobotpy2) is a simple and well-
documented tool that can be used to perform evolutionary robotics experiments. The 
associated documentation (Nolfi 2021, chap. 13) includes tutorials and exercises.
• ​ Farsa (Massera et  al. 2014; https://sourceforge​.net​/projects​/farsa​/) is another software 
tool that can be used to conduct evolutionary robotics experiments.
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